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Abstract 

 

This paper investigates sensitivity of the VaR models when return series of stocks and stock 

indices are not normally distributed. It also studies the effect of market capitalization of stocks 

and stock indices on their Value at risk and Conditional VaR estimation. Three different market 

capitalized indices S&P BSE Sensex, BSE Mid cap and BSE Small cap indices have been 

considered for the recession and post-recession periods. It is observed that VaR violations are 

increasing with decreasing market capitalization in both the periods considered. The same effect 

is also observed on other different market capitalized stock portfolios. Further, we study the 

relationship of liquidity represented by volume traded of stocks and the market risk calculated by 

VaR of the firms. It confirms that the decrease in liquidity increases the value at risk of the firms.  

 
Keywords Non-normality, market capitalization, Value at risk (VaR), CVaR, GARCH 

JEL: C20, C22, G10 

1. Introduction 

The Value-at-risk (VaR) model pioneered by J.P. Morgan group in 1994 is a popular tool for 

managing market risks. Jorion (2001) describes VaR as a measure of worst expected loss over a 

given horizon under normal market condition at a given level of confidence. VaR asks a simple 

question how bad things can get. VaR is a function of two parameters confidence level (𝑥%) and 

time horizon (N).VaR is the loss corresponding to the (100-x)th percentile distribution of the 

change in the value of the portfolio over the next N days. Among the main advantages of VaR 

are simplicity, wide applicability and universality. 

As per Jorion (1990, 1997) and Morgan (1996), the VaR of a portfolio can be calculated as 

follows: let𝑟1, r2, r3….rn be identically distributed independent random variables representing the 
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financial returns of stocks. F(r) is used to denote the cumulative distribution function, 𝐹(𝑟) =Pr⁡(𝑟 < 𝑟|𝑡 − 1)on the information set Ω𝑡−1that is available at time t − 1. Assuming that rt 

follows the stochastic process: 

 𝑟𝑡 = 𝜇 + 𝜖𝑡                                                                                                                            (1) 
 𝜖𝑡= 𝑧𝑡⁡𝜎𝑡𝑧𝑡⁡∼iid (0, 1)  
 
Where𝜎𝑡2 = 𝐸(𝑧𝑡2|Ω𝑡−1) and 𝑧𝑡⁡has conditional distribution function G (z), ⁡𝐺(𝑧) = Pr⁡(z⁡t <𝑧|Ωt−1. The VaR with a given probability α∈ (0, 1) is denoted by VaR (α),is defined as α 

quantile of the probability distribution of financial returns: ⁡𝐹(𝑉𝑎𝑅(𝛼)) = Pr(𝑟𝑡 < 𝑉𝑎𝑅(𝛼)) =𝛼 or 𝑉𝑎𝑅(𝛼) = inf⁡{𝑣|𝑃(𝑟𝑡 ≤ 𝑣) = 𝛼}.To estimate 𝜎𝑡, Morgan (1996) uses Exponential 

weighted moving average model (EWMA). The expression of this model is as follows: 

 𝜎𝑡2(1 − 𝜆)∑ 𝜆𝑗 ⁡(∈𝑡−𝑗⁡⁡𝑛−1𝑗=0 )⁡2                                                                                          (2) 

 

Where, λ=0.94 
 𝑉𝑎𝑅(𝛼) = 𝐹−1⁡(𝛼) = 𝜇 + 𝜎𝑡⁡⁡𝐺−1(𝛼)        (3) 
 
Hence, a VaR model involves the specifications of F(r) or G (z) 
 
Conditional VaR 

CVaR is a conditional VaR. VaR measures how worst things can get but CVaR measures the 

losses beyond VaR. It is also a function of two Parameters time horizon (N) and the confidence 

level (𝑥%). 

CVaR(r) = E[r | r > VaR(r)]          (4) 

Where, r represents return of indices. For calculating VaR, two parameters are important, one is 

to accurately map the distribution of the returns and second is to model the volatility of the 

return. 

