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MODEL-BASED PRICING FOR FINANCIAL DERIVATIVES

By Ke Zhu and Shiqing Ling

Chinese Academy of Sciences & Hong Kong University of Science and Technology

Assume that St is a stock price process and Bt is a bond price

process with a constant continuously compounded risk-free in-

terest rate, where both are defined on an appropriate probability

space P . Let yt = log(St/St−1). yt can be generally decomposed

into a conditional mean plus a noise with volatility components,

but the discounted St is not a martingale under P . Under a gen-

eral framework, we obtain a risk-neutralized measure Q under

which the discounted St is a martingale in this paper. Using this

measure, we show how to derive the risk neutralized price for

the derivatives. Special examples, such as NGARCH, EGARCH

and GJR pricing models, are given. Simulation study reveals

that these pricing models can capture the “volatility skew” of

implied volatilities in the European option. A small application

highlights the importance of our model-based pricing procedure.

1. Introduction. After the seminal work of Black and Scholes (1973) and Merton

(1973), there has been explosive growth in the trading activities on derivatives in

the worldwide financial markets. A fundamental question in finance is how we give a

fair price for the derivative, whose payoff is on the evolution of an asset price upon

which the derivative is written. Black and Scholes (1973) first fairly valued the option

according to the principle of “the absence of arbitrage”. Their valuation method relies

on “efficient market hypothesis”, under which there exists a risk-neutralized probability

measure such that the discounted asset price is a martingale, and then a fair price of

the derivative is the expected discounted value of its future payoff under this measure.

Particularly, the risk-neutralized measure is not unique when the market is incomplete.

For more discussions on the principle of “the absence of arbitrage”, we refer to Harrison

and Kreps (1979) and Harrison and Pliska (1982).

Although Black and Scholes’s (1973) pricing model (hereafter, BS model) has achieved

a great success in finance, it exhibits some systematic bias. The well-documented evi-

dence is the so-called “volatility smile” in Rubinstein (1985) and Sheikh (1991), from

which one may concern that the homoscedastic assumption on an asset return (that is,

the asset return follows a geometric Brownian motion) is not reliable any more. This

Keywords and phrases: NGARCH, EGARCH and GJR models; Non-normal innovation; Option

valuation; Risk neutralized measure; Volatility skew.
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motivates people to use other heteroskedastic stochastic processes to model the asset

return. The related works in this field are Cox (1975), Merton (1976), Hull and White

(1987), Stein and Stein (1991), Heston (1993), and Xiu (2014) to name a few; see also

Bates (2003) or Broadie and Detemple (2004) for an overview in this framework.

In this paper, we model the asset return by a discrete stochastic process under

the physical probability measure P , which can be decomposed into the conditioanl

mean part plus a noise with volatility components. In this case, the discounted asset

price is not a martingale under P . By using the method in Gerber and Shiu (1994),

we first construct a risk-neutralized Esscher measure Q, under which the discounted

asset price is a martingale. Next, we give the structure of our stochastic process of an

asset return under Q, when the conditional distribution of the innovation is normal,

shift negative gamma, and shift negative inverse gaussian, respectively. Particularly, the

option pricing models in Duan (1995), Siu et al. (2004), and Christoffersen et al. (2006)

can be easily retrieved from our method. Furthermore, we propose a model-based Monte

Carlo pricing procedure and apply it to some special examples, such as NGARCH,

EGARCH and GJR pricing models. Simulation study reveals that these pricing models

can capture the “volatility skew” of implied volatilities in the European option. A small

application highlights the importance of our model-based pricing procedure.

The remainder of the paper is organized as follows. In Section 2, we introduce a

risk-neutralized Esscher measure Q. In Section 3, we consider the processes for asset

return under Q. A model-based Monte Carlo procedure with application to some pric-

ing models is given in Section 4. Simulation study is reported in Section 5. A small

application is given in Section 6. Concluding remarks are offered in Section 7.

2. Risk-neutralized Esscher measure. Let {St : t = 0, 1, · · · } be an asset price

process and Bt be a bond price process with a constant continuously compounded

risk-free interest rate r, where both are defined on the probability space (Ω, P,F).

Assume that the log-return of St follows a discrete stochastic process under the physical

probability measure P , i.e.,

yt = log
St

St−1

and yt = µt + ηt

√

ht, under P,(2.1)

where ηt|Ft−1 ∼ D(0, 1), D(0, 1) denotes some distribution F (·) with zero mean and

unit variance, and Ft is the information set up to time t; µt ∈ Ft−1 and ht ∈ Ft−1

are the conditional mean and the conditional variance of yt, respectively. Process (2.1)

gives us enough freedom to model the asset return, and most importantly it includes the

ARCH-type models originally introduced by Engle (1982). Nowadays, the ARCH-type

models are widely used to analyze economic time series with time-varying volatility;

see, e.g., Bollerslev et al. (1992), Berkes et al. (2003), and Francq and Zaköıan (2010).
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Since the price of the derivative is sensitive to the volatility of its underlying asset,

the ARCH-type model which provides a good prediction on volatility is applicable to

value the derivative; see, e.g., Engle and Mustafa (1992), Duan (1995), Ritchken and

Trevor (1999), Heston and Nandi (2000), Christoffersen and Jacobs (2004), Garcia et

al. (2010), and many others.

