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ABSTRACT 

Credit risk has been a worrying type of risk for financial managers. 

Fortunately, a recent market development –credit derivatives- has made the credit 

risk more manageable. The loan portfolio management has become more practicable 

than it used to be in the past. However, credit derivatives are still not well examined. 

There are uncertainties about and difficulties in the pricing and portfolio 

management of credit derivatives due to the non-normality in probability distribution 

of credit risk.  

Various models have been developed for credit derivatives pricing. After 

having drawn the general picture for the credit derivatives, we have studied some 

recent pricing models in a Das (1999) framework, in this study. Also appended is a 

an attempt to a step forward for simulating the risk-free rates and spreads, to test how 

powerful simulation can be in modelling the credit risk and pricing of it. Moreover, 

with highly developed computer technology, it is possible to make sensitivity 

analysis under several scenarios, to form imaginary loan portfolios, find their risk 

exposures, and perform a successful risk management practice. 
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I. INTRODUCTION 

 Banks and other non-bank financial institutions are today’s most complicated 

economic units. Their overall portfolios are more so... The management of these 

portfolios is one of the greatest challenges facing the financial manager. With the 

introduction of credit derivatives and mechanisms that allow institutions to unbundle 

the credit risk (CR) portion of traditional debt instruments from market risk (in an 

effort to improve pricing efficiency), this challenge could have been better and more 

easily handled in the last decade. 

The goal of a portfolio manager - regardless of whether the portfolio is 

composed of equities or credit assets- should be to create an “efficient” portfolio. 

With equities, the manager can usually buy and sell assets until he attains the optimal 

level of diversification. However, the manager of a loan portfolio typically faces 

several constraints and conflicting objectives while managing this portfolio. For 

example, some of the loans in the portfolio may be liquid, and those that are may not 

be truly saleable because of restrictions in the documentation or the effect of a sale 

on the relationship with the borrower(s).  

Credit derivatives (CDs) provide loan portfolio managers with a number of 

ways of constructing and shaping a portfolio and managing the conflicting objectives 

they have to face on both micro and macro levels. Firstly, CDs can be used to reduce 

the portfolio’s exposure to specific borrowers (obligors) or to diversify the portfolio 

by synthetically accepting CR from different industries or geographic regions that 

were previously underweighted in the portfolio, on the micro level. On the macro 



 6 

level, CDs can be used to create “synthetic” securitized positions that alter the risk 

and return characteristics of a large number of exposures at once.  

The development of CDs is a logical extension of two of the most significant 

developments of the recent past: securitization and derivatives. The concept of 

derivative is to create a contract that derives from an original contract or asset. For 

example, stock market derivatives are contracts that are settled based on movements 

in prices of stocks, without transferring the underlying stock. Similarly, a credit 

derivative is a contract that involves a contract between parties in relation to the 

returns from a credit asset, without transferring it. 

This work has two main parts. In Part II, we first analyse the major aspects of 

credit derivatives briefly. We then examine the pricing particulars of credit 

derivatives in more detail, focusing on simple spread models, Jarrow-Lando-Turnbull 

(JLT) model, Das-Tufano extension of JLT, and Duffie-Singleton analysis, in Part 

III.1 

                                           
1 Part III is largely based on a framework set up within two articles by Sanjiv Ranjan Das referred to 
in the bibliography 
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II. CREDIT DERIVATIVES IN GENERAL 

II.1. Definition of Credit Risk 

Every financial asset is a bundle of risks - interest rate risk, liquidity risk, 

price risk, exchange rate risk etc., - of which credit risk (CR) is but one. CDs enable 

banks to strip the CR from an underlying asset (such as a loan or a bond) and trade or 

manage it separately. 

 Credit risk itself can be further decomposed into its constituent elements – 

market risk, specific risk, settlement risk, default risk, sectorial risk and country risk 

– each of which in turn can be priced, hedged and traded as discrete items. 

Credit risk is the possibility that a borrower will fail to service or repay a debt 

on time. The degree of risk is reflected in the borrower's credit rating, which defines 

the premium over the riskless borrowing rate it pays for funds and ultimately the 

market price of its debt. CR has two main components: market risk and firm-specific 

risk. CDs allow users to isolate, price and trade firm-specific CR by unbundling a 

debt instrument or a basket of instruments into its component parts and transferring 

each risk to those best suited or most interested in managing it. Various traditional 

mechanisms have been used to reduce the CR including the refusal to make a loan, 

insurance products, factoring, financial guarantees, and letters of credit. Even so, 

these mechanisms are less effective and have proved to be very expensive during 

periods of economic downturn when risks that normally offset each other may 
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simultaneously default and may cause financial institutions to suffer substantial loan 

losses. 

II.2. Definition of Credit Derivatives 

Derivatives such as swaps, options and forwards have long been used to 

transfer interest rate, exchange rate and other risks. CDs use similar, but specially 

adapted, instruments to trade and hedge CR. Techniques such as cash settlement - 

and payoffs linked to the market valuation of defaulted assets - facilitate the 

separation of defined CRs from the underlying instruments in which they are 

normally embedded.  

A credit asset is the extension of credit in some form: normally a loan, 

instalment credit or a financial leasing contract. Every credit asset is a bundle of risks 

and returns: every credit asset is acquired to make certain returns on the asset, and 

the probability of not making the expected return is the risk inherent in a credit asset. 

There are several reasons due to which a credit asset may not yield the expected 

return to the holder. These include delinquency, default, losses, foreclosure, 

prepayment, sharp interest rate movements and erratic exchange rate movements etc. 

CDs are privately negotiated bilateral contracts that allow users to manage 

their exposures to CR. They separate the ownership and management of CR from 

other qualitative and quantitative aspects of ownership of financial assets. A credit 

derivative, being usually a composite product composed of plain vanilla 

counterparts, are over the counter (OTC) instruments that are designed to manage the 
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CR in the same way as to manage currency and interest rate exposures, as well as to 

exploit profit opportunities arising on the market. With the use of CDs, given the 

default risk (DR), the CR can be transferred to another party in return for a fee - 

which can be considered as an insurance fee against the adverse credit market 

conditions, and the premium paid for the eligibility to exploit the profit opportunity. 

The determinants of this fee are the credit rating of probable swap counterparty, 

maturity, probability of default, and the expected post default value of the 

underlying. A bank that is concerned that one of its customers may not be able to 

repay a loan can protect itself against losses by transferring the CR to another party 

while keeping the loan on its books. This mechanism can be used for any debt 

instrument or a basket of instruments for which an objective default price can be 

determined. In this process, buyers and sellers of the CDs can achieve various 

objectives, including reduction of risk concentrations in their portfolios, and access 

to a portfolio without actually making the loans. CDs offer a flexible way of 

managing CR and provide opportunities to enhance yields by purchasing credit 

synthetically. CDs cannot eliminate all CR, because inherent in the transfer of a loan 

exposure to Company A, is the introduction of a new exposure to Company B 

because of the use of a derivative with the latter. Generally, AAA-rated Special 

Purpose Corporations or Vehicles (SPCs or SPVs) are created to enter into such 

transactions to reduce the new exposure. Examples of CDs include Credit Linked 

Notes (CLNs), Total Return Swaps (TRSs), Credit Default Puts, Credit Spread 

Options and others. Figure 1 demonstrates the relationship between the general 
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derivatives classification and triggering events. Any type of arrangement can be 

carried out based on these products and credit events. 

Figure 1. Triggering Events and Credit Derivatives 

Triggering 

Event 

General Classification 

Options Swaps Forwards Securitization 

Default   NA  

Spread Changes  NA  ? 

Rating Changes     

 

 CDs can also be classified according to the underlying reference entity (the 

entity whose CR is being traded - who is rarely a party to the transaction) as follows: 

1. Single credit: where the payout is linked to the defaulted value of a defined 

debt obligation of a single reference credit 

2. Basket: several reference credits, with a single payment linked either to the 

occurrence of a first default by any one of them or a multiple default by two 

or more  

3. Index: where the payout is linked to one or more indices (e.g. an emerging 

market or high yield bond index).  

Reference entity may be banks, corporates or sovereign states. 

 Though CDs are described as bilateral transactions, they can be completely 

marketable contracts; the CR inherent in a portfolio can be securitised and sold in the 

capital markets just like any other capital market security. So, anyone who buys such 
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a security is inherently buying a fragment of the risk inherent in the portfolio, and the 

buyers of such securities are buying a fraction of the risks and returns of a portfolio 

held by the originating bank. Thus, the concept of derivatives and securitization have 

joined together to make risk a tradable commodity.  

 CDs bring several advantages to those wishing to actively manage their CR:  

1. The "reference entity" whose CR is being transferred, does not need to be 

party to, or even aware of, the credit derivative transaction. This enables banks and 

corporate treasurers to manage their CR without affecting customer relationships.  

2. The terms of the derivative transaction (tenor, seniority etc.) can be 

customized to suit the buyer and seller of risk, rather than the borrower.  

3. CDs allow short selling of credit - selling CR that you do not own. While it 

is impossible to short sell a bank loan, the effect of a short position can be achieved 

synthetically by using derivatives to buy credit protection. The buyer pays a small 

premium in return for the opportunity of receiving a large gain in the event of credit 

deterioration.  

II.3. Users of Credit Derivatives 

The appeal of CDs is obvious. Not only do they offer a new range of credit 

enhancement techniques, but they also revolutionize the trading and management of 

CR. Just as the stripping of interest rate risk through derivatives in the 1980s opened 

up a wealth of now familiar investment, arbitrage and hedging techniques, CDs offer 
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a host of opportunities with respect to CR. These include the shorting of credit 

exposure, the creation of synthetic assets and the manipulation of term credit 

exposures through mismatched maturities between debt and credit derivative 

holdings.  

Once largely confined to banks, due to their need to meet their capital 

adequacy requirements, the market participants have expanded to include insurance 

companies, hedge funds, mutual funds, pension funds, corporate treasuries and other 

investors looking for yield enhancement or CR transference. The market has evolved 

from the financial institutions' needs to manage their illiquid credit concentrations 

and their use of default puts to hedge their credit exposure. Existing derivative 

techniques have been used for emerging market debt and have further been applied to 

corporate bonds and syndicated bank loans. Total Return Swaps, for example, were 

developed to sell customized exposures to investors looking for an increase in the 

yields on their portfolios. These structures enable investors to have exposure to 

portfolios that previously were not available to them and provide them with new 

diversification opportunities.  

Several factors have contributed to the development of the credit derivative 

market. Investors have shown keen interest in these products for yield enhancement 

because of narrowing credit margins on conventional corporate and emerging market 

sovereign issues. As investors have come to understand these products more fully, 

trading volumes have increased. Now dealers are more frequently warehousing 

trades in the same way they warehouse and manage interest rate risk.  
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Most market participants indicate a consensus expectation of continued 

growth and increased liquidity for the credit derivatives markets in the future. CDs 

will make CR pricing more efficient, and help segregate CR from market risk in 

bond and loan pricing. Institutions best suited to handle the CR component of these 

debt instruments will be able to buy only that portion of the risk and warehouse it. 

