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Based on results given in the recent book by Meinhardt (2013c), which presents a dual

characterization of the pre-kernel by a finite union of solution sets of a family of quadratic

and convex objective functions, we could derive some results related to the uniqueness of the

pre-kernel. Rather than extending the knowledge of game classes for which the pre-kernel

consists of a single point, we apply a different approach. We select a game from an arbitrary

game class with an unique pre-kernel satisfying the non-empty interior condition of a pay-

off equivalence class, and then establish that the set of related and linear independent games

which are derived from this pre-kernel of the default game replicate this point also as its sole

pre-kernel element. In the proof we apply results and techniques employed in the above work.

Namely, we prove in a first step that the linear mapping of a pre-kernel element into a specific

vector subspace of balanced excesses is unique. Secondly, that there cannot exist a different

and non-transversal vector subspace of balanced excesses in which a linear transformation of

a pre-kernel element can be mapped. Furthermore, we establish that on the restricted subset

on the game space that is constituted by the convex hull of the default and the set of related

games, the pre-kernel correspondence is single-valued, and therefore continuous. Finally, we

provide sufficient conditions that preserves the pre-nucleolus property for related games even

when the default game has not an unique pre-kernel.
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On the Single-Valuedness of the Pre-Kernel

1 INTRODUCTION

The coincidence of the kernel and nucleolus – that is, the kernel consists of a single point – is only known

for some classes of transferable utility games. In particular, it was established by Maschler et al. (1972)

that for the class of convex games – introduced by Shapley (1971) – the kernel and the nucleolus coincide.

Recently, Getán et al. (2012) were able to extend this result to the class of zero-monotonic almost-convex

games. However, for the class of average-convex games, there is only some evidence that both solution

concepts coalesce.

In order to advance our understanding about TU games and game classes which possess an unique

pre-kernel element, we propose an alternative approach to investigate this issue while applying results and

techniques recently provided in the book by Meinhardt (2013c). There, it was shown that the pre-kernel

of the grand coalition can be characterized by a finite union of solution sets of a family of quadratic and

convex functions (Theorem 7.3.1). This dual representation of the pre-kernel is based on a Fenchel-

Moreau generalized conjugation of the characteristic function. This generalized conjugation was in-

troduced by Martinez-Legaz (1996), which he called the indirect function. Immediately thereafter, it

was Meseguer-Artola (1997) who proved that the pre-kernel can be derived from an over-determined

system of non-linear equations. This over-determined system of non-linear equations is equivalent to a

minimization problem, whose set of global minima is equal to the pre-kernel set. However, an explicit

structural form of the objective function that would allow a better and more comprehensive understanding

of the pre-kernel set could not be performed.

The characterization of the pre-kernel set by a finite union of solution sets was possible due to a

partition of the domain of the objective function into a finite number of payoff sets. From each payoff

vector contained into a particular payoff set the same quadratic and convex function is induced. The

collection of all these functions on the domain composes the objective function from which a pre-kernel

element can be single out. Moreover, each payoff set creates a linear mapping that maps payoff vectors

into a vector subspace of balanced excesses. Equivalent payoff sets which reflects the same underlying

bargaining situation produce the same vector subspace. The vector of balanced excesses generated by a

pre-kernel point is contained into the vector subspace spanned by the basis vectors derived from the payoff

set that contains this pre-kernel element. In contrast, the vectors of unbalanced excesses induced from the

minima of a quadratic function does not belong to its proper vector subspace. An orthogonal projection

maps these vectors on this vector subspace of the space of unbalanced excesses (c.f. Meinhardt (2013c,

Chap. 5-7)).

From this structure a replication result of a pre-kernel point can be attained. This is due that from

the payoff set that contains the selected pre-kernel element, and which satisfies in addition the non-empty

interior condition, a null space in the game space can be identified that allows a variation within the game

parameter without affecting the pre-kernel properties of this payoff vector. Even though the values of

the maximum surpluses have been varied, the set of most effective coalitions remains unaltered by the

parameter change. Hence, a set of related games can be determined, which are linear independent, and

possess the selected pre-kernel element of the default game as well as a pre-kernel point (c.f. Meinhardt

(2013c, Sect. 7.6)). In the sequel of this paper, we will establish that the set of related games, which

are derived from a default game exhibiting a singleton pre-kernel, must also possess the same unique pre-

kernel, and therefore coincides with the pre-nucleolus. Notice, that these games need not necessarily be

convex, average-convex, totally balanced, or zero-monotonic. They could belong to different subclasses

of games, however, they must satisfy the non-empty interior condition. Moreover, we show that the pre-

kernel correspondence in the game space restricted to the convex hull that is constituted by the extreme

points, which are specified by the default and related games, is single-valued, and therefore continuous.
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The structure of the paper is organized as follows: In the Section 2 we introduce some basic notations

and definitions to investigate the coincidence of the pre-kernel with the pre-nucleolus. Section 3 provides

the concept of the indirect function and gives a dual pre-kernel representation in terms of a solution set.

In the next step, the notion of lexicographically smallest most effective coalitions is introduced in order to

identify payoff equivalence classes on the domain of the objective function from which a pre-kernel ele-

ment can be determined. Moreover, relevant concepts from Meinhardt (2013c) are reconsidered. Section 4

studies the uniqueness of the pre-kernel for related games. However, Section 5 investigates the continuity

of the pre-kernel correspondence. In Section 6 some sufficient conditions are worked out under which the

pre-nucleolus of a default game can preserve the pre-nucleolus property for related games. A few final

remarks close the paper.

2 SOME PRELIMINARIES

A n-person cooperative game with side-payments is defined by an ordered pair 〈N, v〉. The set N :=
{1, 2, . . . , n} represents the player set and v is the characteristic function with v : 2N → R, and the

convention that v(∅) := 0. Elements of N are denoted as players. A subset S of the player set N is called

a coalition. The real number v(S) ∈ R is called the value or worth of a coalition S ∈ 2N . However, the

cardinality of the player set N is given by n := |N |, and that for a coalition S by s := |S|. We assume

throughout that v(N) > 0 and n ≥ 2 is valid. Formally, we identify a cooperative game by the vector

v := (v(S))S⊆N ∈ Gn = R
2|N|

, if no confusion can arise, whereas in case of ambiguity, we identify a

game by 〈N, v〉.
A possible payoff allocation of the value v(S) for all S ⊆ N is described by the projection of a vector

x ∈ R
n on its |S|-coordinates such that x(S) ≤ v(S) for all S ⊆ N , where we identify the |S|-coordinates

of the vector x with the corresponding measure on S, such that x(S) :=
∑

k∈S xk. The set of vectors

x ∈ R
n which satisfies the efficiency principle v(N) = x(N) is called the pre-imputation set and it is

defined by

I 0(v) := {x ∈ R
n |x(N) = v(N)} , (2.1)

where an element x ∈ I 0(v) is called an pre-imputation.

Given a vector x ∈ I 0(v), we define the excess of coalition S with respect to the pre-imputation x in

the game 〈N, v〉 by

ev(S,x) := v(S)− x(S). (2.2)

A non-negative (non-positive) excess of S at x in the game 〈N, v〉 represents a gain (loss) to the members

of the coalition S unless the members of S do not accept the payoff distribution x by forming their own

coalition which guarantees v(S) instead of x(S).

Take a game v ∈ Gn. For any pair of players i, j ∈ N, i 6= j, the maximum surplus of player i over

player j with respect to any pre-imputation x ∈ I 0(v) is given by the maximum excess at x over the set

of coalitions containing player i but not player j, thus

sij(x, v) := max
S∈Gij

ev(S,x) where Gij := {S | i ∈ S and j /∈ S}. (2.3)

The expression sij(x, v) describes the maximum amount at the pre-imputation x that player i can gain

without the cooperation of player j. The set of all pre-imputations x ∈ I 0(v) that balances the maximum

surpluses for each distinct pair of players i, j ∈ N, i 6= j is called the pre-kernel of the game v, and is

defined by

PrK(v) :=
{

x ∈ I 0(v) | sij(x, v) = sji(x, v) for all i, j ∈ N, i 6= j
}

. (2.4)

2



On the Single-Valuedness of the Pre-Kernel

In order to define the pre-nucleolus ν(v) of a game v ∈ Gn, take any x ∈ R
n to define a 2n-tuple vector

θ(x) whose components are the excesses ev(S,x) of the 2n coalitions S ⊆ N , arranged in decreasing

order, that is,

θi(x) := ev(Si,x) ≥ ev(Sj ,x) =: θj(x) if 1 ≤ i ≤ j ≤ 2n. (2.5)

Ordering the so-called complaint or dissatisfaction vectors θ(x) for all x ∈ R
n by the lexicographic order

≤L on R
n, we shall write

θ(x) <L θ(y) if ∃ an integer 1 ≤ k ≤ 2n, (2.6)

such that θi(x) = θi(y) for 1 ≤ i < k and θk(x) < θk(y). Furthermore, we write θ(x) ≤L θ(y) if

either θ(x) <L θ(y) or θ(x) = θ(y). Now the pre-nucleolus PrN(v) over the pre-imputations set I 0(v)
is defined by

PrN(v) =
{

x ∈ I 0(v) | θ(x) ≤L θ(y) ∀ y ∈ I 0(v)
}

. (2.7)

The pre-nucleolus of any game v ∈ Gn is non-empty as well as unique, and it is referred to as ν(v) if the

game context is clear from the contents or ν(N, v) otherwise.

3 A DUAL PRE-KERNEL REPRESENTATION

The concept of a Fenchel-Moreau generalized conjugation – also known as the indirect function of a char-

acteristic function game – was introduced by Martinez-Legaz (1996), and provides the same information as

the n-person cooperative game with transferable utility under consideration. This approach was success-

fully applied in Meinhardt (2013c) to give a dual representation of the pre-kernel solution of TU games

by means of solution sets of a family of quadratic objective functions. In this section, we review some

crucial results extensively studied in Meinhardt (2013c, Chap. 5 & 6) as the building blocks to investigate

the single-valuedness of the pre-kernel correspondence.

