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Abstract

In this paper we explore the different components that should be incorporated in
the price of uncollateralized 1 derivatives. We do so by putting special focus on the
hedge-ability of every term. In order to reflect the most realistic situation, we assume
stochastic credit spreads for both counterparties. In such a framework, the counterparty
acting as the hedger will be concerned about market risk (movements in the price of
the underlying asset), both sources of the credit risk of the investor (spread changes
and default event) and also his own credit risk.

Regarding his own credit risk, we assume that the derivatives hedger has no incentive
to hedge the change in value of the derivative upon his own default, since the hedger
will not be exposed to this change in value. Nevertheless, we assume that the hedger
has a strong incentive to hedge the changes in the derivative’s price due to changes in
his credit spread curve, which is a source of risk that the derivatives hedger will be
exposed to during the replication process. We also suggest a hedging strategy for this
risk factor (spread changes of the investor) as we do for the other (market risk, spread
changes and default event of the issuer).

We conclude that under these assumptions CVA (a unilateral version of it that does
not depend on the hedger’s funding curve) and FVA (a funding adjustment that does
only depend on the investor’s default indicator and not on the hedger’s) are the only
components to be incorporated in the price of financial derivatives.

∗The opinions of this article are those of the author and do not reflect in any way the views or business
of his employer.

1Although the results can be easily generalized to partially collateralized transactions.
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1 Introduction

Over the last years, the finance community has come up with what could be considered
one of the most controversial concepts of all time: that is DVA (debit value adjustment).
While conceived by some as economically meaningful, since it contemplates counterparty
credit risk in a symmetrical way, others argue that it is meaningless due to the fact
that it cannot be hedged.

Apart from that, derivatives hedgers have also become concerned about funding
costs (FCA) or benefits (FBA) incurred in the dynamic replication process. This has
produced a big debate lately about which of this four components (CVA, DVA, FCA,
FBA) should be incorporated into the pricing of financial derivatives.

Although the CVA/DVA/FVA debate has been previously analyzed from a replication
perspective (see for example [2], [3]), [4]), the analysis is done under the assumption
of non stochastic spreads. Under this framework, the only source of risk regarding
the derivative’s hedger credit worthiness is the default event, therefore only attention
is paid on the hedging of the cashflow experienced by the hedger upon his time of
default. In trying to hedge this default event, sometimes it is necessary for the hedger
to get additional funding to purchase debt issued by himself in order to neutralize the
positive cashflow produced by the default event. Nevertheless this situation is a little
bit cumbersome, since this additional funding also represents debt issued by the hedger
and also has a jump to default component that is ignored and that leaves the jump to
default unhedged. Another possibility mentioned is for the hedger to trade on senior
and junior debt issued by himself, although this assumption seems unrealistic. Apart
from that, in this framework, no attention is paid on how the hedger can neutralize
changes in the derivative’s value due to changes in the hedger’s credit spread which is
something that the hedger will be exposed to on a continuous basis no matter whether
the default event happens or not.

Regarding the hedging of the hedger’s default event, let’s first analyze from a pure
practical perspective the real incentive to hedge it. The hedging of this component
implies that the hedger could have to sell protection on himself. The CDS counterparty
used to hedge this component will require some sort of over collateralization. This
overcollateralization can accelerate the default and will for sure reduce the recovery
left for the bondholders since the CDS counterparty will have priority on the assets
posted as collateral, so that there is no incentive to hedge it for either equity holders
or bondholders of the hedging firm.
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Nevertheless it seems meaningful to include a term in the price of uncollateralized
derivatives that reflects the hedger creditworthiness. In order to come up with the
expression of this term, we will put special emphasis on it to be hedgeable to changes
of the hedger’s credit spread, although no attemp will be made in order to hedge the
jump in the derivative’s price upon the default of the hedger. The approach followed
will imply that, contrary to what is suggested by DVA supporters, the price of an
uncollateralized derivative will depend on which of the two counterparties acts as the
hedger and which as the investor 2.

We will make the following assumptions in order to obtain the different components
to be included in the price of uncollateralized derivatives:

• The price of a derivative should reflect all of its hedging costs.

• Since nowadays a very high percentage (if not all) of uncollateralized transactions
imply a counterparty acting as an investor (risk taker) and a hedger (risk hedger),
the derivative’s price should just reflect the hedging costs borne by the hedger.

• The hedger will only be willing to hedge the fluctuations in the derivative’s price
that he will experience while being alive, that is, while not having defaulted.

• There is neither CVA nore FVA to be made to fully collateralized derivatives (with
continuous collateral margining in cash, symmetrical collateral mechanisms and
no thresholds, minimum transfer amounts, ...).

Market assumptions:

• There is a liquid CDS (credit default swap) curve for the investor.

• There is a liquid curve of bonds issued by the hedger.

• Continuous hedging is possible, unlimited liquidity, no bid-offer spreads, no trading
costs.

• Recovery rates are either deterministic or there are recovery locks available so
that recovery risk is not a concern.

Model assumptions:

• Both the hedger and the investor are defaultable. Simultaneous default is not
possible.

• The underlying asset follows a difusion process under the real world measure.

• The derivative’s underlying asset is unaffected by the default event of any of the
counterparties.

2Notice that the same happens with any manufactured product. That is, the price of a car reflects the
manufacturing costs of the car manufacturer and has nothing to do with the manufacturing cost of the car
buyer if he was to build his own car.
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• Both the credit spreads of the investor and of the hedger are stochastic following
correlated diffusion processes under the real world measure.

Since funding costs arise due to asymmetries between the collateral characteristics of
derivatives traded with investors (that could be uncollateralized or partially collateralized)
and those of the hedging instruments (usually traded in the interbank market, where
deals are fully collateralized), in order to incorporate funding costs we will assume this
situation. That is, an uncollateralized derivative (the one that the hedger trades with
the investor) is hedged with a generic derivative collateralized in cash. In order to
simplify the algebra we will assume that interest rates are not stochastic, although the
results achieved are also valid under stochastic interest rates.

