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Abstract

In this paper we study a multi-stage elimination contest with non-sunk bids: differently from existing
literature, we realize that when players are budget-constrained, they do not regard past bids as strategically
irrelevant in their decision of how much to bid in following stages. This happens because they face a basic
trade-off when allocating scarce resources over stages. We believe that although non-sunk bids make the
analysis more complex, they allow to improve the quality of the modelization for many real scenarios, like
R&D contests and sport tournaments. In our simple two-stage framework with complete information and
asymmetric players, we find that: (i) there is a unique SPNE where in the first stage only the strongest
player bids positive, while forcing the others to bid zero; in the second stage shortlisted bidders play mixed
strategies, and the strongest player wins the game on average; (ii) relative ex-ante strengths of players
are relatively more important, in determining the outcome of the game, than their relative abilities of
allocating limited resources over the stages; (iii) the two-stage contest yields a lower expected revenue than
the one-stage one, due to the fact that the first stage yields basically no revenue and that shortlisting to the
second stage is inefficient. On the basis of these results, our elimination contest does not seem to be a very
advantageous allocation mechanism for the contest sponsor.
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1. Introduction

Many real world competitive scenarios can be modeled as contests, i.e., as games where agents

spend unrecoverable resources (typically money or effort) in order to win a prize. Immediate

examples of such kind of competitions are R&D contests, political lobbying, political campaigns,

job promotion tournaments, litigation, marketing by firms, sports races and wars.

Given the pervasiveness of contest-like strategic interactions in real life, a large body of economic

literature has been developed about contests. Starting from the seminal work by Tullock (1980),

early contributions mostly focused on single-stage contests (see Nitzan (1994) for a survey). More

recently, however, it has been acknowledged that many real contests are multi-stage in nature:

in many sport competitions, athletes first compete in preliminary rounds and then the best are

selected to compete in subsequent rounds; in R&D contests, firms need to spend resources in each

phase of the product development (e.g., solution exploration, prototyping, product testing); in

political competition, candidates for the country premiership need first to expend resources to get
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their party nomination and then incur additional expenses for the electoral campaign.

Therefore, a growing body of literature has been focusing on multi-stage contests, or elimination

contests, where in each stage a subset of contestants is shortlisted to compete in subsequent stages,

while the others are eliminated, and the final winner is the contestant who proceeds successfully

through all the stages (see e.g., Rosen (1986), Baye et al. (1993), Gradstein and Konrad (1999),

Amegashie (1999), Fullerton and McAfee (1999), Amegashie (2002), Stein and Rapoport (2005),

Moldovanu and Sela (2006), Matros (2006), Fu and Lu (2009), Groh et al. (2012)1.). Though

focusing on different strategic dimensions of elimination contests, all studies in this literature have

captured three basic features, namely that (i) all contestants incur non-recoverable costs regardless

of them winning or being selected through stages, (ii) the decisions in the different stages are

interdependent and (iii) the contestants selected at each stage are determined by some variant of

the contest function proposed by Tullock (1980)2(Stein and Rapoport (2005)).

However, there is another as well critical feature of many multi-stage contests which has mostly

been neglected in the literature, namely that contestants typically face a constraint on resources.

This aspect comes easily in mind when thinking about the examples mentioned above: in sport

races and tournaments players need to optimally allocate their energy between preliminary and

final rounds; in R&D contests firms need to carefully allocate resources over the different stages of

the R&D process; and candidates in political competitions need to distribute their budget between

primary elections and final campaigns.

From all these examples it clearly emerges that the presence of a cap on resources implies that

contestants face a fundamental trade-off when allocating scarce resources between early and later

stages of a contest: a player that spends little resources on early stages in order to save resources

for later stages, is likely to have a low performance at the beginning of the competition, thereby

risking to be eliminated early, but if she manages to get to later stages, she has a high probability

of winning in the end. On the other hand, a contestant that spends most resources in early stages,

is more likely to get successfully to later stages, but may risk to run out of resources before the

completion of the contest and consequently to lose in the end. Decisions that players make in early

stages will impact, drive and constraint decisions taken at later stages.

Also, the presence of this trade-off implies that the winner of the contest may not be the player

who has the largest budget at the beginning, but rather the player who is the ablest in allocating

scarce resources between stages.

However, despite its relevance, just a few contributions have explicitly considered the crucial role

of a constraint on resources in elimination contests (see Amegashie (1999), Amegashie (2002),

Stein and Rapoport (2005), Matros (2006)). Indeed, this limited literature well emphasized the

1Refer to Section 2 for a thorough review of the literature.
2Tullock (1980) assumed that a contestant’s probability of winning the contest equals the ratio between her own

effort and the sum of other contestants’ efforts, in order to capture the notion, common to many contests in practice,
that random factors, or “noise”, can play a role in determining the outcome of a contest.
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presence of the basic trade-off that we have just illustrated. Strangely enough, however, none of

these contributions realized that the interdependance between choices at different stages implies a

critical fact, namely that in each stage where a player is allowed to play, the total of the bids she

has spent until that stage cannot be considered as sunk, since they are not strategically irrelevant

in the decision of how much to bid in the following stages: past expenditures cap future possible

expenditures. Practically, this means that when solving a two-stage contest by backward induction,

one would need to embed in the player’s payoff function at the second stage also the bid that the

player made in the first stage. Instead, to the best of our knowledge, all contributions in the

relevant literature consider the bids paid in earlier stages as sunk, so that they do not appear in

the expression of the final payoff function.

Also, we believe that one does not need to explicitly embed in the model a budget constraint to

argue that players do face a cap on resources. Indeed, if contestants are to behave rationally, as

it is conventionally assumed in economic theory, they will never spend more than their valuation,

i.e., they will consider the value they assign to winning the prize as a “natural”cap on the total

effort that they are willing to exert in the contest.

Inspired by these considerations, in this paper we analyze an elimination contest where players are

rationally budget-constrained (in the sense explained above) and consider past bids as non-sunk

when determining how much to spend in each stage they will be allowed to play. In particular, we

model the competition in each stage as an all-pay auction where (i) all players who have survived

from the previous stage bid against all others, (ii) a given number of highest bidders is selected to

go to the subsequent stage, and (iii) all players forfeit their own bid 3.

Assuming non-sunk bids make the analysis much more complex. However, we think that our work

allows to improve the quality of the modelization for many real scenarios. For example, our multi-

stage all-pay auction with non-sunk bids provide a good modelization of R&D contests, capturing

in particular the strategic interaction between firms when they need to optimally allocate scarce

resources in a dynamic setting 4.

In the paper we analyze a simple two-stage model with complete information and asymmetric

players, and we find that notwithstanding the presence of the trade-off between stages, the relative

strengths of players are more important than their relative strategic abilities, in determining the

equilibrium outcome of the game: due to the information structure, the ex-ante strongest player

3The all-pay auction is a fully discriminatory contest, that is a limit case of the Tullock contest when there is
no noise at all and the outcome is completely determined by the effort exerted by players. All-pay auctions have
been studied both under complete and incomplete information. Basic references in the former strand are Hillman
and Samet (1987), Hillman and Riley (1989), Baye et al. (1993),Baye et al. (1996), Che and Gale (2003) and Siegel
(2009). Basic references to the latter are Hillman and Riley (1989), Amann and Leininger (1996), Krishna and
Morgan (1997), Moldovanu and Sela (2001), Moldovanu and Sela (2006) and Moldovanu et al. (2012).

4An example of such kind of R&D contests is an innovative practice of public procurement of R&D called Pre-
commercial Procurement (PCP), which has been recently introduced at the EU level. In PCP a number of firms
enter a R&D stepwise contest where competing projects are evaluated phase-by-phase and potential suppliers are
gradually eliminated (for a detailed account of PCP see European Commission (2007)).
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is always able to deter the other players from bidding positive in the first stage, so that she can

guarantee herself shortlisting with a very small outlay and save most resources for the second

stage. This implies that the first stage basically yields no revenue and that shortlisting to the

second stage is inefficient, so that the expected revenue from the two-stage all-pay auction is lower

than the one-stage one.

On the basis of these results, an elimination contest does not seem to be a very advantageous

practice for the contest sponsor. However, the current version of our model is simple so that more

work is needed to fully assess the performance of this mechanism.

Nevertheless, we believe that our work is indeed valuable insofar, by characterizing the equilibria

of an elimination contest with non-sunk bids, we have not only filled a gap in the literature, but we

have also hopefully inspired new reflection about the need to both exploit wisely the assumption

of rationality of economic agents, and to assess carefully and thoroughly whether costs in a given

dynamic decision problem are to be considered sunk or non-sunk, which is a relevant issue in many

fields of economics.

The rest of the paper is structured as follows: Section 2 discusses the relation to the literature;

Section 3 presents the model; Section 4 characterizes the equilibria; Section 5 concludes. All proofs

are in the Appendix.

2. Relation to the literature

The body of literature on elimination contests, to which this work contributes, is large and

various. The aim of this section is to review this literature, with a particular attention to assess

how the various sub-strands or single contributions behave with respect to three basic features,

i.e., (i) the way of modelling the shortlisting process, (ii) the objective of the analysis, whether

normative or positive, and (iii) the inclusion in the model of a constraint on resources. This will

help us to frame our work in the literature itself.