Next, we use the method in Gerber and Shiu (1994) to get a risk-neutralized measure,

under which the discounted process {e−rtSt : t = 0, 1, · · · } is a martingale. First, let

Mt(z) be the conditional moment-generating function of yt, given Ft−1, i.e.,

Mt(z) = EP [ezyt |Ft−1] =
∫ ∞

−∞
ezxdF

(

x − µt√
ht

)

.(2.2)

Secondly, we define a sequence of the conditional distribution functions as follows:

Ξt(u|Ft−1) ≡ EP

[

I {yt ≤ u} eθtyt

Mt(θt)
|Ft−1

]

=
1

Mt(θt)

∫ u

−∞
eθtxdF

(

x − µt√
ht

)

,

where I {·} is the indicator function and θt ∈ Ft−1 be determined subsequently. Fur-

thermore, we define a sequence of conditional distribution functions {Qt : t = 1, 2, · · · }
on (Ω,Ft):

Qt(yi ≤ ui : i = 1, 2, · · · , t) ≡
∫ u1

−∞

∫ u2

−∞
· · ·

∫ ut

−∞

t
∏

i=1

Ξi(dũi|Fi−1).

Obviously, {Qt : t = 1, 2, · · · } is consistent, i.e.,

Qt(yi ≤ ui : i = 1, 2, · · · , t) = Qt+1(yt+1 ∈ R, yi ≤ ui : i = 1, 2, · · · , t).

By Kolmogorov extension theorem, there exists a probability Q on (Ω,F) such that

Q(yi ≤ ui : i = 1, 2, · · · , t) = Qt(yi ≤ ui : i = 1, 2, · · · , t),

for all t and ui, where F = σ(∪∞
i=1Fi). Thus, we have

Q(yt ≤ u) = Qt(yt ≤ u)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞

∫ u

−∞

t
∏

i=1

Ξi(dũi|Fi−1)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞

[

t−1
∏

i=1

Ξi(dũi|Fi−1)

]

Ξt(u|Ft−1)

= Ξt(u|Ft−1).
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Third, let M
(q)
t (z) be the conditional moment-generating function of yt under Q. By

(2.2), we can show that

M
(q)
t (z) = EQ [ezyt |Ft−1]

=
∫ ∞

−∞
ezx eθtx

Mt(θt)
dF

(

x − µt√
ht

)

=
Mt(z + θt)

Mt(θt)
.(2.3)

Then, we have

EQ

[

e−rtSt|Ft−1

]

= e−r(t−1)St−1EQ

[

e−r+yt|Ft−1

]

= e−r(t−1)St−1e
−rM

(q)
t (1).

Thus, under Q, {e−rtSt : t = 0, 1, · · · } is a martingale iff e−rM
(q)
t (1) = 1, i.e.,

Mt(1 + θt)

Mt(θt)
= er for all t = 0, 1, · · · .(2.4)

Now, if equation (2.4) has a solution θt which may not be unique, the martingale

measure Q associated with this θt is called the risk-neutralized Esscher measure. By

Proposition 2.6 in Harrison and Pliska (1982), a fair price of any derivative at current

time t, denoted by Vt, can be calculated as

Vt = EQ

[

e−r(T−t)W (Sj; j ≤ T )
∣

∣

∣Ft−1

]

,(2.5)

where W (Sj; j ≤ T ) is the payoff of this derivative at future time T . Note that

Sj = St exp





j
∑

i=t+1

yi



 .(2.6)

So, to calculate (2.5), it is necessary for us to consider {yt} under Q.

Finally, it is worth noting that by (2.2) and (2.4), we have

EP [er · Zt,t−1|Ft−1] = 1 and EP [eyt · Zt,t−1|Ft−1] = 1,

where Zt,t−1 = eθtyt

{

EP

[

e(1+θt)yt |Ft−1

]}−1
. Thus, our method to construct Q can be

viewed as a special case of stochastic discount factor (SDF) methods with SDF equals

to Zt,t−1. Particularly, Chorro et al. (2012) used the SDF method to get the same

martingale measure Q as ours, and they further applied it to get the ARCH-type

option pricing model when ηt is conditional generalized hyperbolic distributed. For

more discussions on SDF methods, we refer to Jagannathan and Wang (2001), Smith

and Wickens (2002), Monfort and Pegoraro (2011), and references therein.
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3. Processes for an asset return under Q. After the empirical studies in Man-

delbrot (1963), Fama (1965), Bollerslev (1987), and Bollerslev et al. (1992), the valua-

tion of the derivative with non-normal innovation has drawn more and more attentions.

For example, Duan (1999) and Christoffersen et al. (2010) studied the case when the

conditional innovation is a generalized error distribution; Siu et al. (2004) explored an

option pricing model when the conditional innovation has a gamma distribution; and

Christoffersen et al. (2006) gave an analytic pricing form when the conditional innova-

tion has an inverse gaussian distribution; see also Chorro et al. (2012), Xi (2013), and

references therein.

In this section, we consider the processes of an asset return under Q when ηt is

conditionally normal, shift negative gamma (SNG) or shift negative inverse gaussian

(SNIG) distributed. When ηt is conditionally normal, we retrieve the result in Duan

(1995). When ηt is the conditional SNG or SNIG, the Gamma-GARCH process in

Siu et al. (2004) or IG-GARCH process in Christoffersen et al. (2006) can also be

easily derived, respectively. Meanwhile, it is worth noting that our method is different

from Duan’s (1999) method for dealing with a non-normal innovation ηt. The method

in Duan (1999) needs to transform the non-normal innovation into another innovation

which is standard normal with a shift in mean under the local risk-neutralized measure.

