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Abstract. In this paper, we consider two-sided, many-to-one matching
problems where agents in one side of the market (hospitals) impose some
distributional constraints (e.g., a minimum quota for each hospital). We
show that when the preference of the hospitals is represented as an M♮-
concave function, the following desirable properties hold: (i) the time
complexity of the generalized GS mechanism is O(|X|3), where |X| is
the number of possible contracts, (ii) the generalized Gale & Shapley
(GS) mechanism is strategyproof, (iii) the obtained matching is stable,
and (iv) the obtained matching is optimal for the agents in the other
side (doctors) within all stable matchings.
Furthermore, we clarify sufficient conditions where the preference be-
comes an M♮-concave function. These sufficient conditions are general
enough so that they can cover most of existing works on strategyproof
mechanisms that can handle distributional constraints in many-to-one
matching problems. These conditions provide a recipe for non-experts in
matching theory or discrete convex analysis to develop desirable mecha-
nisms in such settings.

1 Introduction

The theory of two-sided matching has been extensively developed, and it has
been applied to design clearinghouse mechanisms in various markets in practice.4

As the theory has been applied to increasingly diverse types of environments,
however, researchers and practitioners have encountered various forms of distri-
butional constraints. As these features have been precluded from consideration
until recently, they pose new challenges for market designers.

The regional maximum quotas provide one such example. Under the regional
maximum quotas, each agent on one side of the market (which we call a hospital)
belongs to a region, and each region has an upper bound on the number of agents

4 See Roth and Sotomayor [15] for a comprehensive survey of many results in this
literature.



on the other side (who we call doctors) who can be matched in each region.
Regional maximum quotas exist in many markets in practice. A case in point is
Japan Residency Matching Program (JRMP), which organizes matching between
medical residents and hospitals in Japan. Although JRMP initially employed the
standard deferred acceptance algorithm [6], it was criticized as placing too many
doctors in urban areas and causing doctor shortage in rural areas. To address
this criticism, Japanese government now imposes a regional maximum quota
to each region of the country. Regulations that are mathematically isomorphic
to regional maximum quotas are utilized in various contexts, such as Chinese
graduate admission, Ukrainian college admission, Scottish probationary teacher
matching, among others [10].

Furthermore, there are many matching problems in which minimum quotas
are imposed. School districts may need at least a certain number of students
in each school in order for the school to operate, as in college admissions in
Hungary [1]. The cadet-branch matching program organized by United States
Military Academy (USMA) imposes minimum quotas on the number of cadets
who can be assigned to each branch [16]. Yet another type of constraints takes the
form of diversity constraints. Public schools are often required to satisfy balance
on the composition of students, typically in terms of socioeconomic status [2].
Several mechanisms have been proposed [2, 3, 7, 8, 10] for each of these various
constraints, but previous studies have focused on tailoring mechanisms to specific
settings, rather than providing a general framework.

This paper develops a general framework for handling various distributional
constraints, in the setting of ‘matching-with-contracts’ [9]. We begin by aggre-
gating hospital preferences and distributional constraints into a preference of
a representative agent, “the hospitals,” as in [10]. The key of our analysis is
to associate the preference of the hospitals to a mathematical concept called
M♮-concavity [11]. M♮-concavity is an adaptation of concavity to functions on
discrete domains, and has been studied extensively in discrete convex analysis,
which is a branch of discrete mathematics. We show that if the hospitals’ ag-
gregated preferences can be represented by an M♮-concave function, then the
following key properties of two-sided matching hold: (i) the time complexity of
the generalized GS mechanism is O(|X|3), where |X| is the number of possible
contracts, (ii) the generalized GS mechanism is strategyproof for doctors, (iii) the
resulting matching is stable (in the sense of Hatfield and Milgrom [9]), and (iv)
the obtained matching is optimal for each doctor among all stable matchings.

Although these properties can be obtained by combining already known re-
sults in matching theory and discrete convex analysis, these two research areas
have not been well-connected so far. While general frameworks on two-sided
matchings are proposed by utilizing discrete convex analysis in [4, 5], strate-
gyproof mechanisms are not considered in these models. One contribution of
this paper is to establish a link between matching theory and discrete convex
analysis.

Equipped with this general result, we study conditions under which the hos-
pitals’ preferences can be represented by an M♮-concave function. We start by



separating the preference of hospitals into two parts. More specifically, we di-
vide hospital preferences to hard distributional constraints for the contracts to
be feasible, and soft preferences over a family of feasible contracts. Drawing upon
techniques from discrete convex analysis, we show that if a family of hospital-
feasible contracts forms a matroid [11], and the soft preferences satisfy certain
easy-to-verify conditions (e.g., it can be represented as a weighted sum of con-
tracts), then hospital preferences can be represented by an M♮-concave function.