Theorem 3.1 (Martinez-Legaz (1996)). The indirect function π : Rn → R of any n-person TU game is a

non-increasing polyhedral convex function such that

(i) ∂π(x) ∩ {−1, 0}n 6= ∅ ∀x ∈ R
n,

(ii) {−1, 0}n ⊂ ⋃

x∈Rn ∂π(x), and

(iii) minx∈Rn π(x) = 0.

Conversely, if π : Rn → R satisfies (i)-(iii) then there exists an unique n-person TU game 〈N, v〉 having

π as its indirect function, its characteristic function is given by

v(S) = min
x∈Rn

{

π(x) +
∑

k∈S

xk

}

∀ S ⊂ N. (3.1)

According to the above result, the associated indirect function π : Rn → R+ is given by:

π(x) = max
S⊆N

{

v(S)−
∑

k∈S

xk

}

∀x ∈ R
n, (3.2)

whereas ∂π is the subdifferential of the function π. Hence, ∂π(x) is the set of all subgradients of π at x,

which is a closed convex set. A characterization of the pre-kernel in terms of the indirect function is due

to Meseguer-Artola (1997). Here, we present this representation in its most general form, although we

restrict ourselves to the the trivial coalition structure B = {N}.
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Proposition 3.1 (Meseguer-Artola (1997)). For a TU game with indirect function π, a pre-imputation

x ∈ I 0(v) is in the pre-kernel of 〈N, v〉 for the coalition structure B = {B1, . . . , Bl}, x ∈ PrK(v,B), if,

and only if, for every k ∈ {1, 2, . . . , l}, every i, j ∈ Bk, i < j, and some δ ≥ δ1(v,x), one receives

π(x i,j,δ) = π(x j,i,δ).

Meseguer-Artola (1997) was the first who recognized that based on the result of Proposition 3.1 a

pre-kernel element can be derived as a solution of an over-determined system of non-linear equations.

Every over-determined system can be equivalently expressed as a minimization problem. The set of global

minima coalesces with the pre-kernel set. For the trivial coalition structure B = {N} the over-determined

system of non-linear equations is given by







fij(x) = 0 ∀i, j ∈ N, i < j

f0(x) = 0
(3.3)

where, for some δ ≥ δ1(x, v),

fij(x) := π(x i,j,δ)− π(x j,i,δ) ∀i, j ∈ N, i < j, (3.3-a)

and

f0(x) :=
∑

k∈N

xk − v(N). (3.3-b)

To observe that the system above is over-determined one has to take into account that the differences fij
in the maximum surpluses are residuals which define the corresponding vector functions of the system of

non-linear equations. For the coalition structure B = {N}, we count in total n · (n− 1)/2 residuals. This

implies that the system must be over-determined, since we have (n · (n − 1)/2 + 1) non-linear vector

functions and only n unknown variables. Finally, notice that to any over-determined system an equivalent

minimization problem is associated such that the set of global minima coincides with the solution set of

the system. The solution set of such a minimization problem is the set of values for x which minimizes

the following function

h(x) :=
∑

i,j∈N
i<j

(fij(x))
2 + (f0(x))

2 ≥ 0 ∀x ∈ R
n. (3.4)

As we will notice in the sequel, this optimization problem is equivalent to a least squares adjustment. For

further details see Meinhardt (2013c, Chap. 6).

Corollary 3.1 (Meinhardt (2013c)). For a TU game 〈N, v〉 with indirect function π, it holds that

h(x) =
∑

i,j∈N
i<j

(fij(x))
2 + (f0(x))

2 = min
y∈I0(v)

h(y) = 0, (3.5)

if, and only if, x ∈ PrK(v).

Proof. To establish the equivalence between the pre-kernel set and the set of global minima, we have to

notice that in view of Theorem 3.1 0 = miny h is in force. Now, we prove necessity while taking a pre-

kernel element, i.e. x ∈ PrK(v), then the efficiency property is satisfied with f0(x) = 0 and the maximum
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surpluses sij(x, v) must be balanced for each distinct pair of players i, j, implying that fij(x) = 0 for all

i, j ∈ N, i < j and therefore h(x) = 0. Thus, we are getting x ∈ M(h). To prove sufficiency, assume

that x ∈M(h), then h(x) = 0 with the implication that the efficiency property f0(x) = 0 and fij(x) = 0
must be valid for all i, j ∈ N, i < j. This means that the difference fij(x) = (π(xi,j,δ) − π(xj,i,δ))
is equalized for each distinct pair of indices i, j ∈ N, i < j. Thus, x ∈ PrK(v). It turns out that the

minimum set coincides with the pre-kernel, i.e., we have:

M(h) = {x ∈ I 0(v) | h(x) = 0} = PrK(v), (3.6)

with this argument we are done.

Corollary 3.1 gives an alternative characterization of the pre-kernel set in terms of a solution set. Sin-

gling out a pre-kernel element by solving the above minimization problem is, for instance, possible by

a modified Steepest Descent Method. However, a direct method is not applicable. This is due to fact

that the objective function h is the difference of two convex functions and that due to Theorem 3.1 the

indirect function π is a non-increasing polyhedral convex function. This implies that function h is not

continuous differentiable everywhere and that its structural form is ambiguous. Nevertheless, Proposi-

tion 6.2.2 (c.f. Meinhardt (2013c)) characterizes the objective function h as the composite of a finite

family of quadratic functions. In the sequel, we do not discuss the whole details which would go beyond

the scope of the paper, here we focus only on the aspect that the domain of function h can be partitioned

into payoff equivalence classes. On each payoff equivalence class a quadratic and convex function can

be identified. Pasting the finite collection of quadratic and convex functions together reproduces function

h. For a thorough and more detailed discussion of this topic, we refer the reader to Section 5.4 and 6.2

in Meinhardt (2013c).

To understand the structural form of the objective function h, we will first identify equivalence relations

on its domain. To start with, we define the set of most effective or significant coalitions for each pair of

players i, j ∈ N, i 6= j at the payoff vector x by

Cij(x) :=

{

S ∈ Gij









sij(x, v) = ev(S,x)

}

. (3.7)

This set determines all those coalitions of player i excluding the opponent j on which player i can rely

upon to ensure his claim in a bilateral bargaining situation in order to split the gains through mutual

cooperation. Gathering for all pair of player i, j ∈ N, i 6= j all these coalitions that support the claim of a

specific player over some other players, we have to consider the concept of the collection of most effective

or significant coalitions w.r.t. x, which we define as in Maschler et al. (1979, p. 315) by

C(x) :=
⋃

i,j∈N
i 6=j

Cij(x). (3.8)

Notice that this set generically has not cardinality one, and it might be too large to be suitable to identify

an equivalence relations on the domain of function h. In order to derive an equivalence relation on the

domain, we need to diminish this set while removing any form of ambiguity. By doing so, we rely on the

idea that a player who has the opportunity to rely on two allies of equal strength but of different sizes for

supporting his claim, has strong preference to the coalition with the smallest number of members, i.e. for

those where he has to convince the fewest to support his demand.
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From the set of most effective or significant coalitions of a pair of players i, j ∈ N, i 6= j at the payoff

vector x the smallest cardinality over the set of most effective coalitions is defined as

Φij(x) := min

{

|S|








S ∈ Cij(x)

}

. (3.9)

Gathering all these sets having smallest cardinality for all pairs of players i, j ∈ N, i 6= j, we end up with

Ψij(x) :=

{

S ∈ Cij(x)


Φij(x) = |S|
}

. (3.10)

For selecting a set from the collection of coalitions of equal size, we refer to the concept of a lexicograph-

ical order. Now, examine two coalitions having the same cardinality, namely coalition S := {i1, . . . , iq}
and T := {j1, . . . , jq} with 2 ≤ q ≤ n − 1, coalition S is lexicographically smaller than coalition T if

there is some integer k with 1 ≤ k ≤ q such that

il = jl for 1 ≤ l < k, and ik < jk.

This relation will be denoted by S <L T .

With respect to an arbitrary payoff vector x, the set of coalitions of smallest cardinality Ψij(x) which

is minimized w.r.t. the lexicographically order <L is determined by

Sij(x) :=

{

S ∈ Ψij(x)









S <L T for all S 6= T ∈ Ψij(x)

}

∀i, j ∈ N, i 6= j. (3.11)

We call this set, the lexicographically smallest most effective coalitions w.r.t. x of pair i, j ∈ N, i 6=
j. This set is well defined and possesses cardinality one, i.e. |Sij(x)| = 1, which allows us to single

out an unique coalition for this specific pair of players at x. Then we are able to specify the set of

lexicographically smallest most effective coalitions w.r.t. x through

S(x) :=

{

Sij(x)









i, j ∈ N, i 6= j

}

. (3.12)

This set will be indicated in short as the set of lexicographically smallest coalitions or just more suc-

cinctly most effective coalitions whenever no confusion can arise. Notice that this set is never empty

and can uniquely be identified. This implies that the cardinality of this set is equal to n · (n − 1). In the

following we will observe that from these type of sets equivalence relations on the domain domh can be

identified.

To see this, consider the correspondence S on domh and two different vectors, say x and ~γ, then

both vectors are said to be equivalent w.r.t. the binary relation ∼ if, and only if, they induce the same

set of lexicographically smallest coalitions, that is, x ∼ ~γ if, and only if, S(x) = S(~γ). In case that the

binary relation ∼ is reflexive, symmetric and transitive, then it is an equivalence relation and it induces

equivalence classes [~γ] on domh which we define through

[~γ] :=

{

x ∈ dom h









x ∼ ~γ

}

. (3.13)

Thus, if x ∼ ~γ, then [x] = [~γ], and if x ≁ ~γ, then [x] ∩ [~γ] = ∅. This implies that whenever the binary

relation ∼ induces equivalence classes [~γ] on domh, then it partitions the domain domh of the function

h. The resulting collection of equivalence classes [~γ] on domh is called the quotient of domh modulo

∼, and we denote this collection by domh/ ∼. We indicate this set as an equivalence class whenever the

context is clear, otherwise we apply the term payoff set or payoff equivalence class.
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Proposition 3.2. The binary relation ∼ on the set domh defined by x ∼ ~γ ⇐⇒ S(x) = S(~γ) is an

equivalence relation, which forms a partition of the set domh by the collection of equivalence classes

{[~γk]}k∈J , where J is an arbitrary index set. Furthermore, for all k ∈ J , the induced equivalence class

[~γk] is a convex set .

