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1 Introduction

Semiparametric methods have become a part of a standard methodological toolkit of applied re-
searchers in economics. These methods are attractive for their ability to circumvent limitations
of conventional parametric models by allowing more flexible specifications and thus mitigating (at
least partly) the risk of misspecification. While they admittedly require more prior assumptions
and therefore are not as flexible as their (completely) nonparametric counterparts, semiparametric
models have nevertheless gained popularity due to their capability to alleviate the so-called “curse
of dimensionality” associated with nonparametric estimation.

This paper considers a particular class of semiparametric models in which parameters of a linear
regression are permitted to be unspecified smooth functions of some variables (Hastie and Tibshirani,
1993; Cai et al., 2000; Li et al., 2002). Such “varying coefficient” (hereinafter VC) models1 have
recently become a subject of prolific research in the econometric literature that attempts to extend
the method to new settings. For instance, Das (2005), Cai et al. (2006) and Cai and Xiong (2012)
consider VC models in the presence of endogenous variables and propose applying instrumental
variables approach to tackle the endogeneity problem. However, the overwhelming majority of these
studies place the model either in the cross-sectional (as in the above cited papers) or in the time
series settings (e.g., Cai, 2007). Analysis of VC models in a panel data setting is however relatively
scarce, arguably due to difficulties associated with tackling unobserved effects. For instance, Cai
and Li (2008) study a VC model in the dynamic panel setting that assumes any unobserved effects
away. Sun et al. (2009) somewhat fill the void by proposing a VC panel data model estimator which
allows treatment of both random and fixed effects.2

However, the semiparametric literature has broadly overlooked another important feature of the
data that applied researchers often have to deal with: namely, the presence of selectivity. Such a
problem is acute in studies of wage and labor supply decisions that go back to Heckman’s (1974,
1979) seminal work and many other labor economics applications and not only. In this paper, we
therefore take a semiparametric VC model a step further by considering it in the panel data setting
and the presence of endogenous selection and fixed effects.3 For a similar model in a cross-sectional
setting, see Das et al. (2003), whose model allows both the outcome and selection equations to take
completely nonparametric forms. Das (2004) extends the above model to a panel data case with
(exogenous) random effects.

Thus, we consider a flexible panel data sample selection model in which (i) the outcome equation
is permitted to take a semiparametric VC form to capture potential parameter heterogeneity in the
relationship of interest, (ii) both the outcome and selection equations contain unobserved fixed ef-
fects and (iii) selection is generalized to a polychotomous case. In this paper, we restrict our analysis
to models with parametric selection equations. Our model can be considered as a generalization
of conventional parametric panel data sample selection models [see Baltagi (2013) for a compre-
hensive review]. Relatively few such parametric models allow for a fixed-effect type heterogeneity.
For instance, in the case of strictly exogenous right-hand-side covariates, Wooldridge (1995) and

1Such models are also referred to as “smooth coefficient” or “functional coefficient” models.
2The studies of nonparametric panel data models that consider the presence of either random or fixed effects include,
e.g., Das (2003); Henderson and Ullah (2005); Henderson et al. (2008). Alternatively, there are studies that focus
on panel data applications of other classes of semiparametric models such as Li and Stengos (1996); Su and Ullah
(2006); Lin and Carroll (2006).

3Here, we focus on a panel data application, given its increasing availability to researchers (as opposed to mere
cross-sectional data). We do not consider the case of random effects because applied researchers often consider the
assumption of exogenous heterogeneity unsupported by the data and difficult to justify. The violation of such an
assumption would yield inconsistent estimates.
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Rochina-Barrachina (1999) propose correlated effects estimators, whereas Kyriazidou (1997) de-
velops an estimator that allows for completely unspecified fixed effects in both the selection and
outcome equations. In this paper, we let fixed effects to be correlated with the right-hand-side
covariates in an arbitrary way and remove them “nonparametrically”, which makes Kyriazidou’s
(1997) estimator be the closest parametric counterpart to the semiparametric one that we propose
in this paper. The difference between the two lies in the facts that we let the outcome equation
take a more flexible VC form and that we generalize selection to a polychotomous case.

We propose estimating our model in two stages. We suggest consistently estimating the selection
equation in the first stage via any of several parametric methods available in the literature such as
Manski’s (1987) and Horowitz’s (1992) (smoothed) conditional maximum score or Chamberlain’s
(1980) conditional logit estimators. The obtained estimates can then be used to evaluate the
conditional probability of an individual to be selected into the sample in each time period. In the
second stage, we propose estimating the VC outcome equation using data for observed individuals
(cross-sections) whose estimated likelihood of being selected into the sample stays approximately
the same over time. For such individuals, the sample selection bias would be approximately time-
invariant and thus can be treated as another component of fixed effects present in the outcome
equation. Given that there are unlikely to be many (if any at all) cross-sections with exactly the
same selection probabilities over time, we adopt the idea of Ahn and Powell (1993) and Kyriazidou
(1997) and weigh these cross-sections based on “closeness” of their respective selection probabilities
(and thus their selectivity biases) to being the same over time. The weighted semiparametric
outcome equation can then be estimated in a manner similar to that proposed by Sun et al. (2009).
The selection bias term is “asymptotically” removed from the equation along with fixed effects
using kernel-based weights. The latter is advantageous over conventional first-differencing4 because
it mitigates the need to use backfitting and allows identification of an intercept coefficient function.
We show that, under appropriate assumptions on the rate of convergence of the first-stage estimator
of the selection equation, our proposed estimator is consistent and asymptotically normal.

We first investigate the finite sample performance of the proposed estimator in a small Monte
Carlo simulation. The results are encouraging and show that, in the presence of endogenous selec-
tivity, our estimator is less biased than a “naive” estimator which overlooks the selection issue. We
also find that the estimation becomes more stable as the sample size increases.

We next apply our estimator to study production technologies of U.S. retail credit unions in
the period from 2002 to 2006. There has recently been a substantial interest in investigation of
credit unions’ production technologies, given a dramatic transformation that the U.S. credit union
industry has been undergoing over the past few decades.5 Copious mergers and acquisitions have
transformed the industry from one which had primarily consisted of small-scale local institutions
catering to a handful of members to a now trillion dollar industry that constitutes a significant
portion of the U.S. financial services markets, serving a hundred million customers in the country
(authors’ calculations based on National Credit Union Administration, 2011).

Studies that have investigated the performance of U.S. credit unions had to deal with the
problem of having a large number of observations for which the reported values of credit unions’
outputs are zeros. Researchers have handled this problem either by linearly aggregating all types
of outputs into a single bundle (e.g., Fried et al., 1999; Wheelock and Wilson, 2011, 2013) or by
replacing zero outputs with an arbitrarily chosen small positive number (Frame et al., 2003). The
presence of zero-value observations is however likely to be informative and may indicate significant

4For instance, Kyriazidou (1997) proposes applying first-differencing in order to purge the sample selection term and
fixed effect from the outcome equation.

5See Wheelock and Wilson (2011), Malikov et al. (2013) and references therein.
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differences among credit unions in terms of the service menu they offer to members. Ignoring this
observed heterogeneity in the provision of services amounts to making a strong and rather unrealistic
assumption that all credit unions share the same “production” technology that is invariant to the
menu of services they provide. This assumption of homogeneous technology across credit unions is
likely to result in the loss of information and the misspecification of the econometric model, which
is further aggravated if the choice of the differing service menus by credit unions is endogenous
(Malikov et al., 2013). In this paper, we model this observed heterogeneity as an outcome of an
endogenous choice (selection). Moreover, we also allow for unobserved heterogeneity among credit
unions, something that has been broadly overlooked in most existing studies.

We find some significant distortions in cost elasticity estimates if one ignores selectivity. Simi-
larly, we document dramatic differences in elasticity estimates between our VC sample selection
model and its parametric counterpart. We find that the estimated relationship between scale
economies and the smoothing variable (here, the asset size) from our VC model is quite differ-
ent from that implicitly implied by a parametric model. These findings call for extra caution when
researchers first estimate a parametric model of credit union production technologies (even after
controlling for selectivity) and then analyze how the estimated technological metrics change with
the size of credit unions.

The rest of the paper proceeds as follows. Section 2 outlines the model. We outline the estimation
procedure in Section 3. Large sample statistical properties are provided in Section 4. Section 5
presents results of a small Monte Carlo simulation. In Section 6, we apply the model to study
heterogeneous production technologies of the U.S. credit unions in the period from 2002 to 2006.
Section 7 concludes.

2 Varying Coefficient Panel Data Model with Endogenous Selec-

tion and Fixed Effects

We consider a VC panel data model in the presence of endogenous selection and unobserved indi-
vidual fixed effects. In what follows, we confine our analysis to a selection equation that takes a
parametric (single index) form.

2.1 Binary Sample Selection

In the presence of binary sample selection, the model takes the following form

yit =

{
x′
itβ(zit) + µi + uit if dit = 1

− otherwise
(2.1a)

d∗it = w′
itγ + ξi + eit , (i = 1, . . . , N ; t = 1, . . . , T ) (2.1b)

where the column vectors of exogenous covariates xit, zit andwit are of dimensions p, q and l, respec-
tively; β(zit) is the conformable vector of unknown parameter functions of zit; γ is the conformable
vector of unknown (constant) parameters. None of the variables in xit can be obtained from zit and
vice versa, whereas wit can have common elements with both xit and zit. The random disturbances
(uit, eit) are independently and identically distributed (i.i.d.) over i with zero means and finite
variances and are orthogonal to covariates xit, zit, wit and unobserved effects µi and ξi. The dis-
tributions of the errors are however allowed to be correlated, namely E[uiteit|xit, zit,wit, µi, ξi] 6= 0.
We treat the unobserved individual effects µi and ξi as representative of the fixed-effect type (un-

4



observed) heterogeneity by allowing these effects to be correlated with any of the right-hand-side
covariates in an arbitrary way.6

The selection into sample is governed by the latent variable d∗it in (2.1b), of which only dichoto-
mous realizations are observed in the form of a categorical variable dit ≡ ✶{d∗it ≥ 0}, where ✶{·}
denotes the indicator function. The “selection” variable dit determines observability of the response
variable yit in the outcome equation (2.1a), i.e., yit is observed only if dit = 1.7

Note that if random errors uit and eit are distributed independently of one another (which
implies that E[uiteit|xit, zit,wit, µi, ξi] = 0), then selection is exogenous and thus “ignorable”. In
the latter case, the main equation of interest (2.1a) can be estimated from the selected sample while
ignoring (2.1b). Thus, model (2.1) collapses to a more standard case of a semiparametric varying
coefficient panel data model with fixed effects considered by Sun et al. (2009).

When p = 1 and xit ≡ 1 for all i and t, model (2.1) reduces to a nonparametric panel data
model with selectivity and fixed effects, an extension of Henderson et al.’s (2008) model to the case
of endogenous sample selection which is yet to be considered in the literature.

An extreme special case of model (2.1) is the instance when q = 1 and zit ≡ 1 for all i and t which
renders constant parameters in the outcome equation (2.1a). Then, the model becomes completely
parametric. Few papers have considered such parametric sample selection models with fixed-effect
type heterogeneity in both outcome and selection equations. In the case of exogenous covariates
(as in this paper), the three approaches to tackle unobserved effects in these types of parametric
models are those of Wooldridge (1995), Kyriazidou (1997) and Rochina-Barrachina (1999).8 Among
these three papers, Kyriazidou (1997) is, however, the only study that models individual effects in a
completely “nonparametric” way by making no assumption about the form of correlation between
unobserved effects and right-hand-side covariates (as we do in this paper). Both Wooldridge (1995)
and Rochina-Barrachina (1999) parameterize the relation between individual effects and covariates,
following Chamberlain’s (1980) correlated effects approach. For a concise comparison of these three
estimators, see Dustmann and Rochina-Barrachina (2007).

2.2 Polychotomous Switching

We next consider an extension of model (2.1) to the case of polychotomous selection, i.e.,

yr,it =

{
x′
r,itβr(zr,it) + µr,i + ur,it if dr,it = 1

− otherwise
(2.2a)

d∗r,it = w′
itγr + ξr,i + er,it , (i = 1, . . . , N ; t = 1, . . . , T ; r = 1, . . . , R) (2.2b)

where subscript r ≡ {1, . . . , R}, with R ≥ 2, denotes the regimes between which regression
(2.2a) switches. The regime (or, regression) switching is governed by the latent variable d∗r,it
in (2.2b). For each regime r, we define a categorical variable dr,it ∈ {0, 1} such that dr,it ≡
✶{the rth regime is selected}. The response variable yr,it is observed only if dr,it = 1. The remain-
ing variables are defined as their counterparts (with no subscript r) from Section 2.1.

The latent variable d∗r,it can naturally be thought of as measuring the propensity to select the

6Our analysis also applies to the case when µi ≡ ξi.
7Clearly, (dit,wit) are always observed. Our analysis is however insensitive to the assumption of whether (xit, zit)
are always observed or observed only if dit = 1.

8The three papers mainly consider Type 2 Tobit model, whereas Wooldridge (1995) also explicitly discusses Type 3
Tobit. For extensions of Kyriazidou’s (1997) estimator, see Honoré et al. (2000) and Kyriazidou (2001).
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regime r. Individual i selects the regime r in time period t if and only if

d∗r,it > d∗j,it ∀ j = 1, . . . , R (j 6= r) . (2.3)

While one can treat the regime switching as a system of (R − 1) dichotomous decisions, we follow
an alternative approach by considering the polychotomous selection problem in McFadden’s (1974)
random utility framework. That is, the rth regime is said to be selected if and only if

d∗r,it > max
j=1,...,R; j 6=r

{d∗j,it} . (2.4)

Substituting from (2.2b) and using the definition of dr,it, we get

dr,it = 1 ⇔ w′
itγr + ξr,i + er,it > max

j=1,...,R; j 6=r
{w′

itγj + ξj,i + ej,it} . (2.5)

For convenience, let
ǫr,it ≡ max

j=1,...,R; j 6=r
{w′

itγj + ξj,i + ej,it} − er,it . (2.6)

Then it follows from (2.6) that

dr,it = 1 ⇔ ǫr,it < w′
itγr + ξr,i . (2.7)

We can now look at the model in (2.2) as a binary choice (sample selection) model, for each given
regime r (Maddala, 1983). That is, we can essentially replace the selection equation (2.2b) for each
r = 1, . . . , R with its equivalent

d̃∗r,it = w′
itγr + ξr,i − ǫr,it , (2.8)

where d̃∗r,it is a transformed latent variable such that dr,it ≡ ✶{d̃∗r,it > 0}, where the condition
inside the indicator function ensures that (2.7) is satisfied. Thus, the transformed model with
polychotomous switching is no different than the binary sample selection model (2.1).