One of the main motivations of our work is to provide an easy-to-use recipe,
or a toolkit, for organizing matching mechanisms under constraints. Although
our general result is stated in terms of the abstract M♮-concavity condition,
market designers do not need advanced knowledge on discrete convex analysis
or matching theory. On the contrary, our sufficient conditions in the preceding
sections suffice for most practical applications. To use our tool, all one needs to
show is that the given hard distributional constraints produce a matroid (note
that requirements over soft preferences are elementary, e.g., weighted sum of
contracts). Fortunately, there exists a vast literature on matroid theory, and
what kinds of constraints produce a matroid is well-understood. Therefore, it is
usually sufficient to show that the hard distributional constraints can be mapped
into existing results in matroid theory. We confirm this fact by demonstrating
that most distributional constraints can be represented using our method. The
list of applications includes matching markets with the regional maximum quo-
tas [8, 10], individual minimum quotas [3], regional minimum quotas [7], and
diversity requirements in school choice [2]. As such, we believe that this study
contributes to the advance of practical market design (or “economic engineer-
ing”) as emphasized in the recent literature (see Roth [14] for instance), by
providing tools for organizing matching clearinghouses in practice.

2 Model

A market is a tuple (D,H,X,≻D, f). D is a finite set of doctors and H is a finite
set of hospitals. X is a finite set of contracts. Each contract x ∈ X is bilateral,
in the sense that x is associated with exactly one doctor xD ∈ D and exactly
one hospital xH ∈ H. Each contract can also contain some terms of contracts
such as working time and wages. Let ≻D= (≻d)d∈D, where each ≻d represents
the preference of each doctor d over the contracts that are related to her (which
are denoted as Xd).

We assume some distributional constraints are enforced on feasible contracts.
We assume such distributional constraints and hospital preferences are aggre-
gated into a preference of a representative agent, which we call “hospitals”.
The preference of the hospitals is represented as a function f , i.e., for two sets
of contracts X ′, X ′′ ⊆ X, the hospitals prefer X ′ over X ′′ if f(X ′) > f(X ′′)
holds. If X ′ ⊆ X violates some distributional constraint, f(X ′) = −∞. We as-
sume f is normalized by f(∅) = 0. Also, we assume f is unique-selecting, i.e.,
∀X ′ ⊆ X, argmaxX′′⊆X′ f(X ′′) is a singleton.



For notation simplicity, we assume each contract x ∈ X is acceptable both for
doctors and hospitals. If a doctor (or hospitals) consider a contract unacceptable,
it is not included in X.

Now, we define several concepts used in this paper.

Definition 1 (feasibility). For a subset of contracts X ′ ⊆ X, we say X ′ is
hospital-feasible iff f(X ′) ̸= −∞. Also, we say X ′ is doctor-feasible iff it contains
at most one contract related to each doctor, i.e., |X ′

d| ≤ 1 holds for all d ∈ D.
Then, we say X ′ is feasible iff it is doctor- and hospital-feasible. We also call a
feasible set of contracts matching.

Definition 2 (choice functions). For each doctor d, its choice function Chd(X
′)

chooses {x}, i.e., a set that contains exactly one contract x ∈ X ′
d, where x is

the most preferred contract in X ′
d, or Chd(X

′) = ∅ if X ′
d = ∅. Then, the choice

function of all doctors are defined as ChD(X ′) :=
∪

d∈D Chd(X
′).

For the hospitals, its choice function ChH(X ′) is defined as: argmaxX′′⊆X′ f(X ′′).
Since we assume f is unique-selecting, ChH is uniquely determined by f .

Definition 3 (stability [9]). We say a matching X ′ is stable iff there exists
no x ∈ X \X ′ such that x ∈ ChH(X ′ ∪ {x}) and x ∈ ChD(X ′ ∪ {x}) hold.

For notation simplicity, we write X ′ + x and X ′ − x to represent X ′ ∪ {x}
and X ′ \ {x}, respectively. Also, when x = ∅, they mean that nothing is added
to X ′ and nothing is removed from X ′, respectively.

Definition 4 (M♮-concavity). We say that f is M♮-concave when ∀Y, Z ⊆
X, ∀y ∈ Y \ Z, there exists z ∈ Z \ Y ∪ {∅} such that f(Y ) + f(Z) ≤ f(Y − y +
z) + f(Z − z + y) holds.

The generalized Gale & Shapley (GS) mechanism [9] is a generalized version
of the well-known deferred acceptance algorithm [6], which is adapted for the
‘matching-with-contracts’ model.

Definition 5 (generalized Gale & Shapley (GS) mechanism [9]). The
generalized GS mechanism gives the following matching:

1. R← ∅.
2. X ′ ← ChD(X \R), X ′′ ← ChH(X ′).
3. If X ′ = X ′′ then return X ′, otherwise, R← R ∪ (X ′ \X ′′), goto 2.

3 Properties of generalized GS mechanism

In this section, we show properties of the generalized GS mechanism, assuming
f is M♮-concave and unique-selecting. Due to space limitations, most of proofs
are deferred to Appendix.

Theorem 1. The time complexity of the generalized GS mechanism is O(|X|3).

The following theorem immediately follows from existing results in discrete
convex analysis.



Theorem 2. The generalized GS mechanism is strategyproof for doctors, i.e.,
no doctor has any incentive to misreport her preference, no matter what the
other doctors report. Also, it always produces a stable matching, and the obtained
matching is doctor-optimal among all stable matchings, i.e., all doctors weakly
prefer the obtained matching to any other stable matching.

