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On Market Economies: How Controllable Constructs Become Complex 

C-René Dominique 

Laval University (ret.), Quebec, Canada 

ABSTRACT: Since Lėon Walras neoclassical economists hold an inalterable belief in a unique and stable equilibrium for the 
economic system, which remains to this day unobservable. Yet that belief is the corner stone of other theories such as the ‘Effi-

cient Market Hypothesis’ as well as the philosophy of neo-liberalism, whose outcomes are shown by recent events to be flawed. 

A modern market economy is indeed a nonlinear controllable construct, but this paper uses the affine nonlinear feedback H-

control to show that the ‘data requirement’ precludes all attempts at the empirical verification of the existence of a stable equilib-

rium. In a complex nonlinear deterministic systems, equilibria, whether multiple or deterministically chaotic, depends on their 

parameter values and uncertainties. The best approach suggested is to focus on endurable patterns thrown-off by such systems. 

KEYWORDS: Equilibrium, nonlinearity, controllability, nonlinear-feedback, H-control, data requirement, complexity. 

INTRODUCTION  

The basic assumptions of neo-classical economics are well-known, but only the following few have a direct bearing 

on this paper. For example, it is assumed that individuals and firms optimize under constraints; that they are rational 

and always have rational expectations; that the more connected are networks of individual participants the less 

risky, stable and robust is the economic system, etc. Undoubtedly, the most misleading of these assumptions is the 

claim that market economies tend toward stable equilibria; that is, such systems may be found away from their equi-

librium points as a result of exogenous shocks, but they will inexorably return to their equilibrium on their own 

power. As a consequence, policy gurus of neo-liberalism propagate the belief that markets should be allowed to 

make all the major economic, social, and political decisions; that the state should refrain from any attempt to control 

markets, or that corporations should be given total freedom to increase profits, etc.  

Strangely enough, after more than a century and one half not a single one of these assumptions has found empirical 

support. Beside the observational judgment to the effect that economic agents are generally self-interested and have 

strong monotonic preference, most of those assumptions are simple pronouncements. Yet, the equilibrium assump-

tion, for example, though unobservable, is the foundations of both the ‘Efficient market Hypothesis’ and neo-

liberalism that have had and continue to produce very undesirable outcomes. This state of affairs does not bode well 

for that social science. It would, therefore, be useful to reexamine a few models of market economies so as to see 

why the stable equilibrium assumption has always escaped empirical verification. 

This paper consists of two parts. In the first, reexamines two linear models: the Walrasian pure exchange model, and 

a controllable linear time invariant model. The Walrasian pure exchange is incomplete but simple to analyze. Its 

merit lies in the fact that it provides the first mathematical expression of the stable equilibrium assumption. The 

modern market economy, on the other hand, is more complex. It is undeniably a construct designed to facilitate ex-

change, which is more natural. It should therefore be controllable. Hence, Part II appeals to the recent but well char-

acterized theory of L2- gain analysis of nonlinear systems and nonlinear feedback H-infinity control to examine two 

classes of nonlinear models, one in the non-affine category and the other in the affine categories. All four cases 

show that the equilibrium of market economies may well exist in theory, but will remain forever unobservable due 



to the complexity of markets and /or due to the formidable data requirement for such an endeavor. In the concluding 

remarks, we will then offer a few suggestions on how to navigate in complex systems.   

PART I  

In this section, we will review the Walrasian pure exchange model and a controllable linear time invariant (LTI) 

model. We will show, on the one hand, that the equilibrium of the Walrasian model can easily be inferred but not 

easily demonstrated empirically. However, though naïve and unrealistic, it provides nevertheless the justification for 

a set of beliefs that may still be blocking progress in the development of the neo-classical theory of economics. In 

the LTI model, on the other hand, the data requirement precludes all attempts to characterize a stable equilibrium.   

1.1 The Beginning    

The model conceived by Walras from observing the functioning of the ‘Bourse de Paris’ is that of a pure exchange 

economy. It supposes there are i consumers (i  m) of j goods (j  n). Each consumer devotes a fraction i
j of his or 

her budget (B) to good j such that j
i
j = 1. The budget of i comes from the sale of endowments i

j such that the 

demand of i for good j is x
i
j = i

j (B) / pj, where pj is the price of j. Walras supposed a one period market. Hence in 

the neighborhood of the equilibrium point, we have a first-order linear differential equation:  

(1)                                                         ẋ = dg (1/xj) [A – dg (jj)] x  

                                                           = dg (1/xj) [M] x,  

where x  X  n
 is the state vector, and [A – dg (j)] = M n x n. For the derivation of (1), see ref. [1].   

