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Abstract

We point out that the ideas underlying some test procedures recently
proposed for testing post-model-selection (and for some other test prob-
lems) in the econometrics literature have been around for quite some time
in the statistics literature. We also sharpen some of these results in the
statistics literature. Furthermore, we show that some intuitively appeal-
ing testing procedures, that have found their way into the econometrics
literature, lead to tests that do not have desirable size properties, not even
asymptotically.

1 Introduction

Suppose we have a sequence of statistical experiments given by a family of
probability measures fPn;�;� : � 2 A; � 2 Bg where � is a "parameter of inter-
est", and � is a "nuisance-parameter". Often, but not always, A and B will
be subsets of Euclidean space. Suppose the researcher wants to test the null-
hypothesis H0 : � = �0 using the real-valued test-statistic Tn(�0), with large
values of Tn(�0) being taken as indicative for violation of H0.

1 Suppose further
that the distribution of Tn(�0) under H0 depends on the nuisance parameter �.
This leads to the key question: How should the critical value then be chosen?
[Of course, if another, pivotal, test-statistic is available, this one could be used.
However, we consider here the case where a (non-trivial) pivotal test-statistic
either does not exist or where the researcher � for better or worse � insists on

1This framework obviously allows for "one-sided" as well as for "two-sided" alternatives
(when these concepts make sense) by a proper de�nition of the test statistic.
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using Tn(�0).] In this situation a standard way (see, e.g., Bickel and Doksum
(1977), p.170) to deal with this problem is to choose as critical value

cn;sup(�) = sup
�2B

cn;�(�); (1)

where 0 < � < 1 and where cn;�(�) satis�es Pn;�0;� (Tn(�0) > cn;�(�)) = � for
each � 2 B, i.e., cn;�(�) is a (1� �)-quantile of the distribution of Tn(�0) under
Pn;�0;� . [We assume here the existence of such a cn;�(�), but we do not insist
that it is chosen as the smallest possible number satisfying the above condition,
although this will usually be the case.] In other words, cn;sup(�) is the "worst-
case" critical value. While the resulting test, which rejects H0 for

Tn(�0) > cn;sup(�); (2)

certainly is a level � test (i.e., has size � �), the conservatism caused by taking
the supremum in (1) will often result in poor power properties, especially for
values of � for which cn;�(�) is much smaller than cn;sup(�). The test obtained
from (1) and (2) above (more precisely, an asymptotic variant thereof) is what
Andrews and Guggenberger (2009) call a "size-corrected �xed critical value"
test.2

An alternative idea, which has some intuitive appeal and which is much
less conservative, is to use cn;�̂

n

(�) as a random critical value, where �̂n is an

estimator for � (taking its values in B), and to reject H0 if

Tn(�0) > cn;�̂
n

(�) (3)

obtains (measurability of cn;�̂
n

(�) being assumed). This choice of critical value

can be viewed as a parametric bootstrap procedure. Versions of cn;�̂
n

(�) have

been considered by Williams (1970) or, more recently, by Liu (2011). However,

Pn;�0;�

�
Tn(�0) > cn;�̂

n

(�)
�
� Pn;�0;� (Tn(�0) > cn;sup(�))

clearly holds for every �, indicating that the test using the random critical
value cn;�̂

n

(�) may not be a level � test, but may have size larger than �. This

was already noted by Loh (1985). A precise result in this direction, which is a
variation of Theorem 2.1 in Loh (1985), is as follows.

Proposition 1 Suppose that there exists a �maxn = �maxn (�) such that cn;�max
n
(�) =

cn;sup(�). Then

Pn;�0;�maxn

�
cn;�̂

n

(�) < Tn(�0) � cn;sup(�)
�
> 0 (4)

implies

sup
�2B

Pn;�0;�

�
Tn(�0) > cn;�̂

n

(�)
�
> �; (5)

2While Andrews and Guggenberger (2009) do not consider a �nite-sample framework but
rather a "moving-parameter" asymptotic framework, the underlying idea is nevertheless ex-
actly the same.
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i.e., the test using the random critical value cn;�̂
n

(�) does not have level �.