4 Sufficient Conditions for M♮-concavity

In this section, we present several sufficient conditions under which function f
becomes M♮-concave. Without loss of generality, we can assume f is represented
by the summation of two parts, i.e., f(X ′) = f̃(X ′) + f̂(X ′), where f̃ rep-

resents hard distributional constraints for hospital-feasibility and f̂ represents
soft preference over hospital-feasible contracts. More specifically, f̃(X ′) returns

0 when X ′ is hospital-feasible, and otherwise, −∞. f̂(X ′) returns a bounded
non-negative value. Let us first introduce a structure called matroid. [11].

Definition 6 (matroid). Let X be a finite set, and F be a family of subsets of
X. A pair (X,F ) is a matroid iff it satisfies the following conditions.

1. ∅ ∈ F .
2. If X ′ ∈ F and X ′′ ⊂ X ′, then X ′′ ∈ F holds.
3. If X ′, X ′′ ∈ F and |X ′| > |X ′′|, then there exists x ∈ X ′ \ X ′′ such that

X ′′ ∪ {x} ∈ F .

Let us denote a family of hospital-feasible contracts as dom f = dom f̃ =
{X ′ | X ′ ⊆ X, f̃(X ′) ̸= −∞}. The following theorem holds.

Theorem 3. If f is M♮-concave and f(∅) = 0, then (X, dom f̃) is a matroid.

Theorem 3 means that, in order to utilize the theory of M♮-concavity, it is
necessary for the set of hospital-feasible contracts to form a matroid.

We utilize the following properties [11].

Property 1 (simultaneous exchange property). Let (X,F ) be a matroid. ∀Y, Z ∈
F, ∀y ∈ Y \ Z, there exists z ∈ Z \ Y ∪ {∅} such that Y − y + z ∈ F and
Z − z + y ∈ F hold.

Property 2 (summation with weights). If f̃(X ′) is M♮-concave, then f(X ′) =
f̃(X ′)+

∑

x∈X′ w(x) is also M♮-concave, where w(x) is a weight associated to x.

Property 3 (laminar concave function). Assume T is a laminar family of subsets
of X, i.e., for any Y, Z ∈ T , either one of the following conditions holds: (i)
Y ∩Z = ∅, (ii) Y ⊂ Z, or (iii) Z ⊂ Y . Also assume for each Y ∈ T , a univariate
concave function fY is associated. Then, f(X ′) =

∑

Y ∈T fY (|X
′ ∩ Y |) is M♮-

concave. Such an f is called a laminar concave function on T .

First, let us consider one simple but very general method for defining f̂ .



Definition 7 (preference based on total order on X). Assume there exists
a total preference ordering ≻H over X, i.e., x1 ≻H x2 ≻H x3 ≻H . . .. Further-
more, we assume for each x, a positive weight w(x) is defined so that w(x) >

w(x′) holds when x ≻H x′. Then, we assume f̂(X ′) is given as
∑

x∈X′ w(x).

Theorem 4. If (X,F ), where F = dom f̃ , is a matroid and f̂(X ′) is given as
∑

x∈X′ w(x), then f is M♮-concave.

Proof. From Property 1, it is clear that f̃ is M♮-concave. Then, from Property 2,
f(X ′) = f̃(X ′) +

∑

x∈X′ w(x) is M♮-concave.

It must be noted that although we assume a weight value w(x) is given for
each contract and f is defined by the sum of these weight values, ChH(X ′) is
determined only by the relative ordering of these weight values. Thus, the specific
cardinal choice of these weight values is not important.

Let us introduce a useful matroid and an M♮-concave function based on it.

Theorem 5. Assume T is a laminar family of subsets of X, and positive inte-
gers qT for T ∈ T are given. Then, (X,F ), where F = {X ′ ⊆ X | |X ′ ∩ T | ≤
qT (∀T ∈ T )}, is a matroid. Furthermore, assume f̃ is defined so that dom f̃ = F ,

and f̂ is a laminar concave function on T , then f is M♮-concave.

Proof. The proof is straightforward from Property 3.

Let us introduce another type of useful M♮-concave functions/matroids. We
first introduce a concept called a group of contracts.

Definition 8 (group of contracts). Let G = {g1, . . . , gn} be a partition of X,
i.e., g ∩ g′ = ∅ for any g ̸= g′ and

∪

g∈G g = X. We call each element g as a
group in G.

A natural way of dividing contracts into groups is based on hospitals, i.e., each
gi represents the set of contracts related to hospital hi.

For contracts within each group g, we assume a priority ordering ≻g is de-
fined. Furthermore, we assume a positive weight w(x) is defined for each x, so
that w(x) > w(x′) when both x and x′ belong to g and x ≻g x′.

Furthermore, we assume a finite sequence of groups is defined, in which a
group can appear repeatedly. This sequence determines a preference over the
numbers of accepted contracts of each group. Such a preference is called an order-
respecting preference, which can model a wide variety of preferences of hospi-
tals [10]. For example, a sequence g1, g1, g2, g3, g1, g1, g2, g3, . . .means that, g1 can
accept two contracts, then g2 can take one, and g3 can take one, and so on, as long
as there exists a contract related to each group. If a sequence is defined based on
a round-robin ordering, e.g., it is given as g1, g2, . . . , gn, g1, g2, . . . , gn, g1, g2, . . .,
then it means that hospitals prefer that the numbers of accepted contracts of
each group become as equal as possible.