3 Estimation Methodology

This section describes the estimation of the models presented above. Given that the model with
polychotomous selection can be transformed into a dichotomous sample selection model that takes
the form of (2.1), in what follows, we therefore primarily focus on the analysis of the latter. Unless
otherwise specified, we consider T = 2 (which we later relax to T > 2).

The estimation of equation of interest (2.1a) is complicated due to two factors: (i) the presence
of unobserved individual effects µi that are correlated with right-hand-side covariates xit and zit
and (ii) potential “endogeneity” of these covariates, which arises as a result of their dependence on
the selection variable dit and thus may lead to a so-called “selection bias”. The solution to neither
of these two problems is trivial.

A conventional approach to remove fixed effects from (2.1a) would be to apply first-differencing
to the selected sample, i.e., the observations for which dit = dis = 1 (t 6= s). Equation (2.1a) would
then transform to

yit − yis = x′
itβ(zit)− x′

isβ(zis) + uit − uis if dit = dis = 1 (t 6= s) . (3.1)

While the above procedure successfully removes µi from the equation of interest, it however comes
at a cost. The right-hand side of equation (3.1) now contains the same unknown functions β(·)
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evaluated at different observations (time periods). The kernel-based estimation of such a model
would require some form of backfitting algorithm, which is known to suffer from common problems
as documented in the literature on additive nonparametric models. In fact, equation (3.1) would also
contain additive nonparametric functions, if some elements in xit are time-invariant. In particular,
if the first element of xit is unity (for the intercept) with the corresponding unknown parameter
function β1(zit), then first-differencing would render β1(zit)− β1(zis) [t 6= s] on the right-hand side
of (3.1). For more on difficulties associated with the estimation of the first-differenced varying
coefficient panel data model with fixed effects, see Sun et al. (2009).

Most importantly, estimation of the first-differenced model (3.1) is likely to yield inconsistent es-
timates of β(·) due to endogenous sample selection. One generally should not expect that E[uit|dit =
dis = 1 (t 6= s), ζi] = 0, or that E[uit|dit = dis = 1 (t 6= s), ζi] = E[uis|dit = dis = 1 (t 6= s), ζi],
where ζi ≡ (xit,xis, zit, zis,wit,wis, µi, ξi). Note that the conditioning set inside this “sample selec-
tion effect” contains xit and other covariates correlated with it. Therefore, if one does not control
for selectivity, the error term (uit − uis) in (3.1) is likely to be correlated with the right-hand-side
covariates, thus leading to inconsistent estimates of unknown coefficient functions β(·).

To make the discussion of the sample selection effect more explicit, we rewrite the outcome
equation of interest (2.1a) for the selected sample as

yit = x′
itβ(zit) + µi + λit + vit if dit = dis = 1 (t 6= s) , (3.2)

where λit ≡ E[uit|dit = dis = 1 (t 6= s), ζi] is a sample selection bias term; and vit ≡ uit − λit is a
new random error which satisfies E[vit|dit = dis = 1 (t 6= s), ζi] = 0 by construction.

If we assume that random errors (uit, eit) are i.i.d. not only over i but also over t, then the
sample selection bias term is

λit = E[uit|dit = 1] = E[uit|d∗it ≥ 0] = E[uit|eit ≤ w′
itγ + ξi] = Λ(w′

itγ + ξi) , (3.3)

where Λ(·) is some unknown function, the same across individuals i and time periods t, of (partly
unobservable) w′

itγ + ξi. It is clear that generally λit 6= λis (t 6= s) unless w′
itγ = w′

isγ, for each
i = 1, . . . , N . That is, individuals, for whom w′

itγ = w′
isγ, will have an equal likelihood of being

selected into the sample in both time periods t and s (t 6= s).

However, we note that the equality λit = λis (t 6= s) for an individual i such that w′
itγ = w′

isγ

would also hold under a weaker assumption. For instance, building on the work of Kyriazidou (1997),
we can substitute the “i.i.d. over i and t” assumption with the assumption of (uit, uis, eit, eis) and
(uis, uit, eis, eit) being identically distributed conditional on ζi (for t 6= s), i.e., F (uit, uis, eit, eis|ζi) =
F (uis, uit, eis, eit|ζi), where F (·) is some distribution function. This “conditional exchangeability”
assumption allows marginal distributions of errors (uit, eit) and hence the function Λ(·) to vary over
i. Under this assumption, for each individual i such that w′

itγ = w′
isγ (t 6= s), the sample selection

bias term is

λit = E[uit|dit = dis = 1 (t 6= s), ζi] = E[uit|eit ≤ w′
itγ + ξi, eis ≤ w′

isγ + ξi (t 6= s), ζi]

= E[uis|eis ≤ w′
itγ + ξi, eit ≤ w′

isγ + ξi (t 6= s), ζi]

= λis .

Thus, under either of the two above assumptions, the sample selection bias term for an individual
i such that w′

itγ = w′
isγ (t 6= s) (i.e., for an individual with the same likelihood of being selected

into the sample in periods t and s) is the same for the two time periods, λit = λis = λi, and can
thus be treated as another time-invariant individual effect similar to µi. From (3.2), we get

yit = x′
itβ(zit) + (µi + λi) + vit if dit = dis = 1; w′

itγ = w′
isγ (t 6= s) , (3.4)
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where (µi + λi) is the “new” individual effect correlated with the right-hand-side covariates but
orthogonal to the error vit. Model (3.4) is a varying coefficient panel data model with fixed effects
considered by Sun et al. (2009), which can be consistently estimated using observations for cross-
sections that are selected into the sample in the time periods t and s (t 6= s) and have w′

itγ = w′
isγ.

As briefly noted above, the estimation of a model like the one in (3.4) is however not straightfor-
ward due to the presence of individual effects. We propose an approach inspired by the least squares
dummy variable method to tackle fixed effects in parametric panel data models and extended to
semiparametric varying coefficient models by Sun et al. (2009). The approach removes fixed effects
(µi+λi) from equation (3.4) by “asymptotically” subtracting a kernel-smoothed version of the time
average from each individual i. Given that in our case we estimate the model using (two-period)
pairs of observations for each individual selected into the sample, the approach is equivalent in its
principle to a kernel-smoothed first-differencing but with some advantages over the conventional
first-differencing applied to the model before the estimation. In particular, the method does not
wipe out an additive constant (if there is any) present in the varying intercept coefficient in β(·)
in case there is a time-invariant element in xit.

9 Thus, this approach allows identification of the
coefficient function for (at most one) time-invariant covariate in xit (Sun et al., 2009), which, for in-
stance, is not feasible in a completely parametric counterpart of our model considered by Kyriazidou
(1997).

Until now, we have presumed that γ was known, which is unrealistic. We can however replace
γ with its consistent estimate γ̂ obtained from (2.1b) in the first stage of the estimation (which we
discuss in detail later). Another concern is that there may be few individuals in the panel for whom
w′

itγ̂ = w′
isγ̂ (t 6= s), which would dramatically decrease the size of a “usable” selected sample

in the second stage. In fact, it is likely that, in practice, one may find no such individuals in the
data at all: the case when ∆w′

iγ̂ = (wit −wis)
′γ̂ 6= 0 for all i, where ∆ denotes the first-difference

operator.10 However, note that if we assume that Λ(·) is a sufficiently smooth function, the cross-
sections for which the values of the single index in the selection equation are “close” to being equal
across the two time periods t and s (t 6= s), i.e., w′

itγ̂
∼= w′

isγ̂, should also have λit ∼= λis ∼= λi. Our
argument would therefore hold approximately.

Thus, it is natural to weigh the selected cross-sections on the basis of the “closeness” of ∆w′
iγ̂ to

zero (also see Kyriazidou, 1997). Intuitively, the cross-sections, for which the selection likelihoods
are close to being the same in both time periods t and s (t 6= s), ought to be given heavier weights.
The latter is in the spirit of Ahn and Powell (1993) who propose a somewhat similar approach to
remove the “sample selection effect” in a cross-sectional setting.11

To introduce our estimator, we first rewrite the outcome equation for the selected sample (3.2)
as follows

φiyit = φix
′
itβ(zit) + φiµi + φiλit + φivit (t 6= s) , (3.5)

where, for convenience, we define φi ≡ ✶{dit = dis = 1 (t 6= s)}. For identification purposes, we
need a restriction on unobserved fixed effects in order to estimate β(·) in (3.5). Along the lines of
Su and Ullah (2006), we assume

∑N
i=1 φiµi = 0.

9Also, unlike in the case of traditional first-differencing when the number of usable observations is halved, the method
we consider saves all observations.

10Moreover, theory suggests that, if ∆w′
iγ̂ is a continuous variable, then Pr[∆w′

iγ̂ = 0] = 0.
11The fundamental difference between Ahn and Powell’s (1993) approach and ours lies in the following. They propose
differencing out sample selection bias by subtracting one cross-sectional unit from another cross-sectional unit
“matched” on the basis of similarity in the two individual’s likelihoods of being selected into the sample. In
contrast, we eliminate the sample selection effect by “comparing” observations for the same cross-section across
the two time periods. Also, the selection effects are wiped out “asymptotically” rather than by the pre-estimation
first-differencing.
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Model (3.5) takes the following matrix form

Y = mtx{x,β(z)}+Dµ+ λ+V , (3.6)

whereY, V and λ are 2N×1 vectors defined as B = (φ1b1t, φ1b1s, . . . , φibit, φibis, . . . , φNbNt, φNbNs)
for t 6= s with B ∈ {Y,V,λ} and bit ∈ {yit, vit, λit}, respectively; mtx{·} is the operator that stacks
φix

′
itβ(zit) into a 2N × 1 vector with the (i, t) subscripts matching those of Y, V and λ. Let cross-

sections be enumerated so that φ1 = 1. Then, µ = (φ2µ2, . . . , φiµi, . . . , φNµN ) is an (N − 1) × 1
vector of fixed effects for i = 2, . . . , N and D = [−iN−1 IN−1]

′⊗ i2 is a 2N × (N − 1) design matrix,
where Im is the identity matrix of dimensionm, im is anm×1 vector of ones, and ⊗ is the Kronecker
product operator. Both µ and D are defined so that the identifying restriction

∑N
i=1 φiµi = 0 is

satisfied.

Motivated by Sun et al. (2009) and Kyriazidou (1997), we propose estimating unknown coeffi-
cient functions β(·) from the following (local) kernel-weighted least squares problem

min
β(z),µ

(Y −mtx{x,β(z)} −Dµ)′K̂h(z)(Y −mtx{x,β(z)} −Dµ) , (3.7)

where K̂h(z) = diag
{
ψ̂1Kh(z1, z), . . . , ψ̂iKh(zi, z), . . . , ψ̂NKh(zN , z)

}
is a 2N × 2N diagonal local

weighting matrix comprised of 2×2 product kernel matrices Kh(zi, z) = diag{Kh(zit, z),Kh(zis, z)}
and scalar kernel weights ψ̂i for i = 1, . . . , N . Here, Kh(zit, z) = K(H−1(zit − z)) is the product
kernel and ψ̂i = k(h−1

0 ∆w′
iγ̂) is a kernel weight, where H = diag{h1, . . . , hq} is the diagonal

bandwidth matrix of dimension q for zit and h0 is the bandwidth for ∆w′
iγ̂. K(·) and k(·) are

defined in Assumption K below.

It is convenient to think of K̂h(z) in (3.7) as a “generalized” local weighting matrix. It (i)
weights the selected observations on the basis of their closeness to z and (ii) weights the selected
cross-sections on the basis of the closeness of their likelihoods to be selected in the two periods.
The latter permits to asymptotically remove sample selection effects λit. Essentially, model (3.7) is
equivalent to a varying coefficient panel data model with fixed effects [of the form in (2.1a)], where
∆w′

iγ̂ is an extra argument of unknown coefficient functions β(·) that are to be evaluated at the
zero value of ∆w′

iγ̂ for all i.

The first-order condition of the optimization problem in (3.7) with respect to unknown fixed
effects µ is

D′K̂h(z)(Y −mtx{x,β(z)} −Dµ) = 0(N−1)×1 , (3.8)

which can be solved for µ̂, i.e.,

µ̂ = (D′K̂h(z)D)−1D′K̂h(z)(Y −mtx{x,β(z)}) . (3.9)

Substituting (3.9) into (3.7) yields the concentrated (local) kernel-weighted least squares problem
from which unknown fixed effects are removed, i.e.,

min
β(z)

(Y −mtx{x,β(z)})′Γ̂h(z)
′K̂h(z)Γ̂h(z)(Y −mtx{x,β(z)}) , (3.10)

where Γ̂h(z) ≡ I2N − D(D′K̂h(z)D)−1D′K̂h(z). Note that Γ̂h(z)Dµ = 02N×1, which removes
individual effects from the model. One can easily see the resemblance between Γ̂h(z) and a standard
within-transformation matrix used in parametric fixed effects panel data models, with the difference
between the two amounting to the presence of the kernel weighting matrix K̂h(z) in the former.
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Indeed, it is easy to show that Γ̂h(z) transforms the data by subtracting the kernel-weighted time
average from each cross-section i for which φi = 1.12

Before we proceed, two remarks are warranted. First, in the above discussion, we have focused
on the case when T = 2, i.e., when there is only one pair of time periods for each individual i to
consider. However, our analysis naturally extends to a general case of the panel with T ≥ 2. One
can estimate model (3.10) for C(T, 2) unique pairs of the time periods.13 The estimates of unknown
coefficient functions β(·) can then, for instance, be combined using some minimum distance measure.
It is preferable to combine the estimates using optimal weights, in order to obtain which, one needs
to estimate the covariance matrix of the estimators for different pairs of the time periods. For the
case of a parametric counterpart of our model (2.1), i.e., when β(·) are constant, Charlier et al.
(2001) show that the covariances between the estimators for different pairs of the time periods
converge to zero. We conjecture that the same holds in the case of our model. One therefore may
combine estimates of β(·) using the inverses of corresponding variances as weights.14

Second, practitioners often encounter truncated, rather than selected, samples of data. That is,
data often contain observations for which dit = 1 for all i and t, which renders the estimation of γ
from (2.1b) infeasible due to the lack of variation in dit. However, note that λit ∼= λis ∼= λi (t 6= s)
should also hold when wit

∼= wis (i.e., when ∆wi
∼= 0l×1). It is therefore natural to completely

omit the estimation of (2.1b) in the first stage and proceed directly to the estimation of β(·) from
(3.10). The only modification needed is in the weights ψ̂i, which would be natural to redefine as
ψ̂i = K(H−1

0 ∆wi), where H0 = diag{h0,1, . . . , h0,l} is the diagonal bandwidth matrix of dimension
l. The drawback of this approach is twofold. It results in a slower rate of convergence for the
estimator implied by (3.10), and it requires that all covariates in wit be excluded from xit and zit
(see Kyriazidou, 1997).