Equation (1) is an input/output construct, with inputs j j and output x  X  n
, driven by incentives to minimize 

excess demand of all goods j.   

For a solution, Walras posited a tâtonnement process controlled by an auctioneer. Had he taught of an exogenous 

supply rate for a sequence market, (1) would have been written as,  

(2)                                          ẋ = M x,  x  X  n
+ , x (0) = xo as initial condition,  

and (2) would have been represented by a linear system of differential equations whose solution is:  

(3)                                                                       x (t) = e 
M t

 xo,  

where e 
M t

 is an n x n matrix function defined by its Taylor series.   

M is real n x n Metzler matrix with k lines and l columns, and element m k l  0 for k  l. Simply put, M is a positive 

matrix if all non-diagonal elements are non negative. Then, the system would preserve the non-negativity of the state 

vector. The condition m k l  0, k  l is necessary, while the stronger condition m k l > 0, k  l is sufficient for a 

nonnegative solution. Hence, starting from any nonnegative initial xo (= price po), the solution (3) will remain 

nonnegative.  



Generalizing further, if M is a nonnegative matrix, then for some constant b > 0, the matrix D = b I + M is nonnega-

tive and has Frobenius-Perron eigenvalue μo  0 and a corresponding positive eigenvector vo. It follows that λo = μo 

– b, (b  +) is an eigenvalue of M. λo is real and is the eigenvalue of M with the largest negative real part; it is 

therefore the dominant eigenvalue of M.  

Two important conclusions may be drawn from this sort of transformation. That is: 1) from this sort of transfor-

mation, it is possible to translate all results of nonnegative matrices to equivalent Metzler matrices, and; 2) it follows 

that o is real and xo  0 such that M xo = o xo and for any other   o, the Re () < Re (o). This guarantees a posi-

tive and stable equilibrium point for (3) without, of course, any guarantee that it is easily observable.   

At first sight, the equilibrium point of a pure exchange market economy is a unique and stable fixed-point. This find-

ing is also responsible for a real ‘déformation professionnelle’ in economic thinking. For even when production with 

delays and time-to-build and increasing returns are added, even when endogenous money and financialization are 

included, or when faced with nonlinearity and myriads of interconnections, economists remain fixated on an inexo-

rable unique stable fixed-point despite the warning of the Sonnenschein-Mantel-Debreu-Theorem [2]-[6]. In fact, it 

is obvious from (3) that the equilibrium x* = f (x; , ) depends on the distribution of the sets  and , i. e., on re-

vealed preferences and supply. It then follows that changes in budget distributions /or in the supply rate would cause 

x* to wobble and to elude measurements in the state space since it would be undistinguishable from a transient 

point. However, this is not all. The matrix M has rank (n - 1), then the solution lies in the Null space of matrix M. 

Simply, we have a wobbling equilibrium vector in the Null space of M that cannot be distinguished from a transient 

solution. Even with a complete set of data, by the time it would take a super computer to compute x*(.), it would 

have already changed.     

Although non observable, the stable equilibrium assumption gave substance to Adam Smith metaphor of the invisi-

ble hand as well as the obsession with a stable equilibrium found in all other results popularized by Bachelier and 

the Chicago school. It should be noted, however, that the deterministic wobbling motion is confused with Brownian 

motion; that is the first grave error. As we will show shortly, in real market economies, stable equilibria are not 

guaranteed; that is the second error. And both cast a serious doubt on the validity of the Efficient Market Hypothe-

sis. All that can be said is that the Walrasian construct is a reflexive and therefore controllable system. But in a per-

fect market each agent has only an infinitesimal influence on the control set, while collections of them are unlikely 

to act in unison. Hence despite the mathematical reasonableness of the stable equilibrium assumption in that incom-

plete model, it still cannot even be verified empirically, in particular if n is a large number. What is then the justifi-

cation to carry it over to a nonlinear and complex system such as a real market economy?    