Proof. For a proof see Meinhardt (2013c, p. 59).

The cardinality of the collection of the payoff equivalence classes induced by a TU game is finite

(c.f. Meinhardt (2013c, Proposition 5.4.2.)). Furthermore, on each payoff equivalence class [~γ] from

the domh an unique quadratic and convex function can be identified. Therefore, there must be a finite

composite of these functions that constitutes the objective function h. In order to construct such a quadratic

and convex function suppose that ~γ ∈ [~γ]. From this vector we attain the collection of most effective

coalitions S(~γ) in accordance with Proposition 3.2. Then observe that the differences in the values between

a pair {i, j} of players are defined by αij := (v(Sij) − v(Sji)) ∈ R for all i, j ∈ N, i < j, and α0 :=
v(N) > 0 w.r.t. S(~γ). All of these q-components compose the q-coordinates of a payoff independent

vector ~α, with q =
(

n
2

)

+ 1. A vector that reflects the degree of unbalancedness of excesses for all pair of

players, is denoted by ~ξ ∈ R
q, that is a q-column vector, which is given by

ξij := ev(Sij , ~γ)− ev(Sji, ~γ) = v(Sij)− γ(Sij)− v(Sji) + γ(Sji) ∀ i, j ∈ N, i < j,

= v(Sij)− v(Sji) + γ(Sji)− γ(Sij) = αij + γ(Sji)− γ(Sij) ∀ i, j ∈ N, i < j,

ξ0 := v(N)− γ(N) = α0 − γ(N).

(3.14)

In view of Proposition 3.2, all vectors contained in the equivalence class [~γ] induce the same set S(~γ), and

it holds

ξij := ev(Sij , ~γ)− ev(Sji, ~γ) = sij(~γ, v)− sji(~γ, v) =: ζij ∀ i, j ∈ N, i < j. (3.15)

The payoff dependent configurations ~ξ and ~ζ having the following interrelationship outside its equivalence

class: ~ξ 6= ~ζ for all y ∈ [~γ]c. Moreover, equation (3.15) does not necessarily mean that for ~γ ′, ~γ∗ ∈
[~γ], ~γ ′ 6= ~γ∗, it holds ~ξ ′ = ~ξ∗. Hence, the vector of (un)balanced excesses ~ξ is only equal with the vector

of (un)balanced maximum surpluses ~ζ if the corresponding pre-imputation ~γ is drawn from its proper

equivalence class [~γ].

In addition, we write for sake of simplicity that Eij := (1Sji
− 1Sij

) ∈ R
n, ∀i, j ∈ N, i < j, and

E0 := −1N ∈ R
n. Combining these q-column vectors, we can construct a (n×q)-matrix in R

n×q referred

to as E, and which is given by

E := [E1,2, . . . ,En−1,n,E0] ∈ R
n×q

. (3.16)

Proposition 3.3 (Quadratic Function). Let be 〈N, v〉 a TU game with indirect function π, then an arbitrary

vector ~γ in the domain of h, i.e. ~γ ∈ domh, induces a quadratic function:

hγ(x) = (1/2) · 〈 x,Qx 〉+ 〈 x,a 〉+ α x ∈ domh, (3.17)

where a is a column vector of coefficients, α is a scalar and Q is a symmetric (n× n)-matrix with integer

coefficients taken from the interval [−n · (n− 1), n · (n− 1)].

Proof. The proof is given in Meinhardt (2013c, pp. 66-68).
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By the above discussion, the objective function h and the quadratic as well as convex function hγ
of type (3.17) coincide on the payoff set [~γ] (c.f. Meinhardt (2013c, Lemma 6.2.2)). However, on the

complement [~γ]c it holds h 6= hγ .

Proposition 3.4 (Least Squares). A quadratic function hγ given by equation (3.17) is equivalent to

〈 ~α+E⊤ x, ~α+E⊤ x 〉 = ‖ ~α+E⊤ x ‖2. (3.18)

Therefore, the matrix Q ∈ R
n2

can also be expressed as Q = 2 · E E⊤, and the column vector a as

2 ·E ~α ∈ R
n. Finally, the scalar α is given by ‖~α‖2, where E ∈ R

n×q,E⊤ ∈ R
q×n and ~α ∈ R

q.

Proof. The proof can be found in Meinhardt (2013c, pp. 70-71).

Realize that the transpose of a vector or a matrix is denoted by the symbols x⊤, and Q⊤ respectively.

Lemma 3.1. Let x, ~γ ∈ domh,x = ~γ + z and let ~γ induces the matrices E ∈ R
n×q,E⊤ ∈ R

q×n

determined by formula (3.16), and ~α, ~ξ ∈ R
q as in equation (3.14). If x ∈M(hγ), then

1. −E⊤ x = P ~α.

2. E⊤ ~γ = P (~ξ − ~α) = (~ξ − ~α).

3. −E⊤ z = P ~ξ.

In addition, let q :=
(

n
2

)

+1. The matrix P ∈ R
q2 is either equal to 2 ·E⊤Q−1E, if the matrix Q ∈ R

n2

is

non-singular, or it is equal to 2 ·E⊤Q†E, if the matrix Q is singular. Furthermore, it holds for the matrix

P that P 6= Iq and rankP ≤ n.

Proof. The proof is given in Meinhardt (2013c, pp. 80-81).

Notice that Q† is the Moore-Penrose or pseudo-inverse matrix of matrix Q, if matrix Q is singular.

This matrix is unique according to the following properties:

• QQ†Q = Q (general condition),

• Q†QQ† = Q† (reflexive condition),

• (QQ†)⊤ = Q†Q (normalized condition),

• (Q†Q)⊤ = QQ† (reversed normalized condition).

Proposition 3.5 (Orthogonal Projection Operator). Matrix P is idempotent and self-adjoint, i.e. P is an

orthogonal projection operator.

Proof. The proof can be found in Meinhardt (2013c, p. 86).

Lemma 3.2. Let E be a subspace of Rq with basis {e1, . . . , em} derived from the linear independent

vectors of matrix E⊤ having rank m, with m ≤ n, and let {w1, . . . ,wq−m} be a basis of W := E⊥. In

addition, define matrix E⊤ := [e1, . . . , em] ∈ R
q×m, and matrix W⊤ := [w1, . . . ,wq−m] ∈ R

q×(q−m),

then for any ~β ∈ R
q it holds

1. ~β = [E⊤ W⊤] · c where c ∈ R
q is a coefficient vector, and

2. the matrix [E⊤ W⊤] ∈ R
q×q is invertible.

Proof. For a proof see Meinhardt (2013c, pp. 90-91).
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Notice that E can be interpreted as indicating a vector subspace of balanced excesses. A pre-imputation

will be mapped into its proper vector subspace of balanced excesses E, i.e. the vector subspace induced

by the pre-imputation. However, the corresponding vector of (un)balanced excesses generated by this

pre-imputation is an element of this vector subspace of balanced excesses, if the pre-imputation is also a

pre-kernel point. Hence, the vector of balanced excesses coincides with the vector of balanced maximum

surpluses. This is a consequence of Lemma 3.1 or see Proposition 8.4.1 in Meinhardt (2013c). Otherwise,

this vector of unbalanced excesses will be mapped by the orthogonal projection P on E. More information

about the properties of this kind of vector subspace can be found in Meinhardt (2013c, pp. 87-113 and 138-

168).

Proposition 3.6 (Positive General Linear Group). Let {e1, . . . , em} as well as {e11, . . . , e1m} be two or-

dered bases of the subspace E derived from the payoff sets [~γ] and [~γ1], respectively. In addition, define the

associated basis matrices E⊤, E⊤
1 ∈ R

q×m as in Lemma 3.2, then the unique transition matrix X ∈ R
m2

such that E⊤
1 = E⊤X is given, is an element of the positive general linear group, that is X ∈ GL+(m).

Proof. The proof can be found in Meinhardt (2013c, p. 101).

Proposition 3.6 denotes two payoff sets [~γ] and [~γ1] as equivalent, if there exists a transition matrix X
from the positive general linear group, that is X ∈ GL+(m), such that E⊤

1 = E⊤X is in force. Notice

that the transition matrix X must be unique (c.f. Meinhardt (2013c, p. 102)). The underlying group action

(c.f. Meinhardt (2013c, Corollary 6.6.1)) can be interpreted that a bargaining situation is transformed into

an equivalent bargaining situation. For a thorough discussion of a group action onto the set of all ordered

bases, the interested reader should consult Meinhardt (2013c, Sect. 6.6).

The vector space R
q is an orthogonal decomposition by the subspaces E and NE. We denote in the

sequel a basis of the orthogonal complement of space E by {w1, . . . ,wq−m}. This subspace of Rq is

identified by W := NE = E⊥. In addition, we have Pwk = 0 for all k ∈ {1, . . . , q −m}. Thus, we can

obtain the following corollary

Corollary 3.2 (Meinhardt (2013c)). If ~γ induces the matrices E ∈ R
n×q,E⊤ ∈ R

q×n determined by

formula (3.16), then with respect to the Euclidean inner product, getting

1. R
q = E⊕W = E⊕ E⊥.

A consequence of the orthogonal projection method presented by the next theorem and corollary is

that every payoff vector belonging to the intersection of the minimum set of function hγ and its payoff

equivalence class [~γ] is a pre-kernel element. This due to hγ = h on [~γ].