II.4. Uses of Credit Derivatives 

 There are four main reasons of using CDs in bank financial management. A 

financial manager may use CDs to manage his credit risk. He may also use them to 

optimize his balance sheet management. Tailoring investments and taking advantage 

of the relative value are the other two options for the managers. 

II.4.1. Management of Credit Risk 

II.4.1.1 Managing Illiquid Credit Exposure 

Markets are assuming an increased burden of credit exposure that is not 

particularly liquid. There is illiquid credit exposure that is not readily apparent 

because it is not associated with a standard, readily transferable credit instrument. 

Fixed-price supply contracts, trade receivables, or insurance contracts are a few 

examples. Or illiquidity of a CR may arise because relationship, regulatory, or tax 

considerations make it hard for the owner to liquidate the asset.  

Managing Client Relationships: Portfolio managers can find themselves 

locked into huge credit exposures arising from client transactions. Lending is 

a primary resource in maintaining client relationships, yet when the credit 

lines run out, banks are themselves in need of liquidity. Selling loans to free 

up capacity may be just as harmful to relations as refusing funding outright. 



 14 

Banks can employ Credit Swaps to reduce credit exposure without physically 

removing assets from their balance sheet.  

Reducing Portfolio Concentrations: Concentration risk can arise from 

increased exposure to one reference entity, or it can arise from one or more 

exposures to a group of highly correlated credits. Credits or loans 

concentrated in one particular industry or a particular location would be an 

example of the latter kind of concentration or correlation. It is economically 

rational to pay a premium to reduce exposure to over-concentrated credits. 

Credit Swaps reduce targeted exposures.  

Credit Downgrades: A down-grade or expected down-grade by rating 

agencies will be reflected in the secondary market as prices of liquid 

instruments fall. Portfolios of liquid assets may be forced to make mandatory 

liquidations. Even the holders of an illiquid loan portfolio may be required to 

recognize a loss. If loan holders cannot sell the underlying assets, the 

economic capital that needs to be set aside against these riskier assets will be 

greater. Pre-emptive measures can be taken by structuring a credit derivative 

to provide down-grade protection, reducing the risk of forced sales at 

distressed prices and enabling a portfolio manager to own assets of marginal 

credit quality at lower risk.  



 15 

II.4.1.1 Hedging Against Future Borrowing Costs 

The use of CDs to hedge dynamic exposure is a complex application, but 

their use to hedge against future borrowing costs is relatively more straightforward. 

The desire to hedge the future costs of borrowing may reflect a wish to guard against 

or benefit from a narrowing or widening of the credit spread between debt 

instruments. Alternatively, borrowers may wish to lock in future borrowing costs 

without enlarging the volume of their balance sheet now. An acceptable hedge in 

these situations is a Credit Spread Forward in which a Protection Buyer would 

receive the difference between a floating spread of the reference security and some 

benchmark yield and the strike, if positive, and would pay the difference, if negative. 

II.4.2. Optimization of Balance Sheet Use 

II.4.2.1 Funding 

Banks with high funding costs often buy risky assets to generate income from 

credit spread. Consequently, they are open to an alternative that would take on credit 

exposure in off-balance-sheet positions that do not need to be funded. On the other 

hand, a bank with low funding costs may want to capitalize on this advantage by 

buying balance sheet assets. A Credit Swap may help both of them meet their 

objective. For the bank with the high funding level, there is no upfront principal 

outlay in assuming a Credit Swap position. This approach is an important source of 

portfolio diversification for banks and institutional investors who would otherwise 

continue to accumulate concentrations of lower quality assets. And for a low cost 

investor, the premium for buying protection on balance sheet assets may be less than 

the bank's spread over funding.  
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II.4.2.2 Economic Capital 

Consider a downgrade of a credit already in a loan portfolio. The expected 

loss on this position rises to reflect an increased probability of default. Higher 

expected losses directly affect loan loss reserves, which are a counter asset (liability 

side) charge on the balance sheet. There is an indirect cost as well - further costs are 

incurred by the need to set aside more economic capital in recognition of the greater 

volatility in default probability for lower rated credits. In other words, there is less 

confidence in loan loss projections since lower quality credits exhibit more disparate 

default behaviour. CDs can provide a solution by reducing exposure and freeing 

economic capital, which may be used in more capital efficient investments.  

II.4.2.3 Total Return Swaps 

Occasionally a party has a reason to exchange the total economic 

performance of an asset for another cash flow without balance sheet impact. 

Alternatively, the desire may be to remove effectively all economic exposure to an 

underlying asset for a given term, and perhaps to effect the transfer with 

confidentiality and without the need for a cash sale. Using a Total Return Swap, the 

TR Receiver can develop exposure to the underlying asset without the initial outlay 

required to purchase it. The maturity of the swap does not have to match the maturity 

of the underlying asset. The TR Receiver in a swap with maturity less than that of the 

underlying asset may benefit from the positive carry associated with being able to 

roll forward short-term financing of a longer term investment. The TR Payer may 

benefit from being able to purchase protection for a limited period without having to 

liquidate the asset permanently. 
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II.4.3. Tailoring Investments 

Using CDs to tailor investments can involve complex applications making 

new asset classes accessible to investors for whom administrative complexity or 

restrictions imposed by borrowers have traditionally presented barriers. Or they can 

be used to isolate recovery rate expectations and interact to mutual benefit with a 

counterparty with a different expectation. A more straightforward example involves 

tailoring an investment's term. It is often difficult for investors to tailor the term of 

investments to meet their own needs, or to extract value for developing focused 

views on the term structure of CR. Consider an exposure to a corporation that does 

not issue debt in less than eight-year increments. The predominance of investors 

limited to terms inside five years, and the absence of shorter term debt than eight 

years means that the term structure of credit spreads is likely to reflect a tighter 

spread for the first five years and a wider spread for the last three than would be 

expected. In other words, the term structure reflects a technical imbalance between 

supply of and demand for short term versus long term investment. 

Credit derivatives offer negotiable maturity profiles. Using a Credit Swap, for 

example, it is possible to break an eight-year position into a five-year position and a 

three-year position. A bank investor limited to five-year terms is able to take the first 

five years of risk, while another investor is able to take the last three. Both investors 

are satisfied since the forward investor is able to focus his exposure in the area in 

which he is able to extract most value for his purpose, while the other investor is able 

to generate an exposure which is not otherwise available in the cash markets.  
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II.4.4. Exploiting Relative Value 

From an investor's perspective, CDs may be valuable simply by providing 

credit exposure in a form that would not otherwise be available. However, where 

alternative investments offer essentially similar risks, an investor needs to ascertain 

relative value to justify using CDs instead of more traditional or more liquid assets. 

The outcome is the opportunity to exploit any relative value arising from risk and 

return differences. Methodologies of varying complexity have been developed to 

help decide whether a derivative is an attractive investment in a given specific 

situation.  

Credit derivatives provide a means of earning an income without requiring 

large initial cash outlays. This is a great advantage for investors (mostly banks and 

financial institutions) that face a relatively high cost of capital. However, selling CDs 

purely for generating income is not recommended for companies. These are highly 

leveraged contracts, and in the worst case can lead to heavy losses for the seller. The 

right time where it may be appropriate for a company to sell a CD is when 

transferring credit exposure from one reference entity to another, i.e. selling CDs on 

one reference entity to subsidize the purchase of credit protection on another 

reference entity. 

In a Credit Swap, the Protection Buyer must deal with another type of risk, 

that of the default of the Protection Seller. The Implications for the buyer range from 

having to find alternative protection, to facing the situation where both the reference 

entity and the Protection Seller default. This affects pricing of credit derivatives. 
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Protection bought from higher rated counterparties will involve a higher premium. 

Correlations between the reference entity and the Protection Seller which make 

simultaneous default more likely suggest lower premia - for example, protections 

bought from one bank against another bank in the same country. 

II.5. Types of Credit Derivatives 

The easiest and the most traditional form of a credit derivative is a guarantee. 

Financial guarantees have existed for centuries. However, today’s concept of CDs 

goes much farther than a simple bank guarantee. The CDs being currently used in the 

market can be broadly classified into the following: Total Return Swaps, Credit 

Default Swaps, Credit Spread Options, Credit Linked Notes, and Credit Forwards. 

Practitioners provide detailed descriptions of a transaction-specific payoff profile so 

it is of more value to understand under what circumstances one will receive a 

payment, or be required to make one, than it is to know a list of product names; that 

is the payoff profiles, and the pricing of CDs. However, due to their extremely 

sophisticated structures, and a lack of a clear-cut industry standard, the pricing of 

CDs is left out of the scope of this work. 

II. 5.1.Total Return Swaps (TRSs)  

A Total Return Swap is a derivative instrument that allows an investor to 

receive the total economic return of an asset (income plus or minus any change in 

capital value) without actually buying the asset. Figure 2 is a diagram of TRS cash 

flows. One party pays the total economic return on a notional amount of principal to 

another party in return for periodic fixed or floating rate payment (plus some spread). 



 20 

The underlying reference credit (e.g. LIBOR) can be any financial asset, basket of 

assets or an index. There can be many variations on the basic TRS structure. One 

can, for instance, use a basket of assets instead of a single credit. Maximum and 

minimum levels for the floating rate leg of the structure can be set via embedded 

caps on a reference credit.  

Figure 2. Total Return Swap Cash Flows 

 

Banks use this product as a way of transferring the risk exposure of an asset 

to another interested party. Investors seeking exposure to a bank portfolio use TRSs 

to enhance their yield. The swap enables banks to keep the entire asset on their 

books, but maintain only the desired amount of credit exposure. This is important 

and valuable for the banks because they can look to move as much off their balance 

sheet as possible. In many cases, banks may want to keep the loans on their books to 

avoid jeopardizing their relationship with a customer or breaching client 

confidentiality. 
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Investors can leverage and diversify their portfolios to achieve higher yields 

by taking on this credit exposure. A TRS enables the investor to make loans 

synthetically without the administrative burden of documenting the loan agreement 

and periodically resetting the interest rate. TRSs can provide an economic way of 

using leverage to maximize return on capital. The exposure on an interest rate is not 

as large as the notional principal amount since only the respective interest payments 

are made. Only the total return of the portfolio is exchanged with the fixed or 

floating payments.  

II. 5.2. Credit Default Swaps (CDSs) 

A Credit Default Swap is another mechanism for distributing the default risk 

of securities and loans, enabling lenders and investors to improve risk management 

and better achieve their financial goals. In this case, one party makes periodic basis 

points payments (bps) and another party makes payments for the principal if the 

"credit default" event occurs. The pricing of such a derivative depends upon the 

credit quality of the reference credit, supply and demand for the reference credit, and 

prevailing credit spreads. The objective might be any of the following: to sell a 

specific risk, e.g. country risk in a project finance transaction, to free up credit lines 

for a specific customer, to obtain additional yield by assuming the CR, to improve 

portfolio diversification, to gain exposure to credits without buying the assets or to 

assume an off balance sheet synthetic position. Figure 3 is a CDS’s cash flow. 
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Figure 3. Credit Default Swap Cash Flows 

 

Banks that want to reduce or eliminate their exposure to a particular loan or 

basket of loans can buy a CDS without the borrower's knowledge or consent which 

may be required when the loans are sold outright. Manufacturing companies that 

depend upon a limited number of customers for revenue can buy a CDS on their 

customers' payment obligations. Investors who need to protect themselves against 

default but cannot or do not want to sell the risky security for accounting, tax or 

regulatory reasons, can buy a CDS. Investors can obtain additional yield without 

buying an asset, holding it on their balance sheet and funding it. Building on the 

basic swap structure, investors can swap the default risk of one credit with that of 

another credit. This can help companies diversify their portfolios while avoiding the 

transaction costs associated with buying and selling many individual securities or 

loans.  