1.2 A Linear Time Invariant Model  

The feedback optimization procedure considered here rests on three basic concepts. That is, multi-inputs-multi-

outputs linear time invariant finite-order systems; internally stable feedback; and system norm. In addition, there is 

the concept of ‘well-posedness’ of the optimization problem ensuring that the optimization algorithm does not break 



down. The aim of the optimization process is to find an LTI feedback controller that makes the feedback system 

stable and minimizes the closed-loop system from the exogenous input stream to the cost of producing the output.    

Consider now a market economy, E, represented by an LTI model defined by finite dimensional state space model: 

(4)                                                              ẋ(t) = A1 x (t) + A2  (t) + A3 c (t)  

(5)                                                              o (t) = C1 x (t) + C2  (t) + C3 c (t)  

(6)                                                              y (t) = D1 x (t) + D2  (t).  

Equations (4) to (6) describe an input/output economy E with an input partitioned into 2 vector components,  (t) 

and c (t);  (t) represents a set of exogenous inputs, and c (t) is both another input to E and the output of the control-

ler K. The output of E is also partitioned into 2 vector components, o (t) representing the cost of producing the out-

put and y (t) the output to be measured and to be manipulated, and which is also an input to the controller K..  

The controller K is an LTI model defined by a finite dimensional state space model in the form:  

(7)                                                                       ẋk  (.) = Ak xk (.) + Bk y (.)  

(8)                                                                        ck (.) = Ck x (.) + Dk y (.).  

The coefficient matrices Ai, Ci and Di are assumed to be known, and coefficient matrices Ak, Bk, Ck and Dk are to be 

designed or found by the optimization algorithm.  

Equation (6), the input to K, does not include the controller’s output c (.). Then system (4) - (6) defines a closed-

loop state space model in the form:  

(9)                                                                      ẋcl (.) = Acl xcl (.) + Bcl  (,)  

(10)                                                                        ocl (.) = Ccl xcl(.) + Dcl (.),  

where   

                                      A1 + A3 Dk D1    A3Ck                        A2 + A3  Dk  D2                                                                                               

     xcl = [xk   x]
T
,  Acl =                                           ,      Bcl =                                ,   Ccl = [ Ck + C3 Dk  D1    C3 Ck ]                                      

                                         Bk D1                  Ak                                 Dk  D2                Dcl = [C2 + C3 Dk  D2].                                                 

 

For the controller to be stabilizing, the matrix Acl must be a Hurwitz matrix.  

The real-valued function of the feedback design, specified in Eqs. (9) and (10), is to be minimized with respect to 

the controller K, subject to the constraints of well-posedness and stabilization. The H-infinity norm is the task of 

minimizing the H norm ║G║ of the transfer matrix G. The matrices Ai, Ci, Di must be known but they must also 

be subject to the following conditions to ensure that they are suitable for the feedback optimization. That is, i) the 

pair (A1, A3) must be stabilizable, meaning that there exists a P matrix such that [A1 + A3P] is a Hurwitz matrix; ii) 

the pair (A1, D1] must be detectable, meaning that there exists a Q matrix such that [A1 + Q D1] is a Hurwitz matrix; 



and iii) the optimization procedure must be minimizing and satisfying the condition of existence of a minimizer (not 

discussed).    

It should be noted at this point that the input set cannot be measured accurately due its sheer size and the presence of 

intangible inputs. If in addition, we let x  n
, c  m

, and   q
 , while the matrices Ai, Ci, Di, Ak, Bk, Ck, P, and 

Q, etc., are unknown, then it becomes obvious that the data requirement is too demanding for a real market system.                                     

PART II  

2- FEEDBACK NON-LINEAR H-INFINITY OPTIMIZATION THEORY  

 This section examines two solution concepts in the theory of robust and optimal control of nonlinear systems based 

on the Hamilton-Jacobi Equations. These equations are a special case of the Hamilton-Jacobi Bellman equations 

representing a necessary condition describing extremal geometry in generalizing problems of the calculus of varia-

tions. The Hamilton-Jacobi inequality (HJI) plays an important role in the study of various qualitative properties of 

controlled dynamical systems such as stability, invariance and optimality. If a solution to a certain generalized HJI 

exists, then it is a sufficient condition for stability. The Hamilton-Jacobi-Isaacs equations (HJIE), on the other hand, 

are the nonlinear version of the Riccati equation studied in the H-control problem for linear systems. We will focus 

on the contributions of Aliyu who summarizes all relevant topics on the subject. In particular, he shows that via the 

state feedback H-control problems for affine nonlinear systems that use the theory of dissipative systems, devel-

oped mainly by Basar and van der Schaft, significant progress had been made. For, van der Schaft has shown that 

for time-invariant affine nonlinear systems that are smooth, the state feedback H-control problem is solvable by 

smooth feedback if there exists a smooth positive semi-definite solution to a dissipation inequality. The non-affine 

and affine cases considered by Aliyu will suffice for the present purpose, which is to show the necessary and formi-

dable ‘data requirement’ faced by the would-be controller of the economy.   

