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Abstract 

This paper examines the impact of illiquidity and liquidity risk on expected stock returns in 

the Turkish stock markets. Using daily data of the ISE-100 stock index from 2005 to 2012 and 

Amihud (2002) illiquidity measure, we test the liquidity-adjusted capital asset pricing model 

(L-CAPM) of Acharya and Pedersen (2005). Performing cross-sectional regression tests 

across test portfolios, we find supporting evidence that illiquidity is significantly and 

positively priced. Specifically, our results indicate that liquidity risk arising from the 

commonality in liquidity is the most important component of liquidity risk. The strong 

interrelationship between the market liquidity and the liquidity of individual stocks suggests 

that market-wide shocks on the Istanbul Stock Exchange might quickly affect every stock in 

this market. Hence, liquidity commonality might create a systemic risk in which case liquidity 

shocks can be perfectly correlated across all stocks.  

Our study is the first to investigate stock liquidity-return relationship at daily frequency and to 

apply the L-CAPM on the Turkish stock markets. Our findings provide interesting 

conclusions for investors, risk managers and regulators in emerging economies, and in 

particular, Turkey.  Investors should incorporate liquidity risk into their trading and hedging 

strategies to improve their risk profile and increase their investment returns. Furthermore, an 

improved understanding of systemic liquidity is vital for regulatory authorities to design 

improved regulations against systemic shocks. 
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illiquidity premium; Istanbul Stock Exchange. 

 

Jel Classification: C30, G12 

 

Nesrin Okay

Department of 0anagement, Program of Financial Engineering, Boğaziçi University
Bebek 34342, İstanbul – Turkey

okay@boun.edu.tr, Tel: +90 (212) 3596508, Fax: +90 (212) 2877851

                   Irem Erten

Program of Financial Engineering, Boğaziçi University
Bebek 34342, İstanbul – Turkey

lirem.erten@gmail.com, Tel: +90 (530) 2638064

2012



2 

 

1. Introduction 

Standard asset pricing models are based on the assumption of frictionless (perfectly 

liquid) markets, where every security can be traded at no cost all the time and agents are 

price-takers. However, real markets are not frictionless, and they are subject to liquidity risks. 

Considering liquidity in asset pricing is crucial, since it affects an investor’s trading strategy 

and portfolio performance. Amihud and Mendelson (1986) are one of the first to examine the 

linkage between stock return and stock liquidity, and to report that investors require return 

compensation for illiquidity. There also exists extensive theoretical and empirical literature 

that shows that liquidity risk affects asset returns (Chordia, 2001; Pastor and Stambaugh, 

2003; Acharya and Pedersen, 2005; Bekaert, 2007; Lee; 2011). The idea is that risk-averse 

investors require compensation for investing in illiquid securities. 

During the recent financial crisis, asset markets experienced a liquidity freeze; bid-offer 

spreads widened, and the cost impact of trades became large as market makers charged higher 

prices for providing liquidity. As the subprime meltdown hit in 2007, many financial 

institutions found that the structured-credit market almost completely dried up, and that it was 

almost impossible to liquidate positions in asset-backed-securities. Hence, the problem of 

illiquidity has become one of the greatest challenges and problems faced by financial industry 

in the last decade. Since the recent financial crisis, the concept of liquidity has gained 

considerable attention from both economists and regulators, leading to a rising number of 

models and empirical work. 

The purpose of this study is to investigate the impact of illiquidity and liquidity risk on 

asset returns in the Turkish equity markets. We utilize daily Turkish stock price-volume data 

in ISE-100 during 2005-2012 and test the liquidity-adjusted capital asset pricing model (L-

CAPM) of Acharya and Pedersen (2005). L-CAPM provides a unified framework to explore 

the impact of liquidity on asset returns through various channels: commonality in illiquidity 
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with the market illiquidity, return sensitivity to market illiquidity, and illiquidity sensitivity to 

market returns.  

Following the methodology in Acharya  and Pedersen (2005),  we estimate an 

unconditional version of L-CAPM using portfolios sorted on past year’s illiquidity. To 

measure illiquidity, we choose the price impact measure of Amihud (2002). Stock illiquidity 

is defined here as the ratio of the daily absolute return to dollar volume. In order to capture the 

time variation in liquidity risk, we also estimate the conditional L-CAPM. Specifically, we 

use the multivariate GARCH (Diagonal VECH) model to estimate the conditional time-

varying covariances. In each model, we perform pooled cross-sectional regressions across the 

test portfolios and identify the significant risk factors in the Turkish market.  