However, our method skips that transformation and keeps the distribution of the non-

normal innovation unchanged under the risk-neutralized Esscher measure Q. It not only

seems to be more reasonable, but avoids the cumbersome numerical problem arisen from

the transformation as shown in Duan (1999) and Christoffersen et al. (2010).

3.1. Conditional normal innovation. Suppose that ηt|Ft−1 ∼ N(0, 1). Then, we

have

Mt(z) = exp

(

zµt +
z2ht

2

)

.

By (2.4), it follows that

θt =
1 − µt

ht

− 1

2
.

With this specified θt and relation (2.3), we have

M
(q)
t (z) = exp

[

z

(

r − ht

2

)

+
z2ht

2

]

.

Thus, under Q,

yt = r − ht

2
+ εt,(3.1)

where εt|Ft−1 ∼ N(0, ht). This is the same result as the one in Duan (1995), who first

obtained it under the local risk-neutralized measure.
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3.2. Conditional SNG innovation. Suppose that ηt = (ξt+at)/
√

at, where at ∈ Ft−1

is positive, ξt|Ft−1 ∼ −G(at, 1), and G(a, b) is a random variable having the density

function

g(x) = baxa−1[ebxΓ(a)]−1, for x ≥ 0.

In this case, we call that ηt is conditionally SNG distributed, and denote it by ηt|Ft−1 ∼
SNG(at). Note that the conditional skewness and kurtosis of ηt are

skew(ηt|Ft−1) = −2a
−1/2
t and kurt(ηt|Ft−1) = 6a−1

t ,

respectively. Thus, by using at, we can describe the time-varying conditional skewness

or kurtosis of ηt.

When ηt|Ft−1 ∼ SNG(at), model (2.1) reduces to

yt = µt + εt under P,(3.2)

where εt =
√

atht +
√

ht/atξt. By (2.2), a direct calculation gives us

Mt(z) =
a

at/2
t exp

[

z(µt +
√

atht)
]

(√
at + z

√
ht

)at
, for z > −

√

at

ht

.

By (2.4), it follows that θt = bt −
√

at/ht, where

bt =

[

exp

(

µt − r +
√

atht

at

)

− 1

]−1

.

With this specified θt and relation (2.3), if bt > 0, it follows that

M
(q)
t (z) =

exp
[

z
(

µt +
√

atht

)]

(1 + z/bt)
at

, for z > −bt.

Thus, under Q,

yt = µt + ε∗t ,(3.3)

where ε∗t =
√

atht + ξ∗t with ξ∗t |Ft−1 ∼ −G(at, bt).

Particularly, when µt = r + ν
√

ht − ht/2 and ht = ω + αε2
t−1 + βht−1 with ηt =

(ξt − a)/
√

a and ξt|Ft−1 ∼ G(a, 1) for some constant a > 0, by (3.2), we have under P ,







yt = r + ν
√

ht − ht/2 + εt,

εt = ξt

√

ht/a −
√

aht and ht = ω + αε2
t−1 + βht−1;

(3.4)
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and by using the same method as for (3.3), we have under Q,















yt = r + ν
√

ht − ht/2 + ε∗t ,

ε∗t = ξ∗t −
√

aht with ξ∗t |Ft−1 ∼ G(a, b∗t ),

ht = ω + α(ε∗t−1)
2 + βht−1,

(3.5)

where

b∗t =

[

1 − exp

(

ν
√

ht − ht/2 −
√

aht

a

)]−1

.

Models (3.4)-(3.5) are the Gamma-GARCH models in Siu et al. (2004).

3.3. Conditional SNIG innovation. Suppose that ηt = (ξt+δt)/
√

δt, where δt ∈ Ft−1

is positive, ξt|Ft−1 ∼ −IG(δt), and IG(δ) is a random variable having the density

function

g(x) =
δ√

2πx3
exp

{

−(x − δ)2

2x

}

, for x > 0;

see Barndorff-Nielsen (1998). In this case, we call that ηt is conditional SNIG dis-

tributed, and denote it by ηt|Ft−1 ∼ SNIG(δt). As for the SNG case, the conditional

skewness and kurtosis of ηt are both time-varying in this case, and they satisfy

skew(ηt|Ft−1) = −3δ
−1/2
t and kurt(ηt|Ft−1) = 15δ−1

t ,

respectively.

When ηt|Ft−1 ∼ SNIG(δt), model (2.1) reduces to

yt = µt + εt under P,(3.6)

where εt =
√

δtht +
√

ht/δtξt. Furthermore, by (2.2)-(2.4), a direct calculation gives us

M
(q)
t (z) = exp

{(

µt +
√

δtht

)

z

+δt







√

√

√

√1 + 2

√

ht

δt

θt −

√

√

√

√1 + 2

√

ht

δt

(z + θt)

















,

where θt ∈ Ft−1 satisfies

1 + 2

√

ht

δt

θt =
1

4

(

r − µt −
√

δtht

2δt

− 2
√

δtht

r − µt −
√

δtht

)2

, ct.