3.1 First Stage

In order to estimate unknown coefficient parameters of β(·) from (3.10), we first need to obtain
consistent estimates of the parameter vector γ in the selection equation. Since one can only observe
dichotomous realizations of the latent variable d∗it, the selection equation (2.1b) presents itself as a
limited dependent variable (discrete choice) panel data model, which can be consistently estimated
in a number of ways.

If we assume that the random error eit in (2.1b) is i.i.d. over i and t with the logistic distri-
bution, then we can estimate γ via Chamberlain’s (1980) conditional logit estimator that yields√
N consistent γ̂. In this paper, the latter approach is our primary choice. Clearly, in the presence

of individual effects ξi, the parameters of time-invariant elements of wit in the selection equation
(2.1b) are not identified. We therefore restrict all elements of wit to be time-varying.

Alternative methods to obtain γ̂ include Manski conditional maximum score estimator or its
“smoothed” version (the smoothed conditional maximum score estimator) considered by Kyriazidou
(1997, 2001). The latter is an extension of Horowitz’s (1992) smoothed maximum score estimator
to a panel-data setting in the presence of individual effects. The advantage of these two estimators
is that they avoid any distributional assumptions about the error term eit in the selection equation
(2.1b). However, eliminating a possibility of distributional misspecification, which may result in
inconsistent estimates of γ̂ obtained from the conditional logit, comes at a cost. Manski’s (1987)

12For more, see the discussion in Sun et al. (2009).
13Here, C(T, 2) = T !

2!(T−2)!
.

14Combining estimates of β(·) using such a minimum distance procedure is, however, not imperative. In this paper,
we combine estimates of coefficient parameters by simple averaging, as for instance, suggested by Kyriazidou (1997).
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conditional maximum score estimator converges at a slower rate of N−1/3 and, more importantly, its
asymptotic distribution is non-normal, which would complicate the analysis of the limit distribution
of our estimator β̂(·) obtained from (3.10). The “smoothed” conditional maximum score estimator
is however asymptotically normal and its convergence rate can be made arbitrarily close to N−1/2.
See Kyriazidou (1997, 2001) for a more thorough discussion of these alternatives to the conditional
logit estimator.

Throughout this paper, we employ Chamberlain’s (1980) conditional logit estimator in the first
stage. We opt for it primarily due to its ability to also tackle the models of polychotomous choice,
like the one considered in (2.2). In the presence of polychotomous switching, we assume that the
error term er,it in (2.2b) is i.i.d. over i and t with the type I extreme-value distribution, which
yields a multinomial logistic ǫr,it as defined in (2.6). Similar to the case of binary sample selection,
only coefficients of time-varying elements of wit are identified in (2.8).

To our knowledge, no other parametric method other than the maximum likelihood allows the
estimation of a discrete choice model with polychotomous choice in the panel-data setting [of the
form in (2.2b)] that offers a completely “nonparametric” treatment of the fixed effects present in
the equation. While Manski’s (1987) maximum score estimator has been extended to the case of
multinomial choice by Fox (2007) and then generalized to a “smoothed” version by Yan (2013),
both estimators are yet to be extended to the case of panel data when unobserved heterogeneity is
controlled for. Other methods either treat individual effects as random, under a rather strong and
unrealistic assumption of their exogeneity, or model them as correlated effects (see Malikov et al.,
2013 and references therein).

3.2 Second Stage

We propose estimating unknown coefficient parameters β(·) in the outcome equation from (3.10) via
local-linear fitting, which has numerous well-documented advantages over a more commonly used
local-constant estimator that suffers from non-adaptation and boundary effects (Fan and Gijbels,
1996). Under the assumption that smooth functions are twice differentiable in the neighborhood
of z, each element in β(·) can then be approximated using the first-order Taylor expansion, i.e.,
βj(zit) ≈ βj(z)+∇βj(z)

′(zit−z) for j = 1, . . . , p, where ∇βj(z) ≡ (∂βj(z)/∂z1,it, . . . , ∂βj(z)/∂zq,it)
is a q × 1 vector of first derivatives of βj(·) with respect to zit, evaluated at z.

Define a (q + 1) × 1 vector θj(z) ≡ (βj(z),∇βj(z)) of an unknown coefficient function and its
first derivatives with respect to zit for each j = 1, . . . , p. Then, the unknown p× (q + 1) parameter
matrix is defined as Θ(z) ≡ [θ1(z) . . . θp(z)]

′, i.e.,

Θ(z) ≡



θ1(z)

′

...
θp(z)

′


 =



β1(z) ∇β1(z)

′

...
...

βp(z) ∇βp(z)
′


 =

[
β(z) ∇β(z)′

]
,

where the first column of the above matrix is β(z) as defined in (2.1a), evaluated at z; ∇β(z) ≡
[∇β1(z) . . . ∇βp(z)] is a q × p matrix of first derivatives.

Next, define a (q + 1)× 1 vector of deviations from z, i.e., Zit(z) ≡ (1, zit − z). For zit close to
z, we approximate the outcome equation (3.5), which we are interested in estimating, by

φiyit ≈ φix
′
itΘ(z)Zit(z) + φiµi + φiλit + φivit (t 6= s) , (3.11)

where we have replaced β(z) with Θ(z)Zit(z).
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We can obtain the local-linear estimates of functional coefficients β(z) from the concentrated
kernel-weighted least squares problem that take the following form [from (3.10)]

min
Θ(z)

(Y −X (z)vec{Θ(z)})′Ŵh(z)(Y −X (z)vec{Θ(z)}) , (3.12)

where Ŵh ≡ Γ̂h(z)
′K̂h(z)Γ̂h(z). Here, for the ease of matrix manipulations, we stack (by columns)

the unknown parameter matrix Θ(z) into a p(q+1)×1 vector denoted by the operator vec{·}. The
2N × p(q + 1) data matrix X (z) is

X (z) =
[
φ1Z1t(z)⊗ x1t φ1Z1s(z)⊗ x1s . . . φNZNt(z)⊗ xNt φNZNs(z)⊗ xNs

]′
.

Lastly, solving the first-order condition of (3.12) in terms of unknown Θ(z) yields the following
weighted least-squares estimator

vec{Θ̂(z)} =
(
X (z)′Ŵh(z)X (z)

)−1 (
X (z)′Ŵh(z)Y

)
. (3.13)

Taking Taylor expansion at an interior point z and replacing Y by (3.6) gives

vec{Θ̂(z)} = vec{Θ(z)}+ E−1
N (AN/2 +BN + CN +DN ) , (3.14)

where AN ≡ X (z)′Ŵh(z)Π(z), BN ≡ X (z)′Ŵh(z)Dµ, CN ≡ X (z)′Ŵh(z)λ, DN ≡ X (z)′Ŵh(z)V,

EN ≡ X (z)′Ŵh(z)X (z) and the [t+ 2(i− 1)]th element of the column vector Π(z) is φix
′
itr(z̃it, z)

with r(·, ·) = [r1(·, ·), . . . , rp(·, ·)] and rl(z̃it, z) = (zit − z)′ ∂
2βl(z̃it)
∂z∂z′ (zit − z), and z̃it lies between zit

and z for each i and t.

3.3 Bandwidth Selection

Bandwidths for covariates zit as well as for ∆w′
iγ̂, a single index from the selection equation, are

central to the local-linear estimator described in the previous subsection. As noted above, one
can essentially view (3.13) as the estimator of a varying coefficient panel data model with fixed
effects, where ∆w′

iγ̂ is an extra argument of the unknown functions β(·) [and therefore of Θ(·)]
that are to be evaluated at the zero value of ∆w′

iγ̂ for all i. It is therefore natural to consider
selecting bandwidths for both zit and ∆w′

iγ̂ simultaneously. While several optimal bandwidth
selection methods are available in the nonparametric literature, in this paper, we consider the data-
driven cross-validation method (Li and Racine, 2004). Due to the presence of unobserved individual
effects, the standard leave-one-(observation)-out cross-validation is however unlikely to perform
well in our case. We therefore expand on Sun et al.’s (2009) suggestion and instead consider a
leave-one-selected-individual -out cross-validation in order to select optimal bandwidths H and h0.

15

In particular, when estimating Θ̂(·) at the data point zit for an individual i such that φi = 1
[i.e., an individual from the (observable) selected sample] via the estimator in (3.13), we withhold
φi(yi,xi, zi,wi) from the data actually used in the estimation. We denote the resulting estimate of
β(zit) as β̂−i(zit). Thus, the modified cross-validation objective is

min
H,h0

CV(H, h0) ≡
(
Y −mtx{x, β̂−i(zit)}

)′
Q′Q

(
Y −mtx{x, β̂−i(zit)}

)
, (3.15)

15All individuals that are not selected into the sample (and thus are unobserved) are already left out of the estimation
by means of φi = 0.
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where Q is a 2N × 2N transformation matrix such that QDur = 02N×N , where Dur = IN ⊗ i2 is a
standard 2N×N design matrix for individual effects under no identifying restrictions. No restriction
is needed because Q removes fixed effects entirely from the equation. Among few options available
for the choice of Q, we consider a within-transformation matrix Q ≡ I2N − IN ⊗ (i2i

′
2)/2.

The above cross-validation is asymptotically equivalent to the minimization of the integrated
squared error (Li and Racine, 2004). In fact, one can easily rewrite the cross-validation function
CV(H, h0) in (3.15) as

CV(H, h0) =
(
mtx{x,β(·)} −mtx{x, β̂−i(·)}

)′
Q′Q

(
mtx{x,β(·)} −mtx{x, β̂−i(·)}

)
+

2
(
mtx{x,β(·)} −mtx{x, β̂−i(·)}

)′
Q′QV +V′Q′QV , (3.16)

where the first term on the right-hand side of (3.16) is the weighted mean squared error (a good
approximation of the integrated squared error) with Q′Q being the weighting matrix; the second
term has zero expected value, since we have assumed that all covariates are exogenous and vit
is mean zero conditional on being selected into the sample by construction; and the third term
does not depend on (H, h0). Thus, minimizing the cross-validation function CV(H, h0) amounts to
minimizing the weighted means squared error of the model as estimated by the first term in (3.16).

4 Asymptotic Properties

This section presents limit results for our proposed estimator (3.13). Given that the nature of our
estimator is such that it uses pairs of the time periods, as in the previous section, here we consider
the case of T = 2, i.e., t = 1, s = 2.

We first list some regularity assumptions used to support the limit results for the case when
parameter vector γ is known.

Assumption D (Data Generating Mechanism). (ξi,xit, zit,wit, uit, eit) are i.i.d. over i, and yit
is generated from equation (2.1a).

(i) If xit,l ≡ xi,l for at most one l ∈ {1, · · · , p}, i.e., xi,l does not depend on t, we assume
E[φixi,l] 6= 0;

(ii)
∑N

i=1 φiµi = 0 for all i, and φ1 = 1;

(iii) vit is i.i.d. with zero mean and variance σ2v conditional on (φi, ζi) for all t;

(iv) zit is a continuous q × 1 random vector and has a Lebesgue probability density ft(z) for
t = 1, 2, and f(z) = f1(z) + f2(z) > 0 for each z ∈ R

q;

(v) ∆si ≡ (wi1 − wi2)
′γ is a continuous random variable for all i and t, and (∆si, zit) has a

Lebesgue probability density ft(s, z) for t = 1, 2.

Assumption D (ii) implies Γ̂h(z)Dµ = 0. Hence, BN = 0 in (3.14), and there is no bias associated
with the unobserved fixed effects. Assumption D (iii) is not essential and is introduced to simplify
the exposition of the limit result. The estimation methodology continues to work whether zit and
wit are continuous variables or mixed with discrete variables. When mixed data are of concern, one
can construct product kernels differently as explained in Li and Racine (2007, Ch.4).

Assumption S (Curve Smoothness).

(i) Define sit ≡ w′
itγ + ξi. The unknown function Λ(si1, si2, ζi) ≡ E[uit|di1 = di2 = 1, ζi] =

E[uit|ei1 ≤ si1, ei2 ≤ si2, ζi] satisfies Λ(si1, si2, ζi) − Λ(si2, si1, ζi) = d(si1, si2, ζi)(si1 − si2), and
d(si1, si2, ζi) has bounded and uniformly continuous partial derivatives up to the second order
with respect to its first two arguments;
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(ii) β(z) and ft(z) for t = 1, 2 have bounded and uniformly continuous partial derivatives up to
the second order around the interior point of interest z;

(iii) ft(s, z), mt(s, z), gt(s, z), κt(s, z), and ϕt(s, z) all have bounded and uniformly contin-
uous partial derivatives up to the second order around the point (0, z), where mt(s, z) ≡
E[φixitx

′
it|∆si = s, zit = z], gt(s, z) ≡ E[φi(x

′
itxit)

2|∆si = s, zit = z], and κt(s, z) ≡
E
[
φi|Λ(si1, si2, ζi)|i1‖xit‖i2 |∆si = s, zit = z

]
for non-negative integers i1 ≤ 1 and i2 ≤ 1 and

i1 + i2 ≤ 2, and ϕt(s, z) ≡ E
[
φi(x

′
itxit)

1+δ/2 |∆si = s, zit = z
]
for some δ > 0.