Then, let wg(i) denote the weight associated with the i-th selection/turn of
group g. We assume ∀i, g, wg(i) > wg(i + 1) holds. Also, if the i-th appearance



of group g is earlier than the j-th appearance of group g′ in the sequence, we
assume wg(i) > wg′(j) holds. Thus, these weights represent the sequence. We

call these weights group weights. Let us define Wg(k) :=
∑k

i=1
wg(i).

Definition 9 (order-respecting preference). For groups G, an order-respecting

preference f̂ is given as follows:

f̂(X ′) =
∑

g∈G

Wg(|X
′ ∩ g|) +

∑

x∈X′

w(x), (1)

where wg(i) >> w(x) holds for any g, i, and x.

Now, we clarify the condition on f̃ , such that f(X ′) = f̃(X ′)+f̂(X ′) becomes

M♮-concave, assuming f̂(X ′) is order-respecting.

Definition 10 (symmetry of groups). We say G is symmetric in (X,F ), if
for a matroid (X,F ), ∀g ∈ G, ∀x, x′ ∈ g, ∀X ′ ⊂ X such that {x, x′} ∩ X ′ = ∅,
X ′ + x ∈ F iff X ′ + x′ ∈ F holds.

The following theorem holds.

Theorem 6. f(X ′) = f̃(X ′)+f̂(X ′) is M♮-concave if (X,F ), where F = dom f̃ ,

is a matroid, G is symmetric in (X,F ), and f̂ is order-respecting.

Let us introduce a few matroids and a method to create a new matroid from
given matroids [13], which are used in our case studies.

Definition 11 (uniform matroid). (X,F ) is a uniform matroid if F = {X ′|X ′ ⊆
X, |X ′| ≤ k} for some non-negative integer k.

Definition 12 (gammoid). A gammoid (X,F ) is defined based on a directed
graph (V,E, S, T ). Here, V is a set of vertexes, and E is a set of directed edges.
We assume S ⊂ V , T ⊂ V , and S∩T = ∅. Here, S is a set of start vertexes and
T is a set of terminal vertexes. We assume S = X, and X ′ ⊆ X is an element
of F , iff there exist vertex-disjoint paths for each x ∈ X ′ to some element in T .

Definition 13 (union). Assume (X,F1), . . . , (X,Fk) are matroids. Then (X,F ),
where F = {X ′|X ′ =

∪

1≤i≤k X
′
i, where X ′

i ∈ Fi} is also a matroid.

5 Case Studies

In this section, we examine existing works on constrained matching and show
that the sufficient conditions described in Section 4 hold in these cases.



5.1 Standard Model

In the standard model of two-sided matching [6], a contract x ∈ X is a pair (d, h),
which represents a matching between doctor d and hospital h. Each hospital h
has its maximum quota qh, i.e., X

′ is hospital-feasible iff |X ′
h| ≤ qh for all h,

where X ′
h = {(d, h) ∈ X ′ | d ∈ D}. (X,F ), where F = dom f̃ , is a matroid, since

it is a union of uniform matroids.
Each hospital h has a priority ordering ≻h among contracts Xh. Let us

assume a positive weight w(x) is defined for each x = (d, h), so that w((d, h)) >

w((d′, h)) when (d, h) ≻h (d′, h) holds. Assuming f̂(X ′) =
∑

x∈X′ w(x), f is

M♮-concave by Theorem 4. It must be noted that although we assume a weight
value w(x) is given for each contract and f is defined by the sum of these weight
values, ChH(X ′) is determined only by the relative ordering of these weight
values among the contracts that belongs to the same hospital. Thus, the specific
cardinal choice of these weight values, or the relative ordering among contracts
for different hospitals, is not important.

In the standard model, a matching is stable iff there exists no blocking pair [6].
Here, we assume each hospital has its own choice function Chh, and ChH(X ′)
is given as

∪

h∈H Chh(X
′). X ′ is stable if there exists no pair of d and h, where

x ∈ X \ X ′ is a contract related to d and h, x ∈ Chh(X
′ ∪ {x}) and x ∈

Chd(X
′ ∪ {x}) hold. It is easy to see that our stability is equivalent to standard

stability, and the standard deferred acceptance mechanism is identical to the
generalized GS-mechanism where ChH is defined as the maximization of this f .

However, if some additional distributional constraints are imposed, ChH can-
not be defined in this way. Thus, our stability can be different from standard
stability. It is common that no matching satisfies standard stability when addi-
tional distributional constraints are imposed.

5.2 Regional Maximum Quotas [8, 10]

The model used in [8, 10] is almost identical to the standard model. The only
difference is that hospitals are grouped into regions R = {r1, . . . , rl}, where
each region r is a subset of hospitals, and has its regional maximum quota qr.
We assume R is a laminar family of H, i.e., these regions have a hierarchical
structure. Let X ′

r denote
∪

h∈r X
′
h. X

′ is hospital-feasible iff |X ′
h| ≤ qh for all

h ∈ H, and |X ′
r| ≤ qr for all r ∈ R. From Theorem 5, (X,F ), where F = dom f̃ ,

is a matroid, since T = {Xr1 , Xr2 , . . . , Xh1
, Xh2

, . . .} is a laminar family of X.
Goto et al. [8] assume there exists a total preference ordering ≻H over X,

i.e., x1 ≻H x2 ≻H x3 ≻H . . .. We assume a positive weight w(x) for each x is

defined so that w(x) > w(x′) when x ≻H x′. Let us assume f̂(X ′) is given as
∑

x∈X w(x). Then, f is M♮-concave by Theorem 4. In Goto et al. [8], a mechanism
called Priority-List based Deferred Acceptance mechanism (PLDA) is presented.
PLDA is identical to the generalized GS mechanism where ChH is defined as
the maximization of this f .