The structure of the paper is as follows:

• In section 4 we will explore the different risks that will impact the replication price
of financial derivatives. We will discuss which of them can generally be hedged
by the derivative’s hedger and which will be experienced by the hedger while not
having defaulted. We will see that the same risks that can be hedged are the only
ones that will be experienced by the hedger while not having defaulted.

• In section 3 we will describe the replication strategy to be followed by the derivatives
hedger in order to be immune to changes in the different risk factors. The
replication strategy will lead to the partial differential equation (PDE) followed
by the derivative’s price, which will help us to identify the different components
to be incorporated in it.

• In section 4 we compare DVA hedging vs FVA hedging in a simplified framework.

• In section 5 we summarize the main conclusions.

• In appendix A we review the PDE followed by any credit derivative. We do so by
analyzing the hedging of both jump to default and spread risks. We distinguish
between credit derivatives collateralized in cash and bonds that can be repoed.

2 The hedgeable risks

We will assume that under the real world measure P, the evolution of the relevant
market variables (price of the derivative’s underlying asset and credit spreads of the
investor and the hedger) are governed by the following stochastic differential equations:

dSt = µS
t Stdt+ σS

t StdW
S,P
t

dhIt = µI
t dt+ σI

t dW
I,P
t

dhHt = µH
t dt+ σH

t dW
H,P
t

(1)

Where St represents the price of the derivative’s underlying asset at time t, hIt the
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short term CDS spread of the investor, hHt the short term CDS spread of the derivative’s
hedger, µS

t , µ
I
t , µ

H
t the real world drifts of the 3 processes and σS

t (t, St), σ
I
t (t, h

I
t ), σ

H
t (t, hHt )

their volatilities. W
S,P
t , W

I,P
t , W

H,P
t are brownian motions under the real world

measure P.

We will assume that the 3 processes are correlated with time dependent correlations:

ρ
S,I
t dt = dW

S,P
t dW

I,P
t , ρ

H,I
t dt = dW

H,P
t dW

I,P
t , ρ

S,H
t dt = dW

S,P
t dW

H,P
t

Notice that although we could have assumed a n-dimensional Heath Jarrow Morton
model for credit spreads, we have assumed that the evolution of the credit curves is
governed by one factor models in order to simplify the algebra.

The other two sources on uncertainty are the default indicator processes N
I,P
t =

1{τI≤t}, N
H,P
t = 1{τH≤t} with real world default intensities λ

I,P
t , λ

H,P
t . Parameters

associated with the investor will carry a superscript I whereas those of the hedger a
superscript H. τI and τH will represent the default times of the investor and the hedger.

The cash flows that the derivative’s hedger will face in the replication process will
depend on each and every one of the sources of uncertainty (St, h

I
t , h

H
t , N

I,P
t , N

H,P
t ).

Therefore Vt = V (t, St, h
I
t , h

H
t , N

I,P
t , N

H,P
t ) (Vt represents the derivative’s value from

the investor’s perspective). Assuming that both the investor and the hedger have not
defaulted by time t, the change in value from t to t+dt experienced by Vt will be given
by (applying Itô’s Lemma for jump diffusion processes)

dVt =
∂Vt

∂St

dSt

︸ ︷︷ ︸

Delta risk

+
∂Vt

∂hI
t

dhI
t

︸ ︷︷ ︸

Spread risk to I

+
∂Vt

∂hH
t

dhH
t

︸ ︷︷ ︸

Spread risk to H

+ ∆V I
t dN

I,P
t

︸ ︷︷ ︸

Default risk to I

+ ∆V H
t dN

H,P
t

︸ ︷︷ ︸

Default risk to H

+O(dt)
︸ ︷︷ ︸

Theta
(2)

∆V I
t represents the jump in the value of the derivative if default of the investor

happened at time t and ∆V H
t the jump if the hedger defaulted.

Of all the risk terms in (2) the hedger will only be exposed to ∂Vt

∂St
dSt,

∂Vt

∂hI
t

dhI
t ,

∂Vt

∂hH
t

dhH
t and ∆V I

t dN
I,P
t . Keep in mind that ∆V H

t dN
H,P
t is conditional on the

hedger having defaulted. Since the hedger will not be there to experience the
change in value of the derivative, there will be no incentive at all to hedge it.
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Nevertheless we will analyze whether each one of the components of (2) can
actually be hedged:

• ∂Vt

∂St
dSt: This component can be hedged by trading in a fully collateralized

derivative written on the underlying asset. Therefore the hedger will be able
to hedge the market risk component without having a net cash flow 3.

• ∂Vt

∂hI
t

dhI
t and ∆V I

t dN
I,P
t : In order to be hedged to both spread and default

risks of the investor, the hedger will have to trade in two credit default
swaps written on the investor with different maturities. Notice that this is
because we have assumed a one factor model for the evolution of the credit
spread curve. Had we assumed an n factor model, then the hedger would
have to trade in CDSs with n+1 different maturities. If we assume that the
investor is not perceived by the market as correlated with the hedger, the
hedger will be able to either buy or sell protection on the investor. Notice
that this hedging component will imply a zero net cash flow, since CDSs are
collateralized market instruments.

• ∂Vt

∂hH
t

dhH
t and ∆V H

t dN
H,P
t altogether: The hedger will have to trade on two

different credit instruments written on himself (or n + 1 under a n factor
model for the evolution of its credit curve). In general he will have to go
long or short its own credit risk. Since the market will never be willing to
buy protection written on the hedger from the hedger, the hedging of this
two components will have to be done by trading on the hedger’s own debt.
Notice that the hedging could imply a net purchase of debt, so that it could
never be done unless Vt was positive (the hedger has received funds from
the investor) and enough to purchase the net debt, which will not happen in
general. If it was not enough, then the hedging would not be possible. Notice
that issuing debt to purchase the hedger own debt is not an option, since
the issuance of debt will generate DVA with the funding provider, leaving
the overall DVA unaffected.