Theorem 3.2 (Orthogonal Projection Method). Let ~γk ∈ [~γ] for k = 1, 2, 3. If ~γ2 ∈ M(hγ) and ~γk /∈
M(hγ) for k = 1, 3, then ~ζ2 = ~ξ2 = 0, and consequently ~γ2 ∈ PrK(v).

Proof. For a proof see Meinhardt (2013c, pp. 109-111).

Corollary 3.3 (Meinhardt (2013c)). Let be [~γ] an equivalence class of dimension 3 ≤ m ≤ n, and

x ∈M(hγ) ∩ [~γ], then ~α = P ~α, and consequently x ∈ PrK(v).

4 THE UNIQUENESS OF THE PRE-KERNEL

To study the uniqueness of the pre-kernel solution of a related TU game derived from a pre-kernel element

of a default game, we need to know: (1) if the linear mapping of a pre-kernel element into a specific

9
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vector subspace of balanced excesses E consists of a single point, and (2) that there cannot exist any other

non-transversal vector subspace of balanced excesses E1 in which a linear transformation of pre-kernel

element can be mapped. (3) It must be shown that the pre-kernel coincides with the pre-nucleolus of the

set of related games, otherwise, it is obvious that there must exist at least a second pre-kernel point, namely

the pre-nucleolus.

For conducting this line of investigation some additional concepts are needed. In a first step we intro-

duce the definition of a unanimity game, which is indicated by

uT (S) :=

{

1 T ⊆ S

0 otherwise,

whereas T ⊆ N,T 6= ∅, which forms a unanimity/game basis. A formula to express the coordinates of

this basis is given by

v =
∑

T⊂N,
T 6=∅

λvT uT ⇐⇒ λvT =
∑

S⊂T,
S 6=∅

(−1)t−s · v(S),

if 〈N, v〉, where |S| = s, and |T | = t. A coordinate λvT is said to be an unanimity coordinate of game

〈N, v〉, and vector λv is called the unanimity coordinates of game 〈N, v〉. Notice that we assume here that

the game is defined in R
2n−1 rather than R

2n , since we want to write for sake of convenience the game

basis in matrix form without a column and row of zeros. Thus we write

v =
∑

T⊂N,
T 6=∅

λvT uT = [u{1}, . . . ,u{N}]λ
v = U λv

where the unanimity basis U is in R
p′×p′ with p′ = 2n − 1. In addition, define the unity games (Dirac

games) 1T for all T ⊆ N by

1T (S) :=

{

1 if T = S,

0 otherwise.
(4.1)

In the next step, we select a payoff vector ~γ, which also determines its payoff set [~γ]. With regard to

Proposition 3.2, this vector induces in addition a set of lexicographically smallest most effective coalitions

indicated by S(~γ). Implying that we get the configuration ~α by the q-coordinates αij := (v(Sij) −
v(Sji)) ∈ R for all i, j ∈ N, i < j, and α0 := v(N). Furthermore, we can also define a set of vectors as

the differences of unity games (4.1) w.r.t. the set of lexicographically smallest most effective coalitions,

which is given by

vij := 1Sij − 1Sji for Sij , Sji ∈ S(~γ) and v0 := 1N , (4.2)

whereas vij ,v0 ∈ R
p′ for all i, j ∈ N, i < j. With these column vectors, we can identify matrix

V := [v1,2, . . . ,vn−1,n,v0] ∈ R
p′×q. Then we obtain ~α = V

⊤ v with v ∈ R
p′ due to the removed empty

set. Moreover, by the measure y(S) :=
∑

k∈S yk for all ∅ 6= S ⊆ N , we extend every payoff vector y

to a vector y ∈ R
p′ , and define the excess vector at y by ey := v − y ∈ R

p′ , then we get ~ξy = V
⊤ ey.

From matrix V
⊤, we can also derive an orthogonal projection PV specified by V

⊤ (V⊤)† ∈ R
q×q such

that Rq = V ⊕ V⊥ is valid, i.e. the rows of matrix V
⊤ are a spanning system of the vector subspace

V ⊆ R
q×q, thus V := span{v⊤

1,2, . . . ,v
⊤
n−1,n,v

⊤
0 }. Vector subspace V reflects the power of the set of

lexicographically smallest most effective coalitions. In contrast, vector subspace E reflects the ascribed

unbalancedness in the coalition power w.r.t. the bilateral bargaining situation attained at ~γ through S(~γ).
The next results show how these vector subspaces are intertwined.
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Lemma 4.1. Let E⊤ ∈ R
q×n be defined as in Equation (3.16), V⊤ ∈ R

q×p′ as by Equation (4.2), then

there exists a matrix Z⊤ ∈ R
p′×n such that E⊤ = V

⊤ Z⊤ if, and only if, RE⊤ ⊆ R
V

⊤ , that is, E ⊆ V.

Proof. The proof is given in Meinhardt (2013c, p. 141).

Notice that the minimal rank of matrix V
⊤ is bounded by E⊤ which is equal to m < n with the

consequence that we get in this case V = E. However, the maximal rank is equal to q, and then V = R
q

(c.f. Meinhardt (2013c, Corollary 7.4.1)).

Lemma 4.2. Let ~α, ~ξ ∈ R
q as in Equation (3.14), then the following relations are satisfied on the vector

space V:

1. PV ~α = ~α ∈ V

2. PV
~ξ = ~ξ ∈ V

3. PV (~ξ − ~α) = (~ξ − ~α) ∈ V

4. PVE
⊤ = PE⊤ = E⊤, hence E ⊆ V

5. PVP = P, hence E ⊆ V

6. EPV = EP = E, hence RE ⊆ V

7. PPV = P, hence E ⊆ V.

Proof. For a proof see Meinhardt (2013c, p. 142).

It was worked out by Meinhardt (2013c, Sect. 7.6) that a pre-kernel element of a specific game can

be replicated as a pre-kernel element of a related game whenever the non-empty interior property of the

payoff set, in which the pre-kernel element of default game is located, is satisfied. In this case, a full

dimensional ellipsoid can be inscribed from which some bounds can be specified within the game pa-

rameter can be varied without destroying the pre-kernel properties of the payoff vector of the default

game. These bounds specify a redistribution of the bargaining power among coalitions while supporting

the selected pre-imputation still as a pre-kernel point. Although the values of the maximum excesses have

been changed by the parameter variation, the set of lexicographically smallest most significant coalitions

remains unaffected.

Theorem 4.1 (Replication). If [~γ] has non-empty interior and x ∈ PrK(v) ⊂ [~γ], then x ∈ PrK(vµ) for

all µ · v∆ ∈ [−C,C]p
′
, where vµ = v + µ · v∆ ∈ R

p′ , µ ∈ R

C := min
i,j∈N,i 6=j

{








±
√
c̄

‖E⊤(1j − 1i)‖









}

, (4.3)

and 0 6= ∆ ∈ NW = {∆ ∈ R
p ′ | W∆ = 0} with matrix W := V

⊤
U.

Proof. The proof is given in Meinhardt (2013c, p. 156).

It was also shown there by some examples that the specified bounds by Theorem 4.1 are not tight, in

the sense that pre-kernel points belonging to the relative interior of a payoff set can also be the object of a

replication. However, pre-kernel elements which are located on the relative boundary of a payoff set are

probably not replicable. Therefore, there must exist a more general rule to reproduce a pre-kernel element

for a related game vµ.
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In the course of our discussion, we establish that the single pre-kernel element of a default game which

is an interior point of a payoff set is also the singleton pre-kernel of the derived related games. In a

first step, we show that there exists an unique linear transformation of the pre-kernel point of a related

game into the vector subspace of balanced excesses E. This means, there is no other pre-kernel element

in a payoff equivalence class that belongs to the same set of ordered bases, i.e. reflecting an equivalent

bargaining situation with a division of the proceeds of mutual cooperation in accordance with the pre-

kernel solution. Secondly, we prove that there cannot exist any other vector subspace of balanced excesses

E1 non-transversal to E in which a pre-kernel vector can be mapped by a linear transformation. That is,

there exists no other non-equivalent payoff set in which an other pre-kernel point can be located.

Lemma 4.3 (Meinhardt (2013c)). Let ~γ induces matrix E, then

(E⊤)† = 2 ·Q†E ∈ R
n×q.

Proof. Remind from Lemma 3.1 that P = 2 ·E⊤Q†E holds. In addition, note that we have the following

relation Q†Q = (E⊤)†E⊤ which is an orthogonal projection onto RE. Then attaining

2 ·Q†E = 2 ·Q†QQ†E = 2 · (E⊤)†E⊤Q†E

= (E⊤)†(2 ·E⊤Q†E) = (E⊤)†P = (E⊤)†.

The last equality follows from Lemma 4.2. This argument terminates the proof.

Proposition 4.1 (Meinhardt (2013c)). Let E⊤
1 = E⊤X with X ∈ SO(n), that is [~γ] ∼ [~γ1], and suppose

~α1 = V
⊤ vµ. In addition, assume that the payoff equivalence class [~γ] induced from TU game 〈N, v 〉

has non-empty interior such that {x} = PrK(v) ⊂ [~γ] is satisfied, then there exists no other pre-kernel

element in payoff equivalence class [~γ1] for a related TU game 〈N, vµ 〉, where vµ = v+µ · v∆ ∈ R
p′ , as

defined by Theorem 4.1.

Proof. By the way of contradiction suppose that x,y ∈ PrK(vµ) with y ∈ [~γ1] is valid. Then we get

hv
µ

(x) = hv
µ

γ (x) = ‖E⊤ x+ ~α‖2 = 0 and hv
µ

(y) = hv
µ

γ1 (y) = ‖E⊤
1 y + ~α1‖2 = 0,

implying that

P ~α = ~α ∈ E and P ~α1 = ~α1 ∈ E.

Hence, we have

P ~α− ~α = P ~α1 − ~α1 = 0 ∈ E ⇐⇒ P (~α− ~α1) = (~α− ~α1) ∈ E.