Credit events in such transactions are pre-defined in the agreement, which 

could include a payment default, bankruptcy or debt rescheduling. The credit event 
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must be material and objectively measurable. The reference credit can be almost any 

loan or security, a basket of loans or securities, regardless of the currency, and the 

tenure of the swap can match or be shorter than the tenure of the reference credit.  

II. 5.3. Credit Spread Options (CSOs)  

Buying or selling an option on a borrower's credit spread provides an 

opportunity to gain exposure on the borrower's future CR. A bank can lock in the 

current spread or earn premium for the risk of adverse movement of credit spreads. 

They also present a method of buying securities on a forward basis at favourable 

prices. Credit Spread Options are normally associated with bonds, which are priced 

and traded at a spread over a benchmark instrument of comparable maturity. The 

yield spread represents the risk premium the market demands for holding the issuer's 

bond(s) relative to holding risk free assets, such as U.S. Treasury Bonds. Options can 

refer to the borrower's spread over U.S. Treasuries, LIBOR or any other relevant 

benchmark. Figure 4 shows the cash flows from a CS Put 

Figure 4. Credit Spread Put 

 

Credit Spread Option structures allow investors to buy the bonds at attractive 

terms. If the option expires worthless, the total cost of the bond is reduced by the 
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strike price. There could be different strategic variations of this, such as using 

options on credit spreads to take position on the relative performance of two different 

bonds, and locking in the current spread by buying calls and selling puts on the 

spread with the possibility of earning a premium in the transaction. The cash flows in 

case of exercise are depicted in Figure 5. Again, this derivative structure allows 

investors to take a position in the underlying assets synthetically rather than buying 

assets in the cash market. 

Figure 5. CSO Cash Flows in Exercise 
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benchmark bond issued by the borrower (SF). ST is the actual credit spread on the 

bond when the CF matures. MD is the modified duration on the benchmark bond 

rated R, and A is the principal amount of the forward agreement. 

The CF buyer bears the risk of an increase in default risk on the benchmark 

bond of the borrowing firm, and the CF seller hedges itself against an increase in the 

borrower’s DR. If the borrower’s DR increases, when the CF matures the market will 

require a higher CS on the borrower’s benchmark bond (ST) than was originally 

agreed to in the contract SF (SF < ST). The CF buyer pays the CF seller (SF - 

ST)*MD*A. This amount could be used to offset the loss in market value of the loan 

due to the rise in the borrower’s DR.  

II. 5.5. Credit-Linked Notes (CLNs) 

Under this structure, the coupon or price of the note is linked to the 

performance of a reference asset. It offers borrowers a hedge against CR and 

investors a higher yield for buying a credit exposure synthetically, rather than buying 

it in the publicly traded debt. 

CLNs are created through a Special Purpose Company (SPC) or trust, which 

is collateralized with AAA-rated securities. Investors buy the securities from the trust 

that pays a fixed or floating coupon during the life of the note. At maturity, the 

investors receive face value unless the referenced credit defaults or declares 

bankruptcy, in which case they receive an amount equal to the recovery rate. Here 

the investor is, in fact, selling the credit protection in exchange for higher yield on 

the note. 
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The trust on the one hand enters into a default swap with a deal arranger. In 

the case of default, the trust pays the dealer par minus the recovery rate in exchange 

for an annual fee. This annual fee is passed on to the investors in the form of a higher 

yield on the notes. In this structure, the investors can obtain higher yield for taking 

the same risk as the holder of the underlying reference credit. The investor does, 

however, take the additional risk, though limited, of its exposure to the AAA-rated 

trust. The CLN allows a bank to lay off its credit exposure to a range of credits to 

other parties. The structure of a credit default note is outlined in Figure 6. 

Figure 6. The Structure of a Credit Default Note 
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II.6. Credit Derivatives in Practice 

II.6.1. Loan Portfolio Management 

CR is one of the most significant classes of risk for financial institutions. 

Until recently, there has not been a developed liquid market for trading CR. Financial 

institutions have concentrated on their net market exposures sometimes at the 

expense of increasing the CR to certain companies. CDs allow financial institutions 

to change their exposure to a range of credit-related risks. As outlined above, there 

are different structures that allow the transference of CR from one party to another. 

The choice of the product depends upon the goals a financial institution is looking to 

achieve. In some cases, the bank can buy protection in the form of default puts to 

transfer the CR to an insurance company or other institutional investors. In any case, 

the bank may swap one credit for another of equal rating, just to reduce its exposure 

to one party. By using CDs, a loan portfolio manager can achieve any of the 

following objectives: 

1. Control CR of any debt instrument or basket of instruments by selling or 

transferring the credit exposure of the portfolio, 

2. Reduce a particular risk concentration in the portfolio, 

3. Create synthetic assets tailored to meet their needs, 

4. Provide a diverse menu of global exposures to achieve portfolio 

diversification, or  
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5. Gain exposure to another bank's loan portfolio without participating in the 

syndicate. Figure 7. shows a loan portfolio’s cash flows 

 

Figure 7. TRS Loan Portfolio Cash Flows 
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with A. To free this lending constraint, it can transfer the risk of the existing credit 

lines by entering into a default swap with other credit dealers. By doing so it will 

expand the bank's capacity to assume additional lending and provide the needed 

M&A financing to Company A.  

To hedge the risk of a credit derivative in a large M&A transaction, one can 

diversify the CR by entering into syndication or repackaging the CR and selling it on 

the credit markets. The pricing of these products is generally done using the 

benchmarks in the cash markets. If such cash market benchmarks are not available 

for any particular market, then default probability and recovery rate models are used 

to price CDs.  

II.7.Pricing and Hedging Considerations 

II.7.1. Pricing Issues 

CDs lie at the junction of traditional insurance or guarantee products and 

financial derivatives. Each of these products has their own valuation methodology, 

neither of which is entirely satisfactory for the valuation of CDs. The insurance 

industry typically uses historical data to value insurance policies relying on actuarial 

science and the probability of payment-triggering events. 

Credit rating agencies have tables of probability of downgrading or default by 

maturity, which some practitioners use. These tables, however, are based largely on 

inflexible assumptions: they assume that the future will be like the past (No Markov 

Process), they do not take into account market information available in the form of 
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credit spreads and they assume that exposure to different entities is unrelated (No 

Correlation). On the other hand, derivative dealers use market-based information to 

price their products. The derivatives practitioners use this information based on the 

assumptions of risk neutral valuation and arbitrage-free complete markets. Credit 

markets are not liquid enough to be perfect, nor is there a complete set of financial 

instruments available for precise valuation. There is also the question of which 

stochastic process to assume for different credit events. A more comprehensive 

approach to pricing is taken in Part III. 

The pricing models can be grouped under four main categories: 

1. Ratings-Based Default Probability Models: These pricing models rely 

on credit ratings and published data on default losses, to approximate the probability 

of default of a given issuer. This data is then supplemented by the dealer's 

assumption about what the likely recovery rate will be in the event of a default, i.e. 

how far below par will the debt be trading when the company announces its default. 

Some models for determining the recovery rates in default use fixed percentages 

based on industry or credit ratings, while others rely on random, stochastic processes 

for default. These pricing models are good in that they are not overly data intensive 

and rely more on aggregate statistics. With regards to a new issuer, this model is 

good in that it does not require issuer-specific data sets. It does however limit one’s 

ability to introduce specifics about a particular issuer.  
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2. Credit-Spread Based Default Probability Models: These models track 

an issuer's credit spread over time and for different maturities to establish a term-

structure for their CR. Once this term structure is established, it is then used to 

estimate the probability of default of the issuer for a specific term. One of the 

advantages of this approach is that it allows for the use of issuer-specific data. Some 

weaknesses of this approach include the fact that a complete term structure of credit 

spreads for most issuers is not available, i.e. a company might have only three 

tranches of public debt of maturities of 1, 5 and 15 years. To use this data one must 

interpolate between these small number of points. Another assumption included in 

this model is that the entire spread over risk free assets is due to credit and does not 

consider market risk.  

3. Pricing Based on Guaranteed Product Markets: Pricing based on 

guaranteed product markets is perhaps the simplest approach but is very limited in 

that it requires comparison to a credit default instrument already priced in the market. 

For example, if two counterparties have an agreement whereby one party is paying 

the other a margin of 100 basis points to guarantee the debt of a third party, then any 

similar default products on the third party should be priced similarly. 

4. Replication/Cost-of-Funds Models: This model uses the hedging costs of 

a credit derivative as the basis for its pricing. Basically, the dealer decides – using 

probability models, default ratings etc.– under what portfolio of assets he requires to 

hedge the payments. If the dealer uses a Total Return Swap, for example, he decides 

what kind of margin he requires on the TRS. The combination of the cost of 

constructing a hedge, along with the dealer's required return, establishes a price for 
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the credit derivative. This is perhaps the most straightforward approach for cases 

when a hedge can be constructed and hedging or replication-pricing methods are 

common in all derivative areas. However, problems arise when a good hedge is not 

available or the costs associated with putting it together are too expensive.  

A more theoretical categorization of the pricing models can be made as 

below: 

 1. Firm Value Based Models: Models that use Merton’s approach aimed at 

valuing the CDs indirectly by taking the firm value in to account are considered in 

this category. These include works by Merton (1974), Black and Cox (1976), 

Bhattacharya and Mason (1981), Shimko, Tejima and VanDeventer (1993), 

Longstaff and Schwartz (1995), Das (1995). 

 2. Reduced Form Models: They are broken down into three headings 

according to their focus of interest. Default Models, concentrate on the default rate of 

firm where default is depicted through a gradual change in ratings driven by a 

Markov transition matrix (e.g. Jarrow and Turnbull (1995), Longstaff and Scwartz 

(1995) etc.). Spread Models use the credit spreads of the firm in valuing the CDs 

(e.g. Longstaff (1995)). Credit Rating Models use the same transition matrix in the 

Default Models in their pricing methodology (e.g. Jarrow, Lando and Turnbull 

(1997), Das and Tufano (1996), etc.).  
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II.7.2. Hedging Issues  

The majority of CDs outlined in this study have themselves been the hedge to 

an existing exposure of the dealer, i.e. the TRS issued on a bank's existing loan 

portfolio serves as a reduction of the bank's risk and does not require hedging. What 

about stand-alone trades where the dealer has no exposure to a particular area but is 

asked by a client to provide default protection against someone's receivables?  