• ∂Vt

∂hH
t

dhH
t : Notice that no matter whether the hedger makes the unrealistic

assumption of being default free, in the process of replicating the derivative
it will be exposed to its own funding spread (which will be related to the
short term CDS spread hH

t ). This implies that the pricing equation would
depend on its current funding curve and, unless the hedger unrealistically
believes it to be non stochastic, the hedger should have an incentive to hedge
this source of risk. As we will see, this source of risk can always be hedged
in a one factor world by trading on two bonds with different maturities
while forcing the net purchase to be equal to the derivative’s NPV as seen
from the investor (if the NPV as seen from the investor is negative the net

3When a market participant enters into a collateralized transaction with a positive value (respectively
negative) pays (receives) the value of the deal to (from) the counterparty, but receives (posts) the value as
collateral. This produces a net cash flow of zero.

7



purchase will be negative, representing an issuance). Notice also that when a
hedger enters into a non collateralized derivative, the hedger will modify the
sensitivity of his overall debt with respect to changes in his funding spread.
Hedging this component will leave the sensitivity unchanged.

It is important to stress that the same sources of risk that the hedger will
not be able to hedge are the same sources of risk whose cash flows will never be
paid or received by the issuer (since it will already be defaulted). Therefore it is
convenient to get rid of these sources of risk if we define price as the value of the
replicating portfolio.

3 The replication strategy

As already mentioned, we will consider the most general situation in which both
the issuer and the investor are defaultable and the realistic assumption that
spreads are stochastic. Therefore, the hedger will hedge the risk factors that
he is exposed to on every path under which he finds himself not defaulted (that
are in fact the only ones that are hedgeable). These risk factors are:

• Market risk due to changes in St.

• Investor’s spread risk due to changes in hI
t .

• Investor’s default event.

• Hedger’s spread risk due to changes in hH
t .

In order to hedge the exposure to the first three factors, the hedger will have
to trade in the following instruments:

• Market risk: We will assume that market risk is hedged with a fully collateralized
derivative on the same underlying asset. Ht will represent its NPV from the
hedger’s perspective.

• Spread risk and default risk of the investor: In a world where the dynamics
of the credit curve is governed by a one factor model, the hedger will have
to trade on two CDSs with different maturities written on the investor.
CDS(t,t+dt) will represent the value of an overnight credit default swap
(with unit notional) under which the protection buyer pays a premium at
time t+ dt equal to hI

tdt. If the default time of the investor t < τ I ≤ t+ dt,
then the protection buyer receives (1 − RI) (RI represents the investor’s
recovery rate) at time t+dt. We will assume that hI

tdt is such that CDS(t, t+
dt) = 0. CDS(t,T) is a cash collateralized credit default swap maturing on
a later date T > t. In general CDS(t, T ) 6= 0.
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Before analyzing how to become immune to changes in the hedger’s credit
spread, we will analyze the hedger’s funding situation. If Vt > 0, the hedger will
have excess cash with which he will be able to buy back his own debt. If Vt < 0,
the hedger will have to issue new debt.

In either case the hedger will have to decide the spread duration (sentitivity
to spread changes) of the debt issued/bought back. In a world with deterministic
spreads this decision will be irrelevant, but under the realistic assumption of
stochastic spreads this is no longer true. Notice that an uncollateralized derivative
can either become an asset or a liability during the replication process. Therefore
when a new uncollateralized derivative is replicated, the hedger will see that the
spread duration of his debt is altered unless he imposes that the spread duration
of the incoming uncollateralized derivative is perfectly matched with the spread
duration of the bonds issued/bought back.

Notice that the hedger can match the spread duration of the uncollateralized
derivative by trading on bonds with two different maturities while imposing that
the net buyback is equal to Vt (issuance if Vt is negative). This is what we will
refer to as the self financing condition of the replication strategy.

We will assume that the hedger trades on bonds that mature on a future date
T and also on short term bonds that mature on t + dt. Had we assumed an n

factor model for the dynamic of the hedger’s credit curve, the hedger would have
to trade on n+ 1 bonds issued by himself. Ωt and ωt will represent the amounts
to buy back (or issue if negative) in B(t, t+ dt) and B(t, T ) respectively.

In order to ensure that the self financing condition holds:

Vt = ΩtB(t, t+ dt) + ωtB(t, T )

Which implies

Ωt =
Vt − ωtB(t, T )

B(t, t+ dt)

ωt will be determined in order to match the spread duration of the derivative
and that of the debt issuance/buyback.
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The hedging equation will be

Vt = αtHt+βt+γtCDS(t, T )+ǫt CDS(t, t+ dt)
︸ ︷︷ ︸

=0

+
Vt

B(t, t+ dt)
B(t, t+dt)+ωt

(

B(t, T )−
B(t, T )

B(t, t+ dt)
B(t, t+ dt)

)

︸ ︷︷ ︸

=0

Where Vt represents the NPV from the investor’s perspective, Ht represents the
NPV (from the hedger’s perspective) of a fully collateralized derivative (collateralized
in cash) written on St, αt the number of contracts to trade in Ht, βt represents
cash in collateral accounts, CDS(t, t + dt) and CDS(t, T ) the NPVs as seen
from the hedger of short term and long term credit default swaps written on the
investor, γt and ǫt represent the notional to trade on each CDS.

βt will be comprised of −αtHt and −γtCDS(t, T ) that has been posted to the
hedger (or the opposite if either αt or γt are negative). Therefore, the change in
βt will be given by:

dβt = −ctαtHtdt− ctγtCDS(t, T )dt

Where ct represents the accrual rate of collateral accounts (which we assume
to be the OIS rate is the deal’s currency). Notice that there is no contribution of
the short term CDS written on the investor since we have assumed its NPV to
be zero.