Therefore, obtaining the equivalent expression

E⊤ (X y − x) = (~α− ~α1) = V
⊤ v −V

⊤ (v + µ · v∆) = 0,

then x = X y, since matrix E⊤ has full rank due to {x} = PrK(v). Furthermore, notice that

〈x,y 〉 = 〈 (E⊤)† ~α, (E⊤
1 )

† ~α1 〉 = 〈 (E⊤)† ~α,X−1 (E⊤)† ~α 〉 = 〈 2Q†E ~α, 2X−1Q†E ~α 〉 6= 0

Matrix E⊤ has full rank, and Q is symmetric and positive definite, hence Q† = Q−1, and the above

expression can equivalently be written as

〈Q† a, X−1Q† a 〉 = 〈Q−1 a, X−1Q−1 a 〉 = 〈a,QX−1Q−1 a 〉
= 〈a, X1a 〉 = 〈a,a1 〉 6= 0,

(4.4)
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while using a = 2E ~α from Proposition 3.4, and with similar matrix X1 = QX−1Q−1 as well as

a1 = X1 a. According to E⊤
1 = E⊤X with X ∈ SO(n), we can write X = Q−1(2EE⊤

1 ). But then

X1 = QX−1Q−1 = Q (2EE⊤
1 )

−1.

Since we have X ∈ SO(n), it holds X−1 = X⊤ implying that

X⊤
1 = X−1 = (2EE⊤

1 )
−1Q = (2EE⊤

1 )Q
−1 = X⊤ = X−1

1 ,

which induces X = Q−1 (2EE⊤
1 ) = Q (2EE⊤

1 )
−1 = X1. Now, observe

X1 = QX−1Q−1 = QX⊤Q−1 = Q (2EE⊤
1 )Q

−1Q−1

= Q (2EE⊤X)Q−2 = Q2XQ−2,

hence, we can conclude that X = I implying X1 = I as well. We infer that x = y contradicting the

assumption x 6= y due to x ∈ [~γ], and y ∈ [~γ1]. With this argument we are done.

Proposition 4.2. Impose the same conditions as under Proposition 4.1 with the exception that X ∈
GL+(n), then there exists no other pre-kernel element in payoff equivalence class [~γ1] for a related TU

game 〈N, vµ 〉.

Proof. By the proof of Proposition 4.1 the system of linear equations E⊤ (X y − x) = 0 is consistent,

then we get x = X y by the full rank of matrix E⊤. By Equation 4.4 we obtain similar matrix X1 =
QX−1Q−1, hence the matrix X1 is in the same orbit (conjugacy class) as matrix X−1, this implies that

E⊤ = E⊤
1 X

−1 = E⊤
1 X1 must be in force. But then E⊤ = E⊤XX1, which requires that XX1 = I

must be satisfied in accordance with the uniqueness of the transition matrix X ∈ GL+(m) (c.f. Meinhardt

(2013c, p. 102)). In addition, we have a1 = X1 a as well as a1 = 2E1 ~α = X a. Therefore, we obtain

X a1 = a = X2 a. From this we draw the conclusion in connection with the uniqueness of the transition

matrix X that X = I is valid. Hence, x = y as required.

Proposition 4.3. Assume [~γ] ≁ [~γ1], and that the payoff equivalence class [~γ] induced from TU game

〈N, v 〉 has non-empty interior such that {x} = PrK(v) ⊂ [~γ] is satisfied, then there exists no other pre-

kernel element in payoff equivalence class [~γ1] for a related TU game 〈N, vµ 〉, where vµ = v + µ · v∆ ∈
R
p′ , as defined by Theorem 4.1.

Proof. We have to establish that there is no other element y ∈ PrK(vµ) such that y ∈ [~γ1] is valid,

whereas y /∈ PrK(v) in accordance with the uniqueness of the pre-kernel for game v. In view of Theo-

rem 4.1 the pre-kernel {x} = PrK(v) of game 〈N, v 〉 is also a pre-kernel element of the related game

〈N, vµ 〉, i.e. x ∈ PrK(vµ) with x ∈ [~γ] due to Corollary 3.2.

Extend the payoff element y to a vector y by the measure y(S) :=
∑

k∈S yk for all S ∈ 2n\{∅}, then

define the excess vector by eµ := vµ−y. Moreover, compute the vector of (un)balanced excesses ~ξ v
µ

at y

for game vµ by V
⊤
1 e

µ. This vector is also the vector of (un)balanced maximum surpluses, since y ∈ [~γ1],
and therefore h vµ = h vµ

γ1 on [~γ1] in view of Lemma 6.2.2 by Meinhardt (2013c). Notice that in order to

have a pre-kernel element at y for the related game vµ it must hold ~ξ v
µ
= 0. In addition, by hypothesis

[~γ] ≁ [~γ1], it must hold E⊤ = V
⊤ Z⊤ and E⊤

1 = V
⊤
1 Z⊤ in view of Lemma 4.1, thus E⊤

1 6= E⊤X for

all X ∈ GL+(n). This implies that we derive the corresponding matrices W := V
⊤
U and W1 := V

⊤
1 U,

respectively.

We have to consider two cases, namely ∆ ∈ NW ∩NW1
and ∆ ∈ NW\NW1

.
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1. Suppose ∆ ∈ NW ∩NW1
, then we get

~ξ v
µ

= V
⊤
1 e

µ = V
⊤
1 (vµ − y) = V

⊤
1 (v − y + µ · v∆) = V

⊤
1 (v − y) = V

⊤
1 e =

~ξ v 6= 0.

Observe that ~ξ v = V
⊤
1 (v − y) 6= 0, since vector y ∈ [~γ1] is not a pre-kernel element of game v.

2. Now suppose ∆ ∈ NW\NW1
, then

~ξ v
µ

= V
⊤
1 e

µ = V
⊤
1 (vµ − y) = V

⊤
1 (v− y+ µ · v∆) = V

⊤
1 e+ µ ·V⊤

1 v
∆ = ~ξ v + µ ·V⊤

1 v
∆ 6= 0.

Since, we have V
⊤
1 (v − y) 6= 0 as well as V

⊤
1 v

∆ 6= 0, and V
⊤
1 v

∆ cannot be expressed by

−V
⊤
1 (v−y) in accordance with our hypothesis. To see this, suppose that the vector ∆ is expressible

in this way, then it must hold

∆ = − 1

µ
(W1)

† ~ξ v.

However, this implies

W∆ = − 1

µ
W (W1)

† ~ξ v = − 1

µ
(V⊤

U) (V⊤
1 U)† ~ξ v = − 1

µ
V

⊤ (V⊤
1 )

† ~ξ v 6= 0.

This argument terminates the proof.

To complete our uniqueness investigation, we need to establish that the single pre-kernel element of

the default game preserves also the pre-nucleolus property for the related games, otherwise we can be sure

that there must exist at least a second pre-kernel point for the related game different form the first one. For

doing so, we introduce the following set:

Definition 4.1. For every x ∈ R
n, and ψ ∈ R define the set

Dv(ψ,x) := {S ⊆ N | ev(S,x) ≥ ψ} , (4.5)

and let B = {S1, . . . , Sm} be a collection of non-empty sets of N . We denote the collection B as

balanced whenever there exist positive numbers wS for all S ∈ B such that we have
∑

S∈B wS1S = 1N .

The numbers wS are called weights for the balanced collection B and 1S is the indicator function or

characteristic vector 1S : N 7→ {0, 1} given by 1S(k) := 1 if k ∈ S, otherwise 1S(k) := 0.

A characterization of the pre-nucleolus in terms of balanced collections is due to Kohlberg (1971).

Theorem 4.2. Let 〈N, v 〉 be a TU game and let be x ∈ I 0(v). Then x = ν(N, v) if, and only if, for every

ψ ∈ R,Dv(ψ,x) 6= ∅ implies that Dv(ψ,x) is a balanced collection over N.

Proof. For a proof see Peleg and Sudhölter (2007, pp. 108-109).

Theorem 4.3. Let 〈N, v 〉 be a TU game that has a singleton pre-kernel such that {x} = PrK(v) ⊂ [~γ],
and let 〈N, vµ 〉 be a related game of v derived from x, then x = ν(N, v µ), whereas the payoff equivalence

class [~γ] has non-empty interior.

Proof. By our hypothesis, x is an interior point of an inscribed ellipsoid with maximum volume ε :=
{y′ |hvγ(y′) ≤ c̄} ⊂ [~γ], whereas hvγ is of type (3.17) and c̄ > 0 (cf. Lemma 7.6.2 by Meinhardt (2013c)).

This implies by Theorem 4.1 that this point is also a pre-kernel point of game vµ, there is no change in set

of lexicographically smallest most effective coalitions S(x) under vµ. Moreover, matrix E⊤ induced from
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S(x) has full rank, therefore, the column vectors of matrix E⊤ are a spanning system of Rn. Hence, we

get span {1S |S ∈ S(x)} = R
n, which implies that the corresponding matrix [1S ]S∈S(x) must have rank

n, therefore collection S(x) is balanced (see Lemma 6.1.2 Peleg and Sudhölter (2007)). The vector x is

also the pre-nucleolus of the game v, therefore we can choose the largest ψ ∈ R s.t. ∅ 6= Dv(ψ,x) ⊆ S(x)
is valid, which is a balanced set. Moreover, we have µ · v∆ ∈ [−C,C]p

′
. Since C > 0, the set Dv(ψ −

2C,x) 6= ∅ is balanced as well. Now observe that ev(S,x) − C ≤ ev(S,x) + µ · v∆(S) ≤ ev(S,x) + C

for all S ⊆ N . This implies Dv(ψ,x) ⊆ S(x) ⊆ Dvµ(ψ−C,x) ⊆ Dv(ψ−2C,x), hence, Dvµ(ψ−C,x)
is balanced. Let c ∈ [−C,C], and from the observation limc↑0 Dvµ(ψ + c,x) = Dvµ(ψ,x) ⊇ Dv(ψ,x),
we draw the conclusion x = ν(N, v µ).