The bulk of the literature models the shortlisting process as follows: at each stage the remaining

contestants are divided into groups where subcontests or “battles” are run, and then the battle

winners compete again against each other in later stages (e.g., this is how shortlisting works in most

team sport tournaments). Also, most contributions study contests from a normative point of view,

adopting an optimal contest design perspective, that is they are aimed at identifying the set of

“rules” which lead to the most-favorable outcomes for the contest designer, i.e., most importantly,

total effort maximization. As stated in Gradstein and Konrad (1999) “contest design, that is the

set of rules that define the victorious contestant(s), clearly has incentive effects as far as the amount

of effort expended by the contestant goes”. In particular, studies belonging to this research agenda

address three main questions, i.e., (i) which is the optimal prize structure in contests, (ii) which

is the optimal seeding of players, i.e., the best way to match players in subcontests on the basis

of ability rankings - typically to avoid that the strongest competitors eliminate each other in early
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rounds, and (iii) which is the optimal structure of contests, i.e., the number of stages and the

number of contestants remaining at each stage.

The seminal paper to this literature, Rosen (1986), addresses the first two questions, studying

an elimination tournament with symmetric players where the probability of winning a match is

a stochastic function of effort, and finds that prizes should be increasing in survival in order for

players to exert a non-decreasing effort along the tournament, and that a random seeding yields

higher total effort than the seeding where strong players meet weak players in the semifinals.

Groh et al. (2012) consider an elimination tournament with asymmetric players where each pair-

wise match is modelled as an all-pay auction, and investigate the optimal seedings which are needed

to achieve the maximization of, respectively, the total tournament effort, the probability of a final

between the two strongest players, and the winning probability of the strongest player.

On the other hand, Gradstein and Konrad (1999) focus on the optimal structure issue and, studying

a Tullock contest with symmetric players, ask under which conditions it is better for the designer to

choose a multi-stage format rather than a single-stage one, thereby endogenizing the choice of the

contest structure. They find that a single-stage contest is preferable only when the contest rules

are discriminatory enough, i.e., when the effort exerted by contestants is relatively more important

than random factors in determining the outcome of the contest (like in an all-pay auction). Also

in this agenda, Amegashie (1999) models a two-stage Tullock contest with symmetric players, and

finds that the result that an increase in the sensitivity of the contest sponsor yields an increase

of exterted efforts, which was given as granted for one-stage contests, does not necessarily hold

in a multi-stage context. Other papers belonging to this line of research are Moldovanu and Sela

(2006) - who implement an analysis similar to Gradstein and Konrad (1999) but in an incomplete

information setting - and Gradstein (1998) and Amegashie (2000).

A recent development from this strand of literature analyzes the role of information revelation in

settings with incomplete information where players can signal and strategically misrepresent their

preferences. When important information is revealed in the interim stages of a game, the incentives

of players in earlier stages are altered, so that whether and to what extent it is optimal to reveal

information about players’ ability at a given stage of the game, is a fundamental aspect of contest

design, which is also relevant to many contests in practice. Contributions to this agenda are Lai

and Matros (2007), Zhang (2008) and Zhang and Wang (2009). These works typically investigate

symmetric separating Perfect Bayesian Equilibria under different revelation information policies,

and find that under revelation policies that allow for signalling effects, such kind of equilibria might

fail to exist, and that in fact less information revelation may lead to more efficient outcomes.

Typically, sub-strands and contributions we have reviewed so far do not consider the role of the

presence of a constraint on players’ bidding capacity.

Our work departs from the bulk of the literature along a number of dimensions 5.

5Another strand of literature that could be related to our work analyze multi-stage sequential all-pay auctions.
In this research agenda, initiated by Leininger (1991), multi-stage all-pay auctions are modelled as dynamic games
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First, we adopt a different modelization of shortlisting, namely that at each stage contestants do

not meet just a subset of remaining competitors, but they rather confront all the other survivors.

A few papers in the elimination contests literature adopt this kind of “all-against-all” shortlisting

method. This works typically investigate two-stage contests where a shortlisting stage (or entry

stage) is introduced by the designer before the proper contest stage, with the aim of inducing

efficient entry in the contest, i.e., selecting the players with the highest valuations to participate

in the contest. Higgins et al. (1985) study a two-stage contest where in the shortlisting stage

players decide with a mixed strategy whether to enter (and pay an entry free) or not, so that first

stage bids are exogenous, while the number of contestants to be shortlisted in the second stage

is endogenous and determined such that contestants’ expected profits are zero. Similarly, Baye

et al. (1993) analyze a political lobbying two-stage game where in the first stage the politician

decides to shortlist the potential lobbyists as to maximize rent-extraction. In another setting,

Fullerton and McAfee (1999) analyze a research tournament where an auction is used to shortlist

potential contestants for entry in the tournament, and show that for a large class of contests the

optimal number of finalists is two, and that while neither a first-price nor second-price format can

generally induce efficient entry, an all-pay auction amended to award a prize to all the entrants

can. In the context of indicative bidding, Ye (2007) analyzes a very similar game and reaches the

same conclusions. The “all-against-all” shortlisting method is also adopted by Fu and Lu (2009),

who investigate the effort-maximizing structure and prize allocation in multi-stage contests where

each stage is a multiple-winner multiple-loser nested Tullock contest - basically an extension of the

Tullock contest where in each stage a set of prizes is awarded to multiple winners (see Clark and

Riis (1996) and Clark and Riis (1998)).

A second point of divergence between our work and the bulk of literature is that we do not adopt

a normative perspective but rather a positive one.

In some of the aforementioned papers both the multi-stage and the all-pay features are introduced

to achieve efficient shortlisting, whereas in our model both features are a natural description of a

stepwise competition where all players forfeit their outlay. However, by no means we think that a

descriptive approach is superior to a normative one, which instead is extremely relevant in many

contexts. We rather think that a normative analysis should be complemented with a positive one

that detects the determinants of bidders’ behavior when they are not constrained by the designer’s

maximization problem.

A third major distinct feature of our analysis is that we consider the role of a constraint on resources

in elimination contests.

Despite the fact that in most real world contests players face a cap on resources, the literature has

where contestants enter the game sequentially (rather than simultaneously), as it is the case in many real contests
where contestants perform one after the other. Other contributions to this strand are Konrad and Leininger (2007)
and two very recent contributions by Segev and Sela (2011) and Segev and Sela (2012).
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mostly neglected this important aspect6. Just a handful of papers embed it explicitly in the analysis.

Amegashie (2002) analyzes a two-stage elimination contest and finds that when contestants face a

symmetric cap on total effort between stages, full “burning out” can happen in equilibrium, i.e., all

active players may find it optimal to spend all resources in the first-stage and be left with nothing

in the second stage 7. Notice that there are real-world phenomena where the contest designer may

find it convenient to impose symmetry between players, typically to handicap an ex ante stronger

player and ensure that the competition is balanced8.

Stein and Rapoport (2005) introduce a budget constraint in a two-stage contest very similar to the

one in Amegashie (1999) and find that as the rent increases, the ratio between second stage and

first stage expenditures is constant if the budget constraint is not binding, while it decreases non

linearly in the value of the rent if the constraint is binding. Last, Matros (2006) studies optimal

seeding in a multiple-round elimination tournament similar to the one in Rosen (1986), where

players face a fixed common budget constraint and the success function in each round is stochastic.

He finds that players always spend (weakly) more resources in the initial than in the following

rounds, since the expected payoffs are much higher in the first round than in subsequent rounds,

and that in order to ensure equal resource allocation in all rounds and maximize total effort, the

designer should implement the winner-takes-all prize scheme combined with an equal number of

players in each group.

In our model, we do consider the fact that players face a constraint on resources, but, differently

from the above contributions, we do not introduce explicitly a budget constraint. We rather

consider that if players are to behave rationally, as is it customarily assumed in economic models,

they will never let the sum of the outlays made through stages exceed their valuation, i.e. they

will consider the value they assign to winning the good as a natural cap on their total spending.

The important point that we share with this limited litertaure, however, is that when contestants

are (artificially or rationally) budget-constrained, a fundamental trade-off exists when allocating

resources over stages: the more resources a player spends in a particular stage the higher the chance

to get shortlisted to the next stage, but the lower the chance to get shortlisted in later stages and

eventually win.

However, strangely enough, the aforementioned works did not realize that the very presence of this

trade-off implies that at each given stage a player is allowed to bid, the total of the bids she has

spent until that stage cannot be considered as sunk, since they are not strategically irrelevant in

6For the role of effort caps in single-stage contests see Che and Gale (2003), where it is shown that if contestants
are asymmetric it is optimal to handicap the most efficient one, and Gavious et al. (2002) who endogenize the choice
of imposing a bid cap.

7Burning out is peculiar given that the prize arrives only if a contestant is successful in all stages including the last
stage. Contestants may expend all their effort in the first stage because if they do not peform well in the first-stage
they cannot go to the second stage. Besides the presence of a symmetric cap on aggregate effort, the other necessary
condition for burning out is that he contest success function is highy discriminatory.

8This is the rationale behind, for example, common salary caps in US professional sports.
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her decision of how much to bid in the following stages. When there is a constraint on resources,

expenditures made in earlier stages limit expenditures that can be done in later stages.

To the best of our knowledge the present paper is the first one in the literature to make this simple

but relevant point.

The only paper that somehow considered that outlays in early stages may play a role in later

stages, but with much different reasons with respect to ours, is Baik and Lee (2000). Motivated by

those real world cases where efforts made in early stages affect the outcomes of later stages (e.g.,

sport games where scores in qualification stages are carried over to the final stage and added to the

final-stage score), they study a two-stage Tullock contest with symmetric players, and consider the

effects on rent dissipation of allowing first-stage efforts to be partially “carried over” to the second

stage, i.e., first-stage efforts are (partially) taken into account in second-stage decision making.