Conditional on both the investor and the hedger being alive at time t, the
change in Vt under every path in which the hedger remains not defaulted until
t+ dt will be given by (applying Itô’s Lemma for jump diffusion processes)

dVt = LSIHVtdt+
∂Vt

∂St

Stσ
S
t dW

S,P
t +

∂Vt

∂hI
t

σI
t dW

I,P
t +

∂Vt

∂hH
t

σH
t dW

H,P
t +∆V I

t dN
I,P
t

Where

LSIHVt = ∂Vt

∂t
+ µS

t St
∂Vt

∂St
+ µH

t
∂Vt

∂hH
t

+ µI
t
∂Vt

∂hI
t

+ 1
2
∂2Vt

∂S2
t
S2
t (σ

S
t )

2 + 1
2

∂2Vt

∂hH
t

2 (σH
t )2 + 1

2
∂2Vt

∂hI
t
2 (σH

t )2

+ ∂2Vt

∂Sth
H
t

Stσ
S
t σ

H
t ρ

S,H
t + ∂2Vt

∂Sth
I
t

Stσ
S
t σ

I
t ρ

S,I
t + ∂2Vt

∂hI
th

H
t

σI
t σ

H
t ρ

I,H
t

The differential change in Ht (applying Itô’s Lemma)

dHt = LSHtdt+
∂Ht

∂St

Stσ
S
t dW

S,P
t
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where

LSHt =
∂Ht

∂t
+ µS

t St

∂Ht

∂St

+
1

2
S2
t

(
σS
t

)2 ∂2Ht

∂S2
t

The differential change in CDS(t, t+ dt) and in B(t, t+ dt)

dCDS(t, t+ dt) = hI
tdt− (1−RI)dN

I,P
t

dB(t, t+ dt) = fH
t B(t, t+ dt)dt

fH
t represents the hedger’s short term funding rate. Notice that the jump to

default component of B(t, t+dt) has been omitted since it will not be experienced
by the hedger. In appendix A we see that fH

t is also equal to rHt + hH
t , where

rHt represents the short term REPO rate written on a short term bond issued
by the hedger and that matures on t + dt 4. Same as we have assumed interest
rates to be non stochastic (ct will be a deterministic function of time) we will also
assume repo rates to be non stochastic, so that the dynamics of bonds issued by
the hedger will be determined just by the dynamics of the short term CDS spread
hH
t .

The differential change of CDS(t,T)

dCDS(t, T ) = LICDS(t, T )dt+
∂CDS(t, T )

∂hI
t

σI
t dW

I,P
t +∆CDS(t, T )dN I,P

t

with

LICDS(t, T ) =
∂CDS(t, T )

∂t
+ µI

t

∂CDS(t, T )

∂hI
t

+
1

2

(
σI
t

)2 ∂2CDS(t, T )

∂hI
t
2

And finally

dB(t, T ) = LHB(t, T )dt+
∂B(t, T )

∂hH
t

σH
t dW

H,P
t

4rHt is the REPO rate of a REPO that matures on t+ dt written on a bond that also matures on t+ dt.
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where

LHB(t, T ) =
∂B(t, T )

∂t
+ µH

t

∂B(t, T )

∂hH
t

+
1

2

(
σH
t

)2 ∂2B(t, T )

∂hH
t

2

Again, we have omitted the jump component in B(t, T ) since it will not be
experienced by the hedger

So that the hedging equation in differential form will be given by

LSIHVtdt+
∂Vt

∂St
Stσ

S
t dW

S,P
t + ∂Vt

∂hI
t

σI
t dW

I,P
t + ∂Vt

∂hH
t

σH
t dW

H,P
t +∆V I

t dN
I,P
t =

= Vtf
H
t dt− ctαtHtdt− ctγtCDS(t, T )dt

+αt

(
LSHtdt+

∂Ht

∂St
Stσ

S
t dW

S,P
t

)

+γt

(
LICDS(t, T )dt+ ∂CDS(t,T )

∂hI
t

σI
t dW

I,P
t +∆CDS(t, T )dN I,P

t

)

+ǫt

(
hI
tdt− (1−RI)dN

I,P
t

)

+ωt

(
LHB(t, T )dt+ ∂B(t,T )

∂hH
t

σH
t dW

H,P
t − fH

t B(t, T )dt
)

(3)

In order to be hedged, the terms in dW
S,P
t , dW

I,P
t , dW

H,P
t , , dN

I,P
t have to be

canceled from the last equation, so that

αt =
∂Vt
∂St
∂Ht
∂St

γt =

∂Vt

∂hI
t

∂CDS(t,T )

∂hI
t

ǫt = γt
∆CDS(t,T )

1−RT
−

∆V I
t

1−RI

ωt =

∂Vt

∂hH
t

∂B(t,T )

∂hH
t

(4)

12



So that every risk factor disappears from the hedging equation

L̃SIHVt = Vtf
H
t

+αt

(
L̃SHt − ctHt

)

+γt

(
L̃ICDS(t, T )− ctCDS(t, T )

)

+ǫth
I
t

+ωt

(
L̃HB(t, T )−

(
ct + h̄H

t

)
B(t, T )

)

Where

L̃SIHVt = ∂Vt

∂t
+ 1

2
∂2Vt

∂S2
t
S2
t (σ

S
t )

2 + 1
2

∂2Vt

∂hH
t

2 (σH
t )2 + 1

2
∂2Vt

∂hI
t
2 (σH

t )2

+ ∂2Vt

∂Sth
H
t

Stσ
S
t σ

H
t ρ

S,H
t + ∂2Vt

∂Sth
I
t

Stσ
S
t σ

I
t ρ

S,I
t + ∂2Vt

∂hI
th

H
t

σI
t σ

H
t ρ

I,H
t

L̃SHt =
∂Ht

∂t
+

1

2
S2
t

(
σS
t

)2 ∂2Ht

∂S2
t

L̃ICDS(t, T ) =
∂CDS(t, T )

∂t
+

1

2

(
σI
t

)2 ∂2CDS(t, T )

∂hI
t
2

L̃HB(t, T ) =
∂B(t, T )

∂t
+

1

2

(
σH
t

)2 ∂2B(t, T )

∂hH
t

2

Substituting ǫt by its value and grouping terms

L̃SIHVt +
hI
t

1−RI
∆V I

t = Vtf
H
t

+αt

(
L̃SHt − ctHt

)

+γt

(
L̃ICDS(t, T ) +

hI
t

1−RI
∆CDS(t, T )− ctCDS(t, T )

)

+ωt

(
L̃HB(t, T )−

(
ct + h̄H

t

)
B(t, t+ dt)

)

13



Ht is a cash collateralized derivative written on St, therefore it must meet the
following PDE as seen in [14]

L̃SHt + (rt − qt)St

∂Ht

∂St

− ctHt = 0

CDS(t, T ) is a collateralized credit derivative written on I, therefore, as seen
in appendix A, it must follow

L̃ICDS(t, T )+
(
µI
t −M I

t σ
I
t

) ∂CDS(t, T )

∂hI
t

+
hI
t

1−RI

∆CDS(t, T )−ctCDS(t, T ) = 0

Where M I
t is the investor’s market price of credit risk and ∆CDS(t, T ) is the

jump in value of CDS(t, T ) upon default of the issuer.