Theorem 4.4. Assume that the payoff equivalence class [~γ] induced from TU game 〈N, v 〉 has non-empty

interior. In addition, assume that game 〈N, v 〉 has a singleton pre-kernel such that {x} = PrK(v) ⊂ [~γ]
is satisfied, then the pre-kernel PrK(vµ) of a related TU game 〈N, vµ 〉, as defined by Theorem 4.1,

consists of a single point, which is given by {x} = PrK(vµ).

Proof. This result follows from Theorems 4.1, 4.3, and Propositions 4.2, 4.3.

Example 4.1. In order to illuminate the foregoing discussion of replicating a pre-kernel element consider

a four person average-convex but non-convex game that is specified by

v(N) = 16, v({1, 2, 3}) = v({1, 2, 4}) = v({1, 3, 4}) = 8,

v({1, 3}) = 4, v({1, 4}) = 1, v({1, 2}) = 16/3,

v(S) = 0 otherwise,

with N = {1, 2, 3, 4}. For this game the pre-kernel coalesces with the pre-nucleolus, which is given by

the point: ν(v) = PrK(v) = {44/9, 4, 32/9, 32/9}. Moreover, this imputation is even an interior point,

thus the non-empty interior condition is valid, hence by Theorem 4.1 a redistribution of the bargaining

power among coalitions can be attained while supporting the imputation {44/9, 4, 32/9, 32/9} still as a

pre-kernel element for a set of related games. In order to get a null space NW with maximum dimension

we set the parameter µ to 0.9. In this case, the rank of matrix W must be equal to 4, and we could derive

at most 11-linear independent games which replicate the element {44/9, 4, 32/9, 32/9} as a pre-kernel

element. Theorem 4.4 even states that this point is also the sole pre-kernel point, hence the pre-kernel

coincide with the pre-nucleolus for these games (see Table 4.1).

Table 4.1: List of Gamesd which possess the same unique Pre-Kernela as v
µ = 0.9

Game {1} {2} {1, 2} {3} {1, 3} {2, 3} {1, 2, 3} {4}

v 0 0 16/3 0 4 0 8 0

v1 18/49 32/95 127/24 -1/24 256/59 4/13 175/22 -1/24

v2 -9/25 21/38 89/16 11/48 231/58 42/71 385/47 11/48

v3 -14/45 -1/40 201/41 -28/65 39/11 -19/44 142/19 -28/65

v4 0 0 16/3 0 159/47 16/33 107/14 0

v5 0 0 16/3 0 149/40 -37/102 497/66 0

v6 0 0 16/3 0 4 -5/47 143/19 0

v7 0 0 16/3 0 4 -5/47 143/19 0

v8 0 0 16/3 0 149/40 -37/102 497/66 0

v9 0 0 16/3 0 149/40 -37/102 497/66 0

v10 0 0 16/3 0 4 -5/47 143/19 0

v11 0 0 16/3 0 4 -5/47 143/19 0

Continued on next page
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Table 4.1 – continued from previous page

µ = 0.9
Game {1, 4} {2, 4} {1, 2, 4} {3, 4} {1, 3, 4} {2, 3, 4} N ACV b ZM c

v 1 0 8 0 8 0 16 Y Y

v1 79/59 4/13 175/22 -4/57 792/95 10/33 16 N Y

v2 57/58 42/71 385/47 4/7 325/38 31/56 16 N N

v3 6/11 -19/44 142/19 -27/47 319/40 -29/55 16 N Y

v4 41/34 -3/46 428/53 7/34 8 14/25 16 N N

v5 203/120 2/41 167/19 -5/24 8 -9/19 16 N N

v6 1 23/29 139/16 0 8 18/31 16 N N

v7 1 -5/47 139/16 0 8 -8/25 16 N N

v8 19/24 2/41 71/9 83/120 8 26/61 16 N N

v9 19/24 2/41 71/9 -5/24 8 -9/19 16 N N

v10 1 -5/47 475/61 0 8 18/31 16 N N

v11 1 -5/47 475/61 0 8 -8/25 16 N N

a Pre-Kernel and Pre-Nucleolus: {44/9, 4, 32/9, 32/9}
b ACV: Average-Convex Game
c ZM: Zero-Monotonic Game
d Note: Computation performed with MatTuGames.

Notice that non of these 11-linear independent related games is average-convex. Only two games,

namely v1 and v3 are zero-monotonic and super-additive. Nevertheless, all games have a non-empty core

and are semi-convex. The cores of the games have between 16 and 24-vertices, and have volumes that

range from approximately 80 to 127 percent of the default core. TU game v2 has the smallest and v3 the

largest core.1 #

5 ON THE CONTINUITY OF THE PRE-KERNEL

In the previous section, we have established uniqueness on the set of related games. Here, we generalize

these results while showing that even on the convex hull comprising the default and related games in the

game space, the pre-kernel must be unique and is identical with the point specified by the default game.

Furthermore, the pre-kernel correspondence restricted on this convex subset in the game space must be

single-valued, and therefore continuous.

Define G(N) := {v ∈ Gn | v(∅) = 0} and

Gn
µ,v :=

{

vµ ∈ G(N) |µ · v∆ ∈ [−C,C]p
′
}

,

this set is the translate of a convex set by v, which is also convex and non-empty with dimension p′ −m′,

if matrix W has rank m′ ≤ q < p′. Then we can construct a convex set in the game space G(N) by taking

the convex hull of game v and the convex set Gn
µ,v, thus

Gn
c := conv {v,Gn

µ,v}.
Theorem 5.1. The pre-kernel PrK(vµ

∗
) of game vµ

∗
belonging to Gn

c is unique, and is equal to {x}.

Proof. Let be {x} = PrK(v) for game v. Take a convex combination of games in Gn
c , hence

vµ
∗
=

m
∑

k=1

tk ·vµk +tm+1 ·v =

m
∑

k=1

tk ·(v+µ ·v∆k )+tm+1 ·v = v+µ

m
∑

k=1

tk ·v∆k +µ tm+1 ·0 = v+µ ·v∆∗
,

1The example can be reproduced while using our MATLAB toolbox MatTuGames 2013b. The results can also be verified with

our Mathematica package TuGames 2013a.
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with v∆
∗
:=

∑m
k=1 tk · v∆k + tm+1 · 0, where 0 ≤ tk ≤ 1, ∀k ∈ {1, 2, . . . ,m + 1}, and

∑m+1
k=1 tk = 1.

Then µ v∆
∗ ∈ [−C,C]p

′
, thus the set of lexicographically smallest coalitions S(x) does not change. By

Theorem 4.1 the vector {x} = PrK(v) is also a pre-kernel element of game vµ
∗
. But then by Theorem 4.4

the pre-kernel of game vµ
∗

consists of a single point, therefore {x} = PrK(vµ
∗
).

Example 5.1. To see that even on the convex hull G4
c , which is constituted by the default and related

games of Table 4.1, a particular TU game has the same singleton pre-kernel, we choose the following

vector of scalars ~t = {1, 3, 8, 1, 2, 4, 3, 5, 7, 9, 2, 3}/48 such that
∑12

k=1 tk = 1 is given to construct by

the convex combination of games presented by Table 4.1 a TU game vµ
∗

that reproduces the imputation

{44/9, 4, 32/9, 32/9} as its unique pre-kernel. The TU game vµ
∗

on this convex hull in the game space

that replicates this pre-kernel is listed through Table 5.1:

Table 5.1: A TU Game vµ
∗

on the Convex Hull G4
c with the same singleton Pre-Kernel as v a,b

Game {1} {2} {1, 2} {3} {1, 3} {2, 3} {1, 2, 3} {4}

vµ
∗

-1/23 8/71 134/25 2/75 530/137 -8/157 1436/187 2/75

Game {1, 4} {2, 4} {1, 2, 4} {3, 4} {1, 3, 4} {2, 3, 4} N

vµ
∗

179/178 173/1125 1946/239 19/144 576/71 15/232 16

a Pre-Kernel and Pre-Nucleolus: {44/9, 4, 32/9, 32/9}
b Note: Computation performed with MatTuGames.

This game is neither average-convex nor zero-monotonic, however, it is again semi-convex and has a rather

large core with a core volume of 97 percent w.r.t. the core of the average-convex game, and 20 vertices in

contrast to 16 vertices respectively. #

Let X and Y be two metric spaces. A set-valued function or correspondence σ of X into Y is a rule that

assigns to every element x ∈ X a non-empty subset σ(x) ⊂ Y. Given a correspondence σ : X ։ Y, the

corresponding graph of σ is defined by

Gr(σ) := {(x, y) ∈ X× Y | y ∈ σ(x)} . (5.1)

Definition 5.1. A set-valued function σ : X ։ Y is closed, if Gr(σ) is a closed subset of X× Y

The graph of the pre-kernel PrK(v) is given by

Gr(PrK) :=
{

(v,x) | v ∈ Gn
c ,x ∈ I0(v), sij(x, v) = sji(x, v) for all i, j ∈ N, i 6= j

}

.

Similar, the graph of the solution set of function h of type (3.4) is specified by

Gr(M(h)) :=
{

(v,x) | v ∈ Gn
c ,x ∈ I0(v), hv(x) = 0

}

=
⋃

k∈J′

{

(v,x) | v ∈ Gn
c ,x ∈ [~γk], hvγk(x) = 0

}

=
⋃

k∈J′

Gr(M(hγk , [~γk])),

with J′ := {k ∈ J | g(~γk) = 0}. This graph is equal to the finite union of graphs of the restricted solution

sets of quadratic and convex functions hγk of type (3.17). The restriction of each solution set of function
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hγk to [~γk] is bounded, closed, and convex (cf. Meinhardt (2013c, Lemmata 7.1.3, 7.3.1)), hence each

graph Gr(M(hγk , [~γk])) from the finite index set J′ is bounded, closed and convex.