3. The model

Consider that N risk-neutral players participate to a multi-stage contest organized as K con-

secutive all-pay auctions, where at each stage a given number of highest bidders is shortlisted to go

to subsequent stages, and the players who are shortlisted in all stages are awarded a prize. Also,

there is no minimum outlay required to enter the competition and the number of players to shortlist

at each stage can vary from one stage to the other, since the contest designer has discretion over

that.

Let us define the set of players N = {1, 2, ..., i, ..., N} and the set of stages K = {a, b, ..., k, ...,K},

with N ,K ⊂ N+
9. Players’ valuations for the prize are v1 ≥ v2 ≥ ... ≥ vN > 0, where vi is

the valuation of the i-th player, with vi ∈ R+, ∀i ∈ N . We assume complete information, that is

players know each other’s valuations.

We indicate with qk the number of players to be shortlisted at stage k, with k ∈ K, qk ∈ N+, so

that qK−1 is the number of final winners, i.e., players that are awarded a prize. We assume that

qk is exogenous, i.e., is determined and announced ex-ante by the contest sponsor.

Technically, each stage-auction is a multi-unit all-pay auction where units are “shortlisting tickets”

and each bidder demands one unit only 10. Each bidder allowed to play at k offers a non-negative

bid (effort) xki ∈ R+ ∪ {0} (the vector xk ∈ R
qk

+ ∪ {0} being the profile of actions taken by the

players who can play at k) and the qk highest bidders are awarded the qk shortlisting tickets to

stage k + 1, but all players pay their own bid.

We further define as the marginal bid at stage k, and indicate it with xk
(qk)

, the qk-highest bid, i.e.,

the stage-k bid of the last - or “weakest” - player who manages to get a ticket to stage k + 1, so

that shortlisted players have bids: xk(1) ≥ xk(2) ≥ ... ≥ xk
(qk)

. The bidder i such that xki = xk
(qk)

9In the following, the subscript indices will refer to players and the superscripts will refer to stages.
10We borrow the tickets analogy from previous works: Lai and Matros (2007) talk about “entry tickets” and Fu

and Lu (2009) about “tickets to the next stage”.
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is the marginal bidder at stage k 11. The bidders who bid below the marginal bid at stage k are

eliminated, while if a player bid exactly the marginal bid, two cases can occur:

“More tickets than marginal bidders” case: either there are no ties at the marginal bid or

the number of players tying at the marginal bid is lower or equal than the number of short-

listing tickets remaining after that players who have bid higher than the marginal bid have

already been shortlisted. In this case no tie-breaking is needed: all the players who tie at the

marginal bid will get shortlisted with certainty.

“More marginal bidders than tickets” case: the number of players tying at the marginal bid

is higher than the number of remaining shortlisting tickets. In this case tie-breaking is needed

and ties are broken uniformly at random so that player i has
# rem. tickets

mk probability of

getting shortlisted to stage k + 1, where mk is the number of players (included i) who tie at

the marginal bid in stage k.

The shortlisting process is depicted in Figure 3, where for each player bidding at a given stage, it

is indicated the bid which allowed her to get shortlisted to that stage.

Figure 1: The shortlisting process in the elimination contest

11We borrow this definition from Fullerton and McAfee (1999), with a slight difference: in their work “marginal
bidder” indicates the “first rejected bidder” rather than the “last accepted” one as in our case.
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For the sake of clarity, consider the following simple example. Suppose that there are 6 players

allowed to bid at a given stage and that a total of 4 shortlisting tickets are available for the next

stage. In this case the marginal bid is the fourth highest bid. Suppose that two players bid higher

than the marginal bid, one player bids lower and 3 players tie at the marginal bid. The high-bid

players get with certainty the ticket to the next stage, and the low-bid player is eliminated. The

number of tickets left is 2, but there are 3 players tying at the marginal bid, so that we are in

the “more marginal bidders than tickets” case. Tie-breaking is needed: the 3 players at the tie

have 2
3 probability each to get a ticket. Suppose instead that there are just two players tying at

the marginal bid, and two players bidding lower. In this case we are in the “more tickets than

marginal bidders” case and there is no need of tie-breaking: both players at the tie get the ticket

with certainty.

We define as the net valuation of player i who is shortlisted at stage k, and indicate it with NV k
i ,

player i’s valuation net of the sum of the bids she has made until stage k, i.e.,

NV k
i , vi −

k
∑

l=1

xli with NV k
i ∈ R ∀i ∈ N , k ∈ K (1)

Importantly, we assume that the total value each player rationally bids over stages cannot

exceed her valuation. As discussed in the previous sections, a player’s valuation, which represents

the maximum amount of resources the player is willing to spend for winning the prize, represents

a “natural” cap on the total effort each player can exert as a whole in the competition.

Therefore, the i-th player faces the following implicit budget (or effort) constraint :

K
∑

k=1

xki ≤ vi (2)

Notice that the maximum amount a player can spend at a given stage k is her net valuation at

stage k− 1, so that, relative to each stage k, we could rewrite the budget constraint of Equation 2

as:

xki ≤ NV k−1
i (3)

Obviously, if player i spends exactly her net valuation, xki = NV k−1
i , she will have no resources

left to spend from stage k + 1 onwords. Therefore it is clear that in each stage where a player is

allowed to play, the total of the bids she has spent until that stage are not sunk, since they are not

strategically irrelevant in her decision of how much to bid in following stages.

In game-theoretic terms, our multi-stage all-pay auction can be defined as an extensive game with

complete information and simultaneous moves 12. The game is described by the following elements:

12We use the same definition in Chapter 6 of Osborne and Rubinstein (1994).
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1. A set of players: N = {1, 2, ..., N}.

2. A set of histories: H =
{

hk, 0 ≤ k ≤ K
}

, where h0 is the empty sequence (i.e., ∅) and

hr = (xk)k=1,...,r with r ≤ K.

Each member of H is a history, i.e., a sequence of profiles of actions taken by players. A

history hr is terminal if r = K. The set of terminal histories is called Z. The set of actions

available for players after history hr is A(hr) = {xr+1 : (hr, xr+1) ∈ H}.

3. A function P that assigns to each non terminal history (each member of H\Z) a set of

members of N . P is called the player function, P(hr) being the set of players who take an

action after history hr:

P(h0) = {1, 2, ..., N} ,P(hr) =
{

i : xri ≥ xr(qr)

}

(4)

xr(1) > xr(2) > ... > xr(qr)
4. For each player i a preference relation �i on Z. These preferences are represented by the

payoff function of player i at the final stage K, i.e.,

Πi(h
K) =



















vi −
∑K

k=1 x
k
i , if {xKi > xK

(qK)
}or{xKi = xK

(qK)
and rem. tickets > ties}

vi
mK −

∑K
k=1 x

k
i , if {i ties at xK

(qK)
and ties > rem. tickets}

−
∑r

k=1 x
k
i (r ≤ K), otherwise

(5)

The payoff function above tells us that player i can end up in three situations: (i) if she makes

it to the final stage and offers a bid higher than the marginal bidder (which, at this stage, is the last

player who is awarded a prize), she “wins” (i.e., she is awarded a prize) with certainty. This also

happens if player i is the marginal bidder but either she does not tie with anyone, or the number of

ties is lower than the number of tickets left after the shortlisting of highest bidders (“more tickets

than marginal bidders” case). In both cases she gets a payoff equal to her valuation net of the sum

of all the bids she has made until the final stage; (ii) if player i ties with some other player(s) at

the marginal bid in the final stage and the number of ties is higher than the number of tickets left

(“more marginal bidders than tickets” case), she is awarded a prize only if she is selected by the

uniformly random tie-breaking mechanism, but the sum of the bids she made is a certain outlay;

(iii) if player i is eliminated before the final stage, or if she makes it but bids below the marginal

bid, she incurs a loss equal to the sum of the bids she has made until the last stage she has been

shortlisted in. Notice that the losses are greater the further the player is shortlisted through the

stages.

It is plausible to think that if player i expects to get either a negative or a zero payoff in the

game, she has no incentive to bid positive in any of the stages she will have a chance to bid in. In

particular, we impose the two following assumptions to hold in the model:
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Assumption 1 Players who bid zero in a given stage are allowed to be shortlisted to the next

stage. In fact, it can be the case that the marginal bid is zero so that players bidding (with or

without ties) at zero have a positive probability to get shortlisted. Therefore, unlike similar

models, bidding zero is not equivalent to stay out of the contest.

Assumption 2 Players who expect to get either a negative or a zero expected payoff always enter

the game and bid zero in all stages, as if they were not indifferent between staying out from

the contest and entering, even if expected payoffs are the same.

The first assumption could seem strong, however other works adopt similar ones. For example

Fu and Lu (2009) assume that if all contestants who participate in a round make zero effort, the

winner of that round is selected at random. We have used Assumption 1 in the current version of

the model, but we are currently working to amend the model so that zero bidders are no longer

allowed to get shortlisted. However, we do not expect our results to change significantly.

At this stage of work we consider the basic case were N = {1, 2, 3}, K = {a, b}, qa = 2 and qb = 1.

That is, there are three players and two stages, at the first stage two players are shortlisted and

at the end only one player wins (i.e., one prize only is awarded). The model can be extended to

the general case described above, and we plan to do that.

We analyze the case where players are asymmetric, i.e., have different valuations for the prize,

v1 > v2 > v3.

4. Characterization of equilibria

We solve the game by backward induction, looking for the complete set of Subgame Perfect

Nash Equilibria (SPNE), i.e., of triples of strategies (xa∗i , xb∗i ) ∀i ∈ {1, 2, 3}. Therefore, we first

look for the Nash Equilibria of the generic subgame after any possible (length-1) history ha, namely

the Stage-b all pay auction, and then, on the basis of continuation payoffs, we analyze the bidding

in Stage-a 13.