In Kamada and Kojima [10], a round-robin ordering among hospitals is de-
fined, e.g., h1 → h2 → . . ., and each hospital can sequentially accept one contract



according to this round-robin ordering.5 Let whi
(j) denote the weight associated

with the j-th choice of hospital hi. Then, we can define whi
(j) as C − |H| · j− i,

where C is a large positive constant. Wh(k) denotes
∑k

j=1
wh(j). Then, f̂(X

′)
can be defined as

∑

h∈H Wh(|Xh|) +
∑

x∈X′ w(x), where C >> w(x) for all
x ∈ X. Assuming G = {Xh1

, Xh2
, . . .}, it is clear that G is symmetric in (X,F ).

Thus, from Theorem 6, f(X ′) = f̃(X ′) + f̂(X ′) is M♮-concave. In Kamada
and Kojima [10], a mechanism called Flexible Deferred Acceptance mechanism
(FDA) is presented. FDA is identical to the generalized GS mechanism where
ChH is defined as the maximization of this f .

5.3 Regional Minimum Quotas [7]

The model used in [7] is almost identical to the regional maximum quotas model
described in Section 5.2, but each individual hospital h has its minimum quota
ph. Furthermore, each region r has its minimum quota pr rather than its maxi-
mum quota. The model presented in [3] is a special case of this model in which
no regional minimum quota is imposed.

X ′ is (original) hospital-feasible iff ph ≤ |X
′
h| ≤ qh for all h, and pr ≤ |X

′
r|

for all r. Here, we assume each doctor can accept any hospital, and each hospital
can accept any doctor, i.e., ∀d ∈ D, ∀h ∈ H, (d, h) ∈ X. For each region r, let
qr denote

∑

h∈r qh. Without loss of generality, we assume there exists a root
region H, whose minimum quota is set as pH = n (and qH =

∑

h∈H qh). From
these assumptions, regions R and individual hospitals form a tree, in which
H is the root node (as shown in Figure 1 (a)). We assume for each region r,
∑

h∈r ph ≤ pr ≤ qr holds. From these assumptions, we can guarantee that a
feasible matching always exists.

If we use the original definition of hospital-feasibility, the family of hospital-
feasible contracts cannot be a matroid, since ∅ is not hospital-feasible. Here, we
relax the original hospital-feasibility as follows. X ′ is hospital-feasible iff there
exists X ′′ ⊇ X ′ such that X ′′ is original hospital-feasible.

We create a gammoid that represents these regional constraints as follows.

– We set the start vertexes S as X.
– For each hospital h, we create ph terminal vertexes and qh−ph intermediate

vertexes. There exist links from each (d, h) to these vertexes.
– For each region r, we create pr −

∑

h∈r ph terminal vertexes. There exist
links from intermediate vertexes created for h ∈ r to these vertexes.

– We assume f̃(X ′) = 0 iff there exist vertex-disjoint paths from each x ∈ X ′

to some terminal vertex, and otherwise, −∞.

Assume there are four hospitals h1, . . . , h4. Their maximum and minimum quotas
are 3 and 1, respectively. They are divided into two regions r1, r2. Their minimum
quotas are 3 (Figure 1 (a)). Thus, we require at least one doctor is assigned to

5 To be more precise, Kamada and Kojima [10] assume target quotas for each hospital
can be introduced. Here, we consider a case where these target quotas are the same
for all hospitals that belongs to the same region.
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Fig. 1. Example of Gammoid

both h1 and h2, and additional one doctor is assigned to either h1 or h2. Then,
for h1, we create one terminal vertex, and 3−1 = 2 intermediate vertexes. There
exist links from each contract related to h1 to these vertexes. Also, for r1, we
create 3−(1+1) = 1 terminal vertex. There exist links from intermediate vertexes
for h1 (as well as h2) to these vertexes. For group H, we create 8− (3 + 3) = 2
terminal vertexes. There exist links from intermediate vertexes for h1 (as well as
h2, h3, and h4) to these vertexes (Figure 1 (b)). The following theorem holds.

Theorem 7. X ′ is hospital-feasible, i.e., there exists X ′′ ⊇ X ′ such that X ′′ is
original hospital-feasible, iff f̃(X ′) = 0.

f̂(X ′) is defined in a similar way as in Section 5.2. Then, f becomes M♮-concave
from Theorem 6.

Goto et al. [7] present a mechanism based on the deferred acceptance mecha-
nism called Round-robin Selection Deferred Acceptance mechanism for Regional
Minimum quotas (RSDA-RQ). RSDA-RQ is identical to the generalized GS
mechanism where ChH is defined as the maximization of f described above. Fra-
giadakis et al. [3] present a mechanism based on the deferred acceptance mech-
anism called Extended Seat Deferred Acceptance mechanism (ESDA). ESDA is
a special case of RSDA-RQ, in which no regional minimum quota is imposed.