Proposition 5.1. The following relations are satisfied between the above graphs:

Gr(PrK) = Gr(M(hv)) =
⋃

k∈J′

Gr(M(hγk , [~γk])). (5.2)

Hence, the pre-kernel correspondence PrK : G(N) ։ R
N is closed and bounded.

Proof. The equality of the graph of the pre-kernel and the solution set of function h follows in view of

Corollary 3.1. Finally, the last equality is a consequence of Theorem 7.3.1 by Meinhardt (2013c). From

this argument boundedness and closedness follows.

Definition 5.2. The correspondence σ : X ։ Y is said to be upper hemi-continuous (uhc) at x if for every

open set O containing σ(x) ⊆ O it exists an open set Q ⊆ Y of x such that σ(x′) ⊆ O for every x′ ∈ Q.

The correspondence σ is uhc, if it is uhc for each x ∈ X.

Definition 5.3. The correspondence σ : X ։ Y is said to be lower hemi-continuous (lhc) at x if for every

open set O in Y with σ(x) ∩ O 6= ∅ it exists an open set Q ⊆ Y of x such that σ(x′) ∩ O 6= ∅ for every

x′ ∈ Q. The correspondence σ is lhc, if it is lhc for each x ∈ X.

Lemma 5.1 (Peleg and Sudhölter (2007)). Let X be a non-empty and convex polyhedral subset of Rp̃, and

Y ⊆ R
ñ. If σ : X ։ Y is a bounded correspondence with a convex graph, then σ is lower hemi-continuous.

Proof. For a proof see Peleg and Sudhölter (2007, pp. 185-186).

Theorem 5.2. The pre-kernel correspondence PrK : G(N) ։ R
N is on Gn

c upper hemi-continuous as

well as lower hemi-continuous, that is, continuous.

Proof. The non-empty set Gn
c is a bounded polyhedral set, which is convex by construction. We draw from

Proposition 5.1 the conclusion that the graph of the pre-kernel correspondence is bounded and closed.

Form Theorem 5.1 it follows | J′ | = 1 on Gn
c , this implies that the graph of the pre-kernel correspondence

is also convex on Gn
c . The sufficient conditions of Lemma 5.1 are satisfied, hence PrK is lower hemi-

continuous on Gn
c . It is known from Theorem 9.1.7. by Peleg and Sudhölter (2007) that PrK is upper

hemi-continuous on G(N). Hence, on the restricted set Gn
c , the set-valued function PrK is upper and

lower hemi-continuous, and therefore continuous. Actual, it is a continuous function on Gn
c in accordance

with | J′ | = 1.

Corollary 5.1. The pre-kernel correspondence PrK : G(N) ։ R
N is on Gn

c single-valued and constant.

Example 5.2. To observe that on the restricted set G4
c the pre-kernel correspondence PrK : G(N) ։ R

N

is single-valued and continuous, we exemplarily select a line segment in G4
c to establish that all games on

this segment have the same singleton pre-kernel. For this purpose, we resume Example 4.1 and 5.1. Then

we choose a vector of scalars ~tǫ := {1, 3, 8, 1, 2, 4 + ǫ, 3, 5, 7, 9, 2− ǫ, 3}/48 with tǫk ≥ 0 for each k such

that
∑11

k=0 t
ǫ
k = 1 and ǫ ∈ [−2, 2]. Thus, we define the line segment in G4

c through TU game vµ
∗

from

Example 5.1 by

G4,l
c :=

{ 11
∑

k=0

tǫk · vµk








vµk ∈ G4
c , ǫ ∈ [−2, 2]

}

.
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Therefore, for each game in the line segment G
4,l
c , we can write

vǫ :=
11
∑

k=1

tǫk · vµk + tǫ0 · v =

11
∑

k=1

tk · vµk + t0 · v +
ǫ

48
(vµ6 − vµ11) = vµ

∗
+

ǫ

48
(vµ6 − vµ11)

= v + µ · v∆∗
+
ǫ µ

48
(v∆6 − v∆11).

We extend the pre-kernel element x = {44/9, 4, 32/9, 32/9} to a vector x in order to define the excess

vector under game v as e := v − x, and for game vǫ as e v
ǫ
:= vǫ − x, respectively. According to these

definitions, we get for ~ζv
ǫ
= ~ξv

ǫ
at x the following chain of equalities:

~ξv
ǫ

= V
⊤ e v

ǫ

= V
⊤
(

v − x+ µ · v∆∗
+
ǫ µ

48
(v∆6 − v∆11)

)

= V
⊤ (v − x) = V

⊤ e = ~ξ = ~ζ = 0,

The last equality is satisfied, since x is the pre-kernel of game v. Recall that it holds µ v∆
∗
, µ v∆6 , µ v

∆
11 ∈

[−C,C]15, whereas V⊤ v∆
∗
= V

⊤ v∆6 = V
⊤ v∆11 = 0 is in force. Therefore, for each TU game vǫ ∈ G

4,l
c

we attain

PrK(vǫ) = {44/9, 4, 32/9, 32/9}.
The pre-kernel correspondence PrK is a single-valued and constant mapping on G

4,l
c . Hence its is contin-

uous on the restriction G
4,l
c , and due to Theorem 5.2 a fortiori on G4

c . #

6 PRESERVING THE PRE-NUCLEOLUS PROPERTY

In this section we study some conditions under which a pre-nucleolus of a default can preserve the pre-

nucleolus property in order to generalize the above results in the sense to identify related games with

an unique pre-kernel point even when the default game has not a single pre-kernel point. This question

can only be addressed with limitation, since we are not able to make it explicit while giving only sufficient

conditions under which the pre-kernel point must be at least disconnected, otherwise it must be a singleton.

However, a great deal of our investigation is devoted to work out explicit conditions under which the pre-

nucleolus of a default game will loose this property under a related game.

For the next result remember that a balanced collection B is called minimal balanced, if it does not

contain a proper balanced sub-collection.

Theorem 6.1. Let 〈N, v 〉 be a TU game that has a non unique pre-kernel such that x ∈ PrK(v), y = ν(v)
with x,y ∈ [~γ]v, and x 6= y is satisfied. In addition, let 〈N, vµ 〉 be a related game of v with µ 6= 0 derived

from x such that x ∈ PrK(vµ) ∩ [~γ]vµ , and y 6∈ [~γ]vµ holds. If the collection Sv(x) as well as its sub-

collections are not balanced,

1. then y 6∈ PrN(vµ).

2. Moreover, if in addition x = y 6∈ [~γ]vµ , then x 6∈ PrN(vµ).

Proof. The proof starts with the first assertion.

1. By our hypothesis, x is a pre-kernel element of game v and a related game vµ that is derived from

x. There is no change in set of lexicographically smallest most effective coalitions Sv(x) under

vµ due to x ∈ [~γ]vµ , hence Sv(x) = Sv
µ
(x). Moreover, we have µ · v∆ ∈ R

p′ . Furthermore, it

holds y = ν(v) by our assumption. Choose a balanced collection B that contains Sv(x) such that

B is minimal. Then single out any ψ ∈ R such that the balanced set Dv(ψ,y) satisfies Sv(x) ⊆
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B ⊆ Dv(ψ,y) 6= ∅. Now choose ǫ > 0 such that Dv(ψ,y) = Dv(ψ − 2 ǫ,y) is given. The set

Dv(ψ − 2 ǫ,y) is balanced as well. Observe that due to x ∈ [~γ]vµ we get µ · v∆(S) ≤ ǫ for all

S ⊂ N . However, it exists some coalitions S ∈ Sv(x) such that ev(S,y)−ǫ 6≤ ev(S,y)+µ ·v∆(S)
holds. Let c ∈ [−ǫ, ǫ], now as limc↑0 Dvµ(ψ+ c,y) = Dvµ(ψ,y) we have Dvµ(ψ,y) ⊆ Dv(ψ,y).
Furthermore, we draw the conclusion that Sv(x) 6⊆ Dvµ(ψ,y) is given due to Sv(x) = Sv(y) 6=
Sv

µ
(y). Therefore, we obtain Dvµ(ψ,y) ⊂ B ⊆ Dv(ψ−2 ǫ,y), but then the set Dvµ(ψ,y) can not

be balanced. Hence, y 6∈ PrN(vµ).

2. Finally, if x = y, then x is the pre-nucleolus of game v, but it does not belong anymore to payoff

equivalence class [~γ] under vµ, that is, [~γ] has shrunk. Therefore, Sv(x) 6= Sv
µ
(x). Define from the

set Sv(x) a minimal balanced collection B that contains Sv(x). In the next step, we can single out

any ψ ∈ R such that the balanced set Dv(ψ,x) satisfies Sv(x) ⊆ B ⊆ Dv(ψ,x) 6= ∅. In accordance

with x ∈ PrK(vµ), it must exist an ǫ > 0 within the maximum values can be varied without effecting

the pre-kernel property of x even when x 6∈ [~γ]vµ , thus we have µ · v∆(S) ≤ ǫ for all S ⊂ N . This

implies that Dv(ψ,x) ⊆ Dv(ψ − 2 ǫ,x) is in force. The set Dv(ψ − 2 ǫ,x) is balanced as well.

However, it exists some coalitions S ∈ Sv(x) such that ev(S,x) − ǫ 6≤ ev(S,x) + µ · v∆(S) is

valid. Let c ∈ [−ǫ, ǫ], now as limc↑0 Dvµ(ψ + c,x) = Dvµ(ψ,x) we have Dvµ(ψ,x) ⊆ Dv(ψ,x).
Furthermore, we draw the conclusion that Sv(x) 6⊆ Dvµ(ψ,x) is given due to Sv(x) 6= Sv

µ
(x).

Therefore, we obtain Dvµ(ψ,x) ⊂ B ⊆ Dv(ψ − 2 ǫ,x), but then the set Dvµ(ψ,x) can not be

balanced. Hence, x 6∈ PrN(vµ).