Thus, it follows that

yt = µt + ε∗t under Q,(3.7)
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where ε∗t =
√

δtht + c−1
t

√

ht/δtξ
∗
t with ξ∗t |Ft−1 ∼ −IG(

√
ctδt).

Particularly, when µt = r + λht and ht = ω + αht−1 + βζt−1 + γh2
t−1/ζt−1 with

ζt|Ft−1 ∼ IG(δt) and δt = ht/η
2 for some η > 0, by (3.6), we have under P ,







yt = r + νht − ηζt,

ht = ω + αht−1 + βζt−1 + γh2
t−1/ζt−1,

(3.8)

where ν = λ + 1/η; and by (3.7), we have under Q,






yt = r + ν∗h∗
t − η∗ζ∗

t ,

h∗
t = ω∗ + αh∗

t−1 + β∗ζ∗
t−1 + γ∗h∗

t−1
2/ζ∗

t−1,
(3.9)

where ζ∗
t |Ft−1 ∼ IG(h∗

t /η
∗2), ζ∗

t = cζt, h∗
t = ht/c

3/2, ν∗ = νc3/2, η∗ = η/c, ω∗ = ω/c3/2,

β∗ = β/c5/2, γ∗ = γc5/2 and c = [1/(νη) − (νη2)/4]2. Models (3.8)-(3.9) are the IG-

GARCH models in Christoffersen et al. (2006).

4. Model-based pricing procedure. In this section, we give a model-based pric-

ing procedure to calculate Vt in (2.5). Since Vt has no closed form in general, our pricing

procedure is fulfilled by Monte Carlo method as follows:

Step 1. fit the historical data set {yi}i≤t by a specified model in (2.1) under P ;

Step 2. obtain the corresponding fitted model under Q;

Step 3. generate a sequence of data set {yi}T
i=t+1 from the fitted model in Step 2,

and then obtain a value of vt through

vt = e−r(T−t)W (Sj; j ≤ T ),

where Sj is calculated from (2.6);

Step 4. repeat Step 3 by N times to get a sequence {v(i)
t }N

i=1, and eventually approx-

imate Vt by

Ṽt =
1

N

N
∑

i=1

v
(i)
t .

Clearly, the value of Ṽt is model-based, because we need to choose a specified pricing

model in Step 1. For µt in (2.1), the usual choices are the GARCH-in-mean (GIM)

model in Duan (1995) and ARMA model. For the conditional variance ht in (2.1), we

can choose it from the ARCH family or other nonlinear models as long as ht > 0 and

ht ∈ Ft−1. Some special choices are the nonlinear NGARCH model in Engle and Ng

(1993), EGARCH model in Nelson (1991), and GJR model in Glosten et al. (1993).

These three models are to capture the “leverage effect” in volatility (see, e.g, Rubinstein

(1994) and Xiu (2014)), and their practical usefulness in asset pricing has been verified

in Schmitt (1996), Heston and Nandi (2000), Duan and Zhang (2001), Barone-Adesi

et al. (2008), and many others.
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4.1. GIM-type pricing models. In this subsection, we give three price models when

µt in (2.1) is the GIM model.

Example 4.1. (GIM-NGARCH pricing models) Suppose µt in (2.1) follows a GIM

model and ht in (2.1) follows a NGARCH(1, 1) model, i.e., under P ,







yt = r + ν
√

ht − ht/2 + εt,

εt = ηt

√
ht and ht = ω + α

(

εt−1 − θ
√

ht−1

)2
+ βht−1,

(4.1)

where ν is the unit risk premium, ω, α > 0, β ∈ (0, 1), and ηt|Ft−1 ∼ N(0, 1), SNG(a),

or SNIG(δ). Based on the historical data set {yi}i≤t, the vector of parameters (ν, ω, α, β,

θ) can be estimated by its QMLE (ν̂, ω̂, α̂, β̂, θ̂) as in Francq and Zakoian (2004).

Denote the realized error and conditional variance by ε̂t and ĥt, respectively. Note

that E(η3
t |Ft−1) = −2/

√
a when ηt|Ft−1 ∼ SNG(a), and E(η3

t |Ft−1) = −3/
√

δ when

ηt|Ft−1 ∼ SNIG(δ). Then, by the method of moments approach, the parameters a and

δ can be estimated by â and δ̂, respectively, where

â =





2
∑

ĥ
3/2
t

∑

ε̂3
t





2

and δ̂ =





3
∑

ĥ
3/2
t

∑

ε̂3
t





2

.

Hereafter, we will use the proceeding method to obtain the estimators for all models.

By (3.1), when ηt|Ft−1 ∼ N(0, 1) and under Q, model (4.1) reduces to







yt = r − ht/2 + ε∗t ,

ε∗t ∼ N(0, ht) and ht = ω + α
[

ε∗t−1 − (ν + θ)
√

ht−1

]2
+ βht−1.

(4.2)

By (3.3), when ηt|Ft−1 ∼ SNG(a) and under Q, model (4.1) reduces to



















yt = r + ν
√

ht − ht/2 + ε∗t ,

ε∗t =
√

aht + ξ∗t with ξ∗t ∼ −G(a, bt),

ht = ω + α
(

ε∗t−1 − θ
√

ht−1

)2
+ βht−1,

(4.3)

where

bt =

[

exp

(

ν
√

ht − ht/2 +
√

aht

a

)

− 1

]−1

.