5.4 Controlled School Choice [2]

We assume each doctor d has its type τ(d) ∈ T = {t1, . . . , tk}. A type of doctor
may represent race, income, gender, or any socioeconomic status. Each hospital h
has a priority ordering ≻h among contracts Xh. Furthermore, each hospital sets



minimum and maximum quotas for each type t, which are denoted as q
h,t

and

qh,t, respectively. These quotas are soft-bounds and does not affect feasibility.
Let us assume a contract is represented as (d, h, t, s), where t ∈ T and s ∈

{0, 1, 2}. s = 0, 1, 2 mean that doctor d is accepted for hospital h for type t’s
priority seat, normal seat, and extended seat, respectively. Let X ′

h,t,s denote
{(d, h, t, s) ∈ X ′ | d ∈ D}. Let us assume for each x, its weight w(x) is defined.
We assume w((d, h, t, 0)) > w((d′, h′, t′, 1)) and w((d, h, t, 1)) > w((d′, h′, t′, 2))
hold for any d, d′, t, and t′, i.e., hospitals first try to fill their priority seats,
then normal seats, and finally extended seats. Also, we assume w((d, h, t, s)) >
w((d′, h, t, s)) if d ≻h d′, i.e., the preference of an individual hospital over doctors
is respected, as long as doctors have the same type.

Let us define f̃(X ′) as 0 when |X ′
h| ≤ qh, |X

′
h,t,0| ≤ q

h,t
, and |X ′

h,t,1| ≤

qh,t − q
h,t

hold ∀h ∈ H, ∀t ∈ T , and −∞ otherwise. Also, let us define f̂(X ′) as
∑

x∈X′ w(x). From Theorem 5, f̃(X ′) forms a matroid, since T = {Xh,t,s|h ∈
H, t ∈ T, s ∈ {0, 1, 2}} ∪ {Xh|h ∈ H} is a laminar family of X. Thus, f is
M♮-concave from Theorem 4.

To run the generalized GS mechanism, we modify the preference of each
doctor d so that (d, h, t, s) ≻d (d, h′, t, s′) holds for any h ̸= h′, s, and s′ if
h ≻d h′, and (d, h, t, 0) ≻d (d, h, t, 1) ≻d (d, h, t, 2) holds for any h. Ehlers et al.
[2] present a mechanism based on the deferred acceptance mechanism called
Deferred Acceptance Algorithm with Soft Bounds (DAASB). DAASB is identical
to the generalized GS mechanism where ChH is defined as the maximization of
f . Ehlers et al. [2] also introduce a new stability concept, in which doctor d and
hospital h can form a blocking pair, where d is currently assigned to hospital h′,
h ≻d h′, and τ(d) = t, if either one of the following conditions holds:

1. |X ′
h| < qh or |X ′

h,t,0| < q
h,t

, or

2. another doctor d′, where τ(d′) = t′ is assigned to h, and either
(a) t = t′ and d ≻h d′,
(b) t ̸= t′, q

h,t
≤ |X ′

h,t| < qh,t, qh,t′ < |X
′
h,t′ | ≤ qh,t′ , and d ≻h d′,

(c) t ̸= t′. q
h,t
≤ |X ′

h,t| < qh,t, and |X
′
h,t′ | > qh,t′ , or

(d) t ̸= t′, |X ′
h,t| ≥ qh,t, |X

′
h,t′ | > qh,t′ , and d ≻h d′ holds.

This stability concept is identical to our stability.

6 Conclusion

We proved that in two-sided, many-to-one matching problem, in which some
distributional constraints are imposed on feasible matchings, several desirable
properties hold when the preference of hospitals is represented as an M♮-concave
function. Furthermore, we derived sufficient conditions under which the pref-
erence becomes an M♮-concave function. These conditions provide a recipe for
non-experts of matching theory and discrete convex analysis to develop desir-
able mechanisms that handle many-to-one matching problems with distribu-
tional constraints.
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A Proof of Theorem 1

In Definition 5, if X ′ = X ′′, i.e., if no contract is rejected by hospitals, the
procedure terminates immediately. Thus, at least one contract must be rejected
in each execution of line 2. Thus, the generalized GS mechanism executes line 2
at most |X ′| times. The calculation of ChD is O(|X ′|). By Lemma 1, ChH(X ′)
can be calculated in O(|X ′|2). Thus, the time complexity of the generalized GS
mechanism is O(|X|3).

Lemma 1. ChH(X ′) can be calculated in O(|X ′|2).

Proof. The following greedy algorithm does this computation.

1. S ← ∅, U ← X ′.
2. Repeat the following procedure.

Choose x ∈ U so that f(S + x) is maximized and f(S + x) > f(S), and set
S to S + x and U to U \ {x}. If no such x exists, return S.