The main method available to CDs dealers in these cases involve constructing 

replicating portfolios, using either the company's publicly traded bonds, equity or by 

taking positions in a comparable company in the same industry. The techniques 

employed are comparable to the delta hedging of an options portfolio and require the 

dealer to make assumptions about the volatility (i.e. the probability of default) of the 

guaranteed company. The dealer builds an offsetting portfolio whose positive return 

will mimic the losses incurred on the default protection in the event of default. 

Typical hedges involve shorting the companies bonds or equity. The particular 

characteristics of an industry might allow a dealer to use a less-conventional hedge. 

For example, if the dealer suspects that the default of Company A on its bonds is a 

function of whether they win an future contract on which they are bidding against 

Company B and Company C, the dealer might establish a small long position in 

Company B’s  stock as an additional hedge. The hedging of CDs, or any financial 

derivatives for that matter, is not an exact science.  
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III. PRICING CREDIT DERIVATIVES 

In this part we will summarize some of the latest and the leading pricing 

models of credit derivatives.2 They are presented in a simplified manner in order to 

be more understandable and easier to handle, even by the layman. These models 

involve the inclusion of the interest rate risk, default risk, and recovery risk; they are 

practically more implementable using observed data and easy to use for arbitrage 

free risk neutral pricing. 

Risk on a defaultable bond may be divided into three different components: 

1. Interest rate risk: Any bond, defaultable or not, has the interest rate risk. Several 

models deal with interest rate risk (e.g. Heath-Jarrow-Morton (1992)). 

2. Default risk: It refers to the possibility of the default of a bond, irrespective of the 

magnitude of loss from default. Rating agencies such as S&P and Moodys have 

usually been concerned with default risk; ratings usually refer to the likelihood of 

default. Hence, as a wealth of information is available on credit ratings, they can be a 

good proxy for default risk. 

3. Recovery Risk: Being different from default risk, recovery risk refers to the 

residual market value for the assets of a firm when it defaults. 

The combination of default and recovery risks determines the credit spread on 

a bond. Because credit derivatives may be traded using either risks, it is essential to 

separate them both. Therefore, from a modelling viewpoint, they cannot be treated as 

one composite entity. Besides, if they are not treated separately, the sources of 

                                           
2This part is based on the structure taken up by three works, Das (1998),  Das and Sundaram (1999), 
and Francis, et al (1999) pp 101-138 (Chapter 5 by Das).  
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empirical information in this process would be inconsistent. While ratings and other 

industry-level information are quite effective in providing market participants with a 

good idea of default likelihood, a more precise evaluation of the recovery risk of an 

individual firm is necessary to explain why spreads are different from those of other 

firms in the same rating category and industry. 

In this part, we will investigate a span of different models that deal with the 

pricing of credit-sensitive securities. Starting with simple models of credit spread, we 

will proceed to more complicated ones in which all three sources of risk are 

incorporated. The latter includes the Jarrow-Lando-Turnbull (1997) model, the Das-

Tufano (1996) extension of the Jarrow-Lando-Turnbull, and the Duffie-Singleton 

(1995) framework. In the last section of this part we look at some conceptual issues 

on relative pricing and its relationship to pricing to provide a rate of return on capital. 

We also briefly discuss the application of these methods to credit portfolios. 

In order to effectively run a portfolio of credit derivatives, we need a model 

that will accommodate a wide variety of products, and encompasses all the risk 

categories possible. Such a model would enable the investor to avail himself of a 

desirable credit structure, and offer the dealer a working solution from which new 

products can easily be offered.  

Credit risk is not a well traded risk; it is also complex, and can result in 

several modelling difficulties. Some of these problems can be enumerated as follows: 

 CDs are still non-standardized; 

 Historical information on credit risks is poor due to changes in economic 

conditions. Hence past data is unreliable. 
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 Prices are slow in adjusting to changes in ratings; so too are ratings following 

real credit quality changes. 

 Replication of CDs is difficult due to the illiquidity of the underlyings. 

 There are not many indexes for credit sensitive products. 

 The majority of deals take place in the emerging markets where data is noisy 

and the statistical properties of asset prices are not well examined. 

III.1. Technicalities in Pricing Credit Derivatives 

A practical model should be able to use observable data, and employ a lattice 

scheme to price securities. This scheme should also be consistent in risk neutrality 

(absence of arbitrage). In this section, we look at the whole range of models that can 

be calibrated by using a bootstrapping method, proceeding from shorter to longer 

maturities. All three risks discussed above are incorporated into these models. The 

approach to modelling starts from the simple to the more complex. 

III.1.1 Spread Models 

These models consider the spread as a combination of default and recovery 

risks. Spread can be modelled directly. Being ideal for pricing credit spread options, 

this approach involves the definition of the model for the spread by choosing an 

appropriate stochastic process. The assumptions about the underlying stochastic 

processes behind the risks that are being dealt with are vital in designing the pricing 

models. Though principally the tools used in modern finance are continuous-time, 

the models in this part are based on discrete mathematics. Therefore, the calculations 

in this part will be simple arithmetic computations.  
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The square-root diffusion provides one possible example of a process that can 

be used in modelling the credit spreads. The following stochastic may be a possible 

candidate for credit spread modelling  

dzsσdts)θk(ds      (1) 

where s is the spread, k is the rate of mean reversion,  is the long run mean of the 

spread, and  is the volatility coefficient. The Wiener increment is dz. The model 

assumes in its simplest form that interest rates are constant: when the spread option 

has a short maturity, this is a reasonable assumption. In addition, the volatility of the 

risk-free rate of interest is low in comparison to that of the spread making such an 

assumption justifiable. To represent this stochastic process in a more simple fashion, 

we discretize it  

ts(0)σs(0)]t-θk[  s(0)  s(t)    (2) 

indicating that next period's spread s(t) given this period's spread s(0) will be given 

by the equation above. This equation results in an "up" value or a "down" value 

determined by the sign of the shock term s (0) x t. The spread changes by an 

amount k[ - s(0)]t  which is positive when the spread is below its average level  

and negative when the spread is above its average. This term represents the "mean 

reversion" in the spread. Therefore, the process above is a reasonably good 

modelling device for the spread. 

In order to price options on spreads, we need the range of outcomes of the 

spread at the option maturity T, and the probabilities assigned to these outcomes. 

This is contingent upon the choice of the spread model. For instance, in the discrete 
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version depicted earlier, in each period there are two outcomes, and the probabilities 

are equal (i.e., 0.5). 

Given the Black-Scholes option pricing model in order to price derivatives, it is 

essential to discount the expected cash flows of the option, assuming that the cash 

flows at maturity are determined by using arbitrage free processes. These processes 

are pseudo-processes that make the existing prices of securities equal to the 

discounted, expected future values of the security. The process above in (Equation 2) 

is the statistical process. This equation must be refined to make it risk-neutral. We 

shall add an adjustment term () to its drift, and work out for this term such that the 

expected values of securities under the modified process turn out equivalent to the 

current price to incorporate the risk into it (i.e. to make it risk neutral).  

 

III.1.1.1. One-Factor Spread Model 

Let us assume a two-period model with each period equal to one year. The current 

observed term structure of interest rates from the government bond market (the risk-

free zero coupon rate curve) is made up of two rates: 5 per cent (for one year) and 6 

per cent (over two years). Therefore,  











0.06

0.05
r  

Similarly, assume that the credit spreads for two periods are given by 











0.009

0.008
s  

Therefore, the risky zero coupon curve is simply the sum of these two curves, i.e.,  
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









0.069

0.058
sr  

Therefore, the price of a risky zero coupon bond of maturity two years (face value 

$1,000) is 

B(0) = 875.0736 = 1,000 / (1.069)2 

The riskless forward rate between year 1 and year 2 

f12 = (1.06)2/1.05 – 1 = 0.0701 

Assuming that 

k = 0.15,  = 0.0083, and  = 0.0092 

A simple discrete binomial representation of the model is 

 (0) s σ s(0)] - k[θ  s(0)  s(t)   

since the unit of time is 1 year (i.e., t = 1). Hence, the one period credit spread after a 

year would take one of two values (with equal probability) based on the equation 

above, where s(0) = 0.008. To make the pricing risk neutral (arbitrage-free), the 

stochastic process must be adjusted by modifying its drift term to include an 

adjustment term . 

(0) s σ  γs(0)] θ- k[  s(0)  s(t)   

Given the parameter values, by using the difference equation, the spread at the end of 

period 1 will be equal to either of the following two values: 













0.00722γ
0.00887γ

s  
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Thus, at the end of one period, the price of a two period zero coupon risky bond will 

be equal to one of the following two values: 
























0.00722γ1

1,000

0.00887γ1

1,000

B(1)

f

f

12

12  

As a result, by discounting these two values back at the risky rate with equal 

probabilities, the price of the bond at time 0 will be found as 

B(0) = (1/2)[1,000/(1.07897+)+1,000/(1.07732+)]*1/(1.058) = 875.0736 

We are left with a single equation in the unknown parameter , which we solve to 

obtain the risk adjustment term, computed as 

=0.00198 

By using this, the spread after one period is found as one of the following two values:  











0.0092

0.0108
s  

Spread options can be effortlessly priced on this lattice. To illustrate, a one 

period call option on the spread with an exercise price of K = 0.01 would pay off 

when the spread was equal to 0.0108 and would expire worthless otherwise. The 

price of this spread option would be equal to 

Spread (K = 0.01) option = 1/(1.05) x N x (0.0108 - 0.01) x 0.5 

where N is the face value of the contract, (0.0108 - 0.01) is the final intrinsic value 

per dollar, and 1/(1.05) is the discount factor to present value the option. The 

probability of this option to end up in the money is 0.5. 
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The model above can be used to price risky and riskless bonds. These models 

can be extended to accommodate more periods, and it is possible to incorporate an 

additional factor to them. 

III.1.1.2.Two-Factor Model 

By extension of the one-factor model the interest rate can be made stochastic 

and correlated with the credit spread. Assume that we have a square root process for 

the interest rate similar to the stochastic process (Equation1) for the spread. This the 

interest rate process can be simplified using the same discretization procedure earlier 

  r(0)η r(0) - βα  r(0) r(t)   

We also assume that changes in the spread and risk-free rate are correlated 

with parameter . The rate of mean reversion is , the long run mean of the risk-free 

rate is , and the volatility coefficient is . Assume the following parameters for this 

process: 

 = 0.2,  = 0.11,  = 0.02, and = 0.25 

In order to establish the lattice for pricing credit sensitive debt, the lattice for 

riskless debt is first built, and then used as a base to build the lattice for the risky 

debt. 

Because the risk-free rate of interest is stochastic, so as to do risk-neutral 

pricing, a risk-adjustment to the drift of the process must be made using an additional 

parameter () as below 

r(0)η δ r(0)] - α[β  r(0) r(t)   
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Given the parameter values, the one period interest rate will take one of the following 

two values after one period: 













0.0575δ
0.0665δ

r  

Therefore, the price of a two-period riskless bond after one period will be  























220.007δ1

1,000

0.00887δ1

1,000

B(1)  

And as before, the price of the riskless bond at time 0 will be  

B(0) = (1/2)[1,000/(1.0665+)+1,000/(1.0575+)]*1/(1.05)  

         = 1,000/(1.06)2 = 889.996 

Solving this equation we get  = 0.00811 which is roughly the value of the term 

premium for the second period in the model. Plugging it back into the model we end 

up with the possible values of the risk-free rate over time. 