4.1. Stage-b all-pay auction

In Stage-b the two players who got shortlisted from Stage-a, that is players i, j : xai , x
a
j ∈

{xa(1), x
a
(2)}, bid again. Notice that since we are working backwards, we do not know the identity

of these players, so that we indicate them generically with i, j. The Stage-b (i.e., final) payoff

13For each h
a
∈ R

3
+ there is a subgame, so that there are infinite possible subgames.
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function of player i (analogously for j) is as follows:

Πi(h
b) =



















vi − xai − xbi , if xbi > xbj
vi
2 − xai − xbi , if xbi = xbj

−(xai + xbi), if xbi < xbj

(6)

The payoff function above tells that: (i) if shortlisted player i bids higher than the other

shortlisted player, she wins the prize with certainty and gets a payoff equal to her valuation net of

the sum of the bids she has made in the two stages; (ii) if i ties with the other player, the winner

of the prize is selected randomly but the the sum of the bids is a certain outlay for both; (iii) if i

bids lower than her opponent, she incurs a loss equal to the sum of the bids.

Notice that the Stage-a bid must be present in the Stage-b payoff since, as said, we do not consider

them as sunk. The Stage-a bid caps the maximum amount player i can spend in Stage-b, i.e.,

xbi ≤ vi − xai .

Aside from the indeterminacy of players who enter the subgame and the presence of the net

valuations in place of the standard valuations, the Stage-b subgame is analogous to a standard

one-stage two-player all-pay auction with complete information. It is well known that this kind

of auction does not have a Nash equilibrium in pure strategies, neither in the case where players

are asymmetric nor in the case with symmetric players, but, in both cases, it does have a Nash

equilibrium in mixed strategies (e.g., see Hillman and Samet (1987) for the symmetric case and

Hillman and Riley (1989) and Baye et al. (1996) for the asymmetric case.)

Notice that even if players are ex-ante asymmetric, i.e., they have different valuations, after bidding

in Stage-a they can become symmetric, in the sense that they can get the same net valuation.

Therefore, we should consider two different cases:

ex-ante asymmetric - ex-post asymmetric players (“asym-asym” case): shortlisted play-

ers have different net valuations: in this case we will denote by H the player who is shortlisted

to the Stage-b subgame with the higher net valuation, NVH = vH − xaH , and by L the player

who is shortlisted to Stage-b with the lower net valuation, NVL = vL−xaL, with H,L ∈ {i, j}

and NVH > NVL.

ex-ante asymmetric - ex-post symmetric players (“asym-sym” case): shortlisted players

have the same net valuations, NVi = NVj : in this case we will denote them by S and use

the notation NVS = vS − xaS , with S ∈ {i, j}. Notice that this case can only happen if

the ex-ante stronger between the shortlisted players made in Stage-a a higher bid than the

ex-ante weaker player. However, as we will see, the “asym-sym” case will never occur in the

SPNE.

The two following propositions characterize the equilibrium of the Stage-b game:

13



Proposition 1 (Existence of mixed strategy Nash equilibrium in the Stage-b all-pay auction)

1.1 No pure strategy equilibrium can exist in the subgame, neither in the “asym-asym” case nor

in the “asym-sym” case.

1.2 The equilibrium bid of each shortlisted player i in the Stage-b subgame is a random variable

with cumulative distribution function (CDF) Fi(x
b
i) which is continuous over (0,∞).

1.3 The support of the equilibrium CDF is the same ∀i and is [0, NVL] in the “asym-asym” case

and [0, NVS ] in the “asym-sym” case.

1.4 In equilibrium at most one agent bids zero with strictly positive probability.

Proof: In the Appendix 6.1.

Proposition 2 (Nash equilibrium of the Stage-b all-pay auction)

The Stage-b all-pay auction has one of two possible different asymmetric Nash equilibria in

mixed strategies, depending on which case occurs:

2.1 “asym-asym” case: If players got shortlisted with different net valuations, there is an unique

equilibrium where the player who got shortlisted with the higher net valuation (player H)

randomizes continuously over (0, NVL] according to the mixed strategy FH(xbH) =
xa
L
+xb

H

vL
,

and the player who got shortlisted with the lower net valuation (player L) randomizes contin-

uously over (0, NVL] according to the mixed strategy FL(x
b
L) =

NVH−NVL

vH
+

xa
H
+xb

L

vH
. Players’

equilibrium payoffs are respectively u∗H = NVH −NVL and u∗L = 0.

2.2 “asym-sym” case: If players got shortlisted with the same net valuation, there is an unique

equilibrium where both players i and j randomize continuously over (0, NVS ] according,

respectively, to mixed strategies Fi(x
b
i) =

xa
j+xb

i

vj
and Fj(x

b
j) =

xa
i +xb

j

vi
, and both get an equi-

librium payoff of zero, u∗S = 0 with S ∈ {i, j}.

Proof: In the Appendix 6.2.

Notice that each player’s equilibrium strategy, in both the “asym-asym” and the “asym-sym”

case, contains the Stage-a bid of the opponent: as we expected, given that in our model Stage-a

bids are not sunk, Stage-b equilibrium strategies take into account what happened in Stage-a.

Except for the presence of the Stage-a bids, the equilibrium strategies of the “asym-asym” case

are identical to the ones of the one-stage all-pay auction with asymmetric players (see Theorem

3 in Baye et al. (1996)). On the other hand, the equilibrium of the “asym-sym” case resembles

somehow the one of the one-stage all-pay auction with symmetric players (see Proposition 3 in

Hillman and Samet (1987)), insofar both players get a zero expected payoff; however, differently
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from the one-stage game, equilibrium strategies embed the Stage-a bids and also display player-

specific valuations at the denominator (obviously, given the ex-ante asymmetry between players).

Notice also that equilibrium payoffs are expressed in terms of net valuations, so that they take into

account Stage-a bids. Interpretation is that player L (in the “asym-asym” case) and player S (in

the “asym-sym” case), who get a zero expected continuation payoff, sometimes win and sometimes

lose so that, on average, they are able to exactly cover the sum of their outlays, whereas player

H (in the “asym-asym” case) is winning more often than losing, so that, on average, she is able

to more than cover the sum of her outlays. Also, notice that we cannot check yet whether the

equilibrium strategies respect requirement [1.4] in Proposition 1, since at this stage we do not

know the equilibrium values of Stage-a bids. As we shall see, such requirement is met in the SPNE

strategies.

Proposition 2 tells us something interesting: when players are ex-post asymmetric (“asym-asym”

case) the winner is, on average, the player who got shortlisted to Stage-b with the higher net valu-

ation, rather than the player with the original higher valuation (i.e., the ex-ante strongest player),

as it was the case in the equilibrium of the one-stage game. The intuition behind this result is

that when players have limited resources to allocate between stages, winning depends crucially not

only on the relative strengths of players, but also on how players allocate resources between the two

stages. However, we will see in the following that, due to the asymmetry between players, the

strongest player (i.e., player 1) has an advantage over the other players, so that in equilibrium she

will always be the player who gets shortlisted with the higher net valuation, and, consequently, will

have better chances to be the final winner. Instead, when players are ex-post symmetric (“asym-

sym” case), no player has an advantage, so that they have symmetric chances to be the final winner.

4.2. Stage-a all-pay auction

Now we go backward: given the continuation payoffs in Proposition 2, we ask what are the

optimal choices of players at Stage-a, i.e., after history h0.

Notice that xa(2) is the marginal bid at Stage-a, so that player i (with i = {1, 2, 3}) will get

shortlisted with certainty only if her Stage-a bid is greater than the marginal bid, or if she bids the

marginal bid but we are in the “more tickets than marginal bidders” case, which in this case means

that either xai = xaj > xak or xaj > xai > xak. Instead, if i ties with other players at the marginal

bid but we are in the “more marginal bidders than tickets” case, which in this case means that

either xaj > xai = xak (i.e., ma = 2) or xai = xaj = xak (i.e., ma = 3), ties will be uniformly broken at

random.
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Formally, the Stage-a payoff function of player i is as follows 14:

Πi(h
a) =



















u∗i , if {xai > xa(2)} or {xai = xaj > xak}or{x
a
j > xai > xak}

# rem. tickets
ma u∗i , if {xaj > xai = xak} or {xai = xaj = xak}

−xai , otherwise

(7)

where u∗i is the continuation payoff of player i in case she is shortlisted, such that:

u∗i =







0, if i = {L, S}

NVH −NVL, if i = H
(8)

Therefore, player i knows that: (1) if she is not shortlisted, she will incur a certain loss equal

to her Stage-a bid; (2) if she is shortlisted with NVL or NVS , she will get a zero expected payoff,

i.e., on average she will not be the final winner, while (3) if she is shortlisted with NVH , she will

get a positive expected payoff, i.e, on average she will be the final winner.