By (3.7), when ηt|Ft−1 ∼ SNIG(δ) and under Q, model (4.1) reduces to



















yt = r + ν
√

ht − ht/2 + ε∗t ,

ε∗t =
√

δht + c−1
t

√

ht/δξ
∗
t with ξ∗t |Ft−1 ∼ −IG(δ

√
ct),

ht = ω + α
(

ε∗t−1 − θ
√

ht−1

)2
+ βht−1,

(4.4)
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where

ct =
1

4

(

ht/2 − ν
√

ht −
√

δht

2δ
− 2

√
δht

ht/2 − ν
√

ht −
√

δht

)2

.

Using a user-chosen initial variance ht, then we can generate the data set {yi}T
i=t+1 in

Step 3 from model (4.2), (4.3) or (4.4). Particularly, when θ = 0, our GIM-NGARCH

pricing model (4.2) reduces to the GIM-GARCH pricing model in Duan (1995).

Example 4.2. (GIM-EGARCH pricing models) Suppose µt in (2.1) follows a GIM

model and ht in (2.1) follows an EGARCH(1, 1) model, i.e., under P ,






yt = r + ν
√

ht − ht/2 + εt and εt = ηt

√
ht,

log ht = ω + α(εt−1/
√

ht−1) + θ(|εt−1/
√

ht−1| −
√

2/π) + β log ht−1,
(4.5)

where β ∈ (−1, 1) and ηt|Ft−1 ∼ N(0, 1), SNG(a), or SNIG(δ). By (3.1), (3.3), and

(3.7), model (4.5) under Q reduces to










yt = r − ht/2 + ε∗t and ε∗t ∼ N(0, ht),

log ht = ω + α(
ε∗
t−1√
ht−1

− ν) + θ(| ε∗
t−1√
ht−1

− ν| −
√

2/π) + β log ht−1,
(4.6)







yt = r + ν
√

ht − ht/2 + ε∗t and ε∗t =
√

aht + ξ∗t with ξ∗t ∼ −G(a, bt),

log ht = ω + α(ε∗t−1/
√

ht−1) + θ(|ε∗t−1/
√

ht−1| −
√

2/π) + β log ht−1,
(4.7)



















yt = r + ν
√

ht − ht/2 + ε∗t ,

ε∗t =
√

δht + c−1
t

√

ht/δξ
∗
t with ξ∗t |Ft−1 ∼ −IG(δ

√
ct),

log ht = ω + α(ε∗t−1/
√

ht−1) + θ(|ε∗t−1/
√

ht−1| −
√

2/π) + β log ht−1,

(4.8)

respectively, when ηt|Ft−1 ∼ N(0, 1), SNG(a) and SNIG(δ). Using a user-chosen ini-

tial variance ht, then we can generate the data set {yi}T
i=t+1 in Step 3 from model (4.6),

(4.7) or (4.8).

Example 4.3. (GIM-GJR pricing models) Suppose µt in (2.1) follows a GIM model

and ht in (2.1) follows a GJR(1, 1) model, i.e., under P ,






yt = r + ν
√

ht − ht/2 + εt and εt = ηt

√
ht,

ht = ω + αε2
t−1I(εt−1 > 0) + θε2

t−1I(εt−1 ≤ 0) + βht−1,
(4.9)

where ω, α, θ > 0, β ∈ (0, 1), and ηt|Ft−1 ∼ N(0, 1), SNG(a), or SNIG(δ). By (3.1),

(3.3), and (3.7), model (4.9) under Q reduces to















yt = r − ht/2 + ε∗t and ε∗t ∼ N(0, ht),

ht = ω + α(ε∗t−1 − ν
√

ht−1)
2I(ε∗t−1 > ν

√
ht−1)

+θ(ε∗t−1 − ν
√

ht−1)
2I(ε∗t−1 ≤ ν

√
ht−1) + βht−1,

(4.10)
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yt = r + ν
√

ht − ht/2 + ε∗t and ε∗t =
√

aht + ξ∗t with ξ∗t ∼ −G(a, bt),

ht = ω + αε∗2t−1I(ε∗t−1 > 0) + θε∗2t−1I(ε∗t−1 ≤ 0) + βht−1,
(4.11)



















yt = r + ν
√

ht − ht/2 + ε∗t ,

ε∗t =
√

δht + c−1
t

√

ht/δξ
∗
t with ξ∗t |Ft−1 ∼ −IG(δ

√
ct),

ht = ω + αε∗2t−1I(ε∗t−1 > 0) + θε∗2t−1I(ε∗t−1 ≤ 0) + βht−1,

(4.12)

respectively, when ηt|Ft−1 ∼ N(0, 1), SNG(a) and SNIG(δ). Using a user-chosen ini-

tial variance ht, then we can generate the data set {yi}T
i=t+1 in Step 3 from model

(4.10), (4.11) or (4.12).

4.2. ARMA-type pricing models. In this subsection, we give three price models when

µt in (2.1) is the ARMA model.