Theorem 6.2. Let 〈N, v 〉 be a TU game that has a non unique pre-kernel such that x ∈ PrK(v) ∩ [~γ],
{y} = PrN(v) ∩ [~γ1] is satisfied, and let 〈N, vµ 〉 be a related game of v with µ 6= 0 derived from x such

that x ∈ PrK(vµ) ∩ [~γ] holds. If ∆ ∈ NW\NW1
, then y 6∈ PrK(vµ) and a fortiori y 6∈ PrN(vµ).

Proof. From the payoff equivalence classes [~γ] and [~γ1] we derive the corresponding matrices W := V
⊤
U

and W1 := V
⊤
1 U, respectively. By assumption, it is ∆ ∈ NW\NW1

satisfied. From this argument, we

can express the vector of unbalanced excesses ~ξ v
µ

at y by

~ξ v
µ

= V
⊤
1 e

µ = V
⊤
1 (vµ − y) = V

⊤
1 (v − y + µ · v∆) = ~ξ v + µ ·V⊤

1 v
∆ = µ ·V⊤

1 v
∆ 6= 0.

Observe that ~ξ v = V
⊤
1 (v − y) = 0, since vector y ∈ [~γ1] is a pre-kernel element of game v. However,

due to ∆ ∈ NW\NW1
, we obtain V

⊤
1 v

∆ 6= 0, it follows that y 6∈ PrK(vµ). The conclusion follows that

y 6∈ PrN(vµ) must hold.

Theorem 6.3. Let 〈N, v 〉 be a TU game that has a non unique pre-kernel such that x ∈ PrK(v)\PrN(v)
and x ∈ [~γ]. If 〈N, vµ 〉 is a related game of v with µ 6= 0 derived from x such that x ∈ PrK(vµ) ∩ [~γ]
holds, then x 6∈ PrN(vµ).

Proof. According to our assumption x is not the pre-nucleolus of game v, this implies that there exists

some ψ ∈ R such that Dv(ψ,x) 6= ∅ is not balanced. Recall that the set of lexicographically smallest most

effective coalitions Sv(x) has not changed under vµ, since x is a pre-kernel element of game vµ which still

belongs to the payoff equivalence class [~γ]. Then exists a bound ǫ > 0 within the maximum surpluses can

be varied without effecting the pre-kernel property of x. Thus, we get Dv(ψ,x) = Dv(ψ − 2 ǫ,x) 6= ∅ is

satisfied. Then ev(S,x)− ǫ ≤ ev(S,x) + µ · v∆(S) ≤ ev(S,x) + ǫ for all S ⊆ N , therefore, this implies

Dvµ(ψ − ǫ,x) = Dv(ψ,x). The set Dvµ(ψ − ǫ,x) is not balanced, we conclude that x 6∈ PrN(vµ).
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Theorem 6.4. Assume that the payoff equivalence class [~γ] induced from TU game 〈N, v 〉 has non-empty

interior. In addition, assume that the pre-kernel of game 〈N, v 〉 constitutes a line segment such that

x ∈ PrN(v) ∩ ∂[~γ], PrK(v) ∩ [~γ1], and x ∈ PrK(vµ) ∩ [~γ] is satisfied, then the pre-kernel PrK(vµ) of a

related TU game 〈N, vµ 〉 with µ 6= 0 derived from x is at least disconnected, otherwise unique.

Proof. In the fist step, we have simply to establish that for game vµ the pre-imputations lying on the part of

line segment included in payoff equivalence class [~γ1] under game v will loose their pre-kernel properties

due to the change in the game parameter. In the second step, we have to show that the pre-nucleolus x

under game v is also the pre-nucleolus of the related game vµ.

1. First notice that the payoff equivalence class [~γ] has full dimension in accordance with its non-empty

interior condition. This implies that the vector x must be the sole pre-kernel element in [~γ] (c.f. with

the proof of Theorem 7.8.1 in Meinhardt (2013c)). By our hypothesis, it is even a boundary point

of the payoff equivalence class under game v. Moreover, it must hold [~γ] ≁ [~γ1], since the rank

of the induced matrix E⊤ is n, and that of E⊤
1 is n − 1, therefore, we have E⊤

1 6= E⊤X for all

X ∈ GL+(n).

In the next step, we select an arbitrary pre-kernel element from PrK(v)∩ [~γ1], say y. By hypothesis,

there exists a related game vµ of v such that x ∈ PrK(vµ) ∩ [~γ] holds, that is, there is no change

in matrix E and vector ~α implying hv
µ
(x) = hv

µ

γ (x) = 0. This implies that for game vµ the

payoff equivalence class [~γ] has been enlarged in such a way that we can inscribe an ellipsoid with

maximum volume ε := {y′ |hvµγ (y′) ≤ c̄}, whereas hv
µ

γ is of type (3.17) and c̄ > 0 (cf. Lemma

7.6.2 by Meinhardt (2013c)). It should be obvious that element x is an interior point of ε, since

x = M(hv
µ

γ ) ⊂ ε ⊂ [~γ]. We single out a boundary point x′ in ∂[~γ] under game vµ which was a

pre-kernel element under game v, and satisfying after the parameter change the following properties:

x′ ∈ ∂[~γ] ∩ [~γ1] with x′ = x + z, and z 6= 0. This is possible due to the fact that the equivalence

class [~γ] has been enlarged at the expense of equivalence class [~γ1], which has shrunk or shifted by

the change in the game parameter. Observe now that two cases may happen, that is, either x′ ∈ ε or

x′ /∈ ε. In the former case, we have hv
µ

γ (x′) = hv
µ
(x′) = hv

µ

γ1 (x
′) = c̄ > 0, and in the latter case,

we have hv
µ

γ (x′) = hv
µ
(x′) = hv

µ

γ1 (x
′) > c̄ > 0 = hv(x′) = hvγ1(x

′).

From hv
µ

γ1 (x
′) > 0 and notice that the vector of unbalanced excesses at x′ is denoted as ~ξ v

µ
, we

derive the following relationship

hv
µ

γ1 (x
′) = ‖ ~ξ vµ ‖2 = ‖ ~ξ v + µ ·V⊤

1 v
∆ ‖2 = ‖µ ·V⊤

1 v
∆ ‖2 = µ2 · ‖V⊤

1 v
∆ ‖2 > 0,

with µ 6= 0. Thus, we have V
⊤
1 v

∆ 6= 0, and therefore ∆ ∈ NW\NW1
. Observe that ~ξ v =

V
⊤
1 (v− x′) = 0, since vector x′ ∈ [~γ1] is a pre-kernel element of game v. Take the vector y ∈ [~γ1]

from above that was on the line segment as vector x′ under game v which constituted a part of the

pre-kernel of game v, we conclude that y 6∈ PrK(vµ) in accordance with V
⊤
1 v

∆ 6= 0.

2. By our hypothesis, x is the pre-nucleolus of game v, and an interior point of equivalence class

[~γ] of the related game vµ. Using a similar argument as under (1) we can inscribe an ellipsoid with

maximum volume ε, whereas hv
µ

γ is of type (3.17) and c̄ > 0. In accordance with the assumption that

x is also pre-kernel element of game vµ, we can draw the conclusion that the set of lexicographically

smallest most effective coalitions S(x) has not changed under vµ. But then, we have µ · v∆ ∈
[−C,C]p

′
. Moreover, matrix E⊤ induced from S(x) has full rank, therefore, the column vectors

of matrix E⊤ are a spanning system of Rn. Hence, we get span {1S |S ∈ S(x)} = R
n as well,

which implies that matrix [1S ]S∈S(x) has rank n, the collection S(x) must be balanced (c.f. Lemma

6.1.2 Peleg and Sudhölter (2007)). In accordance with vector x as the pre-nucleolus of game v,
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we can choose the largest ψ ∈ R s.t. ∅ 6= Dv(ψ,x) ⊆ S(x) is valid, which is a balanced set.

Since C > 0, the set Dv(ψ − 2C,x) 6= ∅ is balanced as well. Now observe that ev(S,x) − C ≤
ev(S,x) + µ · v∆(S) ≤ ev(S,x) + C for all S ⊆ N . This implies Dv(ψ,x) ⊆ S(x) ⊆ Dvµ(ψ −
C,x) ⊆ Dv(ψ − 2C,x), hence, Dvµ(ψ − C,x) is balanced. To conclude, let c ∈ [−C,C], and

from the observation limc↑0 Dvµ(ψ + c,x) = Dvµ(ψ,x) ⊇ Dv(ψ,x), we draw the implication

x = ν(N, v µ).

Finally, recall that the vector x is also the unique minimizer of function hv
µ

γ , which is an interior point

of payoff equivalence class [~γ], therefore the pre-kernel of the related game vµ cannot be connected.

Otherwise the pre-kernel of the game consists of a single point.

Corollary 6.1. Let 〈N, v 〉 be a TU game that has a non single-valued pre-kernel such that x ∈ PrN(v)∩
∂[~γ] and let 〈N, vµ 〉 be a related game of v derived from x, whereas x ∈ int [~γ]vµ , then x = ν(N, v µ).

7 CONCLUDING REMARKS

In this paper we have established that the set of related games derived from a default game with an unique

pre-kernel must also possess this pre-kernel element as its single pre-kernel point. Moreover, we have

shown that the pre-kernel correspondence in the game space restricted to the convex hull comprising the

default and related games is single-valued and constant, and therefore continuous. Although, we could

provide some sufficient conditions under which the pre-nucleolus of a default game – whereas the pre-

kernel constitutes a line segment – induces at least a disconnected pre-kernel for the set of related games, it

is, however, still an open question if it is possible to obtain from a game with a non-unique pre-kernel some

related games that have an unique pre-kernel. In this respect, the knowledge of more general conditions

that preserve the pre-nucleolus property is of particular interest.

Even though, we have not provided a new set of game classes with a sole pre-kernel element, we

nevertheless think that the presented approach is also very useful to bring forward our knowledge about

the classes of transferable utility games where the pre-kernel coalesces with the pre-nucleolus. To answer

this question, one need just to select boundary points of the convex cone of the class of convex games

to enlarge the convex cone within the game space to identify game classes that allow for a singleton pre-

kernel.
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