From Assumption 2 in Section 3 we have that players who expect to end up either in (1) or in (2)

always enter the game and bid zero in Stage-a, and from Assumption 1 in Section 3 we have that

players who bid zero in Stage-a have a chance to be shortlisted to Stage-b. On the other hand, if

player i expects to end up in (3), she will bid in Stage-a the lowest possible amount that allows

her to get shortlisted. From the discussion above it is clear that each player i’s optimal choice in

Stage-a is to make such a bid that allows her to get shortlisted with NVH . However, the presence

of an ex-ante asymmetry between bidders implies the following:

Proposition 3 (Advantage for ex-ante stronger players)

A player with a higher valuation has an “advantage” over a weaker player: if she underbids (at

limit, overlaps to) a bidder with a lower valuation, she will get shortlisted with NVH with certainty,

provided that her bid allows her to get shortlisted. Formally:

∀xai , x
a
j ∈ {xa(1), x

a
(2)} with xai ≤ xaj , if vi > vj then vi − xai > vj − xaj (9)

On the basis of this result, notice that for any couple of positive bids she expects from her

rivals, xai > xaj > 0 with i, j ∈ {2, 3}, player 1’s optimal choice is to “bid in between” i.e., such

that xai > xa1 > xaj , since this always ensures that she is shortlisted with NVH . Notice that the

case xa2 = xa3 > 0 will not occur in equilibrium insofar player 3 has no incentive to overlap with

a strictly positive bid to stronger players, since in case she manages to get shortlisted, she will

always get NVL and hence a zero continuation payoff.

14Notice that each possible history of length-1 is a profile of actions, so that ha = x
a, with x

a
∈ R

3
+
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But anticipating that this way they will never be able to get shortlisted with NVH , players 2 and

3 have no incentive to bid positive in Stage-a. One could think therefore that player 1’s optimal

response, anticipating that player 2 and 3 will bid zero, might be to overlap and bid zero as well.

However, notice that this way she would risk not to get shortlisted at all. For this reason she might

rather prefer to bid an arbitrarily small positive amount, ǫ > 0.

We prove that in fact this is exactly the case and that the following result holds:

Proposition 4 (Equilibrium of the Stage-a all-pay auction)

Given continuation payoffs in Equation 8, the Stage-a all-pay auction has a unique equilibrium in

pure strategies, which is xa∗ = {xa∗1 = ǫ, xa∗2 = 0, xa∗3 = 0}. In this equilibrium only player 1 bids

a positive amount, which is indetermined but very close to zero. Also, only the “asym-asym” case

occurs in equilibrium, so that player 1 is always shortlisted with NVH .

Proof: In the Appendix 6.3.

Proposition 5 (Equilibrium of the Stage-a all-pay auction - continued)

The Stage-a all-pay auction has no equilibria in mixed strategies, so that the pure-strategy equi-

librium is the unique equilibrium of Stage-a.

Proof: In the Appendix 6.4.

4.3. SPNE of the two-stage all-pay auction

From Propositions 1-5 we get the following result:

Proposition 6 (SPNE of the two-stage all-pay auction)

When players have valuations v1 > v2 > v3, the two-stage all-pay auction has a unique SPNE

which is as follows:











(

xa∗1 = ǫ ≃ 0, F1(x
b
1) =

xb
1

vj
∀xb1 ∈ [0, vj ]

)

(

xa∗j = 0, Fj(x
b
j) =

v1−vj
v1

+
xb
j

v1
∀xbj ∈ [0, vj ]

) (10)

with j ∈ {2, 3}. Equilibrium payoffs are u∗1 = NV1 −NVj = v1 − ǫ− vj and u∗j = 0.

In this equilibrium only player 1, i.e., the ex-ante strongest player, bids positive in Staga-a.

Consequently, she gets always shortlisted and always with NVH . Player 2 and 3 bid zero, and one of
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them gets shortlisted at random, and always with NVL
15. In Stage-b shortlisted players randomize

over a common support, whose upper bound is ex-ante indetermined and equal to NVj = vj (since

xa∗j = 0). Player 1 gets a positive expected payoff, i.e., on average she wins the game, while the

other shortlisted player gets a zero expected payoff, i.e., on average she makes no losses, and the

player who is not shortlisted gets an actual zero payoff.

Therefore, even if the subgame result tells us that the player who will win on average the game is

not the ex-ante strongest player, but rather the player who is able to allocate the resources such

that she manages to get shortlisted with the higher net valuation, however the SPNE result tells us

that in fact, this player is always player 1, so that it seems that players’ relative ex-ante strengths

are more important, in determining the outcome of the game, than their relative abilities to allocate

optimally limited resources over stages.

The intuition for this result is that since there is complete information and the game is dynamic,

players can use information about continuation payoffs and rivals’ valuations to bid optimally in

Stage-a. By Proposition 3, a player who anticipates that in the second-stage she will meet a

stronger player, does not want to bid positive in the first stage. Because of Assumption 1, she

can still be shortlisted but on average she will make no loss in the end. The information structure

allows the strongest player to deter other players from bidding positive in the first stage, so that

she can ensure to get shortlisted with a very small outlay and save most resources for the second

stage. Therefore, even if the information structure in our model is different, we get a result similar

to the literature about the effect of signalling in elimination contests with information revelation

(e.g.,Lai and Matros (2007)): too much information does not necessarily lead to “good” outcomes.

In both cases efficient shortlisting of players is prevented: in their case this is due to misrepre-

sentation of preferences, whereas in our case it is due to the predatory behavior of the strongest

player. Unsurprisingly, this is detrimental for total revenue (effort) extraction, as illustrated by

the following Proposition.

Proposition 7 (Expected Revenue)

The two-stage all-pay auction yields a lower expected revenue than the one-stage all-pay. The first

stage yields virtually no revenue, whereas the second stage yields a lower expected revenue than

the two-player all-pay due to inefficient shortlisting, that is the fact that the weakest player (i.e.,

player 3), has a positive chance to get shortlisted and to win eventually.

Proof: In the Appendix 6.5

This result is consistent with the prediction in Gradstein and Konrad (1999) that when the

contest rules are discriminatory enough, a one-stage contest yields a higher total effort than its

15Notice that equilibrium strategies meet the requirement 1.4 of Proposition 1.
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multi-stage counterpart. In our case this is due to the fact that the multi-stage contest implies

a positive probability that the second strongest player does not reach the final stage, so that

shortlisting is inefficient.

Therefore, what emerges from our analysis is that a multi-stage all-pay auction does not seem to

have very appealing features. However, it is reasonable to think that our results may depend on

the simplicity of our analysis. In the next section we discuss some possible work developments

aimed at enhancing the descriptive power of the model.

5. Conclusion

In this paper we have studied a multi-stage elimination all-pay contest with budget-constrained

players and non-sunk bids.

Differently from related literature, we realize that when players face a cap on resources, they do not

regard past bids as strategically irrelevant in their decision of how much to bid in following stages.

This happens because they face a basic trade-off when deciding how to allocate scarce resources

between earlier and later stages of the contest: the more resources a player spends in a particular

stage the higher the chance to get shortlisted to the next stage, but the lower the chance to get

shortlisted to later stages and eventually win. Choices made in earlier stages do influence and bind

choices to be made later. Further, the presence of the trade-off implies that the winner may not

be the player with the biggest ex-ante budget - as it is on average the case for one-stage all-pay

contests - but rather the player who is the most able in allocating limited resources over stages.

Also, although we did not explicitly embed a budget constraint in the model, we assumed that

players do face a constraint on resources. Indeed, if contestants are to behave rationally, as it is

conventionally assumed in economic theory, they never spend more than their valuation, i.e., they

consider the value they assign to winning the prize as a “natural” cap on the total effort that they

are willing to exert in the contest.

On the basis of these original considerations, we focused on a simple two-stage contest with complete

information and asymmetric players, and we found that the relative strengths of players are more

important than their relative trading-off abilities, in determining the outcome of the game. This

result stemmed from the fact that since the game is dynamic and there is complete information,

players can use information about continuation payoffs and rivals’ valuations to bid optimally in

the first stage: a player who anticipates that in the second-stage will meet a stronger player, does

not want to spend resources in the first stage. The information structure allows the strongest

player to always deter other players from bidding positive in the first stage, so that she can ensure

to get shortlisted with a very small outlay and save most resources for the second stage (where

mixed strategies are played). This leads to the result - consistent with Gradstein and Konrad

(1999)’s prediction - that the two-stage all-pay auction yields a lower expected revenue than the

one-stage all-pay, since the first stage yields basically no revenue (due to the strongest player
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exerting a minimal effort in the first stage) and shortlisting is inefficient (since the weakest player

has a positive chance to get shortlisted and eventually win).

On the basis of these results, our elimination contest does not seem to be an advantageous allocation

mechanism for the contest sponsor. However, we are aware that the current version of our model is

simple so that more work is needed to fully assess the performance of this mechanism. Therefore, we

are currently working at the implemention of a number of steps aimed at enhancing the descriptive

power of the model. In particular, we are modifying the model so to no longer allow that players

who bid zero in the first stage have a chance to get shortlisted, and to allow for a more realistic

information structure. These steps will enable us to check whether our current results are in fact

to some extent underestimating the potential performance of the all-pay elimination contest. We

also plan to extend the analysis to the general case with N players and K stages 16.

We believe that our work is valuable along at least two dimensions. First, our paper provided a

contribution to the elimination contest literature: to the best of our knowledge this is the first

attempt to characterize the equilibria of a multi-stage elimination all-pay contest with non-sunk

bids and where players’s valuations are regarded as a natural budget cap. Although non-sunk

bids made the analysis more complex, they allowed to improve the quality of the modelization for

many real competitive scenarios, like R&D contests and sport tournaments. Second, we hopefully

inspired new reflection about the general issue of how the assumption of agents’rationality should

be exploited, and more in particular, about the need to be careful and thorough when assessing

whether costs in a given dynamic decision problem are to be considered sunk or non-sunk, which

is a relevant issue in many fields of economics.

6. Appendix

6.1. Proof of Proposition 1

Arguments needed for the characterization of the equilibrium in this case are totally analogous

to those used by Hillman and Riley (1989) and Hillman and Samet (1987) for characterizing the

equilibria of the one-stage all-pay auction, respectively for the asymmetric and the symmetric case.

