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Abstract

In this paper we develop models for multivariate financial bubbles and antibubbles based
on statistical physics. In particular, we extend a rich set of univariate models to higher
dimensions. Changes in market regime can be explicitly shown to represent a phase transition
from random to deterministic behaviour in prices. Moreover, our multivariate models are
able to capture some of the contagious effects that occur during such episodes. We are able
to show that declining lending quality helped fuel a bubble in the US stock market prior to
2008. Further, our approach offers interesting insights into the spatial development of UK
house prices.

1 Introduction

The analogy between financial crashes and phase transitions in critical phenomena in statistical
physics is now well established [1]-[2] and a large literature discusses the subject of log-periodic
precursors to financial crashes – see e.g. [3]-[10]. For a review see [11]-[12]. Despite their
origins in statistical physics log-periodic models have begun to appear in the mainstream finance
literature [12], [13]-[16]. Thus, having achieved an element of wider significance the subject is
simply too important to ignore.

Financial markets operate by balancing risk and return [17]. As discussed in [18]-[19] there is
a sense in which the prevailing class of log-periodic models omits a crucial second-order related
to market over-confidence. There is thus an interesting sense in which the academic literature
reflects wider market failings prior to the 2008 crisis [20]. Here, a better physical model leads
to a more elegant approach – one that in turn can be easily extended to higher dimensions.
In particular, in a multivariate setting we can show how correlation in the bubble/antibubble
process feeds through into observed prices.

Bubbles and anti-bubbles [21] are a core theme explored by log-periodic and related models
although a wide range of alternative applications are possible [19]. Multivariate bubbles have not
been widely studied and the area appears much under-explored. The ability to fit multivariate
bubble and antibubble models to data is significant and allows for a more systematic approach
in empirical applications. Multivariate models allow for the simultaneous tracking of multiple
markets. This is important as previous work has often studied different types of financial markets
[22]-[24] or multiple regional markets [25]. Multivariate models also allow us to study contagion
[26]-[27]. Our model is inherently practical in nature. In addition to the above our approach also
allows for empirical tests for bubbles and antibubbles and can also allow us to provide empirical
estimates for the level of over-pricing and the level of under-pricing.
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The empirical analyses in this paper are interesting and important in their own right. Firstly,
we are able to show that declining credit quality helped fuel a bubble in the US stock market.
Secondly, we apply our model to English house prices. Both applications and clear ramifications
for recent and on-going crises as the economic impact of house-price crashes can be particu-
larly severe [28]-[29]. In modelling the contagion in English house prices we can show that the
much-heralded North-South divide is indeed pronounced and may be under-stated by conven-
tional economic approaches [30]. English house prices appear to be dominated by the South
Eastern corner of the country (London, South East, Metropolitan and East Anglia regions) with
comparatively little evidence for contagion between neighbouring geographic regions.

The layout of this paper is as follows. Section 2 introduces a univariate model for bubbles
and antibubbles. This is then extended to multivariate and bivariate settings in Section 3.
Empirical applications are discussed in Section 4. Section 5 concludes.

2 A univariate bubble model

Markets work by balancing the level of risk and the rate of return. The level of risk and return
remain stable even in the face of technological innovation or an influx of new investors [31]. These
assumptions do not rely on complicated mathematics and avoid dubious assumptions such as the
“riskless hedge” of the Black-Scholes model [32]. Our model makes several observable predictions
for market crashes. Inter alia speculation-induced crashes are preceded by an unsustainable
super-exponential growth coupled with a detectable increase in market over-confidence.

Let Pt denote the price of an asset at time t and let Xt = log Pt. The set up of the model
is as follows:

Assumption 1 (Intrinsic Rate of Return) The intrinsic rate of return is assumed constant

and equal to µ:

E[Xt+∆ −Xt|Xt] = µ∆+ o(∆). (1)

Assumption 2 (Intrinsic Level of Risk) The intrinsic level of risk is assumed constant and

equal to σ2:

Var[Xt+∆ −Xt|Xt] = σ2∆+ o(∆). (2)

As in [1] our starting point is the equation

P (t) = P1(t)(1− κ)j(t), (3)

where P1(t) satisfies

dP1(t) =
[

µ(t) + σ2(t)/2
]

P1(t)dt+ σ(t)P1(t)dWt, (4)

where Wt is a Wiener process and j(t) is a jump process satisfying

j(t) =

{

0 before the crash
1 after the crash.