This paper contributes to the literature in several respects. First, the importance of 

liquidity in asset pricing has not yet been widely analyzed in the Turkish equity markets. We 

take a step in filling the gap in empirical literature. Furthermore, this is the first study that 

tests the L-CAPM at daily frequency on the Istanbul Stock Exchange. Turkey has one of the 

fastest growing economies, and one of the most developed equity markets among the 

emerging countries.  With rising global interest for emerging markets, Turkey attracts a 

growing number of domestic and global investors. Understanding the liquidity structure of the 

Turkish equity markets is important in order to design effective investment strategies and 

keep up with foreign investor’s participation. The rest of the paper is structured as follows. 

Section 2 reviews the previous literature and Section 3 explains the L-CAPM methodology. 

Section 4 presents the empirical results and Section 5 concludes. 

 

2. Literature Review 

     An extensive amount of empirical literature finds  that liquidity risk plays a significant role 

in asset pricing. Employing different liquidity proxies, these studies show that expected stock 

excess returns reflect an illiquidity premium. The empirical work estimates the existence and 
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magnitude of a liquidity effect either cross-sectionally, comparing the returns of individual 

assets with different levels of liquidity, or in a time-series study, where the security’s return is 

related to time-varying liquidity. Some researchers investigate the sensitivity of asset returns 

to individual liquidity measures, while others examine whether exposure to market-wide 

aggregate liquidity is priced. Regardless of the proxy, the empirical evidence unanimously 

supports the existence of liqudity effect in asset pricing.  

The first question addressed by researchers was the existence of an illiquidity 

premium, first investigated by Amihud and Mendelson (1986). Using NYSE and AMEX 

stock returns and bid-ask spreads over the period 1961-1980, they demonstrate that expected 

asset return is an increasing function of illiquidity. The impact of illiquidity is revisited for 

NYSE stock returns by Amihud and Mendelson (1989), Brennan and Subrahmanyam (1996) 

and Brennan et al. (1998). Their findings confirm an increasing relationship between returns 

and illiquidity. In the same direction, researchers develop new proxies for illiquidity and re-

analyze the illiquidity-return relationship in the U.S. stock markets. For example, Amihud 

(2002) develops a new measure of illiquidity related to Kyle (1985) λ and finds that NYSE 

stock returns are positively related to expected market illiquidity during 1963-1996. Similarly, 

Hasbrouck (2009) proposes a Gibbs estimate for trading cost and demonstrates that it is 

positively related to U.S. equity returns during 1926-2006.  

Departing from earlier studies, Acharya and Pedersen (2005) build a liquidity-adjusted 

CAPM (L-CAPM), providing a unified framework to explore liquidity and liquidity risk. 

They employ a measure of illiquidity developed by Amihud (2002) and test their model for 

NYSE/AMEX stocks during 1964-1999. Their results indicate that excess returns are 

positively and significantly related to portfolios’ illiquidity and illiquidity risk. Following 

their findings, several studies test the L-CAPM in various markets. Bekaert et al. (2005) 

extend L-CAPM (2005), allowing for separate effects for market and liquidity risks on local 
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and global scales. Their results suggest that local liquidity risk remains the most important 

priced factor. In a similar direction, Lee (2011) empirically tests the L-CAPM on a global 

scale and shows that as a country becomes more open, global liquidity risk becomes more 

important than local liquidity risk. More recently, Minović and Živković estimate the 

conditional L-CAPM for Serbian stock data for 2005-2009 and find that liquidity risk 

significantly impacts asset prices. Similarly, Hangströmer et al. (2011) test the conditional L-

CAPM for NYSE and AMEX data for 1926-2010 and show that asset illiquidity exposure to 

market returns is the most important component of illiquidity risk.  

Recent studies also analyze illiquidity as an important risk factor and examine whether 

illiquidity risk has a systemic component. For example, Brockman et al. (2009) conduct a 

global study of commonality in liquidity using intraday spread and depth data from 47 stock 

exchanges. They show that firm-level changes in liquidity are significantly influenced by 

exchange-level changes across most of the world’s stock exchanges. They also find evidence 

of a global component in liquidity commonality which is driven by U.S. macroeconomic 

announcements. Conversely, Sadka and Lou (2011) show that liquid stocks underperformed 

illiquid stocks during the 2008-2009 financial crisis, and argue that the performance of stocks 

during the crisis can be better explained by their historical liquidity risk than by their 

historical liquidity levels. Finally, Karolyi et al. (2012) examine the sources of commonality 

in liquidity across 40 stock markets. Their findings suggest that commonality in liquidity is 

greater during times of high market volatility and in greater presence of international 

investors.  