More generally, if ĉn is any random critical value satisfying ĉn � cn;�max
n
(�)(=

cn;sup(�)) with Pn;�0;�maxn
-probability 1, then (4) still implies (5) if in both ex-

pressions cn;�̂
n

(�) is replaced by ĉn. [The result continues to hold if the random

critical value ĉn also depends on some additional randomization mechanism.]

Proof. Observe that cn;�̂
n

(�) � cn;sup(�) always holds. But then the l.h.s. of
(5) is bounded from below by

Pn;�0;�maxn

�
Tn(�0) > cn;�̂

n

(�)
�

= Pn;�0;�maxn
(Tn(�0) > cn;sup(�)) + Pn;�0;�maxn

�
cn;�̂

n

(�) < Tn(�0) � cn;sup(�)
�

= Pn;�0;�maxn

�
Tn(�0) > cn;�max

n
(�)
�
+ Pn;�0;�maxn

�
cn;�̂

n

(�) < Tn(�0) � cn;sup(�)
�

= � + Pn;�0;�maxn

�
cn;�̂

n

(�) < Tn(�0) � cn;sup(�)
�
> �;

the last inequality holding in view of (4). The proof for the second claim is
completely analogous.

To better appreciate condition (4) consider the case where cn;�(�) is uniquely

maximized at �maxn and Pn;�0;�maxn
(�̂n 6= �maxn ) is positive. Then

Pn;�0;�maxn
(cn;�̂

n

(�) < cn;sup(�)) > 0

holds and therefore we can expect condition (4) to be satis�ed, unless there

exists a quite strange dependence structure between �̂n and Tn(�0). The same
argument applies in the more general situation where there are multiple maxi-
mizers �maxn of cn;�(�) as soon as Pn;�0;�maxn

(�̂n =2 argmax cn;�(�)) > 0 holds for
one of the maximizers �maxn .
In the same vein, it is also useful to note that Condition (4) can equiva-

lently be stated as follows: The conditional cumulative distribution function
Pn;�0;�maxn

(Tn(�0) � � j �̂n) of Tn(�0) given �̂n puts positive mass on the in-
terval (cn;�̂

n

(�); cn;sup(�)] for a set of �̂n�s that has positive probability under

Pn;�0;�maxn
. [Also note that Condition (4) implies that cn;�̂

n

(�) < cn;sup(�) must

hold with positive Pn;�0;�maxn
-probability.] A su¢cient condition for this then

clearly is that for a set of �̂n�s of positive Pn;�0;�maxn
-probability we have that (i)

cn;�̂
n

(�) < cn;sup(�), and (ii) the conditional cumulative distribution function

Pn;�0;�maxn
(Tn(�0) � � j �̂n) puts positive mass on every non-empty interval.

The analogous result holds for the case where ĉn replaces cn;�̂
n

(�) (and condi-

tioning is w.r.t. ĉn), see Lemma 5 in the Appendix for a formal statement.
The observation, that the test (3) based on the random critical value cn;�̂

n

(�)

typically will not be a level � test, has led Loh (1985) and subsequently Berger
and Boos (1994) and Silvapulle (1996) to consider the following procedure (or
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variants thereof) which leads to a level � test that is somewhat less "conserva-
tive" than the test given by (2): 3 Let In be a random set in B satisfying

inf
�2B

Pn;�0;� (� 2 In) � 1� �n;

where 0 � �n < �. I.e., In is a con�dence set for the nuisance parameter � with
in�mal coverage probability not less than 1 � �n (provided � = �0). De�ne a
random critical value via

cn;�
n
;Loh(�) = sup

�2In

cn;�(� � �n): (6)

Then we have
sup
�2B

Pn;�0;�
�
Tn(�0) > cn;�

n
;Loh(�)

�
� �:

This can be seen as follows: For every � 2 B

Pn;�0;�
�
Tn(�0) > cn;�

n
;Loh(�)