Last decade has witnessed plethora of literature on capturing these two above mentioned 

parameters to significantly improve the basic model of VaR. This study focuses on the 

importance of market capitalization of stocks and indices of stocks on VaR estimation model. 
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Halbelib and Pohlmeier (2012) considered the importance of market capitalization in VaR 

estimation. They compared various VaR models, their distribution pattern across different time 

windows and with this they also empirically proved the importance of market capitalization on 

VaR estimation. Dias (2013) investigated the importance of market capitalization on NYSE, 

AMEX and NASDAQ stocks, the result proved the importance of market capitalization on VaR 

estimation. Majority of the studies about VaR model are concentrated on (i) correctly modeling 

distribution of returns (ii) modeling volatility of the returns (iii) on comparison of different VaR 

models. Beder (1995),Hendricks (1996) and Pritsker (1997) compared various VaR models; they 

reported that no method performed significantly different from the other Ashley (2009) 

examined the extreme value theory and showed that the filtered historical simulation method 

performed better than other VaR estimation methods. According to Butler (1998) historical 

Simulation approach does not best utilize the information available. It also has the practical 

drawback that it only gives VaR estimates at discrete confidence intervals determined by the size 

of our data set. 

 
The distribution of financial return has been documented to exhibit significantly excessive 

kurtosis (fat tails and peakness). Bollerslev (1987) indicated that normality assumption of returns 

is violated. Therefore, McAleer (2010a) proposed a risk management strategy consisting of 

choosing from among different combinations of alternative risk models to estimate VaR. This 

model gives a better estimate of VaR. Engle (1982) proposed the autoregressive conditional 

heterocedasticity (ARCH), considering variance that does not remain fixed but rather varies 

throughout a period. Bollerslev (1986) further extended the ARCH model to generalized model 

(GARCH). As in the GARCH family, alternative and more complex models have been 

developed for the pattern of the large memory. Harvey (1996), Giot and Laurent (2004) 

compared several volatility models, EWMA an asymmetric GARCH and realized volatility 

(RV).The models are estimated with the assumption that returns follow either normal or skewed 

t-Student distributions. They found that under a normal distribution, the RV model performed 

best. However, under a skewed t-distribution, the asymmetric GARCH and RV models provided 

very similar results. 
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Varma (1999) compared various model of VaR in Indian stock market. He did comparative 

analysis on NSE 50 index. He showed GARCH-GED model performed well in all common risk 

levels. Bhattacharyya & Madhav R (2012) did comparative analysis on VaR models for 

leptokurtic stock returns using 6 major Indices Sensex, Nifty, DJI, FTSE, HIS and Nikkei. 

Kuester (2006) used returns of NASDAQ index for VaR calculation. McNeil (2000) did back-

testing on S&P500, DAX indices, BMW stock price, US Dollar-British pound exchange rate and 

gold prices Majority of the models performed analysis on large capitalized firms, major indices 

or highly traded currency which creates a research gap for  estimation and  validation of current 

VaR models for the mid cap and small cap firms or indices as mutual fund houses estimate VaR 

for different funds which are composed of different size of stocks so, is it correct to pool all 

assets together for calculating VaR. 

 
Chuang (2012) investigated the relation between trading volume, stock return and stock volatility 

they had done analysis on 10 Asian stock markets. They found negative relation between trading 

volume and volatility in Japan and Taiwan. Copeland (1976) and Smirlock (1985) found 

significant relationship between trading volume and volatility Lamoureux (1990) proved that 

information contained in trading volume improves the prediction of volatility of stock return. 

Darrat (2003) finds evidence of a volume and volatility relation. 

 

The study considers sensitivity of VaR models for various market capitalized index and stocks, 

when the returns are not-normally distributed. It empirically analyze the riskiness of different 

market capitalized stocks with the help of VaR and CVaR model and establishing relationship 

between market riskiness and share turnover. It examines the effect of market capitalization on 

VaR violations.  This article is organized in five sections. Section 2 briefly discuses VaR 

methodologies used in the study and discusses back-testing model used. Section 3 discusses the 

data and methodology used, in section 4 results are reported and section 5 concludes the study. 

 
2. VaR models  

 

According to literature there are three types of VaR models (i) Parametric, (ii) Non-Parametric 

model and (iii) Semi-Parametric model. Parametric model has assumption of normal distribution 

of returns Morgan (1996).Non-parametric has historical simulation approach, and Semi-
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parametric model has Monte Carlo approach. In this study we have used Parametric model 

assuming normal distribution, parametric model using conditional volatility with the help of 

GARCH (1,1) model and VaR estimation by fitting empirical distribution of the returns. 

 
 

 

 

2.1 Parametric VaR estimation 

 

Parametric VaR estimation model assumes the underlying distribution to be normal. In this 

model VaR is estimated as 1-α   quantile of standard normal distribution. 