And B(t, T ), as also seen in appendix A for the hedger’s own debt, must follow

L̃HB(t, T ) +
(
µH
t −MH

t σH
t

) ∂B(t, T )

∂hH
t

− fH
t B(t, T ) = 0

Where MH
t is the hedger’s market price of credit risk.

So that the hedging equation is given by

L̃SIHVt +
hI
t

1−RI
∆V I

t = Vtf
H
t

+
∂Vt
∂St
∂Ht
∂St

(
− (rt − qt)St

∂Ht

∂St

)

+

∂Vt

∂hI
t

∂CDS(t,T )

∂hI
t

(
−
(
µI
t −M I

t σ
I
t

)
∂CDS(t,T )

∂hI
t

)

+

∂Vt

∂hH
t

∂B(t,T )

∂hH
t

(
−
(
µH
t −MH

t σH
t

)
∂B(t,T )

∂hH
t

)

Which implies

L̂SIHVt +
hI
t

1−RI
∆V I

t = Vtf
H
t

14



Where

L̂SIHVt = ∂Vt

∂t
+ (rt − qt)St

∂Vt

∂St
+ (µH

t −MH
t σH

t ) ∂Vt

∂hH
t

+ (µI
t −M I

t σ
I
t )

∂Vt

∂hI
t

+1
2
∂2Vt

∂S2
t
S2
t (σ

S
t )

2 + 1
2

∂2Vt

∂hH
t

2 (σH
t )2 + 1

2
∂2Vt

∂hI
t
2 (σH

t )2

+ ∂2Vt

∂Sth
H
t

Stσ
S
t σ

H
t ρ

S,H
t + ∂2Vt

∂Sth
I
t

Stσ
S
t σ

I
t ρ

S,I
t + ∂2Vt

∂hI
th

H
t

σI
t σ

H
t ρ

I,H
t

(5)

The solution to (5) with terminal condition given by VT = g(ST ) is equal to
calculating the following expected value

Vt = EQ

[
VT exp

(
−

∫ T

s=t

csds

) ∣∣∣Ft

]

︸ ︷︷ ︸
Fully collateralized price

−EQ

[∫ T

s=t

1{τI>s} exp

(
−

∫ s

h=t

chdh

)
h̄H
s Vsds

∣∣∣Ft

]

︸ ︷︷ ︸
Funding value adjustment

+EQ

[∫ T

s=t

1{τI>s} exp

(
−

∫ s

h=t

chdh

)
(RI − 1)

(
V C
s

)−
dN I,Q

s

∣∣∣Ft

]

︸ ︷︷ ︸
CVA

(6)

Where h̄H
t is the hedger’s funding spread over the collateral rate ct.

In a measureQ in which the drifts of St, h
H
t and hI

t are given by (rt−qt)St, µ
H
t −

MH
t σH

t and µI
t −M I

t σ
I
t respectively. Under this measure, the default intensity of

the default event of the investor is
hI
t

1−RI
. V C

t is the value of the cash collateralized
transaction (from the investor’s perspective). We have assumed that upon default
of the investor Vt jumps to RIV

C
t if V C

t < 0 and to V C
t if V C

t ≥ 0.

The solution to (5) can also be written as

15



Vt = EQ

[
VT exp

(
−

∫ T

s=t

fH
s ds

) ∣∣∣Ft

]

︸ ︷︷ ︸
Price with funding adjustment and no counterparty credit risk

+EQ

[∫ T

s=t

1{τI>s} exp

(
−

∫ s

h=t

fH
h dh

)(
(V rf

s )−RI + (V rf
s )+ − V f

s )
)
dN I,Q

s

∣∣∣Ft

]

︸ ︷︷ ︸
CVA over price with funding

(7)

Where

V f
s := EQ

[
VT exp

(
−

∫ T

s=t

fH
s ds

) ∣∣∣Fs

]

So that full replication implies that CVA (a unilateral version of it that does
not depend on the hedger’s funding curve) and FVA (a funding adjustment that
does only depend on the investor’s default indicator and not on the hedger’s) are
the only components to be incorporated in the price of financial derivatives.

4 DVA hedging vs FVA hedging: a simplified

example

In this section we explore DVA vs FVA hedging in a simplified framework. We
will assume:

• We want to replicate a forward on a particular underlying asset (St) such
that at maturity (5 years) the investor (risk taker) receives ST −K.

• The underlying asset pays no dividends.

• Interest rates are assumed to be zero (OIS and REPO rates).

• The investor is default free.

• The hedger is defaultable with a short term funding spread zt.

• The recovery rate for the hedger is 0.

• The underlying asset follows Black-Scholes.

• zHt follows an Ornstein-Uhlenbeck process.

• We assume no correlation between St and zt.

16



So that the SDEs of the two processes under the real world measure are:

dSt = µP
t Stdt+ σS

t dW
S,P
t

dzt = κ
(
θPt − zt

)
dt+ σz

t dW
z,P
t

dW
S,P
t dW

z,P
t = 0

We have chosen the following set of parameters:

µP
t 10%

σS
t 20%

θPt 4%
κ 0.5
σz
t 1%

S0 1
z0 3%
K 1

We assume that at t = 0, the funding curve is flat at a level of 3%.