Example 4.4. (ARMA-NGARCH pricing models) Suppose µt in (2.1) follows an

ARMA(p, q) model and ht in (2.1) follows a NGARCH(1, 1) model, i.e., under P ,






yt = φ0 +
∑p

i=1 φiyt−i +
∑q

i=1 ψiεt−i + εt and εt = ηt

√
ht,

ht = ω + α
(

εt−1 − θ
√

ht−1

)2
+ βht−1,

(4.13)

where ω, α > 0, β ∈ (0, 1), and ηt|Ft−1 ∼ N(0, 1), SNG(a), or SNIG(δ). Hereafter, we

assume that Φ(z) 6= 0 and Ψ(z) 6= 0 when |z| ≤ 1, and Ψ(z) and Ψ(z) have no common

root with ψp 6= 0 or ψq 6= 0, where Φ(z) = 1 − ∑p
i=1 φiz

i and Ψ(z) = 1 +
∑q

i=1 ψiz
i.

Next, by (3.1), (3.3), and (3.7), model (4.13) under Q reduces to






yt = r − ht/2 + ε∗t and ε∗t ∼ N(0, ht),

ht = ω + α
(

z∗t−1 − θ
√

ht−1

)2
+ βht−1,

(4.14)



















yt = φ0 +
∑p

i=1 φiyt−i +
∑q

i=1 ψiε
∗
t−i + ε∗t ,

ε∗t =
√

aht + ξ∗t with ξ∗t ∼ −G(a, b̄t),

ht = ω + α
(

z∗t−1 − θ
√

ht−1

)2
+ βht−1,

(4.15)



















yt = φ0 +
∑p

i=1 φiyt−i +
∑q

i=1 ψiε
∗
t−i + ε∗t ,

ε∗t =
√

δht + c̄−1
t

√

ht/δξ
∗
t with ξ∗t |Ft−1 ∼ −IG(δ

√
c̄t),

ht = ω + α
(

z∗t−1 − θ
√

ht−1

)2
+ βht−1,

(4.16)

respectively, when ηt|Ft−1 ∼ N(0, 1), SNG(a) and SNIG(δ). Here, z∗t = Ψ(B)−1[ε∗t +

r − ht/2 − ψ0 −
∑p

i=1 φiyt−i],

b̄t =

[

exp

(

µ̄∗
t − r +

√
aht

a

)

− 1

]−1

and c̄t =
1

4

(

r − µ̄∗
t −

√
δht

2δ
+

2
√

δht

r − µ̄∗
t −

√
δht

)2

with µ̄∗
t = φ0 +

∑p
i=1 φiyt−i +

∑q
i=1 ψiε

∗
t−i. Using a user-chosen initial variance ht, then

we can generate the data set {yi}T
i=t+1 in Step 3 from model (4.14), (4.15) or (4.16).
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Example 4.5. (ARMA-EGARCH pricing models) Suppose µt in (2.1) follows an

ARMA(p, q) model and ht in (2.1) follows an EGARCH(1, 1) model, i.e., under P ,







yt = φ0 +
∑p

i=1 φiyt−i +
∑q

i=1 ψiεt−i + εt and εt = ηt

√
ht,

log ht = ω + α(εt−1/
√

ht−1) + θ(|εt−1/
√

ht−1| −
√

2/π) + β log ht−1,
(4.17)

where β ∈ (−1, 1) and ηt|Ft−1 ∼ N(0, 1), SNG(a), or SNIG(δ). By (3.1), (3.3), and

(3.7), model (4.17) under Q reduces to











yt = r − ht/2 + ε∗t and ε∗t ∼ N(0, ht),

log ht = ω + α(
z∗
t−1√
ht−1

− ν) + θ(| z∗
t−1√
ht−1

− ν| −
√

2/π) + β log ht−1,
(4.18)



















yt = φ0 +
∑p

i=1 φiyt−i +
∑q

i=1 ψiε
∗
t−i + ε∗t ,

ε∗t =
√

aht + ξ∗t with ξ∗t ∼ −G(a, b̄t),

log ht = ω + α(z∗t−1/
√

ht−1) + θ(|z∗t−1/
√

ht−1| −
√

2/π) + β log ht−1,

(4.19)



















yt = φ0 +
∑p

i=1 φiyt−i +
∑q

i=1 ψiε
∗
t−i + ε∗t ,

ε∗t =
√

δht + c̄−1
t

√

ht/δξ
∗
t with ξ∗t |Ft−1 ∼ −IG(δ

√
c̄t),

log ht = ω + α(z∗t−1/
√

ht−1) + θ(|z∗t−1/
√

ht−1| −
√

2/π) + β log ht−1,

(4.20)

respectively, when ηt|Ft−1 ∼ N(0, 1), SNG(a) and SNIG(δ). Using a user-chosen ini-

tial variance ht, then we can generate the data set {yi}T
i=t+1 in Step 3 from model

(4.18), (4.19) or (4.20).

Example 4.6. (ARMA-GJR pricing models) Suppose µt in (2.1) follows an ARMA(p, q)

model and ht in (2.1) follows a GJR(1, 1) model, i.e., under P ,







yt = φ0 +
∑p

i=1 φiyt−i +
∑q

i=1 ψiεt−i + εt and εt = ηt

√
ht,

ht = ω + αε2
t−1I(εt−1 > 0) + θε2

t−1I(εt−1 ≤ 0) + βht−1,
(4.21)

where ω, α, θ > 0, β ∈ (0, 1), and ηt|Ft−1 ∼ N(0, 1), SNG(a), or SNIG(δ). By (3.1),

(3.3), and (3.7), model (4.21) under Q reduces to







yt = r − ht/2 + ε∗t and ε∗t ∼ N(0, ht),

ht = ω + α[z∗t−1]
2I(z∗t−1 > 0) + θ[z∗t−1]