0.0656

0.0746
r  

After the derivation of the process for the risk-free interests, the complete tree can be 

established by extending four branches at each node, as we are dealing with the 

combination of two binomial processes for two factors. This can be accomplished as 

below. Assuming the interest rates are in the up position in the first two states, and 

down in the last two, the state-space for the risk-free rate of interest will be 





















0.0656

0.0656

0.0746

0.0746

r(1)  
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In a similar fashion, the state space for the credit spread will be: 


























0.00722γ
0.00887γ
0.00722γ
0.00887γ

s(1)  

The state space in spreads is expressed as a function of , the parameter for the risk 

adjustment. 

In order to ensure that the correlation between r and s is achieved, it is also 

imperative to determine the probabilities. The two risk-neutral processes for r and s 

could be written in discrete-time as 

  ΔwΔ)r(tηδΔΔ)r(tβαΔ)r(tr(t)   

  ΔzΔ)s(tσγΔΔ)s(tθkΔ)s(ts(t)   

corr(z,w) =  

where  is the discrete time interval on the lattice and (w, z) are shocks to (r, s). 

Under this structure, the state-space for the random shocks (w, z) to the two 

processes may be discretized as: 

 1  1  1  1  w'      1  1  1  1  z'   
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The following probability structure achieves the desired correlation between w and 

z: 







































4

ρ1

4

ρ1

4

ρ1

4

ρ1

q
 

Note that q is a risk-neutral probability vector; this scheme makes sure that 

probabilities lie in [0,1], and also that the correlation is in the range [-1, 1], Assuming 

that the correlation is  = 0.25, the probabilities are found as 

q’ = [0.3125 0.1875 0.1785 0.3125] 

We have solved for all desired values except the one for risk adjustment for 

credit spreads (). Now, we calculate the prices of the two period bond at the end of 

the first period. Given that there are four states, there will be four different prices. 







































0.00722γ0.06561

1,000

0.00887γ0.06561

1,000

0.00722γ0.07461

1,000

0.00887γ0.07461

1,000

B(1)  

We can solve for the risk adjustment y using the no-arbitrage equation below: 

1,000/(1.069)2 = (1/1.058)*q’B(1) 
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 







































0.00722γ0.06561

1,000

0.00887γ0.06561

1,000

0.00722γ0.07461

1,000

0.00887γ0.07461

1,000

0.3125 0.1785 0.1875 0.3125
1.058

1
 

 

 

where q and B are vector forms of the probabilities and bond prices respectively. The 

solution from this model is  = 0.00198. The state space for the spread is 





















0.0092

0.0109

0.0092

0.0109

s(1)  

This lattice can be extended in the same way to more periods, though it may not 

recombine, and, therefore, the calculations may be quite difficult. 

The extension of the one-factor model to two factors gives rise to various 

advantages. The new model accounts for correlation between interest rates and 

spreads which is often the driving factor behind some of the derivative structures we 

encounter in practice. It is useful when credit swaps are being priced where the swap 

involves a payment of LIBOR versus a fixed rate plus spread. These swaps are 

sensitive to the stochastic processes of both the risk-free rate and credit spread. With 

a one-factor model, pricing of credit swaps would not be very easy if not possible. 
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III.2. Modelling of Spread in Detail 

In one and two factor spread models aggregate spread is considered without 

decomposing it into its default and recovery components. However, the spread 

should be broken down into its components to price more complex forms of CDs. To 

illustrate, the one factor model allows the pricing of spread options but not credit 

default swaps, and total return swaps. Upon the extension of the model to two 

factors, some forms of credit swaps, but not default swaps can be priced, because the 

model does not depict the event of default. In order to make the components of the 

spread separately tradable default itself has to be modelled.3 

Decomposition of the spread involves modelling choices of the processes for 

default (), and recovery rates in the event of default (). 

This default (hazard) rate may be a constant or a function of time to maturity of 

the bond, the level of the current interest rate, or some other factors in the economy. 

The recovery rate is denoted , and represents the percentage of the face value of the 

bond recovered in the event of default (  [0,1)).4 The relationship between these 

parameters and spreads is such that given the one period risk-free rate r, the risk-

neutral value of a credit risky bond with a time to maturity of one period will be 

equal to the discounted value of expected cash flows in the future. The pricing 

equation is5 

                                           
3 Often, buyers of credit derivatives are seeking default protection, and do not mind tolerable levels of 
overall spread risk.  
4 For a more detailed and in-depth discussion of hazard-rate models the reader is referred to the work 
of Madan and Unal (1994, 1998). 
5 We have taken the expected value, risk aversion is ignored (i.e. the investor is risk-neutral) as the 
expected value is taken 
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B= (+(1-))/(1+r) 

It is possible to price the risky bond off the spread curve directly, meaning that 

B=1/(1+r+s) 

Equating the two equations for B, a relationship between the spread and its 

determinants can be developed. Solving for s, we obtain: 

s= ((1-)(1+r))/(1-(1-)),  s/, s/. 

What we observe from this relationship is that the spread is a function of the term 

(1- ), not the individual parameters , and . This renders the separate 

determination of these rates non-viable.6  

In this part, three recent models that have tried to model the default risk in 

detail are examined. The JLT model7 models in great detail the event of default and 

does not focus extensively on recovery rate risk. The DT model8 concentrates on the 

modelling of the recovery process in addition together with the risk neutrality 

conditions. The DS model9 uses the connection between spreads and its components 

in modelling the term structure of swap yields. In the next section, we will examine 

the JLT model. 

                                           
6 One way to separate the two rates is to use debt of different seniority from the same firm, since 
presumably the debt would have the same hazard rate but different recovery rates (see Duffie and 
Singleton [1995] for a discussion of this issue). 
7 Jarrow, Lando, and Turnbull (1997) 
8 Das and Tufano (1996) 
9 Duffie and Singleton (1995,1996) 
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III.3. The Jarrow-Lando-Turnbull (JLT) Model 

The JLT model focuses on modelling default and credit migration rather than 

modelling recovery rates. Therefore, in this model changes in spreads will be a 

function of changes in credit rating and the event of default. 

The information on rating changes (rating transition matrix) is almost readily 

available. This model focuses on the changes in bond rating through the use of these 

rating changes. The transition matrix is a square matrix that portrays the probability 

in one period of migrating from any given credit rating to another (including the 

default class). Consider the following matrix 


















1.00 0.00 0.00

0.08 0.85 0.07

0.05 0.08 0.87

d  

It has three states, I, J, and D, standing for "investment grade (I)," "junk grade (J),' 

and "default (D)." When we read across the rows, the probabilities of going from one 

state to another in one period can be obtained. For example, the first row provides the 

probabilities of the rating level changing from I to any of the three possible states. It 

may remain in state I with a probability of 0.87, downgrade to level J with a 

probability of 0.08, and go into default with a probability of 0.05. The last row is a 

special row in the sense that it manifests the assumption that once the default state is 

reached, the system will remain in default for sure (i.e., state D is an absorbing 

state).10  

                                           
10 The transition matrix here is a simplified version of the true matrix, which usually comprises many 
different rating levels, ranging from AAA to default (D). 
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So as to establish the model, we also need information on risk-free interest 

rates, and the spreads for each of the rating levels, I and J. As before, we shall 

assume a two period model, and the risk-free zero coupon rates are 











0.06

0.05
r  

The spreads for each rating level are as follows: 











0.009

0.008
sI

, 









0.015

00.01
sJ

 

A necessary assumption of the JLT model is that rating migration and interest 

rates are not correlated. For simplicity, we shall also assume that the risk-free rates 

are non-stochastic. The prices of risky debt of maturity of one and two periods are 

calculated as below 

BI(1) = 1/1.058, BI(2) = 1/(1.069)2, BJ(1) = 1/1.06, and BJ(2) = 1/(1.075)2, 

The JLT model assumes a recovery rate () for default. It also makes the 

assumption that the recoverable amount is received at the maturity of the bond, not at 

the time of default.11 For our example, we assume that 

=0.35 

At maturity, the bond will be in one of the three states (I, J, or D). If it is in the first 

two states, the payoff on a zero coupon bond will be 1. In the event of default, the 

payoff is . The payoff or cash flows for all possible three states can be written as 

  1  1C'  

                                           
11 This assumption is a simplification which makes the numerics of the model fairly manageable. 
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In order to get the risk-neutral values of the bonds, which must equal the prices 

above, we need to get expected cash flows at maturity and discount them back to the 

present using risk-neutral default probabilities. However, in transition matrix d we 

have the statistical probabilities that must be converted into risk-neutral probabilities 

to adjust them for the risk. Hence, in the JLT model, the off-diagonal probabilities in 

d will be multiplied by an adjustment, denoted . Assume a one-period bond is 

currently in state I. At maturity, the three states have probabilities given by vector 

 0.05  0.08  .0.87d'  

The statistical probability vector d is transformed into the risk-neutral vector q, with 

an adjustment I as follows 















 



Π
Π
Π

q

I

I

I

I

0.05

0.08

0.131

 

so that the last two elements of d, have been multiplied by I, and the first element is 

simply the plug required to make the probabilities add up to 1. To solve for the 

risk-adjustment, we find the value of I, which makes the expected value of 

discounted cash flows equal to the traded price of the bond: 

 














 






Π
Π
Π

qB

I

I

I

II

0.05

0.08

0.131

0.35  1  1
1.05

1

1.058

1

C'
r1

1

 

The solution is 

I (1)= 0.232678 
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Similarly, we may carry out the same calculations for one-period junk debt, so as to 

get the required risk adjustment (I). 

 























Π
Π

Π
qB

J

J

J

JJ

0.08

0.151

0.07

0.35  1  1
1.05

1

1.06

1

C'
r1

1

 

which ends up in 

J (1)= 0.18142 

In general, if we define the cumulative probability of default over n periods from any 

state i = {I, J} as qdi(n), then the risk adjustment for the nth period for a bond initially 

in state i can be written as follows 

  (n)1

1
1(n)

qs(n)r(n)1

r(n)1
Π

di

n

i 















 









  

We now obtain the risk-neutral transition matrix for one period from these 

computations denoted as Q(n).  


















1.0000 0.0000 0.0000

0.0145 0.9728 0.0127

0.0116 0.0186 0.9698

Q(1)  

Similarly, by the same logic we can obtain the two-period risk-neutral 

transition matrix. Assuming that the periods are identical in terms of default risk, by 

squaring the transition matrix we can get the two period cumulative default 

probability transition matrix. In like fashion, the n period matrix would be simply the 

one period matrix taken to the power n.  
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

















































1.0000 0.0000 0.0000

0.1515 0.7821 0.1204

0.0999 0.1376 0.7625

1.00 0.00 0.00

0.08 0.85 0.07

0.05 0.08 0.87

1.00 0.00 0.00

0.08 0.85 0.07

0.05 0.08 0.87

d
2

  

Therefore, 















 



(2)0.1173

(2)0.1376

(2)0.23751

(2)

Π
Π
Π

q

I

I

I

I

 

and 



















(2)0.1529

(2)0.21791

(2)0.1204

(2)

Π
Π

Π
q

I

I

I

J

 

Using our equation, we can solve for the risk adjustments 

 

  281414.0
1515.035.01

1
1)2(

258216.0
0999.035.01

1
1)2(

015.006.01

06.01

009.006.01

06.01

2

2



































































J

I  

that are substituted back to adjust the statistical matrix d2 to give the two period 

risk-neutral transition matrix Q(2) 


















1.0000 0.0000 0.0000

0.0426 2350.9 90.033

0.0258 550.03 93870.