 

 

  

 

 

 

 

                                                                                             Fig.1 

2.2Parametric VaR using Garch (1, 1) volatility modeling with student t innovation 

Underlying distribution of financial return has been documented to exhibit significantly 

excessive kurtosis (fat tails and peakness) Bollerslev (1987), therefore estimation of VaR by 

assuming normal distribution will not give accurate results therefore to model the volatility, 

Generalized autoregressive model(GARCH) has been used in VaR estimation. It estimates two 

equations: the first is mean equation, whereas second equation patterns the evolving volatility of 

returns. The most generalized formulation for the GARCH models is the GARCH (p, q) model 

represented by the following expression: 

𝑟𝑡⁡ = 𝜇𝑡 +∈𝑡           (5) 

Gain

(100-x)% 

VaR 
Loss
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𝜎𝑡2 = 𝛼0 + ∑ 𝛼𝑖𝜖𝑡−12 + ∑ 𝛽𝑖𝜎𝑡−𝑗2𝑝𝑗=1𝑞𝑖=1                                                                                (6) 

 
 
2.3 VaR estimation by fitting the empirical distribution of the returns. 

 

It is known that distributions of stock returns generally possess kurtosis i.e. fatter tails than 

normal distribution, and they are skewed. The presence of excess-kurtosis or skewness or both 

indicates the non-normality of the underlying distribution. The approaches to handle non-

normality fall under three broad categories; (i) using historical simulation method as there is no 

assumption of underlying distribution in this method (ii) fitting suitable non-normal or mixture 

distribution; (iii) or by modeling only the tails of return distribution like extreme value theory 

(EVT) method. If the specific form of the non-normality were known, one can easily estimate the 

VaR from the percentiles of the specific distributional form. The class of distributional forms 

considered would be quite large like t-distribution, mixture of two normal distribution, 

hyperbolic distribution, laplace distribution and so forth, Van den Goorbergh (1999). In this 

study underlying distribution of the stock return or index return is estimated with the help of @ 

risk software1 thereafter the VaR is estimated by the left most 1-α percentile of the distribution. 

In the study, distribution fitted by the return series are not normal but they are distributed as  

Logistic, Weibull or Laplace distribution. 

 
2.4 Properties of different distribution fitted by the  return series. 

 

2.4.1Logistic Distribution 

Logistic distribution is a continuous probability distribution. It has heavier tails as compared to 

normal distribution. This distribution is used in Logistic regression. If Z has standard  

Standard logistic distribution then for any 𝑎ϵR and any b>0, 𝑥 = 𝑎 + 𝑏𝑍            (7) 
 
has the logistic distribution with location parameters a and scale parameter b. the probability 

density function of the distribution is as follows: 

 
                                                           
1 @Risk is window based software (from Palisade Corporation) for Monte Carlo simulation. It also supports a 

number of statistical distributions. 
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 𝑓(𝑥) = exp⁡(𝑥−𝑎𝑏 )⁡𝑏(1+exp(𝑥−𝑎𝑏 ))⁡2 , 𝑥ϵR        (8)   

 

 

Fig 2 Logistic distribution  

 
2.4.2 Laplace Distribution 

It is a continuous probability distribution. It resembles normal distribution but it has higher 

spikes and slightly thicker tails than normal distribution. Suppose 𝑥 has laplace distribution with 

location parameter a and scale parameter b.⁡𝑥 has probability density function given as follows: 

 𝑓(𝑥) = 1𝑏 exp (− |𝑥−𝑎|𝑏 ⁡) , 𝑥 ∈ 𝑅                                                                                                 (9)      

 
 𝑓  is symmetric about a. 
 𝑓 increases on[0,a] and decreases on [a,∞].The mode is at 𝑥 = 𝑎. 