However, for the sake of clarity, we will reformulate all the main arguments so that they fit our case.

Lemma 1: No pure-strategy equilibrium can exist in the Stage-b subgame, neither in the

“asym-asym” case nor in the “asym-sym” case.

Proof.

“Asym-asym” case. For any bid of the other player which is below the lower net valuation NVL,

each player has an incentive to slightly overbid the other player, so that there is a race to the top

16The only step left to complete the characterization of the two-stage all-pay auction is to analyze the case with
ex-ante symmetric players.
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until NVL (there is no equilibrium below NVL). There is no equilibrium above NVL either, since

player L will never bid more than her net valuation, and consequently neither player H would bid

above. Also, there is no equilibrium for ties at NVL, since player L would be better off bidding

zero, and the race to the top would start again. Therefore, the “asym-asym” case cannot have an

equilibrium in pure strategies.

“Asym-sym” case. For any bid of the other player which is below the common net valuation

NVS , each player has an incentive to slightly overbid the other player, so that there is a race to

the top until NVS (there is no equilibrium below NVS). There is no equilibrium above NVS either,

since no player will bid more than her net valuation. Also, players will never tie at NVS , since they

are better off by bidding zero. Therefore the “ asym-sym” case neither can have an equilibrium in

pure strategies. Q.E.D

Lemma 2 No player will, in equilibrium, ever spend a positive amount with strictly positive

probability, i.e., equilibrium strategies are continuous mixed strategies.

Proof. Suppose to the contrary that player i spends some xbi = β > 0 with strictly positive proba-

bility. Then player j will always beat that bid with a marginally greater bid (the probability that

j beats i rises discontinuously as a function of xbj at xbj = β). Therefore, there is some ǫ > 0 such

that j will bid in the interval [(β−ǫ), β] with zero probability. But then, agent i would be better off

by bidding β − ǫ rather than β, since her probability of winning would be the same, contradicting

the hypothesis that xbi = β is an equilibrium strategy in the subgame.

Lemma 3 In equilibrium the two players must have the same maximum spending level.

Proof. From Lemma 2 it follows that, if x̄bi is player i’s maximum spending level, player j wins with

probability 1 by spending x̄bi and viceversa. Hence, the upper bound of the support is the same for

both players and it is equal to NVL in the “asym-asym” case and NVS in the “asym-sym” case.

Lemma 4 In equilibrium the minimum outlay is zero for each player.

Proof. Suppose to the contrary that player i picks xbi = β > 0 as her minimum bid (i.e., she

spends less than xbi = β > 0 with zero probability). Then, any bid in the interval (0, β) would

yield a negative payoff to player j, since the probability of winning is zero in that interval. Since

player j can always bid zero, it follows that she neither will bid in the interval (0, β). But then

player i could reduce her bid below β without changing her probability of winning, contradicting

the hypothesis that agent i’s optimal minimum spending level was some β > 0. Hence, the lower

bound of the support is the same for both players and it is equal to zero.

Given these results, if we define 1−Fi(x
b
i) to be the probability that player i spends more than

xbi , then Fi(x
b
i) is continuous over (0,∞). If 0 < Fi(0) < 1 then player i spends a strictly positive

amount with probability less than 1 and her alternative is to spend zero.

21



Lemma 5 At most one agent bids zero with strictly positive probability.

Proof: If both players bid zero with positive probability then each has a chance of winning. How-

ever, this will not occur in equilibrium, for if one player spends zero with positive probability, the

other can with an arbitrarily small positive bid increase her probability of winning and hence her

expected payoff.

6.2. Proof of Proposition 2

Player i’s expected payoff (with i = {H,L, S}) is:

EΠi(h
b) = (vi − xai − xbi)Fj(x

b
i) + (−xai − xbi)[1− Fj(x

b
i)] = viFj(x

b
i)− xai − xbi (11)

Equilibrium requires that, for any bid in her support, each player earns a constant expected

payoff, given the mixed strategy of the other player.

The equilibrium condition we need to impose for player i is therefore as follows:

EΠi(h
b) = viFj(x

b
i)− xai − xbi = u∗i ∀xbi ∈ [0, NVn] (12)

where u∗i is a constant and n ∈ {L, S}. Setting xbi = NVn, we are able to derive the expression

for player i’s equilibrium expected payoff:

u∗i = NVi −NVn (13)

Therefore for the “asym-asym” case (Proposition 2.1) we have the two following cases:

Case1. If player i is shortlisted with the lower net valuation, i.e., i = L and NVi = NVL, then she

will get on average a zero equilibrium payoff, u∗L = 0.

Case2. If player i is shortlisted with the higher net valuation, i.e., i = H and NVi = NVH , then she

will get on average a positive equilibrium payoff, u∗H = NVH −NVL > 0.

whereas for the “asym-sym” case (Proposition 2.2) we have NVi = NVj = NVS , so that both

of them will on average get a zero equilibrium payoff u∗S = 0.

Consequently, the equilibrium conditions for the “asym-asym” case will be as follows:

EΠH(hb) = vHFL(x
b
H)− xaH − xbH = NVH −NVL ∀xbH ∈ [0, NVL] (14)

EΠL(h
b) = vLFH(xbL)− xaL − xbL = 0 ∀xbL ∈ [0, NVL] (15)
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The equilibrium mixed strategies are uniquely determined as the solutions of the system of the

two above equations, and are as follows:

FL(x
b
L) =







NVH−NVL

vH
+

xa
H
+xb

L

vH
, ∀xbL ∈ [0, NVL)

1, ∀xbL ≥ NVL

(16)

FH(xbH) =







xa
L
+xb

H

vL
, ∀xbH ∈ [0, NVL)

1, ∀xbH ≥ NVL

(17)

On the other hand, the equilibrium conditions for the “asym-sym” case are as follows:

EΠi(h
b) = viFj(x

b
i)− xai − xbi = 0 ∀xbi ∈ [0, NVS ] (18)

EΠj(h
b) = vjFi(x

b
j)− xaj − xbj = 0 ∀xbj ∈ [0, NVS ] (19)

from which the following equilibrium strategies are uniquely determined:

Fi(x
b
i) =







xa
j+xb

i

vj
, ∀xbi ∈ [0, NVS)

1, ∀xbi ≥ NVS

(20)

Fj(x
b
j) =







xa
i +xb

j

vi
, ∀xbj ∈ [0, NVS)

1, ∀xbj ≥ NVS

(21)

Therefore in both the “asym-asym” case and in the “asym-sym” case, the Stage-b subgame has

a unique asymmetric equilibrium in mixed strategies Q.E.D.

6.3. Proof of Proposition 4

The proof is articulated in two parts. We first prove that the triple (xa1 = ǫ, xa2 = 0, xa3 = 0) is an

equilibrium of the Stage-a all-pay auction, and then that it is the unique pure-strategy equilibrium.

6.3.1. Proof that the triple (xa1 = ǫ, xa2 = 0, xa3 = 0) is an equilibrium of Stage-a all-pay auction

We need to check whether any player has any incentive to deviate.

Consider player 1 first. Obviously, she would never deviate upward, but we need to check that in

fact she does not find it profitable to bid zero rather than a positive amount. Player 1 will profitably
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deviate iff the expected payoff of deviating is higher than the expected payoff of not-deviating,

namely 17:

EΠ1(x
a
1 = 0, xa∗

−1) > EΠ1(x
a∗) (22)

Notice that if player 1 deviates, so that all players bid zero, the marginal bid is zero and we

are in the “more marginal bidders than tickets” case and ties are broken randomly. In this case

two possible events may occur:

❼ with probability 2/3 player 1 is shortlisted. In that case she will meet player 2 with probability

1/3 and player 3 with probability 1/3. By Proposition 3 we have that, given equality between

bids, player 1 will always have NVH whoever the other shortlisted player among player 2 and

3 will be. Her expected continuation payoff will be u∗1 = NV1−NVi = v1−vi, with i ∈ {2, 3};

❼ with probability 1/3 player 1 is not shortlisted. However she makes no loss since her bid is

zero.

The expected payoff from deviating is hence:

EΠ1(x
a
1 = 0, xa∗

−1) =
1

3
(v1 − v2) +

1

3
(v1 − v3) (23)

On the other hand, when player 1 does not deviate and bids ǫ > 0, she is shortlisted and pays

her bid with certainty. With probability 1/2 player 1 will meet player 2 and with probability 1/2

she will meet player 3, but whether she will have NVH , NVL or NVS depends on ǫ:

if ǫ < v1 − vi (with i ∈ {2, 3}): then NV1 > NVi, i.e., v1 − ǫ > vi, so that 1 = H and u∗1 =

NV1 −NVi = (v1 − ǫ)− vi.

if ǫ > v1 − vi: then NV1 < NVi, so that 1 = L and u∗1 = 0

if ǫ = v1 − vi: then NV1 = NVS , so that 1 = S and u∗1 = 0

Therefore, for the expected payoff of not deviating one should make three cases 18:

EΠ1(x
a∗) =



















1
2(v1 − v2) +

1
2(v1 − v3)− ǫ, if 0 < ǫ < v1 − v2

1
2(v1 − ǫ− v3), if v1 − v2 ≤ ǫ < v1 − v3

0, if ǫ ≥ v1 − v3

(24)

17Remember that each possible history of length-1 is a profile of actions, so that ha = x
a, with x

a
∈ R

3
+.