Before exploring the effects of hedging, we will analyze the sensitivities with
respect to spread changes of both approaches (Risk free price + FVA vs Risk free
price + DVA).

Notice that the sensitivity of the DVA adjusted price is always positive (the
well known effect of DVA), whereas for the case of the FVA adjusted price, the
sensitivity is positive when K < S0 and negative when K > S0.

• Under a DVA approach, the hedger always benefits from an increase in his
funding spread.

• Under a FVA approach, the hedger benefits from an increase in the spread
when the NPV is positive for the risk taker, that is, the hedger borrows
funds from the client.

• Under a FVA approach, the hedger experiences a loss from an increase in
the spread when the NPV is negative for the risk taker, that is, the hedger
lends funds to the client.

FVA Hedging

In figure 2 we can observe the evolution of both the FVA adjusted price and the
hedging portfolio. We can see that the P&L is negligible and deviations from
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Figure 1: Sensitivities to spread changes of both FVA and DVA adjusted price. x-axis
represents K (fix payment to be paid by the risk taker in the forward contract.)

zero seem noisy and due to the discrete rebalancing frequency of the hedge. This
confirms the theoretical results that we have seen in the previous sections.

DVA Hedging

Now we explore DVA hedging.

As a hedging strategy we use the same one used to try to hedge FVA. That
is, if the price for the risk taker is positive, we receive funds from the risk taker
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Figure 2: FVA adjusted price vs hedging portfolio (graphs above) and P&L (graphs below)
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with which we buy back our own debt.

If the price is negative, we need to issue new debt.

In either case, we impose that the sensitivity to spread changes of the debt
issued (or bought back) matches that of the incoming derivative.
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Figure 3: DVA adjusted price vs hedging portfolio (graphs above) and P&L (graphs below)

In figure 3 we observe that the P&L becomes negative (although the evolution
is smooth) and that it depends on the path. It seems that there is a theta
mismatch between the DVA adjusted price and the hedging portfolio.

In figure 4 we plot many different scenarios and see that the P&L seems to be
always negative, and that it is path dependent.
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Figure 4: P&L for DVA adjusted price hedging (various paths.)

What is the main driver of the path dependent P&L?
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The hedging portfolio minus the DVA adjusted price is given by (we assume
that we are initially hedged)

αtHt + βt + ΩtB(t, t+ dt) + ωtB(t, T )− Vt

The differential change is given by (assuming the hedger does not default):

dΠt = αt

(
LsHtdt+

∂Ht

∂St
dSt − ctHtdt

)

+ωt

(
LshB(t, T )dt+ ∂B(t,T )

∂St
dSt +

∂B(t,T )
∂ht

dht − ftB(t, T )dt
)

−
(
LshVtdt+

∂Vt

∂St
dSt +

∂Vt

∂ht
dht − ftVtdt

) (8)

Where

LS = ∂
∂t

+ 1
2
S2
t

(
σS
t

)2 ∂2

∂S2
t

Lh = ∂
∂t

+ 1
2

(
σh
t

)2 ∂2

∂ht
2

LSh = ∂
∂t

+ 1
2
∂2

∂S2
t
S2
t (σ

S
t )

2 + 1
2

∂2

∂ht
2 (σh

t )
2 + ∂2

∂St∂ht
Stσ

S
t σ

h
t ρt

(9)

Where we have taken into account that Vt = ΩtB(t, t+ dt) + ωtB(t, T ). That
is, funds exchanged with the investor are matched with the issuance or buy back
of debt.

In order to be hedged to the two risk factors on every scenario under which
the hedger has not defaulted:

dΠt =
∂Vt
∂St
∂Ht
∂St

(LsHtdt− ctHtdt)

+
∂Vt
∂ht

∂B(t,T )
∂ht

(LhB(t, T )dt− ftB(t, T )dt)

− (LshVtdt− ftVtdt)

(10)

We assume that DVA is discounted at the Eonia rate, therefore its PDE would
be:

LShVt + (rt − qt)St

∂Vt

∂St

+
(
µh
t −Mh

t σ
h
t

) ∂Vt

∂ht

+∆Vt

ht

1−R
− ctVt = 0 (11)
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The PDEs followed by Ht and B(t, T )

LSHt + (rt − qt)St

∂Ht

∂St

− ctHt = 0 (12)

LhB(t, T ) +
(
µh
t − σh

t M
h
t

) ∂B(t, T )

∂ht

+
ht

1−R
∆B(t, T )− rTt B(t, T ) = 0 (13)

So that

dΠt = −
∂Vt
∂St
∂Ht
∂St

(rt − qt)St
∂Ht

∂St
dt

+
∂Vt
∂ht

∂B(t,T )
∂ht

(
−
(
µh
t − σtMt

)
∂B(t,T )

∂ht
− ht

1−R
∆B(t, T ) + rTt B(t, T )− ftB(t, T )

)
dt

−
(
− (rt − qt)St

∂Vt

∂St
−
(
µh
t −Mh

t σ
h
t

)
∂Vt

∂ht
−∆Vt

ht

1−R
+ ctVt − ftVt

)
dt

(14)

Canceling terms:

dΠt =
∂Vt
∂ht

∂B(t,T )
∂ht

(
− ht

1−R
∆B(t, T ) + rTt B(t, T )− ftB(t, T )

)
dt

+
(
∆Vt

ht

1−R
+ ztVt

)
dt

(15)

Reordering terms

dΠt =
ht

1−R

(
∆Vt −

∂Vt

∂ht

∂B(t,T )
∂ht

∆B(t, T )

)

︸ ︷︷ ︸
Jump to default mismatch

+

(
ztVt − (ft − rTt )B(t, T )

∂Vt

∂ht

∂B(t,T )
∂ht

)

︸ ︷︷ ︸
Funding mismatch

(16)

If ∆B(t, T ) = (1−R)B(t, T ), rTt = rt

dΠt = +

(
∆Vt

ht

1−R
+ ztVt

)
dt

∆Vt = R(V rf
t )+ + (V rf

t )− − Vt = V
rf
t − (1−R)V rf

t − Vt

= DV At − (1−R)Vtrf = −JTDDV A

(17)
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⇓

dΠt =

(
∆Vt

ht

1−R
+ ztVt

)
dt = −

(
JTDDV A

1−R
+ ztVt

)
dt

The first term is due to the jump to default component of DVA that cannot
be hedged. The second term is due to the funding adjustment not made in the
pricing.