�
= Pn;�0;�

�
Tn(�0) > cn;�

n
;Loh(�); � 2 In

�

+Pn;�0;�
�
Tn(�0) > cn;�

n
;Loh(�); � =2 In

�

� Pn;�0;� (Tn(�0) > cn;�(� � �n); � 2 In) + �n
� Pn;�0;� (Tn(�0) > cn;�(� � �n)) + �n
= � � �n + �n = �:

Hence, the random critical value cn;�
n
;Loh(�) results in a test that is guaranteed

to be level �. In fact, its size can also be lower bounded by ���n provided there
exists a �maxn (���n) satisfying cn;�maxn

(���
n
)(���n) = sup�2B cn;�(���n): This

follows since

sup
�2B

Pn;�0;�
�
Tn(�0) > cn;�

n
;Loh(�)

�

� sup
�2B

Pn;�0;�

 

Tn(�0) > sup
�2B

cn;�(� � �n)
!

= sup
�2B

Pn;�0;�
�
Tn(�0) > cn;�max

n
(���

n
)(� � �n)

�

� Pn;�0;�maxn
(���

n
)

�
Tn(�0) > cn;�max

n
(���

n
)(� � �n)

�

= � � �n: (7)

The critical value (6) (or asymptotic variants thereof) has also been used in
econometrics, e.g., by DiTraglia (2011), McCloskey (2011, 2012), and Romano,
Shaikh, and Wolf (2014).

3Loh (1985) actually considers the random critical value cn;�n;Loh� (�) given by
sup�2In cn;�(�), which typically does not lead to a level � test in �nite samples in view
of Proposition 1 (since cn;�n;Loh� (�) � cn;sup(�)). However, Loh (1985) focuses on the case
where �n ! 0 and shows that then the size of the test converges to �; that is, the test is
asymptotically level � if �n ! 0. See also Remark 4.
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The test based on the random critical value cn;�
n
;Loh(�)may have size strictly

smaller than �. This suggests that this test will not improve over the conser-
vative test based on cn;sup(�) for all values of �: We can expect that the test
based on (6) will sacri�ce some power when compared with the conservative
test (2) when the true � is close to �maxn (�) or �maxn (� � �n); however, we can
often expect a power gain for values of � that are "far away" from �maxn (�) and
�maxn (� � �n), as we then typically will have that cn;�n;Loh(�) is smaller than
cn;sup(�). Hence, each of the two tests will typically have a power advantage
over the other in certain parts of the parameter space B.
It is thus tempting to try to construct a test that has the power advantages

of both these tests by choosing as a critical value the smaller one of the two
critical values, i.e., by choosing

ĉn;�
n
;min(�) = min

�
cn;sup(�); cn;�

n
;Loh(�)

�
(8)

as the critical value. While both critical values cn;sup(�) and cn;�
n
;Loh(�) lead to

level � tests, this is, however, unfortunately not the case in general for the test
based on the random critical value (8). To see why, note that by construction
the critical value (8) satis�es

ĉn;�
n
;min(�) � cn;sup(�);

and hence can be expected to fall under the wrath of Proposition 1 given above.
Thus it can be expected to not deliver a test that has level �, but has a size that
exceeds �. So while the test based on the random critical value proposed in (8)
will typically reject more often than the tests based on (2) or on (6), it does
so by violating the size constraint. Hence it su¤ers from the same problems
as the parametric bootstrap test (3). [We make the trivial observation that
the lower bound (7) also holds if ĉn;�

n
;min(�) instead of cn;�

n
;Loh(�) is used,

since ĉn;�
n
;min(�) � cn;�

n
;Loh(�) holds.] As a point of interest we note that the

construction (8) has actually been suggested in the literature, see McCloskey�s
(2011).4 In fact, McCloskey (2011) suggested a random critical value ĉn;McC(�)
which is the minimum of critical values of the form (8) with �n running through
a �nite set of values; it is thus less than or equal to the individual ĉn;�

n
;min�s,

which exacerbates the size distortion problem even further.
While Proposition 1 shows that tests based on random critical values like

cn;�̂
n

(�) or ĉn;�
n
;min(�) will typically not have level �, it leaves open the possi-

bility that the overshoot of the size over � may converge to zero as sample size
goes to in�nity, implying that the test would then be at least asymptotically of
level �. In su¢ciently "regular" testing problems this will indeed be the case.
However, for many testing problems where nuisance parameters are present such
as, e.g., testing post-model selection, it turns out that this is typically not the
case: In the next section we illustrate this by providing a prototypical example
where the overshoot does not converge to zero for the tests based on cn;�̂

n

(�)

or ĉn;�
n
;min(�), and hence these tests are not level � even asymptotically.