(5)

When a crash occurs κ% is automatically wiped off the value of the asset. Prior to a crash
P (t) = P1(t) and Xt = log(P (t)) satisfies

dXt = µ(t)dt+ σ(t)dWt − vdj(t), (6)
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where v = − ln[(1 − κ)] > 0.∗ Assumptions 1-2 show that crashes are outliers and can, in
principle, be predicted based on anomalous behaviour in the drift and volatility in equation (6).
In a bubble regime a representative investor is compensated for the crash risk by an increased
rate of return with µ(t) > µ the long-term rate of return. This is accompanied by a decrease in
the volatility function σ2(t) – a result which at first glance may appear counter-intuitive but, in
fact, represents market over-confidence [18]-[19].

Suppose that a crash has not occurred by time t. In this case we have that

E[j(t+∆)− j(t)] = ∆h(t) + o(∆), (7)

Var[j(t+∆)− j(t)] = ∆h(t) + o(∆), (8)

where h(t) is the hazard rate. Hence it follows from (21) and (7) that

µ(t)− vh(t) = µ; µ(t) = µ+ vh(t). (9)

Equation (9) thus returns the first-order model – namely that the rate of return must increase
in order to compensate a representative investor for the risk of a crash.

Second-order condition. This condition stipulates that in order for a bubble to develop a
rapid growth in prices is not sufficient in isolation. The perceived price risk must also diminish.
From equations (2) and (8) it follows that

σ2(t) + v2h(t) = σ2; σ2(t) = σ2 − v2h(t). (10)

Equation (10) thus describes a collective market over-confidence that arises as a result of the
bubble and leads to an under-estimation of the true long-term level of volatility. We note that
from a mathematical perspective equation (10) holds some wider significance [18] since it satisfies
a phase-transition condition delineating between random and deterministic behaviour in prices:

min
t

σ2(t) = 0. (11)

Post-crash increase in volatility. Further to the above discussion equation (10) also predicts
that volatility increases after the crash – in line with the predictions of several related models
(see e.g. [34]). Before the market crashes, in the bubble regime, we have that

σ̃2 = Var(Xt+∆|Xt) = ∆[σ2 − v2h(t)] + o(∆), (12)

whilst after the crash

Var(Xt+∆|Xt) = ∆[σ̃2 + v2h(t)] + o(∆). (13)

Equations (9-10) show that specification of the hazard function h(t) completes the model.
Equation (10) shows that an important feature of our model is that the hazard function remains
bounded. This is in order to ensure that σ2(t) remains non-negative. With this in mind, and
for computational reasons, we follow [18] in choosing

h(t) =
βtβ−1

αβ + tβ
. (14)

∗In the sequel we note that the case of an antibubble is the same basic model but with v replaced by −v
throughout [33].
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Equation (14) has fewer degrees of freedom than alternative specifications considered in [1] and
in several subsequent papers. This choice of hazard function also matches related modelling
and phenomenology of housing markets discussed in [35] which is of interest given the empirical
application of our model to English house prices in Section 4. Equation (14) corresponds to
a log-logistic model popular in mathematical statistics [36] which nevertheless captures the
essential aspects of previous approaches; the hazard function has a non-trivial modal point at
t = α(β − 1)1/β with modal point (β − 1)1−1/β/α.