Q(2)  

Given the implementation of the JLT model in this simple form, the risk-neutral 

rating transition matrices computed from observed term structures make the pricing 

of various credit risk derivatives practicable. For instance, in order to price a default 

swap, the cumulative probability of default and the loss on default should be 

multiplied and discounted at the interest rate for two periods. 
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The JLT model brings about several advantages. These include the following: 

 

 It accounts for default risk. 

 It models default as a process of migration from higher credit quality to 

default. By modelling a range of credit ratings, it also enables one to value 

CDs indexed to ratings without difficulty (e.g. credit-sensitive notes) 

 As the event of default is explicitly modelled, it allows the pricing of default 

swaps, whilst with pure spread models this was not a possibility. 

 

However, we must also point out that the simple version of the model has some 

weaknesses: 

 

 The assumption of no correlation between risk-free rates and default is not 

realistic 

 As the transition matrix is obtained from past observations, it may not give 

the correct picture of the future credit event. Still, it may be adjusted to 

incorporate the trader's view or forecasts without altering the structure of the 

model.  

 The assumption that upon default cash flows are received at maturity- though 

necessary – is not realistic, but the model may be changed without great harm 

to its structure. 
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 All securities within the same rating class have the same spread is implied by 

the model. Even so, it can explain the average spreads for a rating class in 

preference to spreads for individual bonds. 

This structure may be made more sophisticated to reflect most features of 

credit risky instruments, and to price CDs. By making the recovery rate stochastic, 

the DT model extended the JLT model, and removed the latter’s problematic 

shortcomings.12  

III.4. The Das-Tufano (DT) Model 

Being an extension of JLT, this model uses credit ratings to depict the 

probability of default. In the JLT model, on default, the recovery rate is constant, and 

it is characterized by a variability in spreads that depend on changes in credit ratings. 

The DT model, however, makes the recovery rate in the event of default stochastic, 

providing at the same time a two-factor decomposition of credit spreads. Therefore: 

 

 More variability in the spreads on risky debt is allowed. 

 Spreads have become a function of factors not only the ratings.  

 Recovery rates and credit spreads are now correlated with interest rates. 

 Spread variability may be made specific to the firm, by choosing different 

recovery rate processes for firms belonging to the same rating class. 

                                           
12 Another approach is to make the probability of default correlated with the risk-free interest rate. 
Those models, which make the hazard (default) rate uncertain, are those of Jarrow and Turnbull 
(1995) and Duffie-Singleton (1995). 
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 By making recovery rates stochastic, the pricing of a wide span of 

spread-based contracts is made feasible. This enables one to reset the price of 

debt and the valuation of risky debt for counterparties with different credit 

risks (e.g., in the pricing of risky coupon swaps). 

The connection of ratings and credit spreads makes the implementation of the 

model feasible, enables the valuation of standard bonds, and credit contingent 

instruments. 

In general, models for pricing risky debt can be expressed simply using the 

following equation 

B(r, t, .) = P(r, t) - L(.)Q(.)P(r, t) 

where r is the risk-free interest rate, t is maturity, B(.) is the price of zero coupon 

risky debt, P(.) is the price of riskless debt of the same maturity, Q(.) is the pseudo 

probability of default and L(.) = 1 - (.), the loss rate. As before, (.) is the recovery 

rate in the event of default; here it is assumed to be stochastic.13 

Notice that the spread is a function of the composite L(.)Q(.) (i.e., recovery 

rate and probability of default), and that none of them can be separately identified.14 

It is possible to make credit spreads correlated with the risk-free rate if any of the 

two components L(.) or Q(.) can be made correlated with r. Recovery rate ¢(.) is 

                                           
13 This conceptual specification was first examined and modeled in detail by Longstaff and Schwartz 
(1995). 
14 This corresponds to a similar point made in the Duffle-Singleton (1995) framework. 
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assumed as stochastic and correlated with r, so that we can get the necessary 

correlation.15 

Model 

The pricing model has two parts: (1) the term structure model, and (2) the default 

model. For the term structure any model may be used.16 

The transition matrix provides the probabilities of migration. DT model 

involves a mixture of existing models and an extension which accommodates 

stochastic default recovery rates17 which may be correlated with the term structure of 

interest rates. 

First, we get the risk-neutral setup for the progress in the term structure of 

interest rates, and then find the risk-neutral probabilities of the default process. With 

these two, the stochastic framework for the arbitrage-free pricing of risky debt is 

established. 

Implementation 

We again make a two-period example. Suppose we use the same initial term 

structure variables as before. The risk-free rates and spreads are 





























0.015

0.01
,

0.009

0.008
,

0.06

0.05
r ss JI

 

Assume a binomial lattice with equal probabilities on each branch. As before, the 

interest rate process is a discrete square-root model.  

r(0)η δ r(0)] - β[α  r(0) r(t)   

                                           
15 It is usually more tractable to do it this way than to make Q(.) correlated with r (to see the 
alternative approach refer to Lando [1994]). 
16 Heath-Jarrow-Morton [1992], Hull-White [1990], Black-Derman-Toy [1990], etc. 
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We assume that  = 0.3, = 0.10, and  = 0.1. Then  is the risk adjustment, which is 

found as 0.001976. As we found before, the two risk-neutral spot interest rates in 

period 1 are 











0.0656

0.0746
r(1)  

With this setup of the risk-free interest rate we can price riskless debt up to a 

maturity of two periods. 

Now we develop a stochastic process for recovery rates. Any process can be 

chosen for recovery rates as long as they stay within the range [0,1]. We choose 

recovery rates so that they are correlated with risk-free rates, thereby the correlation 

of credit spreads with the term structure can be achieved. At time 0, the recovery 

rates are assumed to be 

I (0)=0.55, and J (0)=0.39 

We then choose a stochastic process for recovery rates. A process such as i(t) = 

i(0) ± i may be chosen. Still, we just choose values for the evolution of the spread 

over time as a binomial process. As before, we have two binomial stochastic 

variables; the joint evolution of the lattice is a tree with a four-way branching 

scheme. We assume that the recovery rates are negatively correlated with risk-free 

interest rates with is = -0.4. At the end period 1, four possible states arise. The 

values of the model variables in these four states are as follows 

                                                                                                                        
17 As in Jarrow and Turnbull (1995) 
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















































































0.15

0.35

0.35

0.15

prob,

0.35

0.42

0.35

0.42

(1),

0.54

0.58

0.54

0.58

(1),

0.0656

0.0656

0.0746

0.0746

r(1)
JI   

The details of how we obtain the state space, is not critical to the theory of the model. 

The example above has negative correlation between risk-free rates and the 

spreads.18 Now in order to facilitate the computations in the model, we have to find 

the state prices (w) off the risk-free interest rate tree. At time zero the state price is 

unity, i.e., w(0) = 1. The state price vector is given by  

r(t)1

1
w(t)prob1)w(t


  

where prob is the probability at the particular branch. We obtain the state prices at 

time 1 as 





















0.142857

0.333333

0.333333

0.142857

w(1)
 

The same transition matrix as before is assumed 


















1.00 0.00 0.00

0.08 0.85 0.07

0.05 0.08 0.87

d  

In order to price various credit sensitive derivatives the risk-neutral transition matrix 

must be obtained. We start with the one period risky bond of rating class I. At the 

end of a period, it may default, with risk-neutral first passage probability qi°(t) in 

                                           
18 This is easily seen from the fact that when risk-free rates and interest rates move (from time 0) in 

the same direction, lower probabilities are assigned than when they move in opposite directions.  
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which case it will yield an amount i(1). The first-passage probabilities are different 

from cumulative probabilities denoted as [qi(t)]. The "first-passage" probabilities are 

the probability of default in period t, conditional on no prior default. Since there are 

four states of the world at time 1, in each state the expect cash flow is 

Ci(1) = qi°(1)i(1) + (1 - qi°(1))1 

Ci(1) is the "expected" cash flow. The present value of this expected cash flow for a 

bond of rating class I is 

 



































(1)1(1)0.54

(1)1(1)0.58

(1)1(1)0.54

(1)1(1)0.58

0.142857 0.333333 0.333333 0.142857(1)w(1)'

qq

qq

qq

qq

C

0

I

0

I

0

I

0

I

0

I

0

I

0

I

0

I

I

 

In equilibrium, this must equal the price of the one year risky bond, which is 

1/1.058 = w(1)’CI(1) 

Solution to this gives the value of the risk-neutral first passage default probability for 

the rating class I 

qI
o(1) = 0.0172 

The solution for the risk-neutral first passage default probability for the rating class J 

is obtained by doing similar calculations as  

qJ
o(1) = 0.01534 

By using these probabilities we get the risk parameter i(t) to adjust to the statistical 

probability of default 
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Following the same procedure taken by the JLT model, we adjust the matrix d to find 

the entire risk-neutral rating change matrix for one period as 


















1.0000 0.0000 0.0000

0.0153 0.9712 0.0135

0.0172 0.0275 0.9553

Q(1)  

In a similar fashion, we find the values for period 2. At the end of period 2 

there are in total 16 end nodes. Now we have to obtain the expected cash flows in 

each end node (incorporating default and recovery), and discount these cash flows to 

time 0. Given that default is possible at the end of the first period; a cash flow may 

arise in any of the four nodes after one period. This possible cash flow must also be 

considered in calculations. 

Assuming that recovery rates enter the cash flows in a linear way,19 given the 

simplification above we do not need to examine each node in detail to do the 

calculations. Now, we assume the average recovery rates over the time period 2, 

originating from the appropriate state at the end of period 1 as 









































340.

540.

430.

540.

(1),

550.

00.6

550.

00.6

(1)
JI   

                                           
19 They are linear in default probabilities, or are not functions of default probabilities. 
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The value of the two period risky zero coupon bond is the present value of cash 

flows at time 1 and time 2. At time 1 a cash flow is generated only if default occurs. 

The present value of this cash flow for both classes of bonds is 

PV[Cash flow] = prob(default) x average recovery x 1/(1 + r) 

 PVCI(1) = 0.0172*0.56*(1/1.05) = 0.00917 

 PVCJ(1) = 0.01534*0.385*(1/1.05) = 0.005625 

Considering that recovery rates enter the cash flow equation linearly, the 

present value of the probability weighted cash flows cash flows is 


















 




4

1k

0

i

0

ik

k

k

i
(2)1(2)

(1)1

(1)
(2) qqφ

r
w

PVC  

where k simply indexes the four states, and  is the average recovery rate from the 

each of the four states. By using the actual parameter values we get the cash flows 

for each rating class at maturity, and the following two equations give the solutions 

for {qI
o(2), qJ

o(2)}. 