4This construction is no longer suggested in McCloskey (2012).
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2 An Illustrative Example

In the following we shall � for the sake of exposition � use a very simple example
to illustrate the issues involved. Consider the linear regression model

yt = �xt1 + �xt2 + �t (1 � t � n) (9)

under the "textbook" assumptions that the errors �t are i.i.d. N(0; �
2), �2 > 0,

and the nonstochastic n� 2 regressor matrix X has full rank (implying n > 1)
and satis�es X 0X=n ! Q > 0 as n ! 1. The variables yt, xti, as well as the
errors �t can be allowed to depend on sample size n (in fact may be de�ned on a
sample space that itself depends on n), but we do not show this in the notation.
For simplicity, we shall also assume that the error variance �2 is known and
equals 1. It will be convenient to write the matrix (X 0X=n)�1 as

(X 0X=n)�1 =

�
�2�;n ��;�;n
��;�;n �2�;n

�
:

The elements of the limit of this matrix will be denoted by �2�;1, etc. It will
prove useful to de�ne �n = ��;�;n=(��;n��;n), i.e., �n is the correlation coe¢-
cient between the least-squares estimators for � and � in model (9). Its limit
will be denoted by �1. Note that j�1j < 1 holds since Q > 0 has been assumed.
As in Leeb and Pötscher (2005) we shall consider two candidate models from

which we select on the basis of the data: The unrestricted model denoted by
U which uses both regressors xt1 and xt2, and the restricted model denoted
by R which uses only the regressor xt1 (and thus corresponds to imposing the
restriction � = 0). The least-squares estimators for � and � in the unrestricted

model will be denoted by �̂n(U) and �̂n(U), respectively. The least-squares
estimator for � in the restricted model will be denoted by �̂n(R), and we shall set

�̂n(R) = 0. We shall decide between the competing models U and R depending

on whether jpn�̂(Un)=��;nj > c or not, where c > 0 is a user-speci�ed cut-
o¤ point independent of sample size (in line with the fact that we consider
conservative model selection). That is, we select the model M̂n according to

M̂n =

�
U if jpn�̂n(U)=��;nj > c;
R otherwise.

We now want to test the hypothesis H0 : � = �0 versus H1 : � > �0 and we
insist, for better or worse, on using the test-statistic

Tn(�0) =
h
n1=2 (�̂(R)� �0) =

�
��;n

�
1� �2n

�1=2�i
1(M̂n = R)

+
h
n1=2 (�̂(U)� �0) =��;n

i
1(M̂n = U):

That is, depending on which of the two models has been selected, we insist on
using the corresponding textbook test statistic (for the known-variance case).
While this could perhaps be criticized as somewhat simple-minded, it describes
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how such a test may be conducted in practice when model selection precedes the
inference step. It is well-known that if one uses this test-statistic and naively
compares it to the usual normal-based quantiles acting as if the selected model
were given a priori, this results in a test with severe size-distortions, see, e.g.,
Kabaila and Leeb (2006) and references therein. Hence, while sticking with
Tn(�0) as the test-statistic, we now look for appropriate critical values in the
spirit of the preceding section and discuss some of the proposals from the lit-
erature. Note that the situation just described �ts into the framework of the
preceding section with � as the nuisance parameter and B = R.
Calculations similar to the ones in Leeb and Pötscher (2005) show that the