3. Methodology 

3.1. Constructing a Liquidity Measure 

Liquidity is an elusive variable that has several dimensions, and there exists no unique 

measure that can capture all its characteristics. Bien et al. (2006) explain that liquidity 
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encompasses  the properties of immediacy, depth, tightness, and resiliency. Immediacy 

represents the possibility to trade an asset quickly without perturbing its value, while depth 

indicates the total number of units available to buy or sell at the quoted price. Similarly, 

tightness measures the cost of trading a position and resiliency is the speed with which the 

price of an asset after a large trade returns to its fundamental value. Therefore, the greater the 

sensitivity of an asset to order flow, the larger is the liquidity. Although liquidity cannot be 

directly measured, there exist many proxies. These proxies can be classified as microstructure 

and low-frequency measures.  

The bid-ask spread is based on microstructure data and measures the cost of executing 

small trades. It is calculated as the difference between the bid and offer price divided by the 

bid-ask midpoint. Copeland and Galai (1983) argue that market-makers optimize their 

positions by setting bid-ask spreads which maximize the difference between their expected 

revenues from liquidity-motivated traders and expected losses to unidentified informed 

traders. Thus, the bid-ask spread compensates market-makers for inventory costs, order 

processing fees, and informational disadvantage. This measure is with high precision, but 

high-frequency data are often not available for long periods of time. For this reason, low-

frequency proxies for liquidity have been developed.  

The low-frequency liquidity measures consist of a large number of proxies, such as 

stock-turnover, volume, Lesmond, Ogden, and Trzcinka (1999) zero-return proportion, 

Amihud illiquidity ratio (2002), and Pastor and Stambaugh (2003) return reversal, among 

others. In this paper, we follow Amihud (2002) in estimating liquidity of a stock. The 

Illiquidity Ratio of Amihud (2002) is defined to be the absolute percentage price change per 

dollar of trading volume.  The monthly illiquidity ratio  of a stock i in month t is                   ∑                          (1) 
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where        and        are the return and dollar volume on day d in month t, respectively.         is the number of observations in month t for stock i. This measure follows from 

Kyle’s concept of illiquidity (the response of price to order flow) and reflects a stock price’s 

sensitivity to large trades. An illiquid stock with a high value of          moves a lot in 

response to little volume.  

There are several reasons why we choose Amihud (2002)’s measure in this paper. 

First, there exist previous empirical studies that confirm this measure as valid liquidity 

instrument. Hasbrouck (2002) finds that Amihud’s measure is most highly correlated with 

trade-based measures. Similarly, Goyenko, Hoden and Trzcinka (2009) compares several 

measures of liquidity and conclude that Amihud’s measure yields significant results in 

capturing the price of trade. Moreover, Acharya and Pedersen (2005) test the validity of their 

L-CAPM with Amihud’s measure. Replicating their methodology enables us to compare our 

study with theirs, and to understand whether liquidity channels under the L-CAPM act 

differently in Turkey compared to the U.S. 

3.2. Liquidity-Adjusted Capital Asset Pricing Model (LCAPM) 

Acharya and Pedersen (2005) extend the CAPM to a framework where a security’s 

liquidity risk affects its expected return. They assume an overlapping generations economy in 

which a new generation of risk-averse agents is born at any time   {                 } 
and maximize their expected utility at t+1. The illiquidity cost    —which is the per-share 

cost of selling security i—varies over time. This means that investors are uncertain about what 

their transactions cost when they trade a security. Investor’s uncertainty about illiquidity cost 

is what creates the liquidity risk in this model. Specifically, Acharya and Pedersen model a 

security’s net return as the price change plus dividend minus illiquidity cost. Rewriting the 

CAPM, they derive the conditional expected return of a security in equilibrium: 
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   [        ]    [     ]                                                                   
            

where    is the risk-free rate.  