2.1 Generalities  

During the 1960s and 1970s, economists were encouraged by the World Bank to build large general equilibrium 

models, which produced mainly insignificant results. During the 1990s onward, economists switched from linear H-

infinity control developed by Zames [7], Francis [8], among others, to the theory of nonlinear H-infinity control 

based on the efficient solution of the Hamilton-Jacobi equations (HJE) and on Hamilton-Jacobi- Bellman equations 

(HJBE) that extended the contributions of both Euler and Lagrange. The nonlinear case is mainly the contributions 

of Isidori [9], Isidori and Astolfi [10], and others cited in Ref. [11]-[14]. In this paper, we will be guided mainly by 

the work of Aliyu [15] who argues that the theory of H-infinity control becomes really useful when faced with a 

Hamiltonian that is independent of time. In that case, it is then possible to separate the variables in the HJE. Subse-

quently, it was recognized from the calculus of variation that the variational approach to problems of mechanics 

could equally be applied to problems of optimal control.   



The H-infinity optimization problem is formulated in terms of efficient design of a stabilizing controller K (s) that 

minimizes the H -norm of the closed-loop transfer matrix (Go ) from the input set  (t) to the output set o (t) for a 

given system E, defined by some state-space equations.  

The term H -control refers to the mathematical space over which the optimization takes place, which is the space of 

matrix-valued functions that are analytic and bounded in the open right half of the complex plane. The H -norm, on 

the other hand, is the maximum singular value of the function over that space. The H algorithms solve suboptimal 

controller design problems formulated as that of finding a controller for a given ρ > 0 that is capable of achieving the 

closed-loop L2-gain ‖Go ‖<ρ if it exists.   

As regards the nonlinear equivalent of the linear H -control problem, van der Schaft has shown that for time-

invariant affine nonlinear systems that are smooth, state feedback H -control problems are solvable by smooth 

feedbacks if there exists a smooth positive semi-definite solution to a dissipative inequality, or equivalently, an infi-

nite horizon HJB-inequality, which is the same as the Hamilton-Jacobi-Isaacs (HJI)-inequality found by Basar. The 

solution of the output-feedback problem with dynamic measurement feedback for affine nonlinear systems was 

achieved by Ball et al. [16], Isidori [9], among others. Most of these developments are succinctly summarized in 

Aliyu who has also examined in dept a series of nonlinear affine and non-affine H -control problems. We will con-

sider two of Aliyu’s problems here. The first, the state feedback problem, represents the kind of problems studied by 

economists in the 1980s. The second arises when the states of the system are not available for feedback or when the 

output is used for feedback. It is then called: Robust output measurement feedback nonlinear H-control. It is a more 

elaborated model in the affine category that includes uncertainty and parameter variations. It seems to be a better 

representation of the real market economic. We now consider the first. 

2.2 The Non-affine Case 

Consider a system or a market economy E with two types of inputs: (t) as a collection of exogenous disturbance 

inputs, and input c(t) (the output of the controller), which becomes the input to the actuator driving E. The main dif-

ference between  (t) and c (t) is that the controller can manipulate c (t) but not  (t). E has two outputs: o (t) (the 

cost performance output), and y (t) (the measured output); the latter is both an output of E and an input of the con-

troller; and both outputs are to be measured and regulated.  

The problem here is to find a controller K (s) for the generalized E (s) such that the infinity-norm of the transfer 

function relating input  (t) to the performance output o (t) is minimized. The minimum gain is ρ*. If the norm for 

an arbitrary stabilizing controller is ρ > ρ*, then the E(s) is L2-gain bounded. In control theory, a system ∑ with in-

put  (t) and output o (t) is said to have L2-gain less or equal to ρ if x  N  X,  k (x) (0 < k (x) < , k (0) = 0) 

such that  ʃo

 ║o(t) ║  ρ2 ʃo

  ║║ 
2 

+ k(x), t > 0,  (t): x(0) = 0, and k (x) is a remaining part of the integrals 

from t to . This leads to the concepts of available storage and storage function. Then ∑ has L2-gain if  ρ if N = X. 