Assumption S (i) is an essential assumption that is required to remove the selection bias asymptot-
ically. That is, the impact of λit (for all i and t) on the estimation of β(z) is asymptotically ignor-
able. Kyriazidou’s (1997) “conditional exchangeability“ assumption, i.e., F (ui1, ui2, ei1, ei2|ζi) =
F (ui2, ui1, ei2, ei1|ζi), implies Assumption S (i), and the latter is sufficient to asymptotically remove
the endogenous selection bias E−1

N CN in (3.14).

Assumption K (Kernel Function). The univariate kernel function k(v) is a uniformly bounded,
symmetric (around zero) probability density function with a compact support [−1, 1], and K(v) =∏q

s=1 k(vs) is a product kernel.

Assumption B (Bandwidth). As N → ∞, h0 → 0, ‖H‖ → 0 and N |H|h0 → ∞, where

|H| = h1 · · ·hq and ‖H‖ =
√∑q

j=1 h
2
j .

While it is not necessary to use a kernel function with bounded support, we impose it to economize
the proof. The bandwidth assumption ensures the consistency of the proposed estimator. However,
one needs to undersmooth to remove the asymptotic bias in the limit distribution.

Assumption E (Existence of the Estimator).

Ψ(z) ≡ limN→∞(|H|h0)−1
∑2

t=1 E

[
φiψ̂i(1−̟it)πitxitx

′
it

]
and

Γ(z) ≡ limN→∞(|H|h0)−1
∑2

t=1 E

[
φiψ̂

2
i (1−̟it)

2π2itxitx
′
it

]
are both nonsingular p× p matrices,

where πit ≡ Kh(zit, z) =
∏q

j=1 k((zit − z)/hi) and ̟it = πit/
∑2

t=1 πit ∈ (0, 1) for all i and t.

Assumption E ensures the numerical feasibility of the proposed estimator. Since ̟it contains a
random denominator, as in Sun et al. (2009), we cannot obtain a closed-form expression for Ψ(z)
and Γ(z). The following theorem gives the asymptotic normality result for β̂(z).

Theorem 1 Under Assumptions D, S, K and B and assuming that E|vit|2+δ <∞ for some δ > 0
and that

√
N |H|h30 = o(1) and

√
N |H|h0‖H‖2 = o(1) as N → ∞, for an interior point z

√
N |H|h0

[
β̂(z)− β(z)

]
d→ N

(
0,Σβ(z)

)
,

where Σβ(z) = σ2vΨ(z)−1Γ(z)Ψ(z)−1. Moreover, a consistent estimator for Σβ(z) is given by

Σ̂β(z) = SpΩ̂(z)−1Ĵ(z)Ω̂(z)−1S′
p

p→ Σβ(z)

Ω̂(z) = (N |H|h0)−1X (z)′Ŵh(z)X (z)

Ĵ(z) = (N |H|h0)−1X (z)′Ŵh(z)V̂V̂′Ŵh(z)X (z) ,

where Sp includes the first p rows of the p(q+1) identify matrix, and a typical element of the 2N×1

vector V̂ equals v̂it = yit − x′
itβ̂(zit).

For the proof of Theorem 1, see Appendix A. In the proof, we show that the nonparametric
approximation bias term SpE

−1
N AN is of order Oe

(
‖H‖2 + h20

)
, while the endogenous selection bias

14



term SpE
−1
N CN is of order Oe (h0).

16 Therefore,
√
Nh0|H|‖H‖2 = o(1) and

√
N |H|h30 = o(1)

are imposed to ensure a zero asymptotic bias for β̂(z). Consider an example when hj = cn−δ for
j = 0, 1, . . . , q. Then, Assumption D,

√
Nh0|H|‖H‖2 = o(1) and

√
N |H|h30 = o(1) require that

(3 + q)−1 < δ < (1 + q)−1.

Theorem 1 studies the limit results of our proposed estimator β̂(z) when γ is assumed to
be known. Theorem 2 below shows that these results continue to hold under some reasonable
conditions, when γ is unknown. In particular, we need the following additional assumptions.

Assumption G (Existence of First-Step Estimator). For any given parameter value γ ∈ A,
there exists an estimator γ̂N such that supγ∈A ‖γ̂N − γ‖ = Op(N

−η), where A is a compact

subset of Rl and η ∈ (0, 1/2].

Assumption K2 (Kernel Function). The univariate kernel function k(v) is continuously differ-
entiable over its compact support [-1,1].

Assumption S2 (Curve Smoothness).

(i) E [φi‖∆wi‖x′
itxit|zit = z] and E [φi‖∆wi‖ ‖xit‖|zit = z] have bounded and uniformly contin-

uous partial derivatives up to the second order around the point of interest z;

(ii) E
[
φi‖∆wi‖i1‖xit‖i2 |∆si = s, zit = z

]
for i1 ≤ 2 and i2 ≤ 2 and

E
[
φi‖wit‖2‖xit‖ |∆si = s, zit = z

]
have bounded and uniformly continuous partial derivatives

up to the second order around (0, z);

(iii) Λ(si1, si2, ζi) is continuously differentiable; and Λ(si1, si2, ζi) and its first-order partial
derivatives with respect to its first two arguments are all uniformly bounded over its domain.

Theorem 2 Under the assumptions given in Theorem 1, Assumptions G, K2 and S2 and ‖γ̂N −
γ‖/h20 = op(1), the limit result in Theorem 1 continues to hold.

The proof of Theorem 2 is provided in Appendix B. Let h0 ∼ N−α0 and hj ∼ N−α1 with
α0 = ϑa1 for some ϑ > 0. Then, ‖γ̂N − γ‖/h20 = op(1) holds if η > 2α0, which implies α0 ∈ (0, 1/4)
as η ≤ 1/2. The conditions that N |H|h0 → ∞,

√
N |H|h0‖H‖2 → 0 and

√
N |H|h30 → 0 as N → ∞

imply that max{1−(q+4)α1, (1−qα1)/3} < α0 < 1−qα1. We then obtain 2ϑ/min{q+3ϑ, q+4+ϑ} <
η ≤ 1/2, which implies 0 < ϑ < min{q, (q + 4)/3}. Hence, h0 and hj can be of the same order if
and only if q ≥ 2; and h0 converges to zero at a slower speed than h1 when q = 1.

5 Monte Carlo Study

In order to study the finite sample performance of our estimator (3.13), we conduct some Monte
Carlo simulations. We use the following data generating process (DGP) for a model under binary
sample selection [of the form in (2.1)]:

yit =

{
xitβ(zit) + µi + uit if dit = 1

− otherwise

d∗it = w1,itγ1 + w2,itγ2 + ξi + eit

dit = ✶{d∗it ≥ 0} , (5.1)

where the varying coefficient in the outcome equation is β(zit) = sin(πzit) and the constant co-
efficients in the selection equation are γ1 = γ2 = 1. The exogenous covariates are generated as

16We use AN = Oe(aN ) to denote AN = Op(aN ) but not AN = op(aN ), where aN > 0 is a sequence of constants.
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follows: (w1,it, w2,it) ∼ i.i.d. N(0, 1), xit = w1,it and zit ∼ i.i.d. U(0, 0.5π). The fixed effects are
ξi = w1,i + w2,i + 0.5ςi and µi = xi + zi + ̺i − 0.5 − 0.25π,17 where (ςi, ̺i) ∼ i.i.d. U(0, 1) and

w1,i = T−1
∑T

t=1w1,it is the time average of w1,it with similarly defined (w2,i, xi, zi). The error in
the selection equation eit is i.i.d logistically distributed with location and scale parameters set to zero
and one, respectively; the error in the outcome equation is uit = −eit+ζit, where ζit ∼ i.i.d. N(0, 1).
Both errors share a non-zero correlation by design. Throughout this section, we use second-order
Gaussian kernels; the bandwidths are selected via cross-validation as described in Section 3.

We set T = 2 so that there is only one pair of time periods for each cross-section i to consider.
The above DGP implies that, on average, Pr[di1 + di2 = 1] ≈ 0.37 and Pr[di1 = di2 = 1] ≈ 0.35,
i.e., about 37 and 35 percent of the sample is used in the first and second stages, respectively. Note
that (i) cross-sections that “switch” their selection status only are used in the first-stage conditional
logit estimation, and (ii) we can estimate the outcome equation only for those individuals who are
selected into the sample at least in two periods.18 We consider sample sizes N = {100, 200, 400}.
For each N , we replicate the design 500 times.

Table 1 reports the results of the experiment. We study the finite sample performance of our
estimator (3.13) in comparison to a “naive” varying coefficient model with fixed effects that ignores
endogenous selection (labelled “A”). The “naive” estimator is that of Sun et al. (2009), which is
likely to produce inconsistent estimates of the unknown coefficient function β(·) due to its inability
to account for the presence of sample selection effects. It is convenient to think of this estimator
as a limiting case of our estimator (3.13) with the bandwidth h0 (for a single index in the selection
equation ∆w′

iγ̂) equal to infinity. In order to gauge the sensitivity of our estimator’s performance
to a sampling error in the first-stage estimates, we also re-estimate our model using true values of
γ1 and γ2 (labelled “B”), i.e., with the first stage skipped. Our proposed two-stage estimator (3.13)
is labelled “C”.

[insert Table 1]

For each estimator in each simulation, we compute the root mean squared error (RMSE):

RMSE =

(
1

∑N
i=1

∑T
t=1 φ̃idit

N∑

i=1

T∑

t=1

φ̃idit

(
β(zit)− β̂(zit)

)2
)1/2

, (5.2)

where β̂(·) is the estimate of β(·) from either of the three estimators A, B and C; φ̃i ≡ ✶

{∑T
t=1 dit ≥ 2

}

“picks” cross-sections that are selected into the sample at least in two periods.

We summarize the results in Figure 1, where we plot distributions (across simulations) of the
RMSE for each estimator and each sample size in the form of boxplots. We also report the averages
of the RMSE computed over 500 simulations in Table 1. The results show that our estimator (C) is
less biased than a “naive” estimator (A), which ignores endogenous selection. Comparing estimators
B and C, we find that the results do not change dramatically if we use true or estimated values of
γ1 and γ2; the first-stage estimation seems to not distort the results obtained in the second stage.19

We also observe that the estimation (across all three estimators) becomes more stable as the sample
size increases.

[insert Figure 1]

We next examine the finite sample performance of our estimator in the presence of polychotomous
switching. Specifically, we consider R = 3. To make the experiment even more general, we set T = 3

17µi is generated so that E[µi] = 0.
18Exactly in two periods in this experiment, because T = 2.
19Kyriazidou (1997) documents a similar finding in a completely parametric formulation of our model (2.1).
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(the case of T > 2). The DGP used is as follows [in line with (2.2)].

yr,it =

{
xr,itβr(zr,it) + µr,i + ur,it if dr,it = 1

− otherwise

d∗r,it = w1,itγr,1 + w2,itγr,2 + ξr,i + er,it

dr,it = ✶{d∗r,it ≥ max
j=1,...,R; j 6=r

{d∗j,it}} , (5.3)

where the varying coefficients in the outcome equations are β1(z1,it) = sin(πz1,it), β2(z2,it) = 1 +
z2,it+(z2,it)

2 and β3(z3,it) = 1+(z3,it)
3 for regimes 1, 2 and 3, respectively. The constant coefficients

in each of the three selection equations are γr,1 = γr,2 = 1 for r = 1, 2, 3. The exogenous covariates
are generated as follows: (w1,it, w2,it) ∼ i.i.d. N(0, 1), xr,it = w1,it and zr,it ∼ i.i.d. U(0, 0.5π) for
r = 1, 2, 3. The fixed effects are ξr,i = w1,i+w2,i+0.5ςr,i and µr,i = xr,i+zr,i+̺r,i−0.5−0.25π, where
(ςr,i, ̺r,i) ∼ i.i.d. U(0, 1) for r = 1, 2, 3. The error terms in the selection equations er,it are i.i.d
the type I extreme-value (Gumbel) distributed with location and scale parameters set to zero and
one, respectively. The disturbances in the outcome equations are generated as ur,it = −er,it + ζr,it,
where ζr,it ∼ i.i.d. N(0, 1) for r = 1, 2, 3. We consider sample sizes N = {150, 300, 600}, for each
of which we simulate the design 500 times.

[insert Figure 2]

Since T = 3 in this design, in the second stage we estimate (3.13) for C(3, 2) = 3 unique pairs
of the time periods and then average β̂r(·) for each zr,it, as discussed in Section 3.20 Also, note
that the second stage is estimated for each regime separately. Figure 2 and Table 2 summarize the
results from the three estimators, for each of the three regimes. The results are similar to those
obtained in the case of binary sample selection. We find our estimator (C) to be less biased than a
“naive” estimator (A) across all three regimes. The results do not seem to be sensitive to whether
we use true or estimated values of the parameters in the selection equations (compare RMSE for
estimators B and C). Importantly, the estimation becomes more stable as the sample size increases.

[insert Table 2]

6 Empirical Application: the Case of U.S. Credit Unions

In this section, we investigate the U.S. retail credit union production technologies in the period from
2002 to 2006. Using our proposed estimator (3.13), we are able to produce more robust estimates
of credit union production technologies by controlling for (i) parameter heterogeneity in the cost
function across credit unions of different sizes, (ii) endogenous selectivity as represented by differing
service menus offered by credit unions and (iii) unobserved credit-union-specific heterogeneity. Be-
fore we proceed, we note that the notation used in this section has no connection to that in previous
sections, unless specified otherwise.

6.1 Framework and Data Description

Given that, due to their cooperative nature, credit unions are not profit-maximizers, researchers
usually think of them as maximizing service provision to their members in terms of quantity, price

20In order to facilitate comparability of the results across estimators, we similarly estimate the “naive” estimator
of Sun et al. (2009) using the three unique pairs of the time periods separately and then averaging the obtained
estimates for each zr,it. However, one can, technically, estimate it using all “selected” observations at once.
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and variety of services (Smith, 1984). We therefore follow a common practice in the credit union
literature (Frame et al., 2003; Wheelock and Wilson, 2011, 2013) and adopt a “service provision
approach.” According to this framework, given the type of their production technology,21 credit
unions minimize non-interest, variable cost subject to the levels and types of services (outputs), the
competitive prices of variable inputs and the levels of quasi-fixed netputs.