 

 
Fig: 3 Laplace distributions  

2.4.3 Weibull distribution 

A random variable 𝑥 is said to have a Weibull distribution with parameters α and β (α > 0, β > 0), 

the pdf of 𝑥 is  𝑓(𝑥; 𝛼, 𝛽) = { 𝛼𝛽𝛼 𝑥𝛼−1⁡𝑒−(𝑥 𝛽)⁡𝛼⁄ ⁡𝑥 ≥ 0⁡0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 < 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
⁡
                (10) 
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Fig:5 Weibull distribution 

 

2.5 Back testing 

Accuracy of VaR model is tested with the back testing procedure. It checks how many times 

losses in a day exceeded the1-day 99% VaR. When actual losses exceeded VaR then it is 

referred to as exceptions. If exceptions happen to be around 1% in 99% VaR then, VaR model is 

accurate or fit for market risk estimation, if exceptions are 5% then the accuracy of the VaR 

model is doubted. Hence we can say VaR is underestimated. In this study Kupiec (1995) model 

is used to back-test the VaR accuracy. Suppose that the time horizon is one day and the 

confidence limit is 𝑥%. If the VaR model used is accurate, the probability of the VaR being 

exceeded on any given day is p = 1 - X. Suppose that we look at a total of n days and we observe 

that the VaR limit is exceeded on m of the days where m/n > p. Here we test two hypotheses: 

H0: The probability of an exception on any given day is p 

H1: The probability of an exception on any given day is greater than p 

 

It is assumed that exceptions are IID distributed and they follow Binomial distribution. From the 

properties of the binomial distribution, the probability of the VaR limit being exceeded on m or 

more days is:  =∑ (𝑛𝑚)𝑥𝑚𝑎𝑛−𝑚𝑛𝑚=0                                                                                                            (11) 

 

The most often used confidence level in statistical tests is 5%. If the probability of the VaR limit 

being exceeded on more days is less than 5%, we reject the first hypothesis that the probability of 

an exception is p. If this probability of the VaR limit being exceeded on k or more days is greater 

than 5%, then the hypothesis is not rejected. 
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3. Data and Methodology 

The period of analysis is considered from November 1st, 2005 till December 31st 2013. Three 

stock indices have been taken which represent different market capitalization.  BSE Sensex 30 

which represent highest market capitalized firms, BSE mid cap index representing firms with 

medium size and BSE small cap index representing small capitalized firms. BSE mid cap and 

small cap index is operational in India from April 2005 therefore period after April 2005 is 

considered. Daily closing prices of indices and stocks are taken from Bloomberg database .Daily 

log returns are calculated. Sample is divided into two periods recession period2 and post 

recession period.  VaR is calculated using 1000 trading days daily data. Value at risk is 

calculated with the help of three methods parametric VaR method assuming distribution to be 

normal, Garch (1,1) method for modeling conditional variance and Parametric VaR method 

using the empirical distribution of the return calculated with the help of @ risk software. To 

further investigate the effect of market capitalization on accuracy of VaR model, we have taken 

sample of 328 BSE 500 index firms. Firms are divided into 30 portfolios, where portfolio 1 

means top 10% firms according to market capitalization, second portfolio means next 10% firms 

according to market capitalization so on and so forth. 

3.1Summary statistics 

From Table 1 it is evident that returns are decreasing with decreasing market capitalization 

during normal market conditions. Jaraque –Bera, Anderson Darling test and Kolmogorov-

Smirnov test proves that returns are not normally distributed in case of all the three indices. 

Variation in return is also highest for highest market capitalized index. 

  

 

 

 

                                                           

2Recession period is considered from 2007-2009 
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Table 1 Summary statistics for return series during post –recession & recession period 

*Anderson Darling test   **Kolmogorov-Smirnov test 

From the Table 1 it is evident that volatility/standard deviation has increased almost twice during 

the recession period and volatility is highest for the Sensex which represent top market 

capitalized firms. This means highest market capitalized firms were more sensitive to global 

recession as compared to small capitalized firms. Skewness indicator used in distribution 

analysis is a sign of asymmetry and deviation from a normal distribution. Skewness more than 

zero means, right skewed distribution. It is observed from Table 1 that distribution for Sensex is 

positively skewed while distribution for mid Cap and small cap index are negatively skewed both 

in case of recession and post -recession period. If we look at the kurtosis of the series it is almost 

3 post recession for large cap and mid cap index but more than three for small cap index which 

gives us the reason to think whether model for VaR calculation should be same for different 

market capitalized firms as high kurtosis leads to high probability for extreme values. The peaks 

Index Sensex 

BSE Mid  

Cap Index 

BSE Small  

Cap Index Index Sensex BSE Mid Cap Index 

BSE Small  

 