Equivalently, equation (2) can be rewritten as  
   [        ]    [     ]         (           )                           (           )                              (           )                        (           )                       
     [     ]                            

 

where                       
                 (           )                   

          (           )                    
           

         (           )                  

          (           )                        
     

 

Equation (3) states that the required excess return of a security is the expected liquidity 

cost, plus four covariances times the risk premium.  As in the standard CAPM, excess return 

of a security increases linearly with the covariance between the asset’s return and the market 

(2) 

(4) 

(5) 

(6) 

(8) 

(7) 

(3) 
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return. At the same time, the illiquidity cost terms      and       give rise to three additional 

types of liquidity risk:  

1.                  : The covariance between the asset’s illiquidity and the market 

illiquidity represents commonality in liquidity and affects required returns positively. 

Investors require a return premium for assets that become illiquid when the market 

becomes illiquid. Empirical support for this effect has been provided by Chordia et al. 

(2000), Hasbrouck and Seppi (2001), and Huberman and Halka (1999). 

2.     (           ): The covariance between a security’s return and the market liquidity 

affects required returns negatively. Investors accept a lower return for assets that give 

high returns when the market becomes illiquid. This effect has been documented by 

Sadka (2002), Wang (2002) and Pastor and Stambaugh (2003). 

3.                  : The third risk arises from the covariance between a security’s 

illiquidity and the market return. Investors accept a lower expected return on a 

security that stays liquid in a down market.  Ljungqvist and Richardson (2003) 

present evidence for this effect.  

The model further demonstrates that a persistent negative shock to a security’s liquidity leads 

to low contemporaneous returns and high predicted future returns. Overall, it provides a 

unified framework for testing the effect of liquidity risk on asset prices. Acharya and Pedersen 

(2005) show that liquidity is persistent over time, and that it predicts future returns.   

4. Empirical Results 

4.1. Data  

We employ daily return and volume data of the common stocks traded in ISE-100 

(Istanbul Stock Exchange) index from January 2005 to July 2012. As the market proxy, we 

take the ISE-100 index, which  is a price and total return index weighted by the market value 
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of shares outstanding. The overnight Turkish Lira Reference Interest Rate (TRLibor) is used 

as the risk-free rate, and it represents the reference interest rate to be used in transactions 

among the banks in Turkey. The data set is obtained from Matriks Data Terminal and 

includes 1909 observations for each stock.  

The ISE-100 consists of the 100 largest and most liquid companies listed on the 

National Market. It automatically covers ISE-30 and ISE-50 stocks. According to the figures 

published by TKPAKB, there are 237 companies traded on the National Market as of January 

2012. Specifically, we focus on the ISE-100 index because it is considered to be the main 

indicator of the Turkish equity markets and represents more than three forths of the market in 

terms of trading volume. Liquidity (trading volume and number of traded shares) criteria are 

reviewed quarterly, and the index composition can be modified.  This study employs the 

stocks that are listed in the ISE-100 as of 26 July, 2012.  

Daily returns are calculated as percentage change in closing price, and the Illiquidity 

Ratio of Amihud (2002) is estimated as per Eq. (1).  As the illiquidity measure is bounded 

below by zero, a larger value denotes higher illiquidity. Graphs 1 and 2 plot the daily return 

and daily Illiquidity measure of the ISE-100 index, respectively. According to these graphs, 

both series are marked by volatility clustering and become highly unstable during the 2008 

global crisis. Interestingly, illiquidity seems persistent, but at the same time, it is time varying 

and spikes in financial downturns.  
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         Graph 1. ISE-100 Return: 2005-2012            Graph 2. ISE-100 İlliquidity: 2005-2012 

 

4.2. Persistence and innovations of illiquidity 

The level of the market illiquidity varies across equities and is highly persistent. The 

auto-correlation of the first-differenced ISE-100 illiquidity is 0.81 at daily frequency. We fit 

an ARIMA(7,1,0) to the market illiquidity and report the results in Table 1. The AR(7) 

specification has an    of 41%, and employing a higher level of specification or other stock-

market variables produces little improvement in the explanatory power of the regression.   

 

Table 1. The Autocorrelations in ISE-100 İlliquidity  

Variable Coefficient Std. Error t-Statistic Prob.   

     C -1.72E-13 6.61E-12 -0.026076 0.9792 

AR(1) -0.810404 0.022713 -3.568.071 0.0000 

AR(2) -0.666508 0.028731 -2.319.837 0.0000 

AR(3) -0.563923 0.031712 -1.778.277 0.0000 

AR(4) -0.419823 0.032858 -1.277.675 0.0000 

AR(5) -0.319058 0.031604 -1.009.536 0.0000 

AR(6) -0.265567 0.028485 -9.322.896 0.0000 

AR(7) -0.153093 0.022559 -6.786.406 0.0000 

 

In order to predict the market illiquidity innovations, we run the following regression: 
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where         is the first-difference of the market illiquidity. The residual in the regression is 

interpreted as the market illiquidity innovation,                   The illiquidity 

innovations for individual stocks and portfolios are computed the same way using the same 

AR coefficients.  