As laid out above, our model can be used to empirically test for the presence of bubbles in
a given price series. However, the scope of our model extends further and also enables us to
estimate the speculative bubble component present within observed prices. Under fundamental
price dynamics with v = 0

PF (t) := E(P (t)) = P (0)eµ̃t, (15)

where µ̃ = µ+σ2/2. In empirical work we can use equation (15) to estimate fundamental value –
an approach which recreates the widespread phenomenology of approximate exponential growth
in economic time series [37]. Define

H(t) :=

∫ t

0
h(u) du. (16)

Under a speculative bubble, with v > 0, we have that

Xt∼N(X0 + µt+ vH(t), σ2t− v2H(t)). (17)

Hence, it follows from (17) that

PB(t) := E(P (t)) = P (0)e
µ̃t+

(

v− v2

2

)

H(t)
. (18)

Equations (15-18) lead to the following estimate of the speculative bubble component defined
as the average distance between fundamental and bubble prices:

Bubble Component = 1−
1

T

∫ T

0

PF (t)

PB(t)
dt

= 1−
1

T

∫ T

0

(

1 +
tβ

αβ

)−
(

v− v2

2

)

dt. (19)

Given plug-in estimates of α, β and v the integral in (19) can be calculated numerically. Equation
(19) should result in a fraction in (0, 1). In [38] this gave a value of 0.202 for UK house prices
over the years 2002-2007 suggesting that the bubble accounted for around 20% of observed prices
– closely matching a subsequent fall in UK house prices of around 20% in 2008-9.

An antibubble represents the mirror image of a speculative bubble [33]. Just as speculative
bubbles result in dramatic price rises antibubbles can result in dramatic price falls. Antibubbles
can be modelled by replacing v with −v in the above. In the case of an antibubble, analogous
reasoning leads to an estimate of the level of under-pricing. Define

PAB(t) := E(P (t)) = P (0)e
µ̃t−

(

v+ v2

2

)

H(t)
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It follows that

Antibubble Component = 1−
1

T

∫ T

0

PF (t)

PAB(t)
dt

= 1−
1

T

∫ T

0

(

1 +
tβ

αβ

)

(

v+ v2

2

)

dt. (20)

Similarly, (20) should yield a fraction in (−1, 0). E.g. a value of -0.1 would suggest that prices
are under-valued by roughly 10%.

3 The multivariate model

In this subsection we discuss multivariate models for bubbles. Thus we are able to describe the
price of more-than-one asset simultaneously. This is significant for empirical applications across
different countries [26]-[27]. Even within the same country regional differences, in housing and
other markets, can be pronounced.

Let Pt denote the prices (P 1
t , . . ., P

p
t ) of a basket of p assets at time t. Define Xt =

(X1
t , . . ., X

p
t ) where Xi

t = log P i
t . For the multivariate model Assumptions 1 and 2 are re-

placed by their vector/matrix analogues.

Assumption 1: [Intrinsic Rate of Return] The intrinsic rate of return is assumed constant
and equal to µ:

E[Xt+∆ −Xt|Xt] = µ∆+ o(∆). (21)

Assumption 2: [Intrinsic Level of Risk] The intrinsic level of risk is assumed constant and
equal to Σ:

Var[Xt+∆ −Xt|Xt] = Σ∆+ o(∆). (22)

Co-ordinatewise our starting equation (3) becomes

pi(t) = pi1(t)(1− κi)j(t) (23)

and before the crash Xt satisfies the vector-valued equation

dXt = µ(t)dt+
√

σ(t)dWt − vdj(t), (24)

where v is the diagonal matrix satisfying vii = − ln(1 − κi) = vi. Assumption 1 above yields a
vector-valued re-statement of equation (9):

µ(t)− vh(t) = µ; µ(t) = µ+ vh(t). (25)

Similarly, Assumption 2 shows that the second-order condition now becomes

Σ(t) + vΣjv
Th(t) = Σ; Σ(t) = Σ− vΣjv

Th(t). (26)

where Σj denotes the correlation matrix of j(t). Equation (26) thus shows how correlation in
the bubble process is transferred to prices prior to the crash. Genuinely high-dimensional and
multivariate models are possible though it seems that these may lose some interpretability. Since
bivariate models are by far the most convenient and natural to use in applications in the sequel
we restrict to a bivariate model.
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3.1 A bivariate bubble model

In a bivariate extension of the preceding univariate and multivariate models equation (24) be-
comes

dXt = µ(t)dt+
√

Σ(t)dWt − vdj(t), (27)

where Xt = (X1(t), X2(t))
T denotes the log-price of Assets 1 and 2 at time t, Σ(t) is the

instantaneous covariance and Wt is standard bivariate Brownian motion. Assumption 1 gives