2I(z∗t−1 ≤ 0) + βht−1,
(4.22)















yt = φ0 +
∑p

i=1 φiyt−i +
∑q

i=1 ψiε
∗
t−i + ε∗t ,

ε∗t =
√

aht + ξ∗t with ξ∗t ∼ −G(a, b̄t),

ht = ω + α[z∗t−1]
2I(z∗t−1 > 0) + θ[z∗t−1]

2I(z∗t−1 ≤ 0) + βht−1,

(4.23)



















yt = φ0 +
∑p

i=1 φiyt−i +
∑q

i=1 ψiε
∗
t−i + ε∗t ,

ε∗t =
√

δht + c̄−1
t

√

ht/δξ
∗
t with ξ∗t |Ft−1 ∼ −IG(δ

√
c̄t),

ht = ω + α[z∗t−1]
2I(z∗t−1 > 0) + θ[z∗t−1]

2I(z∗t−1 ≤ 0) + βht−1,

(4.24)
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respectively, when ηt|Ft−1 ∼ N(0, 1), SNG(a) and SNIG(δ). Using a user-chosen ini-

tial variance ht, then we can generate the data set {yi}T
i=t+1 in Step 3 from model

(4.22), (4.23) or (4.24).

5. Simulation study. In this section, we examine the finite sample performance

of our GIM-NGARCH, GIM-EGARCH, and GIM-GJR pricing models in Section 4

and the GIM-GARCH pricing model in Duan (1995). For brevity, we only consider

European call option written on daily Hang Seng Index (HSI). To choose the values of

parameters in GARCH, NGARCH, EGARCH, and GJR models, we fit these four mod-

els to the log-return of a historical HSI data set, which has a total of 1001 observations

taken from January 13, 2009 to December 31, 2012. The estimated results are reported

in Table 1. Since our major interest in this section is to see how the implied volatil-

ity of the European call option varies according to different models and distributions

of ηt, we use these estimators for simulations without considering model-checking. In

application, model checking should be important, and we will consider it in Section 6.

Table 1

Estimated results for all models.

ν̂ ŵ α̂ β̂ θ̂ â δ̂
GARCH 0.0595 0.4 × 10−6 0.1024 0.8855 ——— 2.484 × 103 5.590 × 103

NGARCH 0.0264 0.4 × 10−6 0.0932 0.8654 0.5584 1.264 × 103 2.843 × 103

EGARCH 0.0387 -0.5290 -0.0874 0.9385 0.2281 7.702 × 103 1.733 × 104

GJR 0.0289 0.3 × 10−6 0.0260 0.9061 0.1395 1.720 × 103 3.870 × 103

Next, by using the parameters in Table 1, we calculate the price of the European call

option Ṽ by the Monte Carlo procedure in Section 4 with a control-variate technique in

Boyle et al. (1998). Here, as in Duan (1995), we set the risk-free rate r = 0, the strike

price K = 1, and the repetition time M = 50, 000. The moneyness (S/K) is from 0.8

to 1.2, the time to maturity (TM) is 30, 90 or 120 days, and the initial variance (IV) h1

is (0.8σ)2, σ2 or (1.2σ)2, where σ (= 0.0149) is the standard deviation of the log-return

series. As usual, the call option is out-of-the-money (OTM), at-the-money (ATM), and

in-the-money (ITM) if S/K << 1, S/K ≈ 1, and S/K >> 1, respectively.

As a comparison, we also consider the BS price VBS, which is calculated by

VBS = BS(S,K, σBS, TM/365, r),

where σBS = 28.5% is the annualized volatility of the log-return series, and

BS(S,K, σ, T, r) = S · N(d1) − Ke−rT N(d2)

is the BS price formula with

d1 =
log(S/K) + (r + σ2/2)T

σ
√

T
and d2 = d1 − σ

√
T .
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Furthermore, we calculate the annualized implied volatility σim according to

Ṽ = BS(S, K, σim, TM/365, r),

and then compare VBS and Ṽ in terms of σBS and σim through a conventional way.

Moreover, Figures 1-3 plot σim along with different pricing models, distributions of ηt,

TMs, and IVs. Since the results based on SNG and SNIG innovations are similar, we

only report the results when ηt is conditional SNIG. From Figures 1-3, our findings are

as follows:

(i) In all cases, the choice of IV will determine the position of the σim curves. Specif-

ically, when IV gets large, the σim curves will shift up. Thus, how to choose a suitable

IV should be very important in practice.

(ii) For the GIM-GARCH pricing model, the price of ITM option based on ηt|Ft−1 ∼
N(0, 1) is significantly higher than that based on ηt|Ft−1 ∼ SNIG(δ). However, the

price based on GIM-NGARCH, GIM-EGARCH and GIM-GJR models is less impacted

by the distribution of ηt.

(iii) For the GIM-GARCH pricing model with ηt|Ft−1 ∼ N(0, 1), the relationship

between VBS and Ṽ is consistent to that in Duan (1995). For other cases, when IV is

smaller, VBS is higher than Ṽ for the OTM and ATM options, while it is smaller than

Ṽ for the ITM option; and when IV is larger, VBS is smaller than Ṽ .