This method of computing illiquidity innovations follows from Pastor and Stambaugh 

(2003), Acharya and Pedersen (2005), and Lee (2009). However, they employ monthly data 

and fit an AR(2) specification to illiquidity series. Unlike their studies, we employ daily 

observations, and the serial correlations in illiquidity fades very slowly.  Through the AR(7) 

filtering we aim to capture the autocorrelation up to one week. Graph 3 plots the market 

illiquidity and Graph 4 the market illiquity innovations. The measured illiquidity and 

illiquidity innovations are high during periods that are characterized by liquidity crises, for 

instance, the domestic financial crisis in 2005 and the onset of the global subprime meltdown 

in 2008. 

   

        Graph 3. ISE-100 İlliquidity: 2005-2012            Graph 4. ISE-100 İlliquidity Innovations:                

         2005-2012 

4.3. Illiquidity-Sorted Portfolios  
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require that price data be available at at least 100 days in a particular year. That leaves us with 

80 stocks in the ISE-100 index.  We form 8 illiquidity portfolios each year during the period 

2005-2012, by sorting stocks based on their year y-1 illiquidities. Each portfolio consists of 

10 stocks. We compute the annual illiquidity as the average of daily Amihud measures over 

the entire year. The process is repeated at the beginning of each year.  

For each illiquidity portfolio, we compute the daily return and illiquidity of portfolio p 

at day t as the equal weighted average over all the stocks included in the portfolio:     ∑              
        ∑                  

We focus our analysis on equally-weighted portfolios because several studies suggest that 

value-weighted portfolios understate the true illiquidity of a portfolio due to the dominance of 

the large stock, for instance Acharya and Pedersen (2005). The ISE-100 index is taken as the 

market portfolio.  

The portfolios are ranked in ascending order of their illiquidities. That means, the 

portfolio 01 consists of most liquid stocks of the ISE-100 index each year, whereas the 

portfolio 08 consists of most illiquid stock. Also, our portfolio formation process implies that 

the stocks in a particular portfolio are the same throughout a given year, but potentially varies 

from year to year. However, during our portfolio formation we have realized that although 

most stocks’ illiquidity ranks change, they tend to stay in the same test portfolios. This is 

implies that illiquidity is persistent not only at the market, but also at individual stock level. 

The characteristics of our illiquidity sorted portfolios are reported in Table 2.  
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Table 2. Properties of İlliquidity sorted portfolios 

p E(illiq) 

(%) 

σ(illiq) 
(%) 

σ(illiq. 
innovat

ion) 

(%) 

E(ret) 

(%) 

σ(ret) 
(%) 

E(exc. 

Ret.) 

(%) 

σ(exc. 
Ret.) 

(%) 

Corr(ilp

,ilm) 

(%) 

Corr(rp

,ilm) 

(%) 

Corr(ilp,

rm) 

(%) 

1 0,08% 0,08% 0,06% 0,07% 1,97% 0,20% 5,61% 26% -13% -0,30% 

2 0,36% 0,51% 0,34% 0,08% 1,90% 0,20% 5,60% 32% -14% 0,16% 

3 0,51% 0,84% 0,61% 0,06% 1,85% 0,18% 5,55% 29% -14% -3,94% 

4 0,79% 0,89% 0,62% 0,09% 1,80% 0,22% 5,54% 35% -15% -1,24% 

5 1,14% 2,30% 1,61% 0,10% 1,85% 0,23% 5,54% 28% -14% 2,36% 

6 1,66% 2,71% 1,96% 0,10% 1,79% 0,23% 5,55% 35% -15% -1,06% 

7 2,75% 3,81% 2,60% 0,17% 2,08% 0,30% 5,65% 36% -10% -0,28% 

8 7,62% 15,74% 7,71% 0,14% 1,83% 0,26% 5,53% 29% -9% -3,06% 

 

Table 2 shows that sorting stocks on past year’s illiquidity produces portfolios with 

monotonically increasing average illiquidity values. This finding confirms our previous  

conclusion in Section 4.1 that liquidity is a persistent variable. Moreover, we see that average 

illiquidity is increasing in the standard deviation of illiquidity and illiquidity innovations. 