µ1(t) = µ1 + v1h(t); µ2(t) = µ2 + v2h(t). (28)

Assumption 2 gives

Σ(t) =

(

σ2
1 σ12

σ12 σ2
2

)

−

(

v1 0
0 v2

)(

1 ρ
ρ 1

)(

v1 0
0 v2

)

h(t), (29)

=

(

σ2
1 σ12

σ12 σ2
2

)

−

(

v21 ρv1v2
ρv1v2 v21

)

h(t). (30)

In addition to equation (10) the phase-transition condition also gives

min
t

Σ(t) = 0; min
t

σ12 − ρv1v2h(t) = 0. (31)

Historical Estimation Bias. Equation (30) when taken together with equations (9-10) serve to
highlight possible dangers regarding historical estimation bias – an issue with specific relevance
to the CDO crisis (see e.g. [39]). We have already seen that during a bubble regime prices may
be rising at artificially high rates with comparatively little volatility compared to the underlying
long-term values. Equation (30) is also useful in highlighting that using historical prices in a
bubble regime may lead to under-diversified portfolios as a consequence of under-estimating
long-term correlation levels in returns series. If a crash occurs at time t0, in addition to an
increase in marginal volatility, the covariance of ∆X1(t0) and ∆X2(t0) increases by a factor of
ρv1v2h(t0) (from σ12 − ρv1v2h(t0) to its equilibrium value of σ12).

Contagion. The above discussion leads naturally to an empirical test for contagious effects
that arise as part of the bubble process. As discussed below this involves testing the hypothesis
shown in equation (35). Suppose we have two assets whose prices are given by eX(t) and eY (t).
Let ∆Xt = Xt+1 −Xt. Under the model (27) knowledge of Y (t) reduces uncertainty in X(t) by

Var[∆X(t)]−Var[∆X(t)|∆Y (t)] = Var[∆Xt]− (1− Cor2(∆Xt,∆Yt))Var[∆Xt]

= Cor2(∆Xt,∆Yt)Var[∆Xt]. (32)

Similarly, knowledge of X(t) reduces uncertainty in Y (t) by the amount

Var[∆Y (t)]−Var[∆Y (t)|∆X(t)] = Cor2(∆Xt,∆Yt)Var[∆Yt]. (33)

The constraints σ2
X(t)≥0 and σ2

Y (t)≥0 imply that

σ2
X =

v2X(β − 1)
1− 1

β

α
; σ2

Y =
v2Y (β − 1)

1− 1

β

α
. (34)
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Contagion from Y (t) to X(t) occurs if Y (t) is more informative about X(t) than X(t) is about
Y (t). From equations (32-33) contagion from Y (t) to X(t) occurs if

Cor2(∆Xt,∆Yt)Var[∆Xt] < Cor2(∆Xt,∆Yt)Var[∆Yt]

Var[∆Xt] < Var[∆Yt]

v2X

[

(β − 1)
1− 1

β

α
− ln

(

αβ + (t+ 1)β

αβ + tβ

)

]

< v2Y

[

(β − 1)
1− 1

β

α
− ln

(

αβ + (t+ 1)β

αβ + tβ

)

]

v2X < v2Y . (35)

Equation (35) is significant as it shows that contagion occurs as the overall bubble process
becomes dominated by price rises and speculation in Asset Y . Similarly in an antibubble con-
tagion from Y (t) to X(t) occurs as speculation that drives down the price of Y (t) becomes the
dominant effect.

4 Empirical applications

4.1 Multivariate bubbles

We illustrate our multivariate bubble models with an application to a data set consisting of the
S& P 500 and the Federal Funds Rate (FFR). The joint behaviour of US interest rates is much
studied [22]-[24] and is also of wider interest amid concern that loose US monetary policy has
inflated a succession of recent bubbles [24].