Mean 0.00023 3.54E-05 -0.000184 Mean 0.000631 0.00046 0.000366 

Median 0.00041 0.000932 0.001202 Median 0.001379 0.00255 0.0028 

Maximum 0.03704 0.034587 0.038664 Maximum 0.1599 0.11111 0.086601 

Minimum -0.04213 -0.04587 -0.06098 Minimum -0.116044 -0.12076 -0.108357 

Std. Dev. 0.01097 0.010385 0.010807 Std. Dev. 0.021069 0.01954 0.019459 

Skewness 0.00778 -0.47691 -0.764167 Skewness 0.10076 -0.79575 -0.837959 

Kurtosis 3.74065 3.913398 5.32771 Kurtosis 8.014637 7.93602 6.50578 

Jarque-Bera 23.0272 73.1782 325.3465 Jarque-Bera 1056.813 1128.56 633.5371 

P-value 0.00001 0 0 P-value 0 0 0 

AD Statistics* 2.2 3.95 3.09 AD Statistics 11.08 17.84 15.73 

KS Statistics** 0.04 0.05 0.06 KS Statistics 0.08 0.1 0.09 

Recession Post-Recession 
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are more than three in case of recession for all three indices. If we compare the Kurtosis values 

during recession and post-recession one interesting observation is that kurtosis value is 

increasing with decreasing market capitalization after recession but during recession kurtosis is 

increasing with increasing market capitalization.  

Table 2 Summary Statistics for thirty portfolios post-recession 

 
*Significance at 5%    

From Table 2, it is evident that lower portfolio portfolios returns are more negatively skewed as 

compared to upper portfolio. Kurtosis is also higher for lower portfolio. Therefore in lower 

portfolio of stocks there is greater probability for extreme values of return towards negative side. 
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Table 3 Summary Statistics for ten portfolios during recession 

*Significance at 5%  

From the Table 2 it is observed that none of the portfolio return series is found to be normally 

distributed. It is evident that after recession standard deviation was almost same for different 

portfolios but during recession period standard deviation was higher for high capitalized firms 

and lesser for smaller capitalized firms, but if we take all the firms together in a portfolio the 

standard deviation is on the lower side. During recession skewness is also increasing with 

decreasing market capitalization an indicator of extreme loses in smaller capitalized portfolios, 

but kurtosis value is on higher side in lower capitalized firm’s portfolio. The combined portfolio 

has the kurtosis on the lower side. Therefore combining all the different market capitalized firms 

will not give correct VaR estimation. 
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4. Results 

4.1 Parametric VaR 

It is assumed that Rs100, 000 is invested in each index and portfolio of stocks. Since the returns 

on each index are not normally distributed we cannot use parametric method of VaR calculation. 

Table 4 and Table 5 suggest that if we use parametric method of VaR calculation for this 

scenario the VaR model fails to pass Kupic test. 

Table 4 Parametric VaR model results during recession 

 

Table 5 VaR model results Post Recession 

 

That means contemporary parametric VaR methodology is not suitable when returns are not 

normally distributed. The VaR violations are higher in both the cases. 

4.2 Parametric VaR using Garch (1, 1) model with student t innovation 

In this section we estimate VaR using parametric Garch (1,1) model to find out conditional 

volatility, using student t innovation. From Table 6 it is quite evident that percentage VaR 

violations are least for highest market capitalized index, and VaR violations increase as the 

market capitalization decreases,  the model is accepted only in case of high capitalization index. 
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If we look at the extreme risk indicator, CVaR is lesser for small capitalized index during 

recession as compared to highest market capitalized index whereas, it is highest in post-

recession.  

Table 6 Parametric Garch (1, 1) VaR results 

4.3 VaR calculation using real distribution of returns 

Since, the returns of the indices are not normally distributed therefore; VaR is calculated using 

empirical distribution of returns. The empirical distributions of stocks and indices returns are 

fitted using @ risk software. From table 7, it is evident that VaR violations are increasing with 

decreasing market capitalization both in recession and post-recession period, but this method is 

giving better estimate of VaR as compared to other two methods, as the model is acceptable for 

both high capitalization index and medium capitalization index. It is evident from the Table7 that 

VaR values are highest for the high cap index and lowest for mid cap indices in both recession 

and post- recession period. But CVaR is highest for small cap index post- recession. 