Except for the last (most illiquid) portfolio, there also exists a positive relationship between 

expected returns and portfolio illiquidities.  This implies that stocks in ISE-100 stock returns  

have an illiquidity premium. Thus, risk averse investors require a risk premium for holding 

illiquid stocks that have high variations in liquidity.  

Furthermore, we find that ISE-100 stocks have correlations with the aggregate market 

liquidity both in terms of liquidity and returns. Interestingly, the commonality in liquidity 

with the market—cov(illiqp, illiqm)— and the sensitivity to market liquidity—cov(rp, illiqm)—  

are high and remain within a very tight range across all portfolios. This finding can implicate 

that some part of liquidity risk in ISE-100 may be systematic/undiversifiable. However, this is 

beyond the scope of this paper and should be addressed in future research. 
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4.4. Unconditional L-CAPM  

In order to examine how liquidity risk affects the stock returns under the L-CAPM, we 

compute the four betas for each test portfolio using the entire daily series between 2005-2012 

as in the Eqs. (5)-(8). The innovations in market and portfolio returns/illiquidities are 

computed using AR(7) as decribed in Section 4.2. Table 3 reports the four betas for each 

portfolio.  

Table 3. Betas for illiquidity portfolios  

Portfolio 
   

(.100) 
   

(.100) 
   

(.100) 
   

(.100) 

1 0,920 0,522 -5,250 -0,006 

2 0,791 2,430 -6,380 -0,047 

3 0,749 4,010 -6,220 -0,069 

4 0,732 5,610 -6,260 -0,097 

5 0,716 6,830 -6,450 -0,128 

6 0,687 12,700 -7,600 -0,199 

7 0,597 20,200 -6,930 -0,340 

8 0,570 30,800 -5,890 -0,581 

 

Table 3 presents very interesting findings. First, the portfolios are monotonically 

decreasing in    from portfolio 1 through portfolio 8. Hence, the most liquid portfolios have a 

much higher correlation with market returns and a higher market risk than illiquid portfolios. 

This is the opposite of the findings in the U.S. case (Acharya and Pedersen, 2005), where 

liquid stocks have lower market risk. This could be related to the fact that a few liquid stocks 

make up the most of the equity trade volume in Turkey. 

Conversely, portfolios are monotonically increasing in    and   . Therefore, we find 

that illiquid stocks also have a high liquidity risk—a high liquidity sensitivity to market 

returns and market illiquidity. This result is consistent with the theory and similar to the 

findings in the U.S. case. However, the return sensitivity to market liquidity is less 

straightforward. If a portfolio is more illiquid, it does not necessarily imply that it has a higher 

sensitivity to market liquidity shocks. Specifically, the   ’s of all the eight portfolios remain 



16 

 

within a tight range, and suggests that this component of liquidity risk may be systematic in 

the Turkish equity markets.  

Next, we attempt at detecting the effect of illiquidity risk on expected returns by 

estimating an unconditional L-CAPM. We run pooled cross-sectional OLS regressions across 

the eight test portfolios for the entire study period using the pre-estimated betas
1
. We perform 

eight different estimations of the L-CAPM and present the results in Table 4. Aiming at 

capturing illiquidity premiums on a daily basis, we perform the cross-sectional regressions on 

daily portfolio returns and illiquidity measures. Moreover, we assume that investors incur 

illiquidity costs once every day.  

We fist assume that the risk premia of all four betas are the same and define the net 

beta as  

                                                                                                                         

                                                                                                                                                                                                                                                                                            

The L-CAPM becomes   [        ]       [     ]             [     ]                         (10)                           

The results of this regression are shown in line 1 of Table 4. The risk premium on the net beta 

is positive and significant, which lends support to the L-CAPM. 

Table 4. Unconditional L-CAPM for illiquidity portfolios 

Estimation Constant İlliquidity       

     

 

    Net β 
Net 

Liquidity β  

1 -0,006 -0,049***   

  

  0,01** 

 

 

(-1,598) (-5,166) 

    

(2,34) 

 
2 0,0003 -0,050*** 0,002 

    

0,008 

 

(0,045) (-5,268) (0,192) 

    

(-1,479) 

3 0.002*** -0,05*** 

     

0,007** 

 

(2,678) (-5,266) 

     

(2,572) 

                                                           
1
 While Acharya and Pedersen (2005) employ a GMM (Generalized Method of Moments) in their cross-

sectional regressions, we employ an OLS methodology.  