The FFR is the interest rate at which depositing institutions actively trade balances held
at the Federal Reserve. In particular, data published as the FFR effective rate represents the
weighted averaged across all such transactions. As the rate increases it becomes more expensive
for financial institutions to borrow funds. One feature of interest is whether or not the FFR
increases as a symptom of wider problems with credit worthiness. In a similar vein to the original
model in [1] increases in the FFR may compensate lending institutions for the Credit Risk that
they bear. It is well known that such structural problems and antibubbles in the underlying can
lead to dramatic increases and bubbles in the associated interest rates [19] – see the Appendix
for further details.

Following a similar approach in [23] we analyse weekly data from January 2003 to June 2007.
A plot of the S& P 500 and the FFR is shown below in Figure 1. Both series show a rapid growth
over time consistent with earlier suggestions of a bubble in both series. Results in Table 1 give
conclusive evidence of a bubble in both univariate series. This is subsequently confirmed by the
bivariate bubble model in Section 2.2. Further, the test for contagion in equation (35) suggests
evidence for contagion running from the FFR to the S& P 500. This would appear to confirm
similar findings of debt-fuelled bubbles in [24]. In the lead in to the crisis the FFR increased
as a symptom of generally decreasing credit quality in the wider financial system. This then
spilled over and led to an unsustainable bubble in the US stock market.

4.2 Multivariate antibubbles

We illustrate our multivariate models for antibubbles with an application to novel data on
English house prices. The data consists of house prices for 10 English regions obtained from
the Nationwide building society†. Nominal house prices are then re-scaled by a GDP deflator in

†
http://www.nationwide.co.uk/hpi/datadownload/data download.htm
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Figure 1: S& P 500 (solid lines) and Federal Funds Rate (FFR) (dashed lines).

order to translate nominal prices into real prices.
A plot of UK house prices over the period in question is shown below in Figure 2 and

suggests that the antibubble that started in 2008 has been particularly severe – especially once
we adjust house prices for inflation. Results shown in Table 2 below give strong statistical
evidence for an antibubble in each of the ten English regions. Table 3 shows the estimated size
of the antibubbles. In each region statistical evidence of an antibubble is accompanied by a
significant economic effect. The impact of the antibubble splits neatly along the north-south
divide – although results suggest that the East Midlands region, commonly identified as being in
the South of England economically [30], should in fact be seen as part of the North of England.
In the South of England house prices seem to have falled by around 1/3 in real terms. In the
North of England this figure appears closer to 20%.

Generally, the economy of the South of England over-shadows that of the North [30]. Results
in Table 4 show that English house prices tend to be dominated by the South Eastern corner
of England. Price falls in the South of England spillover and infect the North. Results in Table
4 give evidence for contagion running from London, Metropolitan, South East and East Anglia
to the East and West Midlands.Contagion is also found running from London to the North and
North West, from the South East to the North and from East Anglia to the North. Results also
appear consistent with evidence for a preceding housing bubble in UK house prices circa 1999-
2006 due in large part to speculation in house prices in the South of England [19]. In contrast,
there appears to be relatively limited evidence of contagion across neighbouring English regions.
This is not say that prices in neighbouring regions are independent. Generally, what have in
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Univariate bubble model

t-value p-value

S& P 500 162101.6 0.000
FFR 8.306 0.000

Test for contagion

t-value p-value

22.896 0.000

Table 1: Results for the statistical tests for bubbles
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Figure 2: English house prices 2008-2013

these cases is co-dependence rather than an asymmetric contagious effect.

5 Conclusions and further work

This paper has provided simple mathematical models for multivariate bubbles and antibubbles
adding to several recent developments in the area [18]-[19]. Bubbles occur as the price rises to
compensate a representative investor for the risk of a crash. Similarly, antibubbles occur as the
price decreases as compensation for the risk associated with a subsequent market correction. This
is accompanied in our second-order model by a detectable increase in market over-confidence
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Region t-value p-value

South West 11.245 0.000
London 6.975 0.000
Metropolitan 11.683 0.000
South East 9.048 0.000
East Anglia 7.726 0.000
West Midlands 8.348 0.000
East Midlands 8.597 0.000
North West 6.954 0.000
Yorkshire 5.152 0.000
North 10.066 0.000