�nite-sample distribution of Tn(�0) under H0 has a density that is given by

hn;�(u) = �
�
n1=2�=��;n; c

�
�
�
u+ �n

�
1� �2n

��1=2
n1=2�=��;n

�

+
�
1��

��
1� �2n

��1=2 �
n1=2�=��;n + �nu

�
;
�
1� �2n

��1=2
c
��
� (u) ;

where �(a; b) = �(a+ b)��(a� b) and where � and � denote the density and
cdf, respectively, of a standard normal variate. Let Hn;� denote the cumulative
distribution function (cdf) corresponding to hn;� .
Now, for given signi�cance level �, 0 < � < 1, let cn;�(�) = H

�1
n;�(1 � �) as

in the preceding section. Note that the inverse function exists, since Hn;� is
continuous and is strictly increasing as its density hn;� is positive everywhere.
As in the preceding section let

cn;sup(�) = sup
�2R

cn;�(�) (10)

denote the conservative critical value (the supremum is actually a maximum in
the interesting case � � 1=2 in view of Lemmata 6 and 7 in the Appendix). Let
cn;�̂

n
(U)(�) be the parametric bootstrap based random critical value. With �

satisfying 0 < � < �, we also consider the random critical value

cn;�;Loh(�) = sup
�2In

cn;�(� � �) (11)

where
In =

h
�̂n(U)� n�1=2��;n��1(1� (�=2))

i

is an 1 � � con�dence interval for �. [Again the supremum is actually a max-
imum.] We choose here � independent of n as in McCloskey (2011, 2012) and
DiTraglia (2011) and comment on sample size dependent � below. Furthermore
de�ne

ĉn;�;min(�) = min (cn;sup(�); cn;�;Loh(�)) : (12)

Recall from the discussion in Section 1 that these critical values have been
used in the literature in the contexts of testing post-model-selection, post-
moment-selection, or post-model-averaging. Among the critical values cn;sup(�),
cn;�̂

n
(U)(�), cn;�;Loh(�), and ĉn;�;min(�), we already know that cn;sup(�) and
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cn;�;Loh(�) lead to tests that are valid level � tests. We next con�rm � as sug-
gested by the discussion in the preceding section � that the random critical
values cn;�̂

n
(U)(�) and ĉn;�;min(�) (at least for some choices of �) do not lead to

tests that have level � (i.e., their size is strictly larger than �). Moreover, we
also show that the sizes of the tests based on cn;�̂

n
(U)(�) or ĉn;�;min(�) do not

converge to � as n!1, implying that the asymptotic sizes of these tests exceed
�. These results a fortiori also apply to any random critical value that does not
exceed cn;�̂

n
(U)(�) or ĉn;�;min(�) (such as, e.g., McCloskey�s (2011) ĉn;McC(�) or

cn;�;Loh�(�)). In the subsequent theorem we consider for simplicity only the case
�n � �, but the result extends to the more general case where �n may depend
on n.

Theorem 2 Suppose �n � � 6= 0 and let 0 < � � 1=2 be arbitrary. Then

inf
n>1

sup
�2R

Pn;�0;�

�
Tn(�0) > cn;�̂

n
(U)(�)

�
> �: (13)

Furthermore, for each �xed �, 0 < � < �, that is su¢ciently small we have

inf
n>1

sup
�2R

Pn;�0;� (Tn(�0) > ĉn;�;min(�)) > �: (14)

Proof. We �rst prove (14). Introduce the abbreviation 
 = n1=2�=��;n and

de�ne 
̂(U) = n1=2�̂(U)=��;n. Observe that the density hn;� (and hence the
cdf Hn;�) depends on the nuisance parameter � only via 
, and otherwise is
independent of sample size n (since �n = � is assumed). Let

�h
 be the density
of Tn(�0) when expressed in the reparameterization 
. As a consequence, the
quantiles satisfy cn;�(v) = �c
(v) for every 0 < v < 1, where �c
(v) = �H�1


 (1� v)
and �H
 denotes the cdf corresponding to �h
 . Furthermore, for 0 < � < �,
observe that cn;�;Loh(�) = sup�2In cn;�(� � �) can be rewritten as

cn;�;Loh(�) = sup

2[
̂(U)���1(1�(�=2))]

�c
(� � �):