(9) 
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4 0,01*** -0,047*** -0,009** 

     

 

(2,947) (-5,057) (-2,113) 

     
5 0,002*** -0,049*** 

 

0,129** 

    

 

(2,669) (-5,252) 

 

(2,546) 

    
6 0,002 -0,04*** 

  

0,173 

   

 

(0,409) (-4,619) 

  

(0,248) 

   
7 0,002*** -0,0501*** 

   

0,007** 

  
  (2,797) (-5,267)       (2,573)     

         

Notes: ***, **, * denote statistical significance at 1%, 5% and 10%, respectively. 

 

 Next, we want to isolate the effect of aggregate liquidity risk on returns and define the net 

liquidity beta as 

                      

                                                                                              

The L-CAPM becomes    [        ]       [     ]                 
                                                             

The results of this regression are given in line 2 of Table 4. The risk premia on both 

betas are positive, and the premium on the net liquidity β is four times as high as that on    . This result suggests that liquidity risk may matter more than market risk, but both 

coefficients are insigificant. However, the insignificance can be related to the multi-

collinearity problem.  As pointed out by by Acharya and Pedersen (2005) and Lee (2011), the 

correlations between the L-CAPM betas are high, and the cross-sectional L-CAPM 

regressions are subject to the multicollinearity problem. Line 3 of Table 4 drops    and re-

estimates the model with the net liquidity β. Then the coefficient on the net liquidity β 

becomes positive and significant.  

In order to alleviate the problem of multicollinearity, univariate regressions are run for 

each β separately. Lines 4-7 of Table 4 present the findings.    is negative, so daily returns 

(11) 

(12) 
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are a decreasing function of market risk. We also see that all liquidity betas, except for    are 

strongly significant and positively affect stock returns. Hence, investors do not seem to pay a 

premium for the return sensitivity to market liquidity (cov(  ,       )) on a daily basis. 

Furthermore, we find that across all estimations, the illiquidity level negatively affects daily 

returns.  This contradicts the positive relationship between illiquidity and returns under the L-

CAPM in the U.S. case in Acharya and Pedersen (2005).  

4.5. Conditional L-CAPM: Diagonal VECH 

 In this section, we estimate a conditional version of the L-CAPM in order to capture 

the time variation of liquidity risk. We allow for conditional variances of innovations in 

illiquidity and returns, as well as conditional covariances between these series. In order to 

construct the L-CAPM regression, we estimate adequate ARIMA-GARCH models for the 

return and illiquidity series of the market and test portfolios. We find that for each series, all 

GARCH coefficients are statististically significant. We check the fitted models with 

standardized residuals and their squared processes, and we see that the Ljung-Box statistics 

are insignificant at the 10% level. The ARCH test on the squared residuals indicate that there 

are no ARCH effects left.  

Using the residuals from the fitted ARIMA-GARCH models for each each series of 

returns and illiquidity, we estimated the conditional covariances in Eqs. (4-7) using the 

bivariate Diagonal VECH model. We employ the Maximum Likelihood (Marquardt) method 

in our estimations. We then compute the betas by dividing the covariances by the variance of 

difference in market return and market illiquidity measure. Graph 5 shows that whereas    

and    generally take positive values,    and    take negative values. Furthermore, all betas 

jump and become highly volatile during the 2008 global economic crisis.    takes the highest 

values of all betas, which means that illiquidity sensitivity to market returns may be the most 

important component of illiquidity risk.  
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Graphs 5. Time-varying betas 

  

  

 

We also observe that although market risk is extremely volatile, all three components of 

illiquidity risk (  ,       ) have been rather stable since 2010. 

Finally, we run pooled cross-sectional OLS regressions across the eight test portfolios 

using the pre-estimated betas. As in Section 4.2, estimate the L-CAPM regression  

  [        ]       [     ]                         

We find that while net β in line 1 of Table 6 is insignificant, both     and the net liquidity β 

are significant in line 2.    is negative while the net net liquidity β is positive. This suggests 
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that aggregate liquidity risk has a higher premium than market risk. When excess returns are 

regressed on the net liquidity β, the effect reduces in magnitude but stays positive and 

significant. We also find across all estimations that illiquidity negatively and strongly affects 

daily returns. 

Checking for collinearity, we find very high correlations among the four betas (Table 

5). This makes it statistically very difficult to measure the individual effect of each risk. 