Table 7 VaR results using actual distribution of Return 

 

BSE SENSEX BSEMID CAP  BSE SMALL CAP BSE SENSEX BSE MID CAP  BSE SMALL CAP 

VaR  2550.131 2376.14309 2421.40702 5072.769 2573.5691 4497.436 

%Violation 1.19% 2.28% 2.88% 1.39% 2.98% 3.08% 

Kupic Test 0.3106751 0.00029972 7.35E-07 0.1395951 5.00E-15 7.48E-08 
Result Model Accepted Model Rejected Model Rejected Model Accepted Model Rejected Model Rejected 
CVaR 3117.0299 2954.99839 3251.89291 6680.6581 4254.0369 6030.493 

Index 
Post-Recession Recession 
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Return distribution fitted for different market capitalized index Post-recession(return on X-axis 
and  VaR violations on Y-axis) 

                    

Fig.6 Sensex                                    Fig.7 Mid-cap                     Fig.8 Small Cap 

 

 Return distribution fitted for different market capitalized index during recession 

                                 

Fig.9 Sensex                                    Fig.10 Mid-cap                   Fig.8 Small Cap  

Therefore, from all the three methods it is evident that VaR calculations vary with the market 

capitalization. It is also evident that parametric method and parametric method using GARCH (1, 

1) is underestimating VaR. Since VaR calculation on empirical distribution is performing best in 

capturing market risk therefore VaR calculation using empirical distribution fitting method is 

used for thirty different portfolios of the firms. Weights were assigned to each stock within the 

portfolio according to its market capitalization. Here the data is divided into two period’s 

recession and post-recession and one combining both recession and post-recession period 

together, to check the VaR estimation considering both periods together. Thirty one portfolios 

has been created where thirty portfolios’ represents decreasing market capitalization and last 

thirty first portfolio is the one consisting whole gamut of the stocks together for each period. It is 

again assumed that Rs100,000 lakhs is invested in each portfolio. None of the series is found to 

be normally distributed. Distribution fitted by most of the return series in Table 8 is either 

Logistic or Laplace. VaR model is accepted in most of the upper market capitalized portfolios 

and is rejected in lower portfolios. But if we are considering all the stocks together we find that 

model is acceptable according to Kupic test results. That means it is not correct to pool stocks of 

different market capitalization while calculating VaR. If we see in upper portfolio the percentage 
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of VaR violations are lesser as compared to lower portfolio. Kupic test results are tested at 5% 

level of significance.  

Table 8 VaR calculation for recession and post- recession combined 

Portfolio VaR %Violation CVaR Kupic Result Result 

Distribution  

Fitted 

AIC value for  

distribution  

fitted 

1 32148 1.41% 4370.78311 0.048386129 Model Rejected Logistic -6247.5521 

2 48154 1.11% 6344.71838 0.344861992 Model Accepted Laplace -5942.7602 

3 43109 1.16% 5510.65026 0.268641529 Model Accepted Laplace -6157.0792 

4 44659 0.91% 6169.59471 0.694119404 Model Accepted Laplace -5947.5932 

5 51620 1.41% 7002.44204 0.048386129 Model Rejected Laplace -5771.828 

6 39061 1.41% 5436.94065 0.048386129 Model Rejected Laplace -6293.4139 

7 45847 1.41% 6267.19426 0.048386129 Model Rejected Laplace -6060.5606 

8 37016 1.31% 5220.085 0.105370897 Model Accepted Laplace -6544.9739 

9 43521 1.06% 6191.19734 0.429301548 Model Accepted Laplace -6087.7742 

10 34794 1.61% 4813.31009 0.00713992 Model Rejected Logistic -6008.1961 

11 47000 1.31% 6571.29106 0.105370897 Model Accepted Laplace -5779.5812 

12 48451 1.21% 6968.60105 0.202864977 Model Accepted Laplace -5732.0213 

13 39175 2.16% 5451.34521 9.0416E-06 Model Rejected Logistic -5889.7631 
14 35183 2.52% 4832.07761 8.11403E-09 Model Rejected Logistic -5826.9801 