Table 2: P -values testing the null hypotheses of no anti-bubble 2008-13

Region Estimated anti-bubble component

South West -0.334
London -0.322
Metropolitan -0.370
South East -0.334
East Anglia -0.336
West Midlands -0.232
East Midlands -0.262
North West -0.208
Yorkshire -0.214
North -0.238

Table 3: Estimated size of antibubbles by English region 2008-2013

SW L M SE EA WM EM NW Y N

SW · 0.404 0.513 0.543 0.433 0.058 0.193 0.168 0.536 0.055

L 0.404 · 0.422 0.394 0.853 0.020∗ 0.046∗ 0.037∗ 0.076 0.048∗

M 0.513 0.422 · 0.891 0.564 0.019∗ 0.046∗ 0.091 0.265 0.078

SE 0.543 0.394 0.891 · 0.581 0.025∗ 0.035∗ 0.078 0.209 0.045∗

EA 0.433 0.853 0.564 0.581 · 0.028∗ 0.032∗ 0.080 0.195 0.048∗

WM 0.058 0.020∗ 0.019∗ 0.025∗ 0.028∗ · 0.899 0.781 0.227 0.825

EM 0.193 0.046∗ 0.046∗ 0.035∗ 0.032∗ 0.899 · 0.870 0.427 0.630

NW 0.168 0.037∗ 0.091 0.078 0.080 0.781 0.870 · 0.359 0.633

Y 0.536 0.076 0.265 0.209 0.195 0.227 0.427 0.359 · 0.285

N 0.055 0.048∗ 0.078 0.045∗ 0.048∗ 0.825 0.630 0.633 0.285 ·

Table 4: P -values testing the null hypotheses of no pairwise contagion during the English housing
anti-bubble 2008-13
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akin to phase-transition behaviour in statistical physics [40]. Our model highlights a possible
issue with historical estimation bias. Relying on historical prices only may over-estimate gains
(losses) during a bubble (antibubble), may under-estimate the true level of long-term risk and
may also under-estimate long-term correlation levels potentially leading to under-diversified
portfolios.

Our multivaraite models allow for a more systematic approach in empirical applications such
as comparing multiple markets and evaluating contagion. Here, we can show that this leads to
empirical applications that are interesting and important in their own right. The interplay
between stock markets and the Federal Funds Rate (FFR) is interesting and important [22]-[24].
Firstly, we are able to show that a bubble in the FFR spills over and infects the US stock market
prior to the crash of 2008. This appears to tie in closely with recent suggestions that Federal
Reserve policy was directly responsible as a bubble inflated against the backdrop of decreasing
lending quality [24]. Secondly, we look at the English housing antibubble that occurred from
2008-13. Evidence is found that price falls in the South Eastern part of the country “infect” the
North. The often talked about North-South divide is clearly evident in English house prices.
Further, results suggest that the scale of the division has been under-stated by some conventional
economic approaches [30]. Allied to the above there appears to be relatively little evidence of
contagion across neighbouring regions.

The bubble and antibubble models discussed in this paper are potentially very rich. Addi-
tional applications include financial aspects of societal resilience [41], economic policy [42] and
market psychology and trading [43]. Future work will also explore additional links with the
model in [31].

Appendix: Antibubble-generated bubbles in bond yields

It is easy to show that an antibubble in the price of the underlying asset leads to a bubble in
the corresponding Bond yields [19]. Following the standard approach [44] write

P (t) = Me−y(t)T , (36)

where y(t) is the yield, T is the maturity date, M is the constant value of the bond at maturity
and P (t) is the price of the underlying asset. It follows that X(t) = lnP (t) satisfies

X(t) = lnM − y(t)T. (37)

Under the equation for an antibubble we have that

dXt = µ(t)dt+ σ(t)dWt + vdj(t), (38)

where

µ(t) = µ− vh(t),

σ2(t) = σ2 − v2h(t). (39)

Combining equations (37-39) it follows that the bond yields y(t) satisfy

dy(t) = −
µ(t)

T
dt+

σ(t)

T
dW ′

t −
v

T
dj(t), (40)

where W ′
t = −Wt. Thus it follows that (40) gives the formula for a speculative bubble since

W ′
t

d
= Wt.
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