Table 5. Beta Correlations 

          
 

1,000 

   
 

0,671 1,000 

  
 

-0,372 -0,402 1,000 

   -0,679 -0,800 0,417 1,000 

Notes: Average correlation of the eight portfolios is reported. 

In order to minimize the multicollinearity problem, we run univariate regressions on each β 

separately. Lines 4-7 of Table 4 present the findings. 

We see that while the market risk (  ) is insignificant, all liquidity betas are strongly 

significant.    and    are positive, which means that investors require a return premium for 

portfolios that become illiquid in times of poor market return and high illiquidity. On the 

other hand,     is negative. Hence, investors do not seem to require a premium for the return 

sensitivity to market liquidity (cov(  ,       )), and returns are lower when    is higher. The 

results show that from all three liquidity channels    has the highest impact. This is different 

from the findings of Acharya and Pedersen (2005), which implies that liquidity impacts differ 

in Turkey compared to the U.S. 

 

 



21 

 

Table 6. Conditional L-CAPM for illiquidity portfolios 

Estimation Constant Illiquidity       

     

 
    Net β 

Net Liquidity 

β  

1 0,002*** -0,04***   

  

  0,0006 

 

 

(3,647) (-4,459) 

    

(1,134) 

 
2 0,004*** -0,061*** -0,002** 

    

0,003*** 

 

(5,033) (-5,57) (-2,006) 

    

(3,59) 

3 0,003*** -0,061*** 

     

0,003** 

 

(5,522) (-5,558) 

     

(3,253) 

4 0,004*** -0,0372*** -0.001 

     

 

(4,806) (-4,268) (-1,333) 

     
5 0,003*** -0,059*** 

 

0,039*** 

    

 

(5,87) (-5,209) 

 

(2,721) 

    
6 0,004*** -0,036*** 

  

-0.206** 

   

 

(6,218) (-4,177) 

  

(-2,116) 

   
7 0,003*** -0,06*** 

   

0.003** 

  

 

(5,544) (-5,552) 

   

(3,239) 

                    

   Notes: ***, **, * denote statistical significance at 1%, 5% and 10%, respectively. 

 

5. Conclusion 

This paper examines the impact of illiquidity and liquidity risk on expected stock 

returns in the Turkish stock markets. Using daily data of the ISE-100 stock index from 2005 

to 2012 and Amihud (2002) illiquidity measure, we test the liquidity-adjusted capital asset 

pricing model (L-CAPM) of Acharya and Pedersen (2005) for 2005-2012. We estimate both 

an unconditional and a conditional version of the L-CAPM model and perform OLS cross-

sectional regressions on illiquidity-sorted test portfolios. We find supporting evidence that 

both illiquidity level and liquidity risk have a significant impact on the cross-section of stock 

returns in Turkey.  
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Our results indicate that while illiquidity is persistent and lowers stock returns, 

liquidity risk is significantly and positively priced. The most dominant liquidity risk in terms 

of illiquidity premia is the covariance between security’s illiquidity and the market illiquidity     . The strong inter-relationship between the market liquidity and the liquidity of individual 

stocks suggests that market wide shocks on the Istanbul Stock Exchange might quickly affect 

every stock in this market. Hence, liquidity commonality can create a systemic risk in which 

case liquidity shocks can be perfectly correlated across all stocks. Moreover, the security’s 

illiquidity sensitivity to market returns      is also positive and significant. These results are 

different from the U.S. case, where Acharya and Pedersen (2005) find that the most dominant 

liquidity risk is   . 

Based on the results of this paper, we conclude that liquidity risk is a key driver of 

returns in the Turkish equity markets. We pave the way for future research, providing 

interesting implications for investors, risk managers and regulators. As liquidity risk is priced, 

investors should incorporate it into their trading and hedging strategies to improve their risk 

profile, and increase their investment returns. Furthermore, a deeper understanding of 

systemic liquidity risk is vital for regulatory authorities to design improved regulations 

against systemic shocks. As a next step, it can be of interest to explain illiquidity impact with 

a Fama-French approach controlling for factors such as size, book-to-market-ratio, 

momentum and P/E factor. It would also be interesting to analyze the return-illiquidity 

relationship with different illiquidity measures, and to investigate the sensitivity of the results 

to different liquidity proxies. Finally, future studies can extend our research to other asset 

groups and examine the drivers of systemic liquidity risk, a concept which is not yet well 

understood in the emerging world.  
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