15 35183 1.41% 4983.72075 0.048386129 Model Rejected Logistic -5919.9633 

16 47294 1.26% 6949.16221 0.148494123 Model Accepted Laplace -5901.7876 

17 36168 1.86% 4892.27923 0.00035 Model Rejected Logistic -5953.8202 

18 41547 1.51% 6086.69239 0.019700979 Model Accepted Laplace -6156.657 

19 40811 1.31% 5846.56318 0.105370897 Model Accepted Laplace -6305.898 

20 30781 1.76% 4100.86118 0.001264019 Model Rejected Logistic -6323.4463 

21 44294 1.11% 6365.18807 0.344861992 Model Accepted Laplace -5888.2833 

22 46024 1.36% 6197.4669 0.072500745 Model Accepted Laplace -5987.0434 

23 48323 1.81% 6785.04079 0.000672749 Model Rejected Laplace -5967.1264 

24 44019 1.26% 6166.40368 0.148494123 Model Accepted Laplace -6041.5995 

25 48445 1.31% 7014.94385 0.105370897 Model Accepted Laplace -5861.6063 

26 34948 1.76% 4891.67226 0.001264019 Model Rejected Logistic -6105.3143 

27 40057 1.06% 5632.29931 0.42930 Model Accepted Laplace -6078.0279 

28 35357 1.76% 5018.63973 0.001264019 Model Rejected Logistic -5834.2672 

29 34774 1.41% 4763.66757 0.048386129 Model Rejected Logistic -5882.1872 

30 36482 1.76% 4659.72877 0.00126 Model Rejected Logistic -5955.728 
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From Table 9 we observe that VaR violations are increasing with decreasing market 

capitalization in case of recession also, VaR model is acceptable for portfolio 1, 2, 3, 4 and 5, 

and it is rejected for most of the lower portfolios. In this case also model is accepted if market 

capitalization is not considered. Distribution fitted by portfolio series during recession in most of 

the cases is laplace. We get calculated AIC highly negative, this suggests that the density curves 

of the return is very narrow. Therefore normal parametric VaR methodologies are not suitable. 

 

𝐴𝐼𝐶 = ⁡−2𝐿𝑜𝑔𝐿 + 2𝐾           (12) 
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Table 9 VaR calculation for recession period 

 

From Table 10 it is observed that VaR model is accepted for higher market capitalized portfolio 

and is rejected in most of the lower portfolios. Distribution fitted post-recession in most of the 

cases is Logistic. CVaR is high for lower market capitalized portfolios and is lesser for upper 

market capitalized portfolios. 

Portfolio VaR %Violation CVaR Kupic Result Result 

Distribution  

Fitted 

AIC value for  

distribution  

fitted 

1 4284.7 0.90% 5913.5489 0.66831 Model Accepted Laplace -5566.4692 

2 5778 1.30% 7092.59267 0.20749 Model Accepted Laplace -4964.9149 

3 5285 0.90% 6738.73317 0.66831 Model Accepted Laplace -5149.3028 

4 5146 1.10% 6919.94196 0.41696 Model Accepted Laplace -5167.4892 

5 6265 1.20% 8859.77912 0.99952 Model Accepted Laplace -4793.9902 

6 4663.8 1.60% 6427.65331 0.04787 Model Rejected Laplace -5376.1383 

7 5660 1.50% 7399.26044 0.08241 Model Accepted Laplace -5004.6501 

8 4713 1.20% 6587.59473 0.30265 Model Accepted Laplace -5385.7628 

9 5209 1.60% 6655.46067 0.04787 Model Rejected Laplace -5165.6504 

10 4526.7 1.10% 6594.56384 0.41696 Model Accepted Laplace -5465.166 

11 5490 1.80% 7856.99784 0.13444 Model Accepted Laplace -5106.6074 

12 5490 1.40% 7856.99784 0.13444 Model Accepted Laplace -5078.8473 

13 5369 1.60% 7036.795 0.04787 Model Rejected Laplace -5117.4462 

14 4948 1.40% 6682.74861 0.13444 Model Accepted Laplace -5266.8827 

15 3835 1.60% 5694.95451 0.04787 Model Rejected Logistic -5472.3535 

16 5591 1.50% 8165.27963 0.08241 Model Accepted Laplace -5044.8317 

17 4735.1 1.20% 6299.11992 0.30265 Model Accepted Laplace -5400.5025 

18 4935 1.80% 6951.60094 0.01383 Model Rejected Laplace -5254.3074 

19 5015 1.40% 6863.15204 0.13444 Model Accepted Laplace -5238.9174 

20 4161.9 1.00% 5551.07429 0.54270 Model Accepted Laplace -5642.6647 

21 5036 1.50% 7016.19128 0.08241 Model Accepted Laplace -5253.141 

22 5529 1.00% 8154.36869 0.54270 Model Accepted Laplace -5070.4632 

23 5858 1.90% 8095.86414 0.00690 Model Rejected Laplace -4947.117 
24 5281 1.50% 6848.39774 0.08241 Model Accepted Laplace -5190.3362 