Applied to economy E, L2-gain is a performance measure. To solve the H-control problem one starts with a value 

of ρ and reduce it until ρ*is reached.  

To construct a typical state-feedback H-control problem for a general class of non-affine non-linear systems, we 

follow Aliyu (p. 131). Here, the plant problem is compared to economy E (t) with inputs  (t) and c (t), and outputs 

are o (t) and y (t); and the controller K (s) represents a set of policies and technologies. Thus the nonlinear system is 

defined on some manifold X  n
 containing the origin, expressed in local coordinates xi, i  n. The state-space 

equations are: 

                                                                              ẋ = F (x; , c)  

    (11)                                                  E (.) :        y = x 

                                                                             o =  (x, c),   x (to) = xo,  

where the variation of market price dp /dt is represented by ẋ, and x (.)  X is the state vector. In addition, c (.)  C 

 q
 is a q-dimensional control input belonging to the set of admissible controls C;  (.)  W  s

 is the set of in-

puts to be tracked, which belong to the set of admissible disturbances; y (.)  n
 is the measured output of E; and o  

r
 is the performance output to be controlled. Further, F (x; , c): X x W x C  Z* is the state dynamics function; 

 (x, c): X x C  r
 is the controlled output function, and the controller to be synthesized is referred to as K (.). 

Finally, the functions F (.), and  (.) are assumed to be smooth C
k
 (k  1) functions of their arguments, and the point 

x = 0 is assumed by economists of the 1980s to be the unique equilibrium point for E such that F (0,0,0) = 0,  (0,0) 

= 0 ( see [17]- [20] ).   

On the assumption that  (x, c) is linearizable, the matrix ∂  / ∂ c has full rank Ɩ. Letting T* be the cotangent bun-

dle of dim 2n, the Hamiltonian function for the economy E is: H: T* X x W x C   as : 

(12)                           H (x, Ɩ, , c) = ƖT F (x; , c) + (1/2)‖ (x, c)‖2
 – (1/2) ρ2‖‖2

.  

Equation (12) is locally concave with respect to  and locally convex with respect to c near the origin, which is also 

the equilibrium point. Hence, there exists a unique saddle-point (, c) for each (x, Ɩ) near the origin zero. From the 

rank Ɩ and the Implicit Function Theorem, there exist smooth functions *(x, Ɩ) and c*(x, Ɩ), defined in the neighbor-

hood of the point (0, 0) such that *(0, 0) = 0, c*(0, 0), satisfying:  

(13)                                          ∂ H (x, Ɩ, *(.), c(.)) /∂  = ∂ (x, Ɩ, *(.), c*(.)) /  c) = 0.  

Further, suppose there exists a non-negative C
1
 function Z*: X , satisfying the inequality: 

(14)                                      H*(x, Zx
T

 (.)) = H [(x, Zx
T
(x), *(x, Zx

T
(x), c*(x, Zx

T
(x)] ≤ 0.   

Then the feedback law is *=  (x, Zx
T
(.)), c* = c (x, Zx

T
(.)). Substituting c* = c (x, Zx

T
(.)) in (11) yields the closed-

loop system, satisfying:  



(15)                         Zx
T
(x) F (x, , c*(x, Zx

T
(x)) + (1/2)‖ (x, c*(x, Zx

T
(x)‖2

 – (1/2) ρ2‖‖2
 ≤ 0,  

which is dissipative with respect to the supply rate S (, o) = (1/2) [ρ2‖‖2
 -‖o‖2

 with storage function Z in the 

neighborhood of (x, ) = (0, 0), and ρ  ++. In this case and the following one, dissipation with respect to the sup-

ply rate means that a part of input energy is dissipated in the form of heat and waste.  