We consider four types of financial services that credit unions offer to their customers: real estate
loans (y1), business and agricultural loans (y2), consumer loans (y3) and investments (y4). These
are output quantities. We further follow Frame et al. (2003) and Wheelock and Wilson (2011, 2013)
and include two quasi-fixed netputs to capture the price dimension of the service provision by credit
unions: the average interest rate on saving deposits (ỹ5) and (the inverse of) the average interest
rate on loans (ỹ6). The motivation here is to capture the cooperative nature of credit unions that,
among other things, seek to offer the highest deposit rates and lowest loan rates possible to their
members. Like Wheelock and Wilson (2011, 2013), one thus may prefer thinking of these price
variables as quasi-fixed outputs. We therefore consider the inverse of the average interest rate on
loans to enforce positive monotonicity (in outputs) of the cost function. Like Frame et al. (2003),
we define two variable inputs: financial capital (x1) and labor (x2) with the vector of corresponding
competitive prices w = (w1, w2). All of the above variables are taken as arguments of the dual
variable, non-interest cost function of a credit union.

As pointed out in the Introduction, the data on credit unions contain a large number of ob-
servations for which the reported values of some types of services are zeros, which indicates the
presence of significant differences among credit unions in terms of the service menu they offer to
members. Ignoring this observed heterogeneity in the provision of services amounts to making a
strong and rather unrealistic assumption that all credit unions share the same technology that is
invariant to the menu of services they provide. This assumption of homogeneous technology across
credit unions is likely to result in the loss of information and the misspecification of the econometric
model, which is further aggravated if the choice of the differing service menus by credit unions is
endogenous. Malikov et al. (2013) document that the overwhelming majority of U.S. retail, or so-
called natural-person, credit unions (more than 99%) offer one of the following three service menus
to their members: (i) consumer loans and investments (y3, y4); (ii) real estate and consumer loans
as well as investments (y1, y3, y4); and (iii) all types of services: real estate, business and consumer
loans, and investments (y1, y2, y3, y4). We label these service menus (output mixes) as “1”, “2”
and “3”, respectively, and refer to corresponding credit unions as “Type 1”, “Type 2” and “Type
3”. We hereafter use credit union and service menu types interchangeably when referring to credit
unions and their production technologies.

The data come from year-end Call Reports available from the National Credit Union Adminis-
tration (NCUA), a federal regulatory body that supervises all state and federally chartered credit
unions in the U.S. In this study, we focus on the period prior to the 2008 financial crisis, in an
attempt to minimize the influence of potential structural changes in the industry during the crisis
and in its aftermath on the estimation results. In particular, we consider a five-year period from
2002 and 2006. We focus on retail credit unions only22 and therefore exclude corporate credit unions
(whose customers are the retail credit unions) from the sample to minimize noise in the data due
to apparent non-homogeneity between these two types of unions.23

21That is, given the mix of financial services that credit unions choose to provide to their members.
22That is, we focus on retail credit unions of Types 1, 2 or 3. Credit unions that offer other service menus (less than
a percent of observations) likely contain either outliers or reporting errors.

23We also discard observations with negative values of outputs and total cost. In addition, we exclude observations
with non-positive values of variable input prices, quasi-fixed netputs, equity capital, total assets, reserves and total
liabilities. Since ỹ and w1 are interest rates, we also eliminate those observations for which values of these variables
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Recall that, in order to make our proposed estimator feasible, one needs (i) cross-sections to
switch regimes (to estimate the selection equations in the first stage) and (ii) a given regime to be
selected by a cross-sectional unit at least in two time periods (to estimate the outcome equation
in the second stage). We therefore confine our analysis to credit unions that meet the above two
requirements. Also, to avoid a potential impact of entries and exits, we examine only continuously
operating credit unions. Lastly, given significant computational intensity of our proposed estimator
(particularly, a cross-validation procedure in the second stage), we select a pseudo-random repre-
sentative subsample of credit unions satisfying all above criteria, which renders a balanced panel
of 500 units continuously observed over 5 years. The procedure does not significantly affect the
distribution of key variables and the composure over credit union types.24

Table 3 reports summary statistics of the variables used in our analysis. We deflate all nominal
stock variables to 2011 U.S. dollars using the GDP Implicit Price Deflator. A comparison of sample
mean and median estimates of variables shows clear differences between the credit union types. As
expected, the size of the credit unions (proxied either by total assets or the number of members)
increases as one moves from Type 1 to Type 3. The dramatic differences between the three types
favor our view that the assumption of homogeneous credit union technology across service menu
types is likely to result in the loss of information and the misspecification of the econometric model.
Moreover, credit unions technology is also unlikely to be homogenous within a given service menu
type, which, if overlooked, can distort results as well.

[insert Table 3]

To put the problem of modeling credit union technologies into perspective of the estimator
that we consider in this paper, there are three distinct types of retail credit unions, as defined by
their differing service menus. These types are what we have referred to in the previous sections as
polychotomous “regimes”. Since there are no legal restrictions on which of the four financial services
(outputs) a credit union may offer to its members, it is natural to view these credit union types as
an outcome of endogenous decision-making. The data seem to suggest that the variables capturing
a credit union’s size, financial strength and potential for growth may be particularly relevant to a
choice of the service menu. A careful examination of the credit union literature suggests considering
the following variables: the number of current and potential members, equity capital,25 reserves and
the leverage ratio, defined as the ratio of total debt to total assets (Bauer, 2008; Bauer et al., 2009;
Goddard et al., 2002, 2008).26 These are the variables entering the selection equations. For their
summary statistics, see Table 3.

Further, it has been argued in the literature that the size of a credit union (commonly measured
by its total assets) matters considerably in shaping its cost structure and that any parametric spec-
ification of the cost function that overlooks this relationship is thus likely to suffer from parameter
instability (Wheelock and Wilson, 2011). We concur with this sentiment and agree that it may be
inappropriate to assume that the cost structure of a small credit union is the same as that of a large
credit union. To accommodate this technological heterogeneity among credit unions of different
sizes, we allow parameters of the credit-union-type-specific cost function to also be varying with
(the log of) credit union’s total assets. Such a specification yields credit-union-specific estimates of

lie outside the unit interval. These excluded observations are likely to be the result of erroneous data reporting. All
variables are constructed following the instructions in the appendix of Malikov et al. (2013).

24We have tried numerous pseudo-random subsample, all of which yield qualitatively unchanged results. The compo-
sition of the sample by credit union types is 28%, 60% and 12% for Types 1, 2 and 3, respectively.

25We note that, since credit unions are mutual organizations, they cannot raise “equity” via public offering per se.
The equity is instead raised by retaining earnings.

26For more on the motivation of choosing these variables, see Malikov et al. (2013).
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the cost function parameters.

6.2 Estimation and Empirical Results

We consider a VC model of heterogeneous credit union production technologies with polychotomous
endogenous switching and fixed effects in both the selection and outcome equations. In this paper,
we assume that the credit-union-type-specific dual cost function takes a semiparametric analogue of
the translog specification, under which parameters are unknown smooth functions of the size. We
cast the model in the form of (2.2), i.e.,

lnCr
it = µr(zit) + ηr1(zit) t+
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2
ηr11(zit) t
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K∑

k=1

ρrk2(zit) ln ỹk,it t+
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m,it ln ỹk,it + µri + urit (if drit = 1) (6.1a)

dr∗it =

H∑

h=1

γrh ln qh,it + ξri + erit , (i = 1, . . . , N ; t = 1, . . . , T ; R = 1, . . . , R) (6.1b)

where, for each credit union type r = 1, . . . , R (R = 3), Cr
it is the variable, non-interest cost; y

r
m,it ∈

yr
it is the output specific to a given type of credit unions, i.e., y1

it ≡ (y3it, y4it), y
2
it ≡ (y1it, y3it, y4it),

y3
it ≡ (y1it, y2it, y3it, y4it) with the corresponding values of M r = {2, 3, 4}. The variable input

prices wj,it ∈ (w1, w2), quasi-fixed netputs ỹk,it ∈ (ỹ5, ỹ6) and the log of total assets zit are invariant
to credit union type and thus do not have superscript r (also, J = K = 2). To capture temporal
changes in the cost frontiers, we also include the time trend t in (6.1a). The rth cost function
is observed if a credit union selects the rth type of the service mix, as captured by the binary
indicator drit. The selection is governed by (6.1b) that assumes that the propensity to select the rth
service mix type is a function of qit that includes the number of current and potential members,
equity capital, reserves and the leverage ratio (H = 5). We control for unobserved unit-specific
heterogeneity among credit unions by including fixed effects µri and ξri in the cost and selection
equations, respectively.

We estimate the model in two stages as outlined in Section 3. In the first stage, we transform
(6.1b) into its binary selection analogue as described in Section 2.2, which is then estimated via
Chamberlain’s (1980) conditional multinomial logit. We use the obtained estimates of parameters
γ̂r in the second stage, in which we apply our proposed estimator (3.13) onto the cost functions
(6.1a) for each of the credit union types separately. Since the design of our estimator is such that
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it uses pairs of the time periods, we consider C(5, 2) unique pairs, the results for which we then
average, as described in Section 3.27

In order to analyze to what extent the results are distorted if (i) one assumes that selection of
the credit union type is “ignorable” and thus the selectivity bias need not be accounted for or (ii)
a homogeneous cost function is fitted for all credit unions of a given type under the assumption of
parameters in (6.1a) being constant, we also estimate two auxiliary models. Clearly, both models
are special cases of the one we consider in this paper, as discussed in Section 2. For the ease of
discussion, below we define all three models we estimate.

Model I . The semiparametric varying coefficient model with endogenous selection and fixed
effects; given by (6.1) and estimated via our proposed estimator (3.13) in two stages.

Model II . The semiparametric varying coefficient model with fixed effects under the assumption
of “ignorable” (exogenous) selection; estimated in one stage via Sun et al.’s (2009) estimator
applied onto (6.1a). Any differences between models I and II are likely due to selectivity bias in
the latter.

Model III . The parametric model with endogenous selection and fixed effects. This model
assumes that credit union technology is homogeneous within a given credit union type, i.e.,
parameter functions in the cost function (6.1a) are assumed to be constant across credit unions.
The model is estimated in two stages via Kyriazidou’s (1997) estimator. Any differences between
models I and III are likely due to parametric misspecification in model III.

In each model, we impose the symmetry and linear homogeneity (in input prices) restrictions onto
the cost functions. The homogeneity is imposed by dividing the variable cost and input prices by
the price of labor (w2). Given the complexity of all three estimators, it is unlikely to expect the
fitted cost functions to properly satisfy all monotonicity properties, which may result in misleading
results. Therefore, we also impose positive monotonicity in input prices and outputs (including
quasi-fixed outputs) onto the cost functions. We do so post-estimation via quadratic programming
technique as proposed by Hall and Huang (2001) and Du et al. (2013). The idea is to reweigh
observations used in estimation so that all constraints are observation-wise satisfied. In this paper,
we follow Du et al. (2013) whose method allows weights to be non-positive which has some desirable
implications. Although the above method is developed to be applied in a nonparametric setting
[models I and II], it can be easily extended to a parametric specification [model III].28 To conserve
space, we do not report the results from the first stage and directly proceed to the discussion of the
main results from the cost functions.

[insert Tables 4.1-4.3]

Tables 4.1-4.3 report summary statistics of elasticity estimates [derivatives of the cost function
in (6.1a) with respect to the covariates] obtained from models I through III for each of the three
credit union types. As expected, the results are more similar across flexible semiparametric models
I and II, than across the latter two and the parametric model III. This can be clearly seen from
Figures 3.1-3.3 that plot kernel densities of these elasticity estimates. The densities are constructed
using the Gaussian kernel and Silverman’s (1986) “rule-of-thumb” bandwidth.

[insert Figures 3.1-3.3]

In the case of the Type 1 credit unions, the empirical evidence indicate the presence of eco-
nomically negligible selectivity bias which is suggested by little differences between the results from

27We do the same when estimating models II and III described below. While the procedure is quite natural in the
case of model III, we note that model II can be estimated using the entire sample period at once. We however opt
to use pairs of time periods, in order to facilitate comparability of the results across the three models.

28For more details on constrained estimation in the case of nonparametric regression, see Du et al. (2013).
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models I and II (see Figure 3.1). In particular, using the Li (1996) test, we fail to reject the null of
equality of the two densities in the cases of the input price elasticity (with respect to w1) and the
technical change [elasticity of the cost function in (6.1a) with respect to t]: the bootstrap p-values
are 0.505 and 0.192, respectively. The differences between the models are however amplified when
investigating the production of the Type 2 credit unions. When compared to a benchmark model I,
we find relatively large negative biases in all output elasticities produced by model II. We attribute
these differences to the sample selection effects that the latter model takes for granted. For instance,
the median estimate of output elasticity for y3 (consumer loans) from model II is reported to be
27% less than that from model I: 0.082 vs. 0.113 (see Table 4.2). The sign of the selection bias
in the estimates from model II however generally changes in the case of the input price elasticity.
The elasticity estimate densities are consistently statistically different across the two models with
p-values less than 10−6. For credit unions of Type 3, we similarly find evidence of negative selection
biases in output elasticities with respect to y1 and y4 (see Figure 3.3). However, we find that the
kernel densities of the remaining elasticities are statistically equal at the 5% significance level.

A comparison of the estimates produced by model I and its parametric counterpart III enables
us to analyze the implications of imposing parameter homogeneity onto credit union technology as
done by model III. The differences in elasticity estimates are striking across all three credit union
types. For instance, model III tends to over-estimate output elasticity for y3 and under-estimate
the elasticity in the case of another output y4 in the case of Type 1 credit unions, whereas the
biases in output elasticity estimates are all uniformly positive for Type 2 credit unions. Notably in
the case of credit unions of Type 3, the results appear to be less distorted around the medians of
distributions of output elasticities due to a smaller variation in the elasticity estimates (over credit
unions) from model III. The latter likely results from parameter homogeneity implied by parametric
model III. Expectedly, the densities are all statistically different across models I and III.