Now de�ne 
max = 
max(�) as a value of 
 such that �c
max(�) = �csup(�) :=
sup
2R �c
(�). That such a maximizer exists follows from Lemmata 6 and 7
in the Appendix. Note that 
max does not depend on n. Of course, 
max is
related to �maxn = �maxn (�) via 
max = n1=2�maxn =��;n. Since �csup(�) = �c
max(�)
is strictly larger than

lim
j
j!1

�c
(�) = �
�1(1� �)

in view of Lemmata 6 and 7 in the Appendix, we have for all su¢ciently small
�, 0 < � < �, that

lim
j
j!1

�c
(� � �) = ��1(1� (� � �)) < �csup(�) = �c
max(�): (15)

Fix such an �. Let now " > 0 satisfy " < �csup(�)���1(1�(���)). Because of the
limit relation in the preceding display, we see that there exists M = M(") > 0
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such that for j
j > M we have �c
(� � �) < �csup(�)� ". De�ne the set

A =
�
x 2 R : jxj > ��1(1� (�=2)) +M

	
:

Then on the event f
̂(U) 2 Ag we have that ĉn;�;min(�) � �csup(�)� ". Further-
more, noting that Pn;�0;�maxn

(Tn(�0) > cn;sup(�)) = Pn;�0;�maxn
(Tn(�0) > �csup(�)) =

�, we have

sup
�2R

Pn;�0;� (Tn(�0) > ĉn;�;min(�)) � Pn;�0;�maxn
(Tn(�0) > ĉn;�;min(�))

= Pn;�0;�maxn
(Tn(�0) > �csup(�)) + Pn;�0;�maxn

(ĉn;�;min(�) < Tn(�0) � �csup(�))
� � + Pn;�0;�maxn

(ĉn;�;min(�) < Tn(�0) � �csup(�); 
̂(U) 2 A)
� � + Pn;�0;�maxn

(�csup(�)� " < Tn(�0) � �csup(�); 
̂(U) 2 A) :

We are hence done if we can show that the probability in the last line is positive
and independent of n. But this probability can be written as follows 5

Pn;�0;�maxn
(�csup(�)� " < Tn(�0) � �csup(�); 
̂(U) 2 A)

= Pn;�0;�maxn
(�csup(�)� " < Tn(�0) � �csup(�); 
̂(U) 2 A; j
̂(U)j � c)

+Pn;�0;�maxn
(�csup(�)� " < Tn(�0) � �csup(�); 
̂(U) 2 A; j
̂(U)j > c)

= Pn;�0;�maxn

�
�csup(�) � n1=2 (�̂(R)� �0) =

�
��;n

�
1� �2

�1=2�
>

�csup(�)� "; 
̂(U) 2 A; j
̂(U)j � c)
+Pn;�0;�maxn

�
�csup(�) � n1=2 (�̂(U)� �0) =��;n >
�csup(�)� "; 
̂(U) 2 A; j
̂(U)j > c)

=
h
�(�csup(�) + �

�
1� �2

��1=2

max)� �(�csup(�) + �

�
1� �2

��1=2

max � ")

i

�Pr (Z2 2 A; jZ2j � c) + Pr (�csup(�) � Z1 > �csup(�)� "; Z2 2 A; jZ2j > c) ;

where we have made use of independence of �̂(R) and 
̂(U), cf. Lemma A.1 in
Leeb and Pötscher (2003), and of the fact that n1=2 (�̂(R)� �0) is distributed
as N(���;n�
max; �2�;n

�
1� �2

�
) under Pn;�0;�maxn

. Furthermore, we have used

the fact that
�
n1=2 (�̂(U)� �0) =��;n; 
̂(U)

�0
is under Pn;�0;�maxn

distributed as

(Z1; Z2)
0
where

(Z1; Z2)
0 � N

�
(0; 
max)0;

�
1 �
� 1

��
;

which is a non-singular normal distribution since j�j < 1. It is now obvious from
the �nal expression in the last but one display that the probability in question
is strictly positive and is independent of n. This proves (14).