We show the correctness of the algorithm. Assume that S = {s1, s2, . . . , sk}
denotes the output of the algorithm and its elements are added in ascending
order of index. We will use M-optimality theorem and M-minimizer cut theorem
(see [11] for details). In our context, M-minimizer cut theorem guarantees that
if x∗ ∈ X ′ maximizes f among x ∈ X ′ and f(∅) < f(x∗) then the maximizer
X∗ ∈ argmaxX′′⊆X′ f(X ′′) must contain x∗. Thus, s1 must be contained in X∗.
By iteratively using M-minimizer cut theorem for {s1, . . . , si} with i < k, we
can show that {s1, . . . , si, si+1} ⊆ X∗, and finally, S ⊆ X∗. On the other hand,
f(S) ≥ f(S+x) for all x ∈ X ′ \S holds. These facts together with M-optimality
theorem which says

f(X̃) ≥ f(X ′′) (∀X ′′ ⊆ X ′)⇐⇒

{

f(X̃) ≥ f(X̃ + x− y) (∀x, y ∈ X ′)

f(X̃) ≥ f(X̃ ± x) (∀x, y ∈ X ′),

imply S = X∗.

B Proof of Theorem 2

By Lemma 2, assuming f is M♮-concave and unique-selecting, ChH satisfies
the irrelevance of rejected contracts, the substitute condition, and the law of
aggregate demand. Hatfield and Milgrom [9] show that when ChH satisfies these
three conditions, the generalized GS mechanism is strategyproof for doctors, and
it obtains the doctor-optimal matching among all stable matchings.

Lemma 2. ChH(X ′) satisfies the following three properties.

Irrelevance of rejected contracts: for any X ′ ⊆ X and any x ∈ X\X ′, ChH(X ′) =
ChH(X ′ ∪ {x}) whenever x /∈ ChH(X ′ ∪ {x}).

Substitutes condition: for any X ′, X ′′ ⊆ X with X ′ ⊆ X ′′, ReH(X ′) ⊆ ReH(X ′′)
holds, where ReH(X ′) = (X ′ \ ChH(X ′)).



Law of aggregate demand: for any X ′, X ′′ ⊆ X with X ′ ⊆ X ′′, |ChH(X ′)| ≤
|ChH(X ′′)|.

Proof. Since ChH(X ′) is defined as argmaxX′′⊆X f(X ′′) and f is unique-selecting,
it is clear that irrelevance of rejected contracts holds. Also, Fujishige and Tamura
[4] show that the substitutes condition holds if f is M♮-concave and unique-
selecting. Furthermore, Murota and Yokoi [12] show that the law of aggregate
demand holds if f is M♮-concave and unique-selecting.

C Proof of Theorem 3

Let η : ZN → R∪{−∞} be an M♮-concave function such that dom η is bounded
and has 0 as the minimum point. For each i ∈ N , let ci = max{z(i) | z ∈ dom η}
for all i ∈ N . Let us consider a finite set X and a partition G = {g1, g2, . . . , gn}
of X with |gi| ≥ ci for all i ∈ N . Let us define ζ(X ′) as (|X ′ ∩ g1|, . . . , |X

′ ∩ gn|).
Each element ζi(X

′), where 1 ≤ i ≤ n, is a non-negative integer. We define the
family F of subsets of X defined by

F = {X ′ ⊆ X | ζ(X ′) ∈ dom η}.

Then, the following lemma holds. The definition of the symmetry is given in
Definition 10. This lemma is the converse of Lemma 4.

Lemma 3. (X,F ) is a matroid and G is symmetric in (X,F ).

Proof. The fact that G is symmetric in (X,F ) is obvious by the definition of F .
Since 0 ∈ dom η, we have ∅ ∈ F .

Let X ′, X ′′ ∈ F with |X ′| > |X ′′|. We denote ζ(X ′) and ζ(X ′′) by z1 and
z2, respectively. It follows from |X

′| > |X ′′| that there exists i ∈ N with z1(i) >
z2(i). The M♮-concavity of η guarantees that (a) z1 − χi, z2 + χi ∈ dom η or (b)
there exists j ∈ N such that z2(j) > z1(j) and z1−χi+χj , z2+χi−χj ∈ dom η,
where χi is a unit vector such that its i-th element is 1 and other elements are
0.

In the case (a), we have X ′′ ∪ {x} ∈ F for some x ∈ gi ∩ (X ′ \ X ′′). In
the case (b), there exist x ∈ gi ∩ (X ′ \ X ′′) and y ∈ gj ∩ (X ′′ \ X ′) with

X̂ ′ := X ′ − {x} + {y} ∈ F . We note that |X̂ ′| = |X ′| and X ′ ∩X ′′ is a proper
subset of X̂ ′ ∩ X ′′. We replace X ′ by X̂ ′, and continue the above discussion.
After a finite number of iterations, the above (a) must occur by |X ′| > |X ′′|.

From the above discussion, for X ′′ = ∅ and x ∈ X ′, we have X ′ − {x} ∈ F .
Hence, if X ′′ ⊂ X ′ ∈ F then X ′′ ∈ F .

We finally prove Theorem 3. Suppose that X = {x1, x2, . . . , xm}. Since f is
an M♮-concave function on X and f(∅) = 0, from Lemma 3 for the partition
G = {{x1}, {x2}, . . . , {xm}} and X, we have F = {X ′ | X ′ ⊆ X, f(X ′) ̸= −∞}
is a matroid.



D Proof of Theorem 6

Since G = {g1, . . . , gn} is symmetric in a matroid (X,F ), when we check whether
X ′ ∈ F , only the number of members for each group matters. Then, we can
assume f̃(X ′) is equal to η̃(ζ(X ′)), where η̃(z) is 0 if ∃X ′ ∈ F such that z =
ζ(X ′), and otherwise −∞. Here, ζ(X ′) is defined as (|X ′ ∩ g1|, . . . , |X

′ ∩ gn|).