18Notice that since v1 > v2 > v3, when the condition ǫ ≤ v1 − v2 holds, then it also holds that ǫ < v1 − v3.
Specularly, when ǫ ≥ v1 − v3, then ǫ > v1 − v2.
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Remember that continuation payoffs are expressed in terms of net valuations, so that they take

into account Stage-a bids. Interpretation is that player L (who gets a zero continuation payoff) is

able on average to exactly cover the sum of her outlays, whereas player H on average is able to

more than cover the sum of her outlays.

It is clear that the payoff function in Equation 24 is maximized when ǫ is as closest as possible

to zero (of course it must be strictly positive, otherwise she would be deviating) so that player 1

will optimally choose the smallest ǫ above zero 19. Therefore, to see when it is profitable to deviate

for player 1 (Equation 22) we need to compare the payoff of deviating (Equation 23) with only the

first line of the payoff of not deviating (Equation 24). We easily get that the condition in Equation

22 holds iff :

ǫ >
1

3
v1 −

1

6
(v2 + v3) (25)

Since the ǫ that player 1 optimally chooses is as close as possible to zero, she will never find it

profitable to deviate.

Consider now player 2. From Proposition 3 we know that she does not find it convenient neither to

overlap nor to overbid player 1, since this way she would be shortlisted with NVL with certainty.

Hence, the only possibly profitable deviation would be to underbid player 1 by an amount δ.

Therefore, player 2 will deviate iff :

EΠ2(x
a
2 = (ǫ− δ), xa∗

−2) > EΠ2(x
a∗) (26)

If player 2 does not deviate and bids zero, she has 1
2 probability to get shortlisted. In that case

she meets player 1 and always get shortlisted with the NVL, since by the maximization problem

of player 1 (Equation 24) we have that player 1’s optimal bid ǫ is such that NV1 > NV2, so that

player 2’s expected payoff from shortlisting is 0. With 1
2 probability she is not shortlisted and she

gets an actual payoff of zero, since she bid zero. Therefore:

EΠ2(x
a∗) = 0 (27)

On the other hand, if player 2 deviates and underbids player 1, she gets shortlisted with

certainty. She happens to have NVH (and hence get a positive payoff u∗2 = NV2 −NV1) iff

v2 − (ǫ− δ) > v1 − ǫ → v1 − v2 < δ ∀ǫ > 0 (28)

Otherwise she has NVL (and gets u∗2 = 0).

Notice that since δ < ǫ by definition, then we have that the condition from player 1’s maximization

19The fact that the optimal ǫ is undetermined is due to the tie-breaking rule. If tie-breaking were in favour of
player 1 (i.e., player 1 wins in all ties), player 1 would optimally bid exactly zero.
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problem (Equation 24) i.e. ǫ < v1 − v2, implies δ < v1 − v2, so that the conditition above on δ is

never met, and:

EΠ2(x
a
2 = (ǫ− δ), xa∗

−2) = 0 (29)

Therefore player 2 never finds it profitable to deviate.

Also, notice that since v2 > v3, then δ < v1 − v2 implies δ < v1 − v3, so that player 3 neither has

any incentive to deviate.

Therefore, since no player has any incentive to deviate, we can conclude that (xa1 = ǫ(≃ 0), xa2 =

xa3 = 0) is an equilibrium of Stage-a all-pay auction Q.E.D.

6.3.2. Proof that the triple (xa1 = ǫ, xa2 = 0, xa3 = 0) is the unique equilibrium of Stage-a all-pay

auction

The proof is by contradiction and articulated in lemmas.

Lemma 1. No triple of the form (xai > xaj > xak), with xak ≥ 0, can be an equilibrium.

Proof. Suppose it is. Then no player has any profitable deviation. Consider players i and j. Either

vi > vj or vj > vi. If vi > vj , then by Proposition 3 i makes a profitable deviation by underbidding

(at limit overlapping) to xaj . On the other hand, if vj > vi, then i makes a profitable deviation by

bidding zero. Therefore (xai > xaj > xak) is never an equilibrium Q.E.D.

Lemma 2. No triple of the form (xai = xaj > xak), with xak ≥ 0, can be an equilibrium.

Proof. Suppose it is. Then no player has any profitable deviation. Again, consider players i and

j. Either vi > vj or vj > vi. If vi > vj , then j makes a profitable deviation by bidding zero.

On the other hand, if vj > vi, then i makes a profitable deviation by bidding zero. Therefore

(xai = xaj > xak) is never an equilibrium Q.E.D.

Lemma 3. No triple of the form (xai = xaj = xak), with xak ≥ 0, can be an equilibrium.

Proof. Suppose it is. Then no player has any profitable deviation. There are two possible cases:

3.1 (xai = xaj = xak = 0)

We have just proved that player 1 finds it always profitable to bid a positive amount rather

than zero. Therefore 1 makes a profitable deviation by bidding a positive amount rather than

zero.

3.2 (xai = xaj = xak > 0)

Player 3 makes a profitable deviation by bidding zero rather than a positive amount.
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In both cases we reach a contradiction with the initial assumption, so that (xai = xaj = xak) can

never be an equilibrium Q.E.D.

Corollary. From lemmas 1-3 it follows that all plausible equilibria must be of the form

(xai > xaj = xak), with xak ≥ 0.

Lemma 4. No triple of the form (xa3 > xa1 = xa2), with xa1 = xa2 ≥ 0 can be an equilibrium (i.e.,

player 3 cannot be the highest bidder).

Proof. Suppose it is. Then no player has any profitable deviation. But player 3 does a profitable

deviation by bidding zero rather than a positive amount. Therefore (xa3 > xa1 = xa2) cannot be an

equilibrium Q.E.D.

Lemma 5. No triple of the form (xa2 > xa1 = xa3), with xa1 = xa3 ≥ 0 can be an equilibrium (i.e.,

player 2 cannot be the highest bidder).

Proof. Suppose it is. Then no player has any profitable deviation.

Consider player 1. We need to check whether she has any incentive to slightly overbid player 3,

such that xa1
′ = xa3 + ǫ ≤ xa2, with ǫ > 0.

If she does not deviate she will get shortlisted with probability 1/2. In this case she will meet

player 2 and by Proposition 3 she will always have the NVH , and get a positive continuation payoff

u∗1 = NV1 − NV2 = v1 − xa1 − (v2 − xa2). With probability 1/2 she will not get shortlisted and

will incur a loss equal to her bid, u∗1 = −xa1, with xa1 ≥ 0. Therefore, the expected payoff of non

deviating is:

EΠ1(x
a∗) =

1

2
(v1 − v2 + xa2)− xa1 (30)

Now suppose that she deviates and bids xa1
′ = xa3 + ǫ = xa1 + ǫ, with xa1 = xa3 ≥ 0. In this case

she will get shortlisted with certainty, and always with NVH , so that the expected payoff from

deviating is:

EΠ1(x
a
1
′ = (xa1 + ǫ), xa∗

−1) = v1 − v2 + xa2 − xa1 − ǫ (31)

from which we easily get that

∀ǫ : 0 < ǫ <
1

2
(v1 − v2 + xa2) (32)

it holds that

EΠ1(x
a
1
′ = (xa1 + ǫ), xa∗

−1) > EΠ1(x
a∗) (33)

i.e., player 1 will find it convenient to deviate. Notice that player 1 will optimally choose an ǫ
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which is closest as possible to zero, so that Equation 33 will always hold and player 1 will always

deviate. Therefore the triple (xa2 > xa1 = xa3), with xa1 = xa3 ≥ 0 cannot be an equilibrium Q.E.D.

Corollary. From the previous steps it follows readily that the only possible equilibrium of the

Stage-a all-pay auction is (xa1 = ǫ ∼= 0, xa2 = xa3 = 0). Moreover since the optimal xa1 is very close

to zero, it will always be the case that NV1 > NV2 if player 2 is shortlisted, and NV1 > NV3 if

player 3 is shortlisted, so that only the “asym-asym” case occurs in equilibrium. Q.E.D.

6.4. Proof of Proposition 5

We know from Equations 7 and 8 that, in the event a player gets shortlisted (which we will refer

to as SH in the following for notational convenience), she will get a positive continuation payoff iff

her net valuation will be higher than the net valuation of the other shortlisted player, and a zero

continuation payoff if her net valuation will be lower or equal than her opponent’s; if instead she

does not get shortlisted (NO-SH in the following), she will incur a loss equal to her Stage-a bid.

Therefore, each player i’s expected payoff from playing mixed strategies in Stage-a is as follows:

EΠi(h
a) = (NVi −NVj)P (NVi > NVj |i, j SH )P (i, j SH )+

+ (NVi −NVk)P (NVi > NVk|i, k SH )P (i, k SH )− xai P (i NO-SH )
(34)

with i, j, k ∈ {1, 2, 3}.

Remember that a couple of players i, j get shortlisted with certainty if their Stage-a bids are

the two highest i.e., we have either (xai > xaj > xak) or (x
a
j > xai > xak) or (x

a
i = xaj > xak) . On the

other hand, when either (xai > xaj = xak) or (x
a
j > xai = xak) occur, there is 1

2 probability that both

i and j are shortlisted, whereas in case (xai = xaj = xak), there is 1
3 probability that both i and j

are shortlisted. Since events are mutually esclusive, the probability that the couple of players i, j

are shortlisted is as follows:

P (i, j SH ) = P (xai > xaj > xak) + P (xaj > xai > xak) + P (xai = xaj > xak)

+
1

2
P (xai > xaj = xak) +

1

2
P (xaj > xai = xak) +

1

3
P (xai = xaj = xak)

(35)

On the other hand, in the events (xai < xaj < xak), (x
a
i < xak < xaj ) and (xai < xaj = xak) player i

never gets shortlisted, whereas in the events (xai = xak < xaj ), (x
a
i = xaj < xak) and (xai = xaj = xak)

there is a positive probability that player i does not get shortlisted (respectively, 1
2 in the first

two events and 1
3 in the third). Therefore the probability of no shortlisting for player i (with
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i ∈ {1, 2, 3}) is:

P (i NO-SH.) = P (xai < xaj < xak) + P (xai < xak < xaj ) + P (xai < xaj = xak)

+
1

2
P (xaj > xai = xak) +

1

2
P (xak > xai = xaj ) +

1

3
P (xai = xaj = xak)

(36)

Similarly to what noticed for the pure-strategy analysis, we have here that relatively stronger

players have an advantage over weaker ones, since they can restrict optimally their support so to

make sure to get a positive continuation payoff, conditional on shortlisting.