Which is generally negative .

In our case:

R = 0; rTt = 0; ft = zt = ht. Therefore

dΠt = min(V rf
t , 0)ztdt

In figure 5 we compare the evolution of
∫ t

s=0
exp

(∫ s

u=0
zsds

)
min(V rf

s , 0)zsds
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Figure 5: P&L vs integral
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5 Conclusions

We have seen that assuming that the derivative’s price incorporates the hedging
costs borne by the hedger (and not those of the investor if he was to hedge the
derivative) and that the hedger has only the incentive to hedge the risks that he
will be exposed to while he remains not defaulted, the only adjustments to be
made to the risk free price (that is, the price of a fully colateralized transaction)
are an unilateral CVA that does not depend on the hedger’s default indicator and
a funding adjustment (FVA) where just the investor default indicator is present.

We have also seen that both components can be hedged under reasonable
assumptions and that the hedging of those components leaves the sensitivity of
the hedger’s debt with respect changes in his credit spread unchanged after a
new uncollateralized transaction is traded and during its replication. Regarding
the hedging to the day to day changes of the hedger’s credit curve, it is done by
imposing that the debt issued or bought back matches the same spread duration
of the uncollateralized derivative. We have carried the analysis under the realistic
assumption of stochastic spreads.

Notice that due to the fact that the hedger does not try to hedge the jump in
the derivative’s value upon his own default (first because it can not be hedged in
general and second because there is no incentive to hedge it), default indicators
of the hedger are not present in the valuation of uncollateralized derivatives and
neither is the jump in the derivative’s value upon default of the hedger.

Under these assumptions the price of a derivative between two counterparties
will depend on what counterparty acts as the investor (risk taker) and what as
the hedger (risk taker) since the derivative’s price will reflect the replication costs
from the hedger’s perspective, which will not be equal to the replication price
from the investor’s perspective.

A Modeling credit in a PDE framework

In this section our aim is to derive the PDE followed by both bonds issued by
and collateralized credit derivatives written on a generic credit reference. We will
assume a one factor model assumed for credit spreads and non stochastic interest
rates.

Let’s assume that we wanted to hedge a credit derivative written on a particular
credit reference. ht represents the credit reference short term credit default swap
spread. We assume that under the real world measure P ht follows
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dht = µP
t dt+ σtdW

P
t

µP
t t represents the drift and σt the volatility. W P

t is a P brownian process.

Et will represent the value of a credit derivative written on the credit reference
from the investor perspective. It will both depend on the spread ht and of the
default indicator function NP

t = 1{τ≤t}, where τ is the default time of the credit
reference. Therefore

dEt =
∂Et

∂t
dt+

∂Et

∂ht

dht +
1

2
σ2
t

∂2Et

∂h2
t

dt+∆EtdN
P
t

Where ∆Et represents the change in Et on default.

The two sources of randomness will have to be hedged with two different credit
derivatives. One of them will be a short term credit default swap whose value
from the protection seller will be represented by CDS(t, t + dt). ht will be such
that CDS(t, t+ dt) = 0. Its differential change will be given by:

dCDS(t, t+ dt) = htdt− (1−R)dNP
t

R will represent the recovery rate.

Appart from trading on CDS(t, t + dt), that will only have sensitivity to
the default events, the hedger should also trade on another collateralized credit
derivative Ht (NPV as seen by the hedger) such that

dHt =
∂Ht

∂t
dt+

∂Ht

∂ht

dht +
1

2
σ2
t

∂2Ht

∂h2
t

dt+∆HtdN
P
t

Where ∆Ht represents the change in Ht on default.

The hedging equation will be

Et = αtHt + γtCDS(t, t+ dt) + βt

Where βt represents cash held in collateral accounts. We assume both Et and
Ht to be collateralized in cash, so that:
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dβt = ctEtdt− ctαtHtdt

So that the hedging equation in differential form is

∂Et

∂t
dt+ ∂Et

∂ht
dht +

1
2
σ2
t
∂2Et

∂h2
t
dt+∆EtdN

P
t =

αt

(
∂Ht

∂t
dt+ ∂Ht

∂ht
dht +

1
2
σ2
t
∂2Ht

∂h2
t
dt+∆HtdN

P
t

)

+γt
(
htdt− (1−R)dNP

t

)

+ctEtdt− ctαtHtdt

(18)

In order to be hedged, the random terms dht and dNP
t should be canceled. In

order to do so

αt =
∂Et

∂ht

∂Ht

∂ht

γt = αt

∆Ht

1−R
−

∆Et

1−R

So that

∂Et
∂t

+ 1
2
σ2
t
∂2Et

∂h2
t

+
ht

1−R
∆Et−ctEt

∂Et
∂ht

=

∂Ht
∂t

+ 1
2
σ2
t
∂2Ht

∂h2
t

+
ht

1−R
∆Ht−ctHt

∂Ht
∂ht

(19)

Adding µP
t and dividing by σt both sides of the last equation we obtain what

could be interpreted as the expected excess return of the derivative over the
collateral rate divided by the the derivatives volatility factor, therefore

∂Et
∂t

+µP
t
∂Et
∂ht

+ 1
2
σ2
t
∂2Et

∂h2
t

+
ht

1−R
∆Et−ctEt

σt
∂Et
∂ht

=

∂Ht
∂t

+µP
t
∂Ht
∂ht

+ 1
2
σ2
t
∂2Ht

∂h2
t

+
ht

1−R
∆Ht−ctHt

σt
∂Ht
∂ht

= M(t, ht)

(20)

Since the ratio must be valid for any credit derivative (Ht and Et are two
generic payoffs), then it must be just a function of t and ht. Mt = M(t, ht) will
be called the market price of credit risk. Therefore, the PDE followed by any
credit derivative must be
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∂Et

∂t
+
(
µP
t − σtMt

) ∂Et

∂ht

+
1

2
σ2
t

∂2Et

∂h2
t

+
ht

1−R
∆Et − ctEt = 0

When dealing with bonds, things are a little bit different. First we have to
establish a relationship between the short term financing rate ft and the short
term CDS rate ht. In order to do so, we compare two different strategies:

• Selling protection at time t with maturity t+ dt.