5The corresponding calculation in previous versions of this paper had erroneously omitted

the term �
�
1� �2

��1=2

max from the expression on the far right-hand side of the subsequent

display. This is corrected here by accounting for this term. Alternatively, one could drop the
probability involving j
̂(U)j � c altogether from the proof and work with the resulting lower
bound.
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We turn to the proof of (13). Observe that cn;�̂
n
(U)(�) = �c
̂(U)(�) and that

�csup(�) = �c
max(�) > lim
j
j!1

�c
(�) = �
�1(1� �)

in view of Lemmata 6 and 7 in the Appendix. Choose " > 0 to satisfy " <
�csup(�)� ��1(1� �). Because of the limit relation in the preceding display, we
see that there exists M = M(") > 0 such that for j
j > M we have �c
(�) <
�csup(�)� ". De�ne the set

B = fx 2 R : jxj > Mg :

Then on the event f
̂(U) 2 Bg we have that cn;�̂
n
(U)(�) = �c
̂(U)(�) � �csup(�)�".

The rest of the proof is then completely analogous to the proof of (14) with the
set A replaced by B.

Remark 3 (i) Inspection of the proof shows that (14) holds for every �, 0 <
� < �, that satis�es (15).
(ii) It is not di¢cult to show that the suprema in (13) and (14) actually do

not depend on n.

Remark 4 If we allow � to depend on n, we may choose � = �n ! 0 as n!1.
Then the test based on ĉn;�

n
;min(�) still has a size that strictly overshoots �

for every n, but the overshoot will go to zero as n ! 1. While this test
then "approaches" the conservative test that uses cn;sup(�), it does not respect
the level for any �nite sample size. [The same can be said for Loh�s (1985)
original proposal cn;�

n
;Loh�(�), cf. Footnote 3.] Contrast this with the test

based on cn;�
n
;Loh(�) which holds the level for each n, and also "approaches"

the conservative test if �n ! 0. Hence, there seems to be little reason for
preferring ĉn;�

n
;min(�) (or cn;�

n
;Loh�(�)) to cn;�

n
;Loh(�) in this scenario where

�n ! 0.
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A Appendix

Lemma 5 Suppose a random variable ĉn satis�es Pr (ĉn � c�) = 1 for some real
number c� as well as Pr (ĉn < c

�) > 0. Let S be real-valued random variable. If
for every non-empty interval J in the real line

Pr (S 2 J j ĉn) > 0 (16)

holds almost surely, then

Pr (ĉn < S � c�) > 0:

The same conclusion holds if in (16) the conditioning variable ĉn is replaced by
some variable wn, say, provided that ĉn is a measurable function of wn.

Proof. Clearly

Pr (ĉn < S � c�) = E [Pr (S 2 (ĉn; c�] j ĉn)] = E [Pr (S 2 (ĉn; c�] j ĉn)1 (ĉn < c�)] ;
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the last equality being true since the �rst term in the product is zero on the
event ĉn = c

�. Now note that the �rst factor in the expectation on the far right-
hand side of the above equality is positive almost surely by (16) on the event
fĉn < c�g, and that the event fĉn < c�g has positive probability by assumption.

Recall that �c
(v) has been de�ned in the proof of Theorem 2.

Lemma 6 Assume �n � � 6= 0. Suppose 0 < v < 1. Then the map 
 ! �c
(v) is
continuous on R. Furthermore, lim
!1 �c
(v) = lim
!�1 �c
(v) = �

�1(1� v).

Proof. If 
l ! 
 then �h

l
converges to �h
 pointwise on R. By Sche¤é�s

Lemma, �H

l
then converges to �H
 in total variation distance. Since �H
 is

strictly increasing on R, convergence of the quantiles �c

l
(v) to �c
(v) follows.

The second claim follows by the same argument observing that �h
 converges
pointwise to a standard normal density for 
 ! �1.

Lemma 7 Assume �n � � 6= 0.
(i) Suppose 0 < v � 1=2. Then for some 
 2 R we have that �c
(v) is larger

than ��1(1� v).
(ii) Suppose 1=2 � v < 1. Then for some 
 2 R we have that �c
(v) is

smaller than ��1(1� v).