In fact, one can see that by choosing the interval [0, v1 − v2) as her support, player 1 makes it

sure that for any bid she may plausibly expect from player j ∈ {2, 3}, i.e., for all xaj ∈ [0, vj)
20, it

will always be true that xa1 < (v1 − vj) + xaj , so that P (NV1 > NVj |1, j SH ) = 1 and P (NVj >

NV1|1, j SH ) = 0. Therefore, player 1 is able to optimally choose the support to make it sure

that, in case she gets shortlisted, she will have the higher net valuation, and hence get a positive

continuation payoff, regardless of whom the other shortlisted player is.

On her hand, player 2 can do a similar reasoning and pick [0, v2−v3) as her support, which ensures

that in case she gets shortlisted with player 3, she always has the higher net valuation and gets

a positive continuation payoff: for any plausible bid from player 3 - i.e., for all xa3 ∈ [0, v3) - it

will always hold that xa2 < (v2 − v3) + xa3, so that P (NV2 > NV3|2,3 SH ) = 1 and P (NV3 >

NV2|2,3 SH ) = 0 , whereas she knows that if she gets shortlisted with Player 1 she will get a zero

continuation payoff.

Consequently, player 3 knows that in case she gets shortlisted, she cannot do nothing to prevent

her opponent to have the higher net valuation. So she expects a zero continuation payoff from

shortlisting regardless of whom the other shortlisted player is.

Note that the presence of an upper bound on players’ rational bidding has an impact on the

probability of shortlisting, but players do not have an interest in getting shortlisted if they expect

not to take a positive continuation payoff: their goal is to maximize their expected payoff, rather

than getting shortlisted per se.

Given the considerations above, we have that players’ expected payoffs from randomizing in Stage-a

are as follows:

EΠ1(h
a) = (NV1 −NV2)P (1,2 SH ) + (NV1 −NV3)P (1,3 SH )− xa1P (1 NO-SH ) (37)

EΠ2(h
a) = (NV2 −NV3)P (2,3 SH )− xa2P (2 NO-SH ) (38)

20Notice that no player would bid her own entire valuation in Stage-a, since in case she gets shorlisted she will have
no resources left to bid in Stage-b, so that the other shortlisted player would be able to win with an infinitesimal
amount, making her losing the entire budget.
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EΠ3(h
a) = −xa3P (3 NO-SH ) (39)

Since EΠ3(h
a) ≤ 0, player 3 never finds it convenient to randomize and, due to Assumption 2 in

the model (Section 3), we conclude that player 3 will bid zero with probability 1, i.e., P (xa3 = 0) = 1.

Considering that (i) players randomize independently, (ii) given xa3 = 0 then P (xi < x3) = 0 (with

i ∈ {1, 2}) and (iii) P (xi = xj) = 1 − P (xi > xj) − P (xi < xj) ∀i, j ∈ {1, 2, 3}, we can explicit

the expected payoff of Player 1 (Equation 37) as follows:

EΠ1(h
a) = (NV1 −NV2)[P (xa1 > xa2)P (xa2 > xa3) + P (xa2 > xa1)P (xa1 > xa3)+

+ (1− P (xa1 > xa2)− P (xa1 < xa2))P (xa2 > xa3) +
1

2
P (xa1 > xa2)(1− P (xa2 > xa3))+

+
1

2
P (xa2 > xa1)(1− P (xa1 > xa3)) +

1

3
(1− P (xa1 > xa2)− P (xa1 < xa2))(1− P (xa2 > xa3))]+

+ (NV1 −NV3)[
1

2
P (xa1 > xa2)(1− P (xa2 > xa3))+

+
1

3
(1− P (xa1 > xa2)− P (xa1 < xa2))(1− P (xa2 > xa3))]− xa1[P (xa1 < xa2)(1− P (xa2 > xa3))+

+
1

2
P (xa2 > xa1)(1− P (xa1 > xa3)) +

1

3
(1− P (xa1 > xa2)− P (xa1 < xa2))(1− P (xa2 > xa3))]

(40)

Notice that in Equation 40, we assumed that Player 1’s support is [0, v1−v2), so that she might

play zero with a positive probability. In the following we show that Player 1’s expected payoff from

keeping zero in the mix, i.e., randomizing over [0, v1 − v2) is lower than the expected payoff she

could get by dropping the bid on 0 from the mix, i.e., randomizing over (0, v1 − v2).

By imposing P (x1 > 0) = 1 in Equation 40, we can calculate

EΠ1(mix on (0, v1 − v2)) = (NV1 −NV2)[P (x1 > x2)P (x2 > x3)+

+ (1− P (x1 > x2)− P (x1 < x2))P (x2 > x3) + P (x2 > x1)+

+
1

2
P (x1 > x2)(1− P (x2 > x3)) +

1

3
(1− P (x1 > x2)− P (x1 < x2))(1− P (x2 > x3))]+

+ (NV1 −NV3)[
1

2
P (x1 > x2)(1− P (x2 > x3))+

+
1

3
(1− P (x1 > x2)− P (x1 < x2))(1− P (x2 > x3))]+

− x1[P (x1 < x2)(1− P (x2 > x3)) +
1

3
(1− P (x1 > x2)− P (x1 < x2))(1− P (x2 > x3))]

(41)

By imposing EΠ1(mix on (0, v1 − v2)) ≥ EΠ1(mix on [0, v1 − v2)) = EΠ1(h
a) we get the con-

dition (v1 − v2)(1 − P (x1 > 0)) + x2(1 − P (x1 > 0)) ≥ 0 which is always true. Therefore player

1 will optimally never put mass on zero. From Equation 38 we know that the only chance for
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player 2 to get a positive expected payoff from randomizing is to get shortlisted with 3. But the

probability that both player 2 and player 3 will be shortlisted is 0, since we know that player 1 will

get shortlisted with certainty. Therefore, player 2 neither has any advantage from randomizing,

since if she gets shortlisted she will meet player 1 for sure, and hence get a zero continuation payoff.

By Assumption 2 in the model we conclude that also player 2 prefers to bid zero with probability

1 rather than randomizing. Given that players 2 and 3 play zero with probability 1, player 1 will

optimally bid a infinitesimal positive amount ǫ, and we are back to the pure-strategy case.

Therefore there is no mixed strategy equilibrium for the Stage-a all-pay auction Q.E.D.

6.5. Proof of Proposition 7

Notice that since Stage-a yields basically no revenue, the relevant comparison is between the

Stage-b all-pay auction and the standard all-pay auction with two asymmetric players. Recalling

from Baye et al. (1996) the equilibrium of the standard asymmetric all-pay auction (with v1 > v2),







F1(x1) =
x1

v2
∀x1 ∈ [0, v2]

F2(x2) =
v1−v2+x2

v1
∀x2 ∈ [0, v2]

(42)

we have that player 1’s spending is distributed uniformly on the interval [0, v2], and so her

expected outlay is E[x1] =
v2
2 .

Conditional upon bidding positive, player 2’s outlay also is distributed uniformly on [0, v2], so that

her expected outlay is E[x2] =
v2
2

(

v2
v1

)

21. Therefore, the total expected revenue from a standard

two-player all-pay auction is:

E[x1 + x2] =
v2
2

+
v2
2

(

v2
v1

)

=
v2
2

(

1 +
v2
v1

)

(43)

Turning to the Stage-b all-pay auction, we have from Proposition 5 that the upper bound of

the equilibrium support is ex-ante indetermined, since player L will be player 2 with probability
1
2 and player 3 with probability 1

2 . Therefore, player 1’s outlay will be distributed uniformly on

[0, v2] in half of the cases and on [0, v3] in the other half, so that her expected outlay will be:

E[xb1] =

(

1

2

)

v2
2

+

(

1

2

)

v3
2

(44)

As for player 2, in case she is shortlisted, she bids according to an uniform distribution on the

21Decomposing player 2’s equilibrium distribution in its continuos and discrete parts, we can write:

F2(x2) = 1− v2
v1

+
(

v2
v1

)

x2

v2

where v2
v1

is the probability of bidding positive and [1− v2
v1
] is the probability of bidding zero.
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interval [0, v2] conditional upon spending positive 22. Therefore her expected outlay will be:

E[xb2] =

(

1

2

v2
v1

)

v2
2

(45)

Analogously, player 3’s expected spending will be:

E[xb3] =

(

1

2

v3
v1

)

v3
2

(46)

Therefore, neglecting player 1’s first-stage bid which is very close to zero, we have that the total

expected revenue from the two-stage all-pay auction is as follows:

E[xb1 + xb2 + xb3] =
v2
4

(

1 +
v2
v1

)

+
v3
4

(

1 +
v3
v1

)

(47)

which can be easily seen to be smaller than E[x1+x2] in the standard all-pay auction (Equation

43) Q.E.D.
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