Obviously, in a physical system, control engineers would measure the variable (usually a signal) with a reasonable 

accuracy. In a social science, on the other hand, this task is much more difficult. For all intents and purposes, the set 

 is infinite and contains intangible elements such as agents’ confidence for which there is no metric. As the Hamil-

tonian is dissipative in conformity with the Second Law of thermodynamics, the function Z: X   exists, but it 

and all other functions, including the optimal feedbacks *(.), and c*(.), are unknown. Hence, the controls cannot be 

synthesized to guarantee the existence of a stable equilibrium. In addition, the above problem neglects important 

features of a real market economy. For example, what Aliyu calls ‘un-modeled uncertainties’ contain parameter var-

iations (already discussed in (3)), and uncertainties arising out of the measurements of certain intangibles such as 

‘herd behavior’, consumers’ confidence, etc, that are sets in (-1, 1). Perhaps for all these reasons, the economists that 

ventured into optimal control never succeeded in either observing or demonstrating empirically the existence of an 

equilibrium point. To add more realism to (11), we consider another Aliyu’s model (p.153), which is also discussed 

in [21]-[22].  

2.3 The Affine Case  

For the more realistic affine case, consider an affine robust measurement feedback nonlinear H- control economy 

shown in Figure 1. This time, there are 3 inputs to E: The exogenous inputs  (t), the output of the controller c (t), 

and the output of the set of uncertainties d (t) that bypasses the controller. Economy E has 3 outputs: o (t); y (t) 

which is an input to the controller; and b, which is an input to the set of uncertainties. The state-space equations are:  

                                                        ẋ = f (x) + f (x, u, t) + G1 (x)  + [G2 (x) + G2 (x, u, t)] c                     

       (16)                                E:        o = G3 (x) + G4 (x) c                                                                                                                              

                                                        y = [G5 (x) + G5 (x, u, t)] + G6 (x)   

                                                        x (to) = xo .                                                                                                                                          

 As before, the state vector is x  X; c  C  q
, i. e. a q-dimensional controlled input belonging to the set of admis-

sible controls;   W  s
  L2 (.); y  Y  p

 is the measured output of E; and o  v
 is the cost performance out-

put of E to be controlled. Further, F (x, , c): X x W x C  Z* is the state dynamics function;  (x, c): X x C  v
 

is the controlled output function. The set of parameters that are susceptible to variations over time is u  U  s
, 

while f, G2, G5   are unknown functions belonging to the set of admissible uncertainties.   

The real C

 functions are:  

 



                                                           G1 (x): X  M n x s (X);     G2 (x): X  M n x q (X)  

       (17)                                          G3 (x): X  v
;                   G4 (x): X  M v x q (X)  

                                                         G5 (x): X  p  
;                G6 (x): X  M p x s(X).  

                                                                                                                                                                                   

                         (t)                                             E (s)                                    o (t) 

                                 d                                                                                b       

                                              c(t)                                                        y(t) 

                                                        

                                                                                                                      

     K (s)         

                          

                                                                                                                                                                     

                                                                                

                                                                                                                                      

      U (s)        

                    Figure 1: Robust Measurement Feedback Nonlinear H-infinity Control Economy E.                                                                  

 These are subject to the following system matrices:  

   (18)                                                                   i) G3
T
(.) G4 (.) = 0 = G6 (.) G3

T 
(.)  

                                                                             ii) G4
T
(.) G4 (.) = I = G6 (.) G6

T
(.),  

where T indicates the transpose operation, and I is the identity matrix. Condition i) supposes no feedback between 

(t) and o (t); condition ii) implies that the control weighting matrix is identity for the norm function o (t). It should 

also be specified that f: X  Z*(x), where Z* is the vector space of all C

 vector fields in X; G2 (.)  M n x q (.), 

and G5: X  p
.  

The task now is to find a dynamic controller for E such that the closed-loop system has L2-gain (energy) locally 

from the disturbance input  (t) to output o (t) that is less or equal to some prescribed ρ* > 0 with internal stability 

for all admissible (f, G2, G5)   and for all potential parameter variations in U  s
. Aliyu has shown that to 

characterize  some 6 additional matrices of appropriate dimensions are required. For the present purpose it suffices 

to say that it would be exceedingly difficult, if not impossible, to characterize  in economics.  