As noted earlier, it has been argued in the literature that the size of a credit union matters
considerably in shaping its cost structure and that any parametric specification of the cost function
will overlook this relationship. It is therefore of interest to compare the relationship between
estimated credit union technologies and the asset size of credit unions implied by both models
I and III. Recall that the underlying difference lies in the fact that the former model explicitly
recognizes the above relationship, while model III does not. We compare the two models by looking
at the estimates of scale economies, computed as one minus the sum of output elasticities. The
defined measure is intuitive because its positive (negative) value indicates the presence of the scale
economies (diseconomies). We scatterplot the estimates of scale economies against the log of total
assets for all three credit union technology types in Figure 4. The figure also graphs the fitted
(kernel) local-constant mean of these estimates given the asset size.29

[insert Figure 4]

We find significant differences across the two models. The parametric model III generally sug-
gests a negative relationship between the scale economies and the overall size of a credit union, a
pattern that one would normally expect to see in the data. The relationship is quite strong for credit
unions of Types 1 and 2, whereas no clear pattern is detected among Type 3 credit unions. Based
on the semiparametric model I, we however find evidence in favor of a more nonlinear (inverted-U-
shaped) relationship between scale economies and the size. In particular, the results from model I
suggest that scale economies tend to increase in the first stages of a Type 1 credit union’s growth,

29At first glance, it may seem that there are little differences across the three types of credit unions in terms of
the asset size as indicated by the range of values on the horizontal axis, which contradicts our findings in the
previous subsection (see Table 3). However, Figure 4 plots scale economies against the asset size scaled down by it
type-specific mean.
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which seems to be quite puzzling. However, recall that credit unions of Type 1 tend to be small in
size in general (see Table 3): about half of credit unions in this technology group are as small as an
entity with no more than 2 full-time equivalent employees. Therefore, we may expect that, as these
credit unions grow, so do their resources. An increase in available resources would enable credit
unions to adopt new information technologies — internet banking, automated teller machines, elec-
tronic money systems and access to members’ credit history through the credit rating bureaus —
that initially result in large fixed costs but, once adopted, are substantial cost-savers. One would
therefore expect to see scale economies to be increasing through the early expansion of unions and,
as the impact of the above financial constraints wears out, to eventually start declining as credit
unions continue to grow. The latter is exactly the pattern that we observed based on model I.
Indeed, the scale economies continue to decline as credit unions evolve from Type 1 to Type 2.
However, economies seem to be increasing yet again among smaller Type 3 credit unions. A greater
diversification enjoyed by these (generally larger) credit unions is a potential explanation for this.
The diversification is due to a growing number of members, a larger range of financial services as
well as an opportunity to engage in more advanced financial operations (Wilcox, 2005, 2006). All
three factors are conducive to a decline in average risk which, in turn, is likely to lead to a smaller
average cost of screening, risk-monitoring and other risk management activities.30

The above findings call for extra caution when researchers first estimate a parametric model
of credit union production technologies (even after controlling for selection into groups of different
service menus) and then analyze how the estimated technological metrics change with the size of
entities. Our findings indicate that the relationship with the asset size implied by such models [like
model III] may deviate substantially from that predicted by models that engineer the relationship
explicitly [like model I].

Lastly, we contrast the estimates of scale economies from models I-III qualitatively by testing
for their statistical significance. That is, scale economies that are found to be less/equal to/greater
than zero at the 95% significance level are informative of decreasing/constant/increasing returns
to scale. Given the two-stage nature of all models as well as the presence of varying coefficients
in models I and II, we use jackknife standard errors for the inference.31 All models I-III provide
overwhelming evidence in favor of scale economies across all credit unions of Type 1 and 2. In the
case of Type 3 credit unions, model III similarly indicates scale economies uniformly enjoyed by
all credit union in this category. However, based on model I and II we find that 38% and 24% of
credit-union-years exhibit no scale economies (or sometimes scale diseconomies), respectively.

7 Conclusion

In this paper, we consider a flexible panel data sample selection model in which (i) the outcome
equation is permitted to take a semiparametric VC form to capture potential parameter heterogene-
ity in the relationship of interest, (ii) both the outcome and selection equations contain unobserved
fixed effects and (iii) selection is generalized to a polychotomous case.

We propose estimating this model in two stages. Given consistent parameter estimates of the
selection equation obtained in the first stage, we estimate the VC outcome equation using data for
observed individuals (cross-sections) whose estimated likelihood of being selected into the sample

30In fact, recent studies in banking also report scale economies that tend to increase with the size of entities (Hughes
and Mester, 2013).

31We use the panel data extension of the traditional jackknife, in which a cross-section, rather than an observation, is
deleted in each loop. Also, given the computational intensity of our and Sun et al.’s (2009) estimator, we perform
the jackknife with random subsampling (for details, see Shao and Tu, 1995). We perform 100 iterations.
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stays approximately the same over time. For such individuals, the sample selection bias would
be approximately time-invariant and thus can be treated as another component of fixed effects
present in the outcome equation. Given that there are unlikely to be many (if any at all) cross-
sections with exactly the same selection probabilities over time, we adopt the idea of Ahn and
Powell (1993) and Kyriazidou (1997) and weigh these cross-sections based on “closeness” of their
respective selection probabilities (and thus their selectivity biases) to being the same over time.
The weighted semiparametric outcome equation can then be estimated in a manner similar to that
proposed by Sun et al. (2009). The selection bias term is then “asymptotically” removed from the
equation along with fixed effects using kernel-based weights. We show that our proposed estimator
is consistent and asymptotically normal.

We showcase our model by applying it to study heterogeneous production technologies of U.S.
retail credit unions in the 2002-2006 period. However, the model we consider is not tailored to
production analysis only. The framework can be applied to study numerous economic issues, where
endogenous selectivity is of a concern and one desires to explore parameter heterogeneity in the
relationship of interest. One such example would be a study of the wage differential and labor
force participation that we have used to motivate our paper. We also note that, while in this paper
we confine our analysis to the selection equations of a linear parametric form, it however may be
generalized to a semiparametric form as well. We leave the latter for future research.

Appendix

A Proof of Theorem 1

Throughout the Appendix we use AN ≈ BN to denote that BN is the leading term of AN , i.e.,
AN = BN +(s.o.), where (s.o.) denotes terms having probability order smaller than that of BN ; we
use AN ∼ BN to denote that AN and BN have exactly the same stochastic order. In addition, we
use AN = Oe(aN ) to denote AN = Op (aN ) but not AN = op (aN ), where aN > 0 is a sequence of
constants. We also use M to denote a generic positive constant which can take different values at
different places. Moreover, let a and b be two 2N × 1 vectors. Then, a simple calculation gives

a′Ŵh (z) b =
N∑

i=1

ψ̂i

2∑

t=1

πitaitbit +
N∑

i=1

N∑

j=1

ψ̂iψ̂jqij

2∑

t=1

πitait

2∑

s=1

πjsbjs . (A.1)

By (3.14), the conditional bias and variance of vec{Θ̂(z)} are given as follows:

Bias
[
vec
{
Θ̂(z)

}
|φi, ζi

]
=
[
X (z)′ Ŵh (z)X (z)

]−1
X (z)′ Ŵh (z) [Π (z) /2 + λ] (A.2)

and, under Assumption D (iii),

V ar
[
vec{Θ̂(z)}|φi, ζi

]
= σ2v

[
X (z)′ Ŵh (z)X (z)

]−1 [
X (z)′ Ŵ 2

h (z)X (z)
] [

X (z)′ Ŵh (z)X (z)
]−1

.

(A.3)

As the proofs given in the Appendix closely follow those given in Sun et al. (2009), for ease of
cross-reference, we introduce some notation used in Sun et al. (2009): Git (z,H) = DHZit (z) and
[·]it,js = Git (z,H)Gjs (z,H)′, where DH = diag{1, h1, . . . , hq} is a (q+1)× (q+1) diagonal matrix,
so that the (l + 1)th element of Git (z,H) is Git,l = (zit,l − zl) /hl for l = 1, · · · , q. In addition, for
each i and t, we denote πit ≡ Kh (zit, z) and cH (zi, z)

−1 = πi1 + πi2.

24



Lemma 1 Under Assumptions D, S (ii), K and B, we have

(N |H|h0)−1D−1
H X (z)′ Ŵh (z)X (z)D−1

H

≈ (|H|h0)−1
2∑

t=1

E

[
(1−̟it)φiψ̂iπit[·]it,it ⊗ (xitx

′
it)
]
= Oe(1) , (A.4)

where ̟it ≡ πit/
∑2

t=1 πit ∈ (0, 1) for all i and t.

Proof : By (A.1) we have

D−1
H END−1

H ≡ D−1
H X (z)′ Ŵh (z)X (z)D−1

H

=
N∑

i=1

φiψ̂i

2∑

t=1

πit[·]it,it ⊗
(
xitx

′
it

)
−

N∑

i=1

φiψ̂iqii

2∑

t=1

2∑

s=1

πitπis[·]it,is ⊗
(
xitx

′
is

)

−
N∑

i=1

φiψ̂i

N∑

j 6=i

φjψ̂jqji

2∑

t=1

2∑

s=1

πitπjs[·]it,js ⊗
(
xitx

′
js

)

≈
N∑

i=1

φiψ̂i

2∑

t=1

(1− ωit)πit[·]it,it ⊗
(
xitx

′
it

)
,

where we obtain the last line by following the proof of Lemma A.2 in Sun et al. (2009), and

qii = cH (zi, z)− cH (zi, z)
2 /

N∑

i=1

cH (zi, z) , (A.5)

qij = −cH (zi, z) cH (zj , z) /
N∑

i=1

cH (zi, z) for i 6= j . (A.6)

First, we consider AN ≡ (N |H|h0)−1∑N
i=1 φiψ̂i

∑2
t=1 πit[·]it,it ⊗ (xitx

′
it). Letting v = ∆si/h0 and

ω = H−1 (zit − z) and applying the change of variables yield

(|H|h0)−1
2∑

t=1

E

[
φiψ̂iπit[·]it,it ⊗

(
xitx

′
it

)]

= (|H|h0)−1
E

{
E
[
φi[·]it,it ⊗

(
xitx

′
it

)∣∣∆si, zit
]
πitψ̂i

}

=

∫ ∫
k(v)K(ω)E

(
φi

[
1 ω′

ω ωω′

]
⊗
(
xitx

′
it

)∣∣∣∣ vh0, Hω + z

)
ft (vh0, Hω + z) dvdω

= RK,2 ⊗ E
(
φixitx

′
it

∣∣∆si = 0, zit = z
)
ft(0, z) + o(1) ,

where RK,2 = diag {1, κ2, . . . , κ2} is a (q+1)× (q+1) diagonal matrix and κ2 =
∫
k(v)v2dv. Then,

we have

E (AN ) =

2∑

t=1

E
[
φiRK,2 ⊗

(
xitx

′
it

)∣∣ 0, z
]
ft(0, z) + o(1) . (A.7)

Next, V ar (AN ) is dominated by 2N−1 (|H|h0)−2
E

[
φiψ̂

2
i

∑2
t=1 π

2
it ‖[·]it,it ⊗ (xitx

′
it)‖

2
]
, where ‖·‖

denotes a Euclidian norm. As ‖A‖ =
√

tr (AA′) and tr (A⊗B) = tr(A)tr(B), we have

∥∥[·]it,it ⊗
(
xitx

′
it

)∥∥ =

(
1 +

q∑

l=1

G2
it,l

)
x′itxit . (A.8)
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Applying the same method from above, we can show that V ar (AN ) = O
(
(N |H|h0)−1

)
if gt(s, z) ≡

E

[
φi (x

′
itxit)

2 |∆si = s, zit = z
]
is continuous and bounded around point (0, z) for t = 1, 2. Hence,

we obtain

AN ≈
2∑

t=1

E
[
φiRK,2 ⊗

(
xitx

′
it

)∣∣ 0, z
]
ft(0, z) + op(1) , (A.9)

if h0 → 0, ‖H‖ → 0, and N |H|h0 → ∞ as N → ∞.

We cannot obtain a closed-form limit result for (N |H|h0)−1∑N
i=1 φiψ̂i

∑2
t=1 ωitπit[·]it,it⊗(xitx

′
it)

as ωit = πit/ (πi1 + πi2) contains a random denominator. However, as ωit always lies between 0 and
1, this term has the same stochastic order as AN . This completes the proof of this lemma.

Lemma 2 Under Assumptions D, S, K and B, we have

(N |H|h0)−1D−1
H X (z)′Ŵh(z)λ = Oe(h0) . (A.10)

Proof : By (A.1) we have

D−1
H CN ≡ D−1

H X (z)′Ŵh(z)λ

=

N∑

i=1

φiψ̂i

2∑

t=1

πit (Git ⊗ xit)


φiψ̂iλit −

N∑

j=1

φjψ̂j (πj1λj1 + πj2λj2) qji


 . (A.11)

For t 6= s, Assumption S (i) means λjs = λjt +∆sjd (sjs, sjt, ζj), and we obtain πjtλjt + πjsλjs =
(πjt + πjs)λjt + πjs∆sjd (sjs, sjt, ζj). Then, by cH (zi, z)

−1 = πi1 + πi2, (A.5) and (A.6), we have

φiψ̂iλit −
N∑

j=1

φjψ̂j (πj1λj1 + πj2λj2) qji

= φiψ̂iλit −
N∑

j=1

φjψ̂jλjtqji
cH (zj , z)

−
N∑

j=1

φjψ̂jqji∆sjd (sjs, sjt, ζj)

= φiψ̂iλit
cH (zi, z)∑N
i=1 cH (zi, z)

+
N∑

j 6=i

φjψ̂jλjt
cH (zi, z)∑N
i=1 cH (zi, z)

−
N∑

j=1

φjψ̂jqji∆sjd (sjs, sjt, ζj) , (A.12)

where s 6= t, and we know s given t (since there are only two periods). Therefore, we have

D−1
H CN =

N∑

i=1

φiψ̂
2
i

2∑

t=1

λitπit (Git ⊗ xit)
cH (zi, z)∑N
i=1 cH (zi, z)

+
N∑

i=1

φiψ̂i

2∑

t=1

πit (Git ⊗ xit)
N∑

j 6=i

φjψ̂jλjt
cH (zi, z)∑N
i=1 cH (zi, z)

−
N∑

i=1

φiψ̂i

2∑

t=1

πit (Git ⊗ xit)
N∑

j=1

φjψ̂jqji∆sjd (sjs, sjt, ζj)

≡ DN1 +DN2 −DN3 ,
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where the definition of DNj (j = 1, 2, 3) should be clear from the following context. Again, note
that s 6= t is known given t.