PVCI(1) + PVCI(2) = 1/(1.069)2 

PVCJ(1) + PVCJ(2) = 1/(1.075)2 

Solving we obtain 

qI
o(2) = 0.0637 

qJ
o(2) = 0.0563 

These probabilities are "first passage" probabilities. In order to develop the 

cumulative ratings transitions matrix Q(2), these risk-neutral first-passage default 

probabilities must be converted into cumulative ones by using 

qi(2) = qi(1) + [(1 - qi(1)] qi°(2) 
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= qi
o(1) + [(1 - qi

o(1)] qi°(2) 

The values are found to be 

qI(2) = 0.0172 + [1 - 0.0172](0.0751) = 0.0798 

qJ(2) = 0.01534 + [1 - 0.01534](0.0631) = 0.0707 

Therefore the risk adjustments for the second period are: 

I(2) = 0.091/0.1173 = 0.7986 

J(2) = 0.0775/0.1529 = 0.4669 

By exerting these adjustments to the statistical matrix 


















1.0000 0.0000 0.0000

150.15 0.7821 0.1204

09990. 0.1376 0.7625

d
2

 

We will obtain the risk-neutral cumulative transition matrix 


















1.0000 0.0000 0.0000

0.0707 0.8730 0.0562

0.0798 0.1099 0.8103

Q(2)  

After all the calculations we have obtained a number of items which will render the 

pricing of almost any kind of credit derivative possible. We have now 

 

 Risk-neutral ratings transition matrices for both periods [i.e., Q(1), Q(2)]. These, 

of course, contain the cumulative probabilities of default [qi(t)]. The required risk 

adjustments [i(t)] to the statistical transition matrix (d) are also achieved as a 

by-product. 
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 A bivariate lattice of risk-free interest rates (r) and recovery rates () that satisfy 

risk-neutrality conditions, assuming a correlation between recovery rates and 

interest rates. 

 State prices (w) which help speed up calculations on the lattice. 

 First-passage probabilities of default for each rating class, [qi°(t)], i = I,J. 

 

Using this information, the following derivative products are priced by 

generating the necessary cash flows at each node on the lattice and discounting the 

cash flows back by multiplying them with the state prices to obtain present values: 

 

 Plain-vanilla risky debt for any rating class 

 Rating-sensitive debt 

 Spread-adjusted notes 

 Spread options 

 Total return swaps 

 Credit default swaps 

 Floating rate debt 

 Swaps by counterparties with different credit rating 

III.5. The Duffie-Singleton (DS) Model 

DS analysis shows how the pricing of risky debt may be analyzed in the same way as 

riskless debt, where the discount rate is made up of the risk-free rate plus an 

adjustment involving the hazard and recovery rates. Keeping the same notation we 
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used before, and assuming risk neutrality, it can be argued that, in a very small 

interval of time  the value of a risky bond is equal to 

B= e-r[(1-)+()] 

   (1-r) [(1-)+()] 

Here  is the annualized hazard rate, and r is the annualized risk-free rate. Expanding 

this expression and then eliminating terms in 2 (in continuous time would be zero), 

we get 

B  1- [r+(1-)] 

    e-[ r+(1-) ] 

   = e - R 

where R may be thought of as the "risky" interest rate. Using this model, the risky 

interest rate of may be written as 

R = r+(1-) 

   = r + s 

As we saw before, the spread cannot be decomposed into default and recovery risk 

components, unless additional information is brought into the model20.  

The DS model is a completely general one. R is composed of three elements 

of risk, namely the risk-free rate, hazard rate, and recovery rate. They all may be 

treated as stochastic and correlated with one another. Lattice approach can be 

implemented in these models, where a branching process must be chosen to provide 

for a default event branch.    

                                           
20 The spread is a composite of the two risks, and each elements is not separately identifiable. 
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Let us give a small example. Let = 0.15 (i.e., a 15 per cent chance of default 

in a year). Also, assume that the recovery rate is  = 0.4. Assume one-year risk-free 

interest rate today as 7.5 per cent, and after a year assume that this changes to either 

9.5 per cent or 5 per cent with equal probability. The price of a two-period riskless 

zero-coupon bond will be 

100 x 0.5 x [e-0.095+ e-0.05] x e-0.075 = 86.31 

The risky discount rates are simply the risk-free rate plus spread, i.e., 

R=r+0.15(1-0.4)=r+0.09 

Hence, to price risky bonds the current rate of 16.5 per cent (0.075 + 0.09) is used, 

and the rates after one year will be 18.5 per cent (0.095 + 0.09) and 14 per cent (0.05 

+ 0.09) with probability of 0.5 each. The price of the bond will be 

100 (0.5) [e-0.185+ e-0.14] e-0.165 = 72.09 

At the end of two years, the expected cash flow is 

100 e-0.15+ 40(1- e-0.15) = 91.64 

where (1 – e-0.15) is the probability of default. Discounting this back at the two 

possible values of the risk-free rate gives 

91.64e-0.05 = 87.173 

and 

91.64e-0.095 = 83.337 

Taking 91.6 per cent of these values and discounting back gives 

0.5[87.173+83.337]0.9164e-0.075 = 72.48 
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roughly equal to that from the direct calculation.21 The DS model thus enables users 

of regular term structure models for government bonds to directly apply them to 

risky debt, by replacing the risk-free rates with risky rates from the formula above.22 

III.6. Conclusions and Other Issues for Credit Risk Models 

In Part III. we have mainly focused on pricing models. Previously we carried 

out a survey on a range of different approaches credit derivatives modelling, and we 

also examined simple versions of some major extant models. One strand of the 

literature was given short shrift note: the Merton (1974) models the value of the firm 

instead of the prices of risky and riskless securities, which are functions of the value 

of the firm. The following are theoretically appealing papers of this class: Longstaff 

and Schwartz (1995), Bhattacharya and Mason (1981), Black and Cox (1976), 

Shimko, Tejima, and Van Deventer (1993), Nielsen, Saa-Requejo, and Santa-Clara 

(1993), Das (1995). Nevertheless, these papers still pose enormous implementation 

problems, especially when dealing with risky bonds of firms with complicated 

capital structures. Unfortunately examination of this entire stream of work would 

have caused enormous diversion from the simple models pursued in this piece of 

work. Without a doubt, the Merton approach is enormously important however; 

before making an engineering decision, on pricing approach other models should be 

carefully examined in addition to those in this part. 

  While this part aims to focus primarily on the pricing of credit derivatives, 

there are several other issues that bear addressing in conjunction with pricing. In this 

                                           
21 Rounding occurs since the recovery rate has not been handled in continuous time 
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section, we are going to focus on only two of these issues, which pertain directly to 

pricing models. These are (a) portfolio credit risk and (b) pricing to obtain a rate of 

return on capital. So far we have discussed pricing models, that envisage a 

framework for the no-arbitrage pricing of derivatives with credit risk. Therefore, the 

lattices that are developed may be used to price several differently structured 

products, since these models fit the existing term structure of interest rates and credit 

spreads. Moreover, for each security that is priced, the initial conditions (parameters) 

may be perturbed and numerical derivatives calculated, so that "hedge" ratios with 

respect to all the underlying sources of risk may be obtained, and then, these hedge 

ratios may be used to put in place the required hedges. This clearly shows that, the 

pricing technology directly supports portfolio risk management. In addition, bears no 

difference to the technology already used for equity, foreign exchange, commodity, 

and interest rate derivatives. 

Simulation methods have also been developed in recent past, to carry out 

credit portfolio management. These methods have a common feature of the 

generation of a wide variety of default scenarios, and thus also enable carry out a 

complete and satisfactory stress testing of credit portfolios. In addition to that, other 

risk management methods can be combined with the simulation approach and it 

allows for a large number of sources of risk. For example, the melting of price and 

credit risk into one risk management system can be one with this approach. 

Simulation is a very powerful approach towards credit risk management. Moreover, 

                                                                                                                        
22 These models are now known as "reduced-form" models of risky debt pricing. 
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it can support large portfolios adequately and it is directly extensible. Every 

institution dealing in credit derivatives faces the choice between a pricing technology 

and risk management by simulation. If the pricing technology has been developed, it 

would make perfect sense to use it for risk management, thus it would ensure 

consistency of the front end dealing process with the ex-post management of 

positions. Since the model accounts for no-arbitrage this would also ensure that the 

risk measures are also consistent with this issue. Risk measures do not in any way 

conform to risk-neutral (i.e., no-arbitrage pricing), with simulation off the statistical 

matrices. (See the Appendix A) 

Using pricing technologies, like one developed in this part, is often called 

"relative pricing". The models here used observed values of riskless rates and 

spreads, developed a lattice, and then enabled pricing off the lattice, which ensured 

(a) that no arbitrage was admitted, and (b) that all securities were priced correctly 

relative to each other. This directs us to the second major issue of this section (i.e., an 

often adopted approach by most financial institutions): when not availing of a 

relative pricing model. This is to ensure a risk-adjusted rate of return on capital, 

when pricing a security. If two financial houses with differing balance sheets price 

the same derivative, quite clearly the same security would have two different prices. 

In fact, because there is little agreement on price it deprives expectations on to see 

price formation and it makes it hard to create a market. However, using relative 

pricing technology helps establishment of markets due to the consistency achieved 

across security prices.  
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  Important point to remember is to recognize the fact that, when the inputs 

used by participants differ relative pricing fails, because they have differential 

information. On the other hand, relative pricing markets shows evidence of a 

convergence of information, which does not come with pricing for a rate of return. 

The relative pricing mechanism offers the hope a convergence of all prices, models, 

and information to the optimal maximizing welfare.  
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IV. CONCLUSION 

 In today’s complex economic environment, bank loan portfolio managers 

have to deal with credit risk in their day to day operations. Credit risk is so hard to 

measure and manage that bank managers have to come up with sound procedures 

that will help them survive in this complicated environment. 

In dealing with credit risk, bank financial managers may use credit 

derivatives. Credit derivatives are complicated financial structures originally 

designed to mitigate the credit risk and its components, and now used for active loan 

portfolio management purposes to further boost incomes of the banks, with an 

optimal portfolio approach. 

By using various types of credit derivatives, a one can hedge away the credit 

risk, and manage the portfolio of the financial institution more efficiently. Still, the 

credit risk cannot be totally offset, nor can incomes be increased to the limit. 

Currently, these instruments are perceived so complicated that no one could 

come up with an exact formula or model to measure the risks involved and payoffs 

anticipated. The pricing of credit derivatives is still a challenge, so is the design of 

the loan portfolio management strategies using them. 
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APPENDIX A 

 

SIMULATION AND SENSITIVITY RESULTS
23

 

 
We have carried out simulations for the risk free interest rates and credit spreads. 
 
The assumptions: 
1. The underlying process under risk free rates and spreads is a Wiener Process. 
2. The parameters are assumed so that they enter the equations as given. 
3. The correlation between the risk-free rates and spreads are assumed. 
4. The transitions matrices are assumed to follow a Markov transition process. 

(They are also assumed not simulated) 
5. The recovery rate is given. 