To solve the affine-robust-measurement-feedback-nonlinear-H-control system, many other conditions must be sat-

isfied, such as observability and zero-state detectability, i. e. both f, and G3 must be locally detectable. By zero-state 

observable, it is meant    X containing xo = 0 or that any trajectory starting at xo in , c (t) = 0, y (t) = 0, t  to 

implying x (t) = 0. The nonlinear system E is locally zero-state detectable if  N  X near x = 0 such that  x (to)  

N if o (t) = 0, c (t) = 0, t  to, implying lim t  x (t, to, xo, c) = 0. The system is zero-state detectable if N = X. As it 

can be seen, there is no hope that these conditions could ever be satisfied for economy E, and there is no point dis-

cussing them further, except to say that, most importantly, there must be a smooth positive semi-definite function Z* 

near the origin that satisfies the Hamilton-Jacobi-Isaacs equation: 

(12)    Zx
*
(.)

 
f (x) + (1/2) Zx*(.) [(1/ρ2

) (G1(.) G1
T
(.) + H2(x) H2

T
(x) – G2(x) G2

T
(x)] Zx

*T
(.) + (1/2) G3

T
(.) G3(.) +  

(1/2) E1(.) E1
T(.) ≤ 0,  

where H2(.) and E1(.) are two of the matrices that characterize the set of admissible uncertainties .  

It should be recalled at this point that our task is not to dwell into the intricacies of stabilizing a controlled economy 

but to show how difficult it would be to do so. Real market economies do not satisfy the properties of superposition 

and homogeneity due to friction, adjustment costs, cooperative and competing parts, myriads of interconnections, 

etc. They are obviously nonlinear and very complex. This is not to say that they are impossible to stabilize, but first 

optimality would have to be defined and second synthesizing policies in a rivalrous and pluralistic society would 

have to be found. But it should be borne in mind that real modern markets, in addition, face a measurement problem 

due to the lack of proper metrics. The data requirement representing myriads of interconnections is visible in the 

matrices M n x s, M n x q, M v x q, M p x s, and six more needed to characterize the set of uncertainties.  All we know is 

that economy E is a nonlinear dissipative system. It is now well-known that such systems may have ‘strange ‘attrac-

tors’ known to have a countable set of periodic orbits of arbitrarily large period, an uncountable set of aperiodic or-

bits, and a dense orbit. To assert that economy E tends toward a unique and stable equilibrium on its own power 

when: a) xo cannot be assumed to fall in some local stable manifold, or b) the equilibrium cannot be characterized 

empirically, or c) the system frequently produces undesirable outcomes, reflects “une grave dėformation profes-

sionnelle’.  

CONCLUDING REMARKS 

Orthodox economists are firmly attached to the idea that the economic system, by its very nature, must be a stable 

system even though no stable market economy has ever been observed. Yet, the notion of stable equilibrium remains 

the corner stone of both the ‘Efficient Market Hypothesis’ and the philosophy of neo-liberalism. The collapse of 

Western economies in 2007-2008 is an additional demonstration of the fallacy of that belief. The question now is 

that, as a group, economists are well versed in empirical research, why do they hold such an inalterable belief in 

unobservable stable equilibria?  



This paper attributes this preoccupation to three causes. That is, the Walrasian pure exchange economy; the fact that 

market economies, being social constructs, are theoretically controllable; and the total neglect of the analyses of 

complex systems. This paper shows that the Walrasian pure exchange economy, where the notion of stable equilib-

rium found its first mathematical expression, may be a fine exercise that is nevertheless far-removed from the com-

plexities of areal market economies. Indeed, market economies are social constructs designed to facilitate exchange; 

they should, therefore, be controllable in theory. The paper then uses the new advances in affine and non-affine non-

linear feedback H-infinity control theory to show that the lack of proper metrics and the data requirements preclude 

all attempts at empirical verifications. Moreover, market economies are nonlinear systems subject to multiple inter-

connections, parameter variations, and uncertainties. Their equilibria may be multiple (as ascertained by the 

Sonnenschein-Mantel-Debreu Theorem), unstable, and deterministically chaotic. All depend on uncertainties and 

parameter values. Sensitivity to parameter variations, for example, means that minuscule changes here may produce 

unpredictable and huge undesirable results there. In addition, if the attractors of such systems are non-hyperbolic, 

then their outputs are extremely sensitive to noise. It then follows that in market economies, where information sets 

of participants are incomplete, observed outputs contain a noisy component that cannot be filtered out and therefore 

outputs are bound to be spurious. Faced with complex systems, it is futile to attempt to establish causes and effects. 

Rather, it is wiser to look for correlates in observed and enduring patterns thrown-off by such systems. 
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