First, we have
∥∥∥(|H|h0)−1DN1

∥∥∥ ∼ (N |H|h0)−1∑N
i=1

∑2
t=1 φiψ̂

2
i πit ‖(Git ⊗ xit)λit‖. Letting

v = ∆si/h0 and ω = H−1 (zit − z) and applying the change of variables yield

(|H|h0)−1
2∑

t=1

E

(
φiψ̂

2
i πit ‖(Git ⊗ xit)λit‖

)

= (|H|h0)−1
E{E [φi ‖Λ (sit, sis, ζi)Git ⊗ xit‖ |∆si, zit]πitψ̂2

i }

=

∫ ∫
k2(v)K(ω)E

[
φi |Λ (sis + vh0, sis, ζi)|

∥∥∥∥
[

xit
ω ⊗ xit

]∥∥∥∥
∣∣∣∣ vh0, Hω + z

]
ft (vh0, Hω + z) dvdω

≤ ME [φi |Λ (sis, sis, ζi)| ‖xit‖ |0, z] ft(0, z) + o(1) .

It then follows
∥∥∥(|H|h0)−1DN1

∥∥∥ = Op(1) by Assumption S. Hence, (N |H|h0)−1DN1 = Op(N
−1).

Next, applying the change of variables approach we obtain

1
N |H|h0

‖DN2‖ ∼ 1

N |H|h0

N∑

i=1

φiψ̂i

2∑

t=1

πit ‖Git ⊗ xit‖
1

N

N∑

j 6=i

φjψ̂j |λjt|

≤Mh0

2∑

t=1

ft(0, z)E (φi ‖xit‖ |0, z)E (φi |Λ (sit, sit, ζi)| | 0, z) + op(h0) ,

where we give an inequality result in the second line to simplify the mathematical expression,
although it is evident that (N |H|h0)−1DN2 = Oe(h0).

Similarly, we can show that (N |H|h0)−1DN3 = Op(h
2
0). This completes the proof of this lemma.

Lemma 3 Under Assumptions D, S, K and B, we have

(N |H|h0)−1D−1
H X (z)′Ŵh(z)Π(z)

≈ (|H|h0)−1
2∑

t=1

E

[
φiψ̂

2
i (1−̟it)πit (Git ⊗ xit)x

′
itr(z̃it, z)

]
= Oe(‖H‖2) . (A.13)

Proof : By (A.1), we have

D−1
H AN ≡ D−1

H X (z)′Ŵh(z)Π(z)

=

N∑

i=1

φiψ̂i

2∑

t=1

πit (Git ⊗ xit)


φiψ̂ix

′
itr(z̃it, z)−

N∑

j=1

φjψ̂jqji

2∑

s=1

πjsx
′
jsr(z̃js, z)




≈
N∑

i=1

φi (1− ωit) ψ̂
2
i

2∑

t=1

πit (Git ⊗ xit)x
′
itr(z̃it, z) ,

where we obtain the third line by following the proof of Lemma A.3 in Sun et al. (2009).

First, we consider ∆N ≡
∑N

i=1 φiψ̂
2
i

∑2
t=1 πit (Git ⊗ xit)x

′
itr(z̃it, z). Letting v = ∆si/h0 and
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ω = H−1(zit − z) and applying the change of variables yield

(|H|h0)−1
E

[
φiψ̂

2
i πit (Git ⊗ xit)x

′
itr(z̃it, z)

]

= (|H|h0)−1
E

{
E
[
φix

′
itr(z̃it, z) (Git ⊗ xit) |∆si, zit

]
πitψ̂

2
i

}

=

∫ ∫
k2(v)K(ω)E

[
φix

′
itr(δitHω + z, z)

[
xit

ω ⊗ xit

]∣∣∣∣ vh0, Hω + z

]
ft (vh0, Hω + z) dvdω

=

[∫
k2(v)dv

∫
k(v)v2dv

]
ft(0, z)E

([
φixitx

′
itΘH(z)

0q×p

]∣∣∣∣ 0, z
)
+O

(
h20 ‖H‖2 + ‖H‖4

)
, (A.14)

where z̃it = δitzit + (1− δit) z = δit (zit − z) + z for some δit ∈ (0, 1), 0q×p is a q× p matrix of zeros,
and

ΘH(z) =

[
tr

(
H
∂2β1(z)

∂z∂z′
H

)
, · · · , tr

(
H
∂2βp(z)

∂z∂z′
H

)]′
.

Hence, E
[
(N |H|h0)−1∆N

]
=
[∫
k2(v)dv

∫
k(v)v2dv

]∑2
t=1 ft(0, z)E

([
φixitx

′
itΘH(z)

0q×p

]∣∣∣∣ 0, z
)

+

O
(
h20 ‖H‖2 + ‖H‖4

)
. Similarly, we can show that V ar

(
(N |H|h0)−1∆N

)
= O

(
(N |H|h0)−1 ‖H‖4

)

if
∑2

t=1 E

(
φi ‖xit‖4 |∆si = 0, zit = z

)
< M <∞.

Next, since ̟it contains a random denominator, we cannot obtain a closed-form limit result for
(N |H|h0)−1∑N

i=1

∑2
t=1 φiψ̂

2
i̟itπit (Git ⊗ xit)x

′
itr (z̃it, z). However, as ̟it ∈ (0, 1) for all i and t,

this term is of the same stochastic order as (N |H|h0)−1∆N = Oe

(
‖H‖2

)
. This completes the

proof of this lemma.

Lemma 4 Under Assumptions D, S, K and B, we have

(N |H|h0)−1D−1
H X (z)′Ŵ 2

h (z)X (z)D−1
H

≈ (|H|h0)−1
2∑

t=1

E

[
φiψ̂

2
i (1−̟it)

2 π2it[·]it ⊗
(
xitx

′
it

)]
= Oe(1) . (A.15)

Proof : By (A.1) and following the proof of Lemma A.5 in Sun et al. (2009, p.125), we obtain

D−1
H X (z)′Ŵ 2

h (z)X (z)D−1
H ≈

N∑

i=1

φiψ̂
2
i (1−̟it)

2 π2it[·]it ⊗
(
xitx

′
it

)
. (A.16)

Then, applying the change of variables approach as in the proof of Lemma 1, we can show that

(N |H|h0)−1
N∑

i=1

φiψ̂
2
i π

2
it[·]it ⊗

(
xitx

′
it

)
≈ κ2

2∑

t=1

E
[
φiRK,4 ⊗

(
xitx

′
it

)∣∣ 0, z
]
ft(0, z) + op(1) ,

where RK,4 = diag {1, ς2, . . . , ς2} is a (q + 1)× (q + 1) diagonal matrix and ς2 =
∫
k2(v)v2dv. This

completes the proof of this lemma.

Proof of Theorem 1: First, by (A.2), (A.4), (A.10) and (A.13), we haveBias
[
vec
{
Θ̂(z)

}
|φi, ζi

]
=

Oe

(
‖H‖2

)
+Oe(h0), where the selection bias is of order Oe(h0) and cannot be improved in general.
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Second, the asymptotic normality result is obtained from E−1
N DN , where DN ≡ X (z)′Ŵh(z)V

and EN ≡ X (z)′Ŵh(z)X (z) as defined in (3.14). As in Lemma 3, we have (N |H|h0)−1/2D−1
H DN ≡

(N |H|h0)−1/2D−1
H X (z)′Ŵh(z)V ≈

∑N
i=1 ZNi, where ZNi ≡ (N |H|h0)−1/2 φiψ̂i

∑2
t=1 (1− ωit)πit

(Git ⊗ xit) vit. Assumption D indicates that {ZNi} is an i.i.d. array as h0 and H depend on the
sample size N . We will apply Cramér-Wold device and Liaponuov’s CLT to derive the asymptotic
normality result. In doing so, we only need to check that for some δ > 0

E ‖ZNi‖2+δ < M <∞ and lim
N→∞

N∑

i=1

E ‖ZNi‖2+δ = 0 (A.17)

as

V ar

(
N∑

i=1

ZNi

)
= σ2v (N |H|h0)−1

E

[
D−1

H X (z)′Ŵ 2
h (z)X (z)D−1

H

]

≈ σ2v (|H|h0)−1
2∑

t=1

E

[
φiψ̂

2
i (1−̟it)

2 π2it[·]it ⊗
(
xitx

′
it

)]
+ o(1)

by Lemma 4.

By Proposition 3.8 in White (2001, p.35) we have32

E ‖ZNi‖2+δ =
1

(N |H|h0)1+δ/2
E



∥∥∥∥∥φiψ̂i

2∑

t=1

(1− ωit)πit (Git ⊗ xit) vit

∥∥∥∥∥

2+δ



≤ 21+δ

(N |H|h0)1+δ/2

2∑

t=1

E

[∥∥∥φiψ̂iπit (Git ⊗ xit) vit

∥∥∥
2+δ
]
,

where we obtain

‖(Git ⊗ xit)‖ =

√√√√x′itxit

(
1 +

q∑

l=1

G2
it,l

)
. (A.18)

Letting v = ∆si/h0 and ω = H−1 (zit − z) and applying the change of variables yield

(|H|h0)−1
E

[∥∥∥φiψ̂iπit (Git ⊗ xit) vit

∥∥∥
2+δ
]

=

∫ ∫
k2+δ(v)K2+δ(ω)

(
1 +

q∑

l=1

ω2
l

)1+δ/2

E

[
φi |vit|2+δ (x′itxit

)1+δ/2
∣∣∣ vh0, Hω + z

]
ft (vh0, Hω + z) dvdω

= ft(0, z)

∫ ∫
k2+δ(v)K2+δ(ω)

(
1 +

q∑

l=1

ω2
l

)1+δ/2

dvdω E

[
φi |vit|2+δ (x′itxit

)1+δ/2
∣∣∣ 0, z

]
+ o(1)

≤ M <∞ .

Hence, we obtain E ‖ZNi‖2+δ = O
(
N−1 (N |H|h0)−δ/2

)
. (A.17) holds accordingly as N |H|h0 →

∞ when N → ∞. Combining the above with Lemmas 1 and 4 completes the proof of this theorem.

32
E |X + Y |r ≤ 2r−1 (E |X|r + E |Y |r) for r > 1.
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B Proof of Theorem 2

From (3.14), it is clear that γ affects the performance of β̂(z) via the term ψ̂i = k (∆w′
iγ/h0). We now

replace ψ̂i by ψ̃N,i = k (∆w′
iγ̂N/h0) and denote K̃N,h(z) = diag

{
ψ̃N,1Kh(z1, z), . . . , ψ̃N,NKh(zN , z)

}
,

Γ̂N,h(z) = I2N − D
(
D′K̃N,h(z)D

)−1
D′K̃N,h(z) and W̃N,h(z) = Γ̃N,h(z)

′K̃N,h(z)Γ̃N,h(z). Ac-

cordingly, we denote ÃN ≡ X (z)′W̃N,h(z)Π(z), B̃N ≡ X (z)′W̃N,h(z)Dµ, C̃N ≡ X (z)′W̃N,h(z)λ,

D̃N ≡ X (z)′W̃N,h(z)V and ẼN ≡ X (z)′W̃N,h(z)X (z), where B̃N = 0 as Γ̃N,h(z)Dµ = 0.

We consider these terms one by one below.

Lemma 5 Under Assumptions D, S, S2, K, K2 and B and if ‖γ̂N − γ‖ /h20 → 0 as N → ∞, we
have

(N |H|h0)−1D−1
H

(
ẼN − EN

)
= Oe

(
‖γ̂N − γ‖ /h20

)
, (B.1)

(N |H|h0)−1D−1
H

(
ÃN −AN

)
= Oe

(
‖γ̂N − γ‖ ‖H‖2 /h0

)
, (B.2)

(N |H|h0)−1D−1
H

(
C̃N − CN

)
= Oe (‖γ̂N − γ‖ /h0) , (B.3)

(N |H|h0)−1/2D−1
H

(
D̃N −DN

)
= Oe

(
‖γ̂N − γ‖ /h20

)
. (B.4)

Proof : By Assumptions K and K2, we have
∣∣∣ψ̃N,i − ψ̂i

∣∣∣ ≡
∣∣∣∣k
(
∆w′

iγ̂N
h0

)
− k

(
∆w′

iγ

h0

)∣∣∣∣ ≤M
‖∆wi‖ ‖γ̂N − γ‖

h0
, (B.5)

∣∣∣ψ̃2
N,i − ψ̂2

i

∣∣∣ ≤ M
‖∆wi‖ ‖γ̂N − γ‖

h0
k

(
∆w′

iγ̃i
h0

)
, (B.6)

where ∆w′
iγ̃i lies between ∆w′

iγ̂N and ∆w′
iγ.

First, following the proof of Lemma 1, we have

(N |H|h0)−1D−1
H

(
ẼN − EN

)
≈ 1

N |H|h0

N∑

i=1

φi

(
ψ̃N,i − ψ̂i

) 2∑

t=1

(1− ωit)πit[·]it,it⊗
(
xitx

′
it

)
≡ ∆N .

Then by (B.5) we have ‖∆N‖ ≤M
(
N |H|h20

)−1 ‖γ̂N − γ‖
∑N

i=1 φi ‖∆wi‖
∑2

t=1 πit ‖[·]it,it ⊗ (xitx
′
it)‖.

By (A.8) and applying the change of variables approach yields

|H|−1
E

[
φi ‖∆wi‖πit

(
1 +

q∑

l=1

G2
it,l

)
x′itxit

]
= [1 + (q + 1)κ2]E

[
φi ‖∆wi‖x′itxit

∣∣ zit = z
]
ft(z)+o(1) ,

which implies ‖∆N‖ = Oe

(
‖γ̂N − γ‖ /h20

)
.

Second, following the proof of Lemma 3, we have

(N |H|h0)−1D−1
H

(
ÃN −AN

)
≈

N∑

i=1

φi

(
ψ̃2
N,i − ψ̂2

i

) 2∑

t=1

ωitπit (Git ⊗ xit)x
′
itr (z̃it, z) ≡ ∆N .