25 5801 2.00% 7387.84614 0.00329 Model Rejected Laplace -4951.6033 

26 4795.8 1.10% 6708.88536 0.41696 Model Accepted Laplace -5367.4219 

27 4675.6 1.10% 6758.76352 0.41696 Model Accepted Laplace -5427.5867 

28 4487.6 1.20% 7022.86928 0.30265 Model Accepted Laplace -5486.9004 

29 3788 1.60% 5392.73918 0.02639 Model Rejected Logistic -5501.4133 

30 3103.1 1.60% 3965.76655 0.02639 Model Rejected Logistic -5959.813 

Combined 4296 1.50% 5581.54884 0.08241232 Model Accepted Laplace -5524.9227 
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Table10: VaR calculation for Post- recession period 

 
 

 

4.4 Significance of market capitalization 

The above results showed that VaR models performance depends on market capitalization. To 

statistically validate the results, a cross-sectional regression model is estimated by taking VaR 

violations of 30 different portfolios as dependent variable and market capitalization of the 
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portfolio of stocks as independent variable. From Table11 it is evident that the market 

capitalization is significant at 1% level. This indicates that VaR violations increase with the 

decrease in market capitalization of the portfolios. 

Table11. Regression results for market capitalization and VaR violations 

Post- Recession 

Constant 
   12.99*** 
(7.22E-04) 

Market 
capitalization 

-0.040*** 
  (0.000713) 

Recession 

Constant 
14.33** 
(0.57) 

Market 
capitalization 

-0.033** 
(0.015) 

** 5% level of significance 

*** 1% level of significance 

 

. 
4.5 VaR and Volume Traded (liquidity) 

 

A cross-sectional regression has been estimated for the dependent variable as VaR and 

independent variables- volume traded, beta and revenue on 328 BSE 500 companies. It has been 

observed that there exists inverse relationship between volumes traded of stocks, and market risk 

factor represented by VaR and positive relation is established between VaR and Beta. We 

conclude that highly traded stocks have lesser market risk. Results confirm the findings of 

Chuang(2012) that traded volume and volatile is negatively related in case of Japan and Taiwan 

stock exchange.   

 
Table 12 Regression results for VaR and volume traded (liquidity) 
 

Constant 
 -0.0522*** 
(0.0010) 

Volume traded  
-0.00344 *** 
(0.000596) 

Beta 
0.000437** 
(0.00022) 

Revenue 
4.54e-09 
(2.56e-09) 

** 5% level of significance 
***1% level of significance 
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 There is significant relation between volume traded of stocks and the volatility which is 

represented by VaR in Indian stocks of BSE 500 index. 

 

5. Conclusion 

VaR has become a very popular method of estimating market risk, in this paper we have 

considered (i) effect of market capitalization on VaR estimation (ii) modeling of non normality 

of return series of stock and stock indices and (iii) relation between stock market riskiness and 

stock turnover. None of the return series in estimation window is found to be normally 

distributed. The fitted distribution of return series is found to be, Logistic, Weibull and Laplace. 

Three indices BSE Sensex, BSE Mid Cap and BSE Small Cap have been taken in current study. 

Whole sample is divided into two periods’ recession and post-recession. Since the VaR 

calculation using Variance-Covariance approach is not suitable due to non-normality of returns, 

VaR calculation have been done by modeling volatility with the help of GARCH (1,1) approach 

and modeling the best fitted empirical return distribution and finding out 1-α quantile of return 

series for VaR estimation. It has been observed that VaR violations are increasing with decrease 

in market capitalization both in case of recession and post -recession period. It has been observed 

that fitting empirical distribution method gives better fit for VaR estimation. Further, in the case 

of thirty portfolios of BSE 500 stocks on the basis of market capitalization, the same results were 

obtained as market capitalization decreases, the VaR violations increases. Therefore we can 

conclude that market capitalization has impact on VaR estimation. To confirm the results further 

regression is run on VaR violations as dependent variable and market capitalization as 

independent variable .Market capitalization is coming out to be significant at 5% level in 

explaining VaR violations. It has been found that there is negative relation between volatility and 

VaR. 
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