 
The equation used for simulating risk-free interest rates is 

 

  Δ)ξ(tΔwΔ)r(tηδΔΔ)r(tβαΔ)r(tr(t)   

 

where (t-) is the random number generated by using Excel Random Number 
Generator drawn from a normal distribution with mean 0 and standard deviation 1 

(i.e. (t-)N(0,1)). The equation used for simulating spread is 
 

  Δ)(tΔzΔ)s(tσγΔΔ)s(tθkΔ)s(ts(t)   

 

where (t-) is the random number generated by using Excel Random Number 
Generator drawn from a normal distribution with mean 0 and standard deviation 1 

(i.e. (t-)N(0,1)). 

                                           
23 Simulations are carried out through Excel, and Solver function is used for the other computations  
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Table 1. Sample Simulation for Risk-free Interest Rates 

 

 r(0) 0,05 alpha 0,15 

 T 0,004 beta 0,0083 

 eta 0,0092   

     

day interest Random change int(riskfree) 

0 0,0500 -3,0230149 -0,000418337 0,050000 

1 0,0497 0,1600654 -4,19427E-06 0,049582 

2 0,0497 -0,8657844 -0,000137665 0,049577 

3 0,0495 0,873265 8,85985E-05 0,049440 

4 0,0496 0,2147249 2,91735E-06 0,049528 

5 0,0496 -0,0504724 -3,15868E-05 0,049531 

6 0,0496 -0,3845344 -7,50509E-05 0,049500 

 
Table 2. Sample Simulation for Spread 

 

 s(0) 0,01 k 0,15 

 T 0,004 theta 0,0083 

 sigma 0,0092   

     

day spread Random change spread 

0 0,0100 -3,0230149 -0,000176917 0,010000 

1 0,0099 0,1600654 8,31695E-06 0,009823 

2 0,0099 -0,8657844 -5,08688E-05 0,009831 

3 0,0098 0,873265 4,93627E-05 0,009781 

4 0,0099 0,2147249 1,14693E-05 0,009830 

5 0,0099 -0,0504724 -3,83821E-06 0,009841 

6 0,0099 -0,3845344 -2,31145E-05 0,009838 

 

Time increments are taken daily (i.e. T = 1/250). 500 days are used and the rates and 
spreads for the days 250 and 500 are the ones for period 1 (T=1) and period 2 (T=2). 
The assumption here is that “holidays are not counted as a part of the time” which is 
not realistic. Hence, the year is composed of 250 working days. These rates and 
spreads are found to be 
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Spread Models 

One Factor Spread Model 

 

1. At t = 0 with assumed values  
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Drift adjustment parameter () is found to be  = 0.00198 and the spread is found as 
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We then performed sensitivity analysis for the risk-free rates and spreads; this 

revealed that when r = 0.01r and s = 0 spreads remained the same. Whereas when 

r = 0 and s = 0.01s, and  = 0.002007 
 











30.009

90.010
s   (1) 

 

When r = 0.01r and s = 0.01s we obtained the same results as (1). Therefore, the 
changes in the spreads are not sensitive to changes in the risk-free interest rates. 
 

2. At t = 0 with simulated values  
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Drift () is found to be  = - 0.00451 and the spread is found as 
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We then performed sensitivity analysis for the risk-free rates and spreads. When r = 

0.01r and s = 0,  = - 0.00385 and spreads  
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and when r = 0.01r and s = 0.01s  = - 0.00384 and spreads 
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lastly, when r = 0 and s = 0.01s, and  = - 0.00449 and spreads 
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Two Factor Model 

1. One Period 

a. With assumed values 
 

We found at t = 0 the drift adjustment parameter () is found as  = 0.00811, 
and the risk free-rates are 
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With r = 0.01r and s = 0  is found as  = 0.00842 and the risk free-rates are 
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When r = 0.01r and s = 0.01s the rates are found the same as (3). Hence, the risk-
free rates are not sensitive to changes in spreads. 
 
a. With simulated values given in (2) at t = 0 

the drift parameter is found as  = 0.00152 and the risk-free rates are 
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Sensitivity analysis reveals that when r = 0.01r and s = 0, the drift parameter is 

found to be  = 0.00176 and the risk-free rates remain the same as in (4).  
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When r = 0.01r and s = 0.01s the results do not change. This leads up to the fact 
that the risk-free rates are again not sensitive to changes in spreads. 
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2. Two Period Model 
a. With assumed values 
 

We found at t = 0 the drift adjustment parameter for spread () is found as  = 
0.00811, 
and the spreads and risk free-rates are 
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Sensitivity analysis results are as follows, 

With r = 0.01r and s = 0  is found as  = 0.00249, and the spreads and the risk 
free-rates are 
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When r = 0.01r and s = 0.01s the risk-free rates are found the same as (5), while 
the spreads. 
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With r = 0 and s = 0.01s 
 





















9380.00

11030.0

9380.00

011030.

s(1) , 





















560.06

560.06

460.07

460.07

r(1)  

 
b. With simulated values 
 

We found at t = 0 the drift adjustment parameter for spread () is found as  = 
0.000248, 
and the spreads and risk free-rates are 
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Sensitivity analysis results are as follows, 

With r = 0.01r and s = 0  is found as  = 0.00248, and the spreads and the risk 
free-rates are 
 





















7950.00

09660.0

7950.00

009660.

s(1) ,  





















140.06

140.06

060.07

060.07

r(1)   (6) 

 

When r = 0.01r and s = 0.01s the risk-free rates are found the same as (6), while 
the spreads. 
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With r = 0 and s = 0.01s,  = 0,000028  
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The Jarrow Lando Turnbull Model 

 

 In JLT Model different from the spread models the outcome of the pricing 
process is the Risk Neutral Transition Matrices (RNTM). Assuming the same interest 
rates above and different spreads for the two rating classes (i.e. the latter assumption 
postulates that all the firms within the same rating class have the same spread on the 
average, which is a simplifying one). The assumed values for the risk-free rates and 
spreads for classes I and J are 
  











5880.0

230.05
r ,   










870.00

60.008
sI

, 









0930.0

0980.0
sJ

 



 82 

 
whereas, with the simulations we have carried out they turned out to be 
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The assumed Markov Transition Matrix 
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At t = 1, the calculations give us the adjustment parameters for RNTM as 
 

I(1) = 0.232678, and J(1) = 0.181427 and the RNTM is obtained as 
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When we carry out the sensitivity analysis, with 1 per cent change in risk-free rates 
we observe that the RNTM remains unchanged. On the other hand, a 1 per cent 
change the RNTM changes. This reveals the fact that the RNT probabilities 
insensitive to changes in risk-free rates, but sensitive to changes in spreads. This 
same explanation can be made for the results using the simulated rates and spreads. 
 
 The sensitivity analysis using the assumed values suggests the same fact for 
the two period JLT model. However, for the simulated values we find that the RNT 
probabilities are sensitive to both types of changes. 
 
The Das Tufano Model 

 
 As an extension to JLT Model, DT model exploits the fact that the interest 
rates and spreads may be correlated (and are in reality, mostly). For this, as we stated 
in the beginning, we assume a correlation coefficient (which itself can be changed as 
a part of a scenario analysis or forecast from the past-though may not reflect the 
reality). 
 
 Due to space, and time constraints we leave the computations out. The output 
of the sensitivity analysis for both assumed and simulated values for all periods, is 
such that the RNT probabilities are sensitive to both interest rates and spreads, 
individually and as a group. 
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 The basic assumption we have made in this analysis is that only the interest 
rates and spreads are stochastic and can be simulated. All other parameters must be 
assumed at start. Even so, this is a very simplifying assumption though one that must 
be made for the manageability of the problem. Everything but the initial conditions 
(they can be obtained from the market) can be made stochastic and simulated as long 
as the underlying process is known or can be replicated in one way. Some candidates 
for simulations can be initial Markov Transition Matrices, recovery rates, etc. 
  
 In this appendix we tried to briefly show that the simulation is a powerful tool 
in pricing the CDs, given the current computing power we have. This analysis was 
simplified. It can be extended to a more sophisticated one with more accurate and 
satisfactory results.  
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APPENDIX B 

 

PRICING FORMULAE FOR CREDIT DERIVATIVES
24  

 
An exchange option 

 
 An option to exchange a risky zero coupon bond for a riskless zero coupon 
bond at time T has a payoff 
Max(qZ-Z*,0) 
for some fixed q. 

 Assumptions: 
1. Risk free rates and hazard rate are deterministic. 
2. One, but not both of the interest rate and risk of default is stochastic. 

 
1.The price of risk free bond satisfy 
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with 
Z(r,TB) = 1 

 
 

u-w and the w are the risk adjusted drift and the volatility of the spot rate 
respectively. 
The risky bond will similarly satisfy 
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with 
 
Z*(r,TB) = 1. 

 
The solution of this equation is simply 

 
Z*(r,t)=e

-p(T
B

-t)
Z(r,t) 

 

This deterministic relationship between the two bonds with the assumption of 
constant hazard rate shadows the pricing of the exchange option. The complexity of 

                                           
24 Appendix B is prepared as a supplement by using Willmott (1998), Ch 44. Credit Derivatives 
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this contract is due to the randomness in the risk of default. Hence, the constant 
hazard rate assumption is not appropriate for credit derivatives. 
 
2. Given the second assumption, a better approach is to take the interest rates given 
by the forward rates and hazard rate p some stochastic differential equation. 
 Assuming that 
  

dp = dt + dX 
and, interest rates are constant 
Z(r,t)=e

-p(T
B

-t) 
and 
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with 
Z*(p,TB) = 1. 

 
The payoff of the exchange option has the value V(p,t) 

 
Max(qe
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-t) – Z*(p,t),0) 

 
 
qe

-r(T
B

-t) v   being constant this looks like a put option on a zero coupon bond. Taking 
the factor e-r(T

B
-t)  out from Z* in the partial differential equation 
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As  and  are chosen in practice explicit solutions can be found. 
 
3. Stochastic interest and hazard rates 

 
Finally assuming that interest rates and hazard rate are stochastic, both Z and 

Z* satisfy 
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The risk free bond is independent of the default risk so that we have Z(r,t) with no p 
dependence. The risky bond depends on the default risk and is therefore a function of 
three variables, Z*(r,p,t). 
 



 86 

Using relationship we solve the underlying bonds 
 

Z(r,t) = Z*(r,p,t) = 1 

 
And then solve for the exchange option V(r,p,t) satisfying with 
 

V(r,p,t) = Max ( qZ(r,T) – Z*(r,p,t), 0) 

 
As this exchange option is a second order contract the price may be quite sensitive to 
the model. 
 
Payoff of a Change in Rating 

  
Payoffs take values according to 

1. Ratings taking values at expiry 
2. Ratings are realised at any time before expiry 

 
In this category, we need to intoduce the rating migration into the valuation 

model. Assuming the process is Markov and the interest rates are constant the 
equation 

 

0V)IQ(
V

 r
dt

d  

 

V(T) = eR R being the rating category, and there is no payment unless the 
issuer is rated R. eR is  

 

 00..1....0
T  

 
which is a vector of transition matrix that relates to rating class R. 