Then, by (A.18), (B.5) and (B.6) we have

‖∆N‖ ≤ M ‖γ̂N − γ‖
N |H|h20

N∑

i=1

φi ‖∆wi‖ k
(
∆w′

iγ̃i
h0

) 2∑

t=1

πit ‖Git ⊗ xit‖
∣∣x′itr (z̃it, z)

∣∣

= Oe

(
‖γ̂N − γ‖ ‖H‖2 h−1

0

)
,
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where we use

|H|−1
E


φi ‖∆wi‖ k

(
∆w′

iγ̃i
h0

)
πit

√√√√
(
1 +

q∑

l=1

G2
it,l

)
x′itxit

∣∣x′itr (z̃it, z)
∣∣



≤ M ‖H‖2 E
[
φi ‖∆wi‖ ‖xit‖2

∣∣∣∆si = 0, zit = z
]
ft(0, z)

×
q∑

l1=1

q∑

l2=1

∥∥∥∥
∂2β(z)

∂zl1∂zl2
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∫

K(ω)

√√√√
(
1 +

q∑

l=1

ω2
l

)
|ωl1ωl2 | dω [1 + o(1)] .

Third, following the proof of Lemma 2, we have

D−1
H

(
C̃N − CN

)
≈

N∑

i=1

φi

2∑

t=1

πit (Git ⊗ xit)
N∑

j 6=i

φj

(
ψ̃N,iψ̃N,j − ψ̂iψ̂j

)
λjt

cH (zi, z)∑N
i=1 cH (zi, z)

≡ ∆N .

A simple calculation gives

ψ̃N,iψ̃N,j − ψ̂iψ̂j =
(
ψ̃N,i − ψ̂i

)
ψ̂j +

(
ψ̃N,j − ψ̂j

)
ψ̃N,i .

By (B.5), we then obtain

‖∆N‖
N |H|h0

≤ M
‖γ̂N − γ‖
N |H|h20

N∑

i=1

φi

2∑

t=1

πit ‖Git ⊗ xit‖
N∑

j 6=i

φj |λjt|
cH (zi, z)∑N
i=1 cH (zi, z)

×
[
ψ̂j ‖wi‖+ ψ̃N,i ‖∆wj‖

]

= Oe (‖γ̂N − γ‖ /h0) .

Next, following the proof of Lemma 3, we can show that

D−1
H

(
D̃N −DN

)
≈

N∑

i=1

φi

(
ψ̃2
N,i − ψ̂2

i

) 2∑

t=1

ωitπit (Git ⊗ xit) vit ≡ ∆N ,

where E (∆N ) = 0 and V ar
(
(N |H|h0)−1/2∆N

)
= O

(
‖γ̂N − γ‖2 /h20

)
. Hence, (B.4) holds. This

completes the proof of this lemma.

Proof of Theorem 2: Let β̃(z) be the estimator of β(z) when γ is replaced by γ̂N . Then, taking
Lemmas 1 to 5 together, we obtain

β̃(z)− β̂(z) = SpẼ
−1
N

(
ÃN + C̃N + D̃N

)
− SpE

−1
N (AN + CN +DN )

= SpẼ
−1
N

[(
ÃN −AN

)
+
(
C̃N − CN

)
+
(
D̃N −DN

)]

+Sp

(
Ẽ−1

N − E−1
N

)
(AN + CN +DN )

= Oe

(
‖γ̂N − γ‖ /h20

)
Oe

(
‖H‖2 + h0 + (N |H|h0)−1/2

)
,

if ‖γ̂N − γ‖ /h20 = op(1). It then follows that
√
N |H|h0

[
β̃(z)− β̂(z)

]
= Oe

(
‖γ̂N − γ‖ /h20

)
as

√
N |H|h0 ‖H‖2 = op(1) and

√
N |H|h30 = op(1). This completes the proof of this theorem.
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Tables and Figures

Table 1: Average RMSE across Monte Carlo Simulations
for the Case of Binary Sample Selection

Estimator N = 100; T = 2 N = 200; T = 2 N = 400; T = 2

A 1.3272 1.0350 0.8289
B 0.9702 0.8069 0.7085
C 0.9876 0.8039 0.7064

Note: The results are based on 500 simulations.

Table 2: Average RMSE across Monte Carlo Simulations
for the Case of Polychotomous Switching

Estimator N = 150; T = 3 N = 300; T = 3 N = 600; T = 3

Regime #1

A 1.2999 0.8709 0.6421
B 1.0417 0.7318 0.5707
C 1.0778 0.7599 0.6088

Regime #2

A 1.3010 0.8730 0.6192
B 0.9997 0.6332 0.4445
C 1.0259 0.6954 0.4994

Regime #3

A 1.3259 0.8738 0.6288
B 1.0454 0.7347 0.5730
C 1.0924 0.7677 0.5965

Note: The results are based on 500 simulations.
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Table 3: Summary Statistics

Variable Mean Min Q25 Q50 Q75 Max

Credit Unions of Type 1

Cost 173.3 9.6 58.3 117.4 203.8 1,815.0
y3 2,537.0 45.5 890.0 1,825.0 3,177.0 16,880.0
y4 1,536.0 0.1 129.9 550.7 1,809.0 26,090.0
ỹ5 0.017 0.001 0.011 0.016 0.021 0.045
1/ỹ6 0.089 0.036 0.074 0.085 0.099 0.187
w1 0.021 0.004 0.014 0.019 0.025 0.089
w2 38.7 0.5 24.6 37.2 48.4 154.4
Total Assets 4,860.0 218.9 1,599.0 3,488.0 6,365.0 36,740.0
Equity 737.8 27.9 230.8 458.6 982.2 4,619.0
Leverage 0.007 0.000 0.001 0.003 0.007 0.128
Reserves 184.8 16.0 58.9 117.5 247.5 1,057.0
Current Members 1,164 53 494 777 1,449 19,520
Potential Members 6,991 100 750 1,500 3,200 241,800

Credit Unions of Type 2

Cost 2,545.0 29.5 425.7 917.1 2,454.0 76,720.0
y1 16,560.0 0.2 1,043.0 3,997.0 13,580.0 503,200.0
y3 27,280.0 85.1 4,714.0 9,026.0 23,990.0 1,012,000.0
y4 23,810.0 9.5 2,473.0 6,610.0 17,040.0 879,300.0
ỹ5 0.017 0.001 0.012 0.017 0.021 0.056
1/ỹ6 0.085 0.022 0.072 0.082 0.094 0.185
w1 0.022 0.003 0.016 0.022 0.027 0.074
w2 49.8 4.0 41.1 48.1 56.7 122.9
Total Assets 77,380.0 1,079.0 11,710.0 27,450.0 63,880.0 1,899,000.0
Equity 8,990.0 88.6 1,535.0 3,236.0 7,790.0 209,100.0
Leverage 0.010 0.000 0.002 0.005 0.009 0.282
Reserves 2,802.0 6.6 372.4 883.3 2,045.0 99,410.0
Current Members 9,796 249 2,155 4,248 10,570 185,200
Potential Members 126,400 300 5,000 10,000 50,000 8,383,000

Credit Unions of Type 3

Cost 14,790.0 187.2 1,939.0 6,799.0 16,640.0 121,700.0
y1 193,900.0 2.0 20,850.0 59,820.0 159,400.0 3,337,000.0
y2 11,630.0 1.3 517.9 2,152.0 11,570.0 194,300.0
y3 145,200.0 496.7 16,030.0 42,700.0 165,000.0 1,768,000.0
y4 108,800.0 103.1 7,298.0 24,920.0 82,850.0 2,418,000.0
ỹ5 0.020 0.005 0.015 0.019 0.024 0.035
1/ỹ6 0.076 0.051 0.066 0.075 0.085 0.109
w1 0.020 0.004 0.015 0.020 0.025 0.042
w2 55.4 25.6 45.7 53.2 64.2 89.3
Total Assets 510,400.0 4,398.0 60,600.0 165,500.0 527,800.0 7,456,000.0
Equity 54,170.0 519.5 7,118.0 19,910.0 57,260.0 844,500.0
Leverage 0.028 0.000 0.005 0.010 0.032 0.264
Reserves 18,960.0 170.8 1,617.0 5,094.0 12,450.0 522,600.0
Current Members 44,120 1,100 7,127 21,600 47,300 354,300
Potential Members 466,500 2,000 30,000 98,610 364,400 6,973,000

Notes: Cost, y1, y2, y3, y4, w2, Total Assets, Equity, Reserves are in thousands of real 2011 US dollars;
ỹ5, ỹ6, w1, Leverage are unit-free interest rates. The numbers of Current and Potential Members are
in terms of number of people. Despite that minima of several variables are reported to be zeros (due
to rounding), they are not exactly equal to zeros.
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Table 4.1: Summary of Elasticity Estimates for
Credit Unions of Type 1

Model Mean St.Dev. D10 Q25 Q50 Q75 D90

y3

I 0.152 0.071 0.080 0.111 0.140 0.179 0.233
II 0.147 0.083 0.074 0.096 0.130 0.170 0.242
III 0.207 0.056 0.133 0.169 0.208 0.249 0.279

y4

I 0.044 0.036 0.010 0.020 0.036 0.053 0.086
II 0.041 0.038 0.011 0.017 0.028 0.048 0.096
III 0.021 0.007 0.011 0.016 0.021 0.026 0.030

ỹ5

I 0.095 0.060 0.037 0.057 0.077 0.115 0.185
II 0.085 0.054 0.032 0.049 0.069 0.110 0.159
III 0.057 0.020 0.032 0.041 0.054 0.072 0.086

ỹ6

I 0.167 0.082 0.077 0.106 0.154 0.209 0.273
II 0.163 0.095 0.062 0.093 0.143 0.205 0.305
III 0.086 0.025 0.053 0.067 0.087 0.105 0.119

w1

I 0.622 0.117 0.472 0.555 0.624 0.695 0.772
II 0.614 0.111 0.470 0.544 0.614 0.694 0.749
III 0.545 0.090 0.434 0.485 0.550 0.596 0.658

t

I 0.015 0.047 -0.042 -0.014 0.013 0.043 0.076
II 0.007 0.048 -0.062 -0.021 0.011 0.041 0.067
III -0.007 0.013 -0.025 -0.017 -0.006 0.002 0.010
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Table 4.2: Summary of Elasticity Estimates for
Credit Unions of Type 2

Model Mean St.Dev. D10 Q25 Q50 Q75 D90

y1

I 0.049 0.028 0.024 0.033 0.043 0.058 0.074
II 0.040 0.029 0.017 0.023 0.032 0.048 0.071
III 0.088 0.018 0.062 0.077 0.089 0.101 0.110

y3

I 0.128 0.065 0.061 0.083 0.113 0.160 0.213
II 0.095 0.051 0.050 0.062 0.082 0.110 0.157
III 0.306 0.037 0.260 0.279 0.304 0.331 0.357

y4

I 0.043 0.033 0.016 0.024 0.035 0.052 0.078
II 0.036 0.022 0.016 0.022 0.031 0.043 0.061
III 0.079 0.017 0.059 0.071 0.081 0.090 0.098

ỹ5

I 0.086 0.058 0.036 0.048 0.067 0.109 0.155
II 0.072 0.052 0.029 0.040 0.055 0.087 0.132
III 0.061 0.018 0.039 0.047 0.058 0.073 0.087

ỹ6

I 0.116 0.077 0.051 0.068 0.094 0.135 0.221
II 0.108 0.065 0.040 0.063 0.095 0.134 0.186
III 0.016 0.012 0.000 0.007 0.016 0.025 0.033

w1

I 0.749 0.060 0.681 0.717 0.747 0.780 0.823
II 0.752 0.055 0.690 0.726 0.755 0.782 0.809
III 0.685 0.034 0.639 0.664 0.689 0.709 0.724

t

I 0.006 0.143 -0.174 -0.067 0.012 0.076 0.190
II 0.002 0.138 -0.172 -0.067 0.010 0.085 0.179
III 0.006 0.008 -0.004 0.001 0.007 0.012 0.017
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Table 4.3: Summary of Elasticity Estimates for
Credit Unions of Type 3

Model Mean St.Dev. D10 Q25 Q50 Q75 D90

y1

I 0.327 0.219 0.084 0.160 0.276 0.465 0.643
II 0.237 0.143 0.054 0.138 0.215 0.323 0.453
III 0.256 0.064 0.183 0.211 0.247 0.305 0.340

y2

I 0.078 0.057 0.024 0.041 0.063 0.102 0.151
II 0.074 0.050 0.022 0.038 0.065 0.095 0.140
III 0.028 0.012 0.012 0.020 0.028 0.035 0.043

y3

I 0.218 0.097 0.097 0.147 0.219 0.280 0.335
II 0.219 0.114 0.072 0.133 0.223 0.279 0.355
III 0.216 0.050 0.144 0.189 0.216 0.249 0.277

y4

I 0.160 0.077 0.069 0.108 0.153 0.204 0.258
II 0.140 0.075 0.058 0.090 0.123 0.187 0.230
III 0.146 0.043 0.085 0.123 0.150 0.180 0.197

ỹ5

I 0.170 0.108 0.055 0.085 0.141 0.237 0.311
II 0.210 0.135 0.069 0.110 0.180 0.281 0.400
III 0.133 0.038 0.085 0.106 0.132 0.162 0.178

ỹ6

I 0.200 0.132 0.061 0.100 0.162 0.279 0.377
II 0.217 0.139 0.072 0.121 0.182 0.282 0.453
III 0.208 0.069 0.117 0.164 0.209 0.256 0.298

w1

I 0.503 0.215 0.223 0.340 0.515 0.680 0.785
II 0.484 0.207 0.183 0.344 0.505 0.625 0.740
III 0.583 0.089 0.458 0.515 0.584 0.647 0.702

t

I 0.023 0.067 -0.050 -0.019 0.019 0.054 0.100
II 0.021 0.049 -0.033 -0.011 0.019 0.046 0.084
III 0.029 0.013 0.012 0.020 0.030 0.039 0.045

40



Figure 1: RMSE across Monte Carlo Simulations for Estimators A, B and C
for the Case of Binary Sample Selection
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Figure 2: RMSE across Monte Carlo Simulations for Estimators A, B and C
for the Case of Polychotomous Switching
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Figure 3.1: Kernel Densities of Elasticity Estimates for
Type 1 Credit Unions from Models I-III
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Figure 3.2: Kernel Densities of Elasticity Estimates for
Type 2 Credit Unions from Models I-III

44



Figure 3.3: Kernel Densities of Elasticity Estimates for
Type 3 Credit Unions from Models I-III
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Figure 4: The Relationship between Scale Economies and the
Asset Size of Credit Unions based on Models I and III
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