It is enough to show that the function f́ defined by f́(X ′) = ή(ζ(X ′)) =
η̃(ζ(X ′)) +

∑

1≤i≤n Wgi(ζi(X
′)) is M♮-concave, because f is equal to the sum of

f́ and a linear function.
We first show that ή is M♮-concave. ή is M♮-concave when its effective domain

dom ή = {z|ή(z) ̸= −∞} is not ∅ and for all z, z′ ∈ dom ή and i ∈ N with zi > z′i,
either (a) ή(z) + ή(z′) ≤ ή(z − χi) + ή(z′ + χi) or (b) there exists j ∈ N such
that z′j > zj and ή(z) + ή(z′) ≤ ή(z−χi +χj) + ή(z′ +χi−χj), holds, where χi

is a unit vector such that its i-th element is 1 and other elements are 0.

Lemma 4. ή is M♮-concave, and dom ή has 0 as the minimum point.

Proof. Since f̃ gives a matroid, dom ή has 0 as the minimum point. It is known
that the sum of an M♮-concave function and a separable concave function is
also M♮-concave. Since ή is the sum of η̃ and the separable concave function
∑

1≤i≤n Wgi(ζi(X
′)), it is enough to show that η̃ is M♮-concave. Furthermore,

since the value of η̃ in its effective domain is always 0, to show the M♮-concavity
of η̃, it is sufficient to show that dom η̃ is M♮-convex, i.e., for all z, z′ ∈ dom η̃ and
i ∈ N with zi > z′i, either (a) z−χi, z

′+χi ∈ dom η̃ or (b) there exists j ∈ N such
that z′j > zj and z−χi+χj , z

′+χi−χj ∈ dom η̃, holds. Let X1, X2 be elements
of matroid (X,F ) such that z = ζ(X1) and z′ = ζ(X2). By the symmetry of G
in (X,F ), we can assume that either X1 ∩ gk ⊆ X2 ∩ gk or X2 ∩ gk ⊆ X1 ∩ gk for
each k ∈ N . By zi > z′i, there exists x ∈ gi ∩ (X1 \X2). Simultaneous exchange
property for X1, X2 and x guarantees that (a’) X1−x,X2+x ∈ F or (b’) there
exists y ∈ (X2 \X1) with X1 − x+ y,X2 + x− y ∈ F . In the case (a’), we have
z − χi = ζ(X1 − x) and z′ + χi = ζ(X2 + x), that is, (a) holds. In the case
(b’), y ̸∈ gi must hold, and therefore, there exists j ∈ N with y ∈ gj . By our
assumption, |X1∩ gj | < |X2∩ gj | must be satisfied. Thus, in this case, (b) holds.

Lemma 5. f́ is M♮-concave.

Proof. Let X ′, X ′′ ∈ dom f́ and x ∈ X ′ \ X ′′. We assume that x ∈ gi. We
denote ζ(X ′) and ζ(X ′′) by z′ and z′′, respectively. If |X ′ ∩ gi| ≤ |X

′′ ∩ gi|
then there exists y ∈ gi ∩ (X ′′ \X ′). By the symmetry between (X,F ) and G,
f(X ′) = f(X ′ − x+ y) and f(X ′′) = f(X ′′ + x− y).

In the sequel, we suppose that |X ′ ∩ gi| > |X
′′ ∩ gi|, i.e., z′i > z′′i . The

M♮-concavity of ή guarantees that:

(i) ή(z′) + ή(z′′) ≤ ή(z′ − χi) + ή(z′′ + χi)

or



(ii) there exists j ∈ N such that z′′j > z′j and

ή(z′) + ή(z′′) ≤ ή(z′ − χi + χj) + ή(z′′ + χi − χj).

In the case (i), we have f́(X ′) + f́(X ′′) ≤ f́(X ′ − x) + f́(X ′′ + x). In the case
(ii), there exist y ∈ gj ∩ (X ′′ \X ′) such that

f́(X ′) + f́(X ′′) ≤ f́(X ′ − x+ y) + f́(X ′′ + x− y).

Hence f́ is M♮-concave.

E Proof of Theorem 7

The number of terminal vertexes is (n −
∑

r∈R pr) +
∑

r∈R(pr −
∑

h∈r ph) +
∑

h∈H ph = n. Thus, at most n contracts are accepted. Assume X ′ is hospital-
feasible. For each hospital h, the total number of contracts are at most ph +
(qh−ph) = qh. Thus, accepted contracts satisfy all individual maximum quotas.
Also, if one terminal vertex t is not connected to any contract in X ′, we can
find x′ ∈ X \ X ′ so that there exists a vertex disjoint path from x′ to t. By
adding new contracts, X ′ is extended to X ′′ so that n contracts are accepted.
Then, each hospital accepts at least ph contracts. Also, each region accepts at
least pr contracts (i.e., ph contracts for each h ∈ r, and pr −

∑

h∈r ph additional
contracts for the terminal vertexes for region r). Thus, X ′′ satisfies all minimum
quotas and X ′ is a subset of (original) hospital-feasible matching.