Proof. Standard regression theory gives

�̂n(U) = �̂n(R) + ���;n�̂n(U)=��;n;

with �̂n(R) and �̂n(U) being independent; for the latter cf., e.g., Leeb and
Pötscher (2003), Lemma A.1. Consequently, it is easy to see that the distribu-
tion of Tn(�0) under Pn;�0;� is the same as the distribution of

T 0 = T 0(�; 
) =
�p

1� �2W + �Z
�
1 fjZ + 
j > cg

+

 

W � � 

p
1� �2

!

1 fjZ + 
j � cg ;

where, as before, 
 = n1=2�=��;n, and whereW and Z are independent standard
normal random variables.
We now prove (i): Let q be shorthand for ��1(1 � v) and note that q � 0

holds by the assumption on v. It su¢ces to show that Pr (T 0 � q) < �(q) for
some 
. We can now write

Pr (T 0 � q) = Pr
�p

1� �2W + �Z � q
�
� Pr

 

jZ + 
j � c;W � q � �Z
p
1� �2

!

+Pr

 

jZ + 
j � c;W � q + �

p
1� �2

!

= �(q)� Pr(A) + Pr(B):

12



Here, A and B are the events given in terms of W and Z. Picturing these two
events as subsets of the plane (with the horizontal axis corresponding to Z and
the vertical axis corresponding to W ), we see that A corresponds to the vertical

band where jZ+
j � c, truncated above the line whereW = (q��Z)=
p
1� �2;

similarly, B corresponds to the same vertical band jZ + 
j � c, truncated now
above the horizontal line where W = q + �
=

p
1� �2.

We �rst consider the case where � > 0 and distinguish two cases:

Case 1: �c �
�
1�

p
1� �2

�
q.

In this case the set B is contained in A for every value of 
, with AnB being
a set of positive Lebesgue measure. Consequently, Pr(A) > Pr(B) holds for
every 
, proving the claim.

Case 2: �c >
�
1�

p
1� �2

�
q.

In this case choose 
 so that �
 � c � 0, and, in addition, such that also
(q��(�
�c))=

p
1� �2 < 0, which is clearly possible. Recalling that � > 0, note

that the point where the line W = (q � �Z)=
p
1� �2 intersects the horizontal

lineW = q+�
=
p
1� �2 has as its �rst coordinate Z = �
+(q=�)(1�

p
1� �2),

implying that the intersection occurs in the right half of the band where jZ+
j �
c. As a consequence, Pr(B)� Pr(A) can be written as follows:

Pr(B)� Pr(A) = Pr(BnA)� Pr(AnB)
where

BnA =
n
�
 + (q=�)(1�

p
1� �2) � Z � �
 + c;

(q � �Z)=
p
1� �2 < W � q + �
=

p
1� �2

o

and

AnB =
n
�
 � c � Z � �
 + (q=�)(1�

p
1� �2);

q + �
=
p
1� �2 < W � (q � �Z)=

p
1� �2

o
:

Picturing AnB and BnA as subsets of the plane as in the preceding para-
graph, we see that these events correspond to two triangles, where the trian-
gle corresponding to AnB is larger than or equal (in Lebesgue measure) to
that corresponding to BnA. Since 
 was chosen to satisfy �
 � c � 0 and

(q��(�
� c))=
p
1� �2 < 0, we see that each point in the triangle correspond-

ing to AnB is closer to the origin than any point in the triangle corresponding to
BnA. Because the joint Lebesgue density of (Z;W ), i.e., the bivariate standard
Gaussian density, is spherically symmetric and radially monotone, it follows
that Pr(BnA)� Pr(AnB) < 0, as required.
The case � < 0 follows because T 0(�; 
) has the same distribution as T 0(��;�
).
Part (ii) follows since T 0(�; 
) has the same distribution as �T 0(��; 
).

Remark 8 If �n � � 6= 0 and v = 1=2, then �c0(1=2) = ��1(1=2) = 0 since �h0
is symmetric about zero.
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Remark 9 If �n � � = 0, then Tn(�0) is standard normally distributed for
every value of �, and hence �c
(v) = �

�1(1� v) holds for every 
 and v.
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