• Buying a bond at t maturing at time t + dt through a REPO transaction
maturing also at time t+ dt.

Both strategies imply a net cash flow at time t equal to 0. At time t+ dt, the
net cash flows are (assuming τ > t):

CDS: htdt− (1−R)1{τ≤t+dt}

REPO: (1 + ftdt)1{τ>t+dt} +R1{τ≤t+dt} − (1 + rtdt) =

= (1 + ftdt)− (1 + rtdt)− (1−R + ftdt)1{τ≤t+dt} = (ft − rt)dt− (1−R)1{τ≤t+dt}

Where rt is a short term REPO rate on a short term bond maturing at time
t+ dt. Therefore:

ht = ft − rt

In order to obtain the PDE followed by defaultable bonds and derivatives
that are replicated with bonds we should keep in mind that collateralized credit
derivatives are financed at the collateral rate used to remunerate collateral accounts
in cash no matter the volatility of the underlying derivative, whereas bonds are
purchased at REPO rates that might differ between different bonds. Therefore
the PDE will be

∂Bt

∂t
+
(
µP
t − σtMt

) ∂Bt

∂ht

+
1

2
σ2
t

∂2Bt

∂h2
t

+
ht

1−R
∆Bt − rBt Bt = 0 (21)

Where rBt represents the short term REPO rate for bond Bt. Notice that ht

is again the short term CDS spread and not the financing spread over EONIA.
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The results obtained so far are valid when we are trading on someone else’s
debt.

When trading on our own debt:

• We will have no access to the CDS market written on our debt (We won’t
be able to sell protection on ourselves).

• We will have no access to the REPO market (We won’t be able to get
financing leaving our own bonds as collateral.)

• We will have no access to the recovery lock market written on our debt.

Therefore the risk neutral dynamics imposed by (21), that depend on magnitudes
implied by markets to which we do not have access, seem not to work when we
are managing our own debt.

What do we mean by managing our own debt?

Cash flow matching of our assets and liabilities such that the bank meets its
current and future cash-flow obligations and collateral needs (assets / liabilities
management).

Let’s assume that a bank has issued debt with both short term maturity
(B(t, t+ dt)) and long term maturity BC(t, T ).

Let’s assume that we needed to issue (or buy back) debt with a given coupon
and maturity S with a notional N .

Can we dynamically replicate the issuance (or buy back) of a bond with
maturity S 6= T with a net issuance (or bay back) in B(t, t+ dt) and BC(t, T )?

In a one factor world, yes. In a n factor world, we will have to trade on n+ 1
issued bonds.
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The hedging equation would be:

NBC(t, S) = N
(
ωtB(t, t+ dt) + ΩtB

C(t, T )
)

(22)

In (22), N > 0 represents a buy back and N < 0 an issuance.

The differential change of both sides of the hedging equation under the real
world measure would be given by

∂BC(t, S)

∂t
dt+

∂BC(t, S)

∂ht

dht +
1

2
σ2
t

∂2BC(t, S)

∂h2
t

dt+∆BC(t, S)dNP
t

and

ωtB(t, t+dt)
(
ftdt− (1−R)dNP

t

)
+Ωt

(
∂BC(t, T )

∂t
dt+

∂BC(t, T )

∂ht

dht +
1

2
σ2

t

∂2BC(t, T )

∂h2
t

dt+∆BC(t, T )dNP

t

)

Notice that in (22) there is only one free parameter. Therefore we won’t be
able to hedge both the spread and the jump to default risks simultaneously.

In addition, the jump to default risk will not be experienced by ourselves.
Therefore, leaving the dNP

t term unhedged is not a concern.

We will remain hedged on every path under which we remain not defaulted.

∂BC(t,S)
∂t

dt+ ∂BC(t,S)
∂ht

dht +
1
2
σ2
t
∂2BC(t,S)

∂h2
t

dt

= ωtB(t, t+ dt)ftdt+ Ωt

(
∂BC(t,T )

∂t
dt+ ∂BC(t,T )

∂ht
dht +

1
2
σ2
t
∂2BC(t,T )

∂h2
t

dt
) (23)

In order to hedge the spread risk:

Ωt =

∂BC(t,S)
∂ht

∂BC(t,T )
∂ht

Which together with (22) and (23) imply

28



∂BC (t,T )
∂t

+µP
t
∂BC (t,T )

∂ht
+ 1

2
σ2
t
∂2BC (t,T )

∂h2
t

−ftB
C(t,T )

σt
∂BC (t,T )

∂ht

=

∂BC (t,S)
∂t

+µP
t
∂BC (t,S)

∂ht
+ 1

2
σ2
t
∂2BC (t,S)

∂h2
t

−ftB
C(t,S)

σt
∂BC (t,S)

∂ht

= MOD(t, ht)

(24)

Where MOD(t, ht) represents the market price of risk of our own debt. So that
the PDE followed by our bonds is:

∂BC(t, T )

∂t
+
(
µP
t − σtM

OD
t

) ∂BC(t, T )

∂ht

+
1

2
σ2
t

∂2BC(t, T )

∂h2
t

− ftB
C(t, T ) = 0 (25)

So that the price of a particular bond would be given by

B(t, T ) = EQ

[
C

n∑

j=1

γj exp

(
−

∫ tj

s=t

fsds

)
+ exp

(
−

∫ tn

s=t

fsds

) ∣∣∣Ft

]

︸ ︷︷ ︸
Bond coupons & notional

(26)

Notice that the risk free dynamics of our own debt reflected in (25) do not
depend on REPO rates, recovery rates and has no default indicators.
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