(iv) For the GIM-GARCH pricing model, the U-shape of the σim curves (i.e., “volatil-

ity smile”) exists when ηt|Ft−1 ∼ N(0, 1), while the U-shape of the σim curves is

skew-to-left (i.e., “volatility skew”) when ηt|Ft−1 ∼ SNIG(δ). For other three pricing

models, the σim curves are always skew-to-left. The reason is because except the GIM-

GARCH pricing model with ηt|Ft−1 ∼ N(0, 1), all of our pricing models can capture

the “leverage effect”, meaning that positive returns are associated with decreases of

volatility and vice versa. So, the OTM option which needs larger positive returns to

end up in the money at maturity, tends to have a smaller σim.

(v) Except the GIM-GARCH pricing model with ηt|Ft−1 ∼ N(0, 1), the U-shape

of each σim curve fades away as TM becomes longer. The reason is that when TM is

shorter, a big movement in stock price is highly possible, and hence the OTM option

is more likely to become the ITM option. If this really happens, the OTM option will

produce higher return but with lower capital than ATM or ITM option. Therefore, the

speculators in the market will buy OTM options to take advantage of the potential

big movement in stock price, and consequently, this will cause the higher σim in OTM

options. When TM becomes longer, the possibility of extreme stock movement tends

to be smaller, and eventually it will cause the vanish of the upwards movement of σim

in OTM options.
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Fig 1. Annualized implied volatility for TM = 30 under GIM-GARCH model (solid line), GIM-
NGARCH model (dashed line), GIM-EGARCH model (dotted line), and GIM-GJR model (dot-dashed
line).



16 ZHU AND LING

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0.22

0.24

0.26

0.28

0.3

0.32

0.34

moneyness

σ
im

IV=(0.8σ)2, η
t
 is conditional normal

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

moneyness

σ
im

IV=(0.8σ)2, η
t
 is conditional SNIG

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

moneyness

σ
im

IV=σ2, η
t
 is conditional normal

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

moneyness

σ
im

IV=σ2, η
t
 is conditional SNIG

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

moneyness

σ
im

IV=(1.2σ)2, η
t
 is conditional normal

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

moneyness

σ
im

IV=(1.2σ)2, η
t
 is conditional SNIG

Fig 2. Annualized implied volatility for TM = 90 under GIM-GARCH model (solid line), GIM-
NGARCH model (dashed line), GIM-EGARCH model (dotted line), and GIM-GJR model (dot-dashed
line).
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Fig 3. Annualized implied volatility for TM = 120 under GIM-GARCH model (solid line), GIM-
NGARCH model (dashed line), GIM-EGARCH model (dotted line), and GIM-GJR model (dot-dashed
line).



18 ZHU AND LING

Overall, our pricing models can capture the “volatility skew” phenomenon in the

market and should be useful in practice.

6. Application. In this section, we assess the performance of six different pricing

models (see Table 3) by comparing our model-based prices with the real market prices.

For brevity, we only consider the traded European S&P 500 call option data on April

18, 2002. This data set from Schoutens (2003) includes a total number of 53 call options

with TM = 22, 46, 109, 173 or 234 days and K ranging from 975 to 1325; see Table

2 for more details. The closing price S0 is 1124.47. The annual risk-free interest rate

r is 1.9%, and the dividend yield d is 1.2%. So, the annual effective interest rate r0

is 0.7% in all calculations. The parameters of all pricing models are estimated using

the log-return of daily closing price of S&P 500 from January 04, 1988 to April 17,

2002 (a total of 3606 observation), and their results are reported in Table 3. To check

the model adequacy, the p-values of the Ljung and Box tests Q(M) and Li and Mak

tests Q2(M) are also reported in the same table. From Table 3, we find that all of

ARMA-type models are adequate to fit this log-return series, while all of GIM-type

models are inadequate to fit the conditional mean of this log-return series.

Table 2

Market prices of all traded S&P 500 call options on April 18, 2002

K TM=22 TM=46 TM=109 TM=173 TM=234
975 161.6 173.3
995 144.8 157
1025 120.1 133.1 146.5
1075 84.5 100.7 114.8
1090 43.1
1100 35.6 65.5 81.2
1110 39.5
1120 22.9 33.5
1125 20.2 30.7 51 66.9 81.7
1130 28
1135 25.6 45.5
1140 13.3 23.2 58.9
1150 19.1 38.1 53.9 68.3
1160 15.3
1170 12.1
1175 10.9 27.7 42.5 56.6
1200 19.6 33 46.1
1225 13.2 24.9 36.9
1250 18.3 29.3
1275 13.2 22.5
1300 17.2
1325 12.8

Next, we calculate the model-based prices of those call options in Table 2, and use the

average relative error (ARE) criterion to measure the performances of our model-based
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Table 3

Estimators for all pricing models

Models Estimators Q(6) Q(12) Q2(6) Q2(12)†

GIM-NGARCH ν̂ = 0.0393, ω̂ = 6.6 × 10−6, α̂ = 0.1360, β̂ = 0.7668, θ̂ = 0.5505, 0.0065 0.0038 0.2830 0.7527

â = 42.6, δ̂ = 95.9

GIM-EGARCH ν̂ = 0.0445, ω̂ = −0.4846, α̂ = −0.1162, β̂ = 0.9480, θ̂ = 0.1704, 0.0185 0.0073 0.9122 0.9920

â = 4482.0, δ̂ = 1.008 × 104

GIM-GJR ν̂ = 0.0498, ω̂ = 8.0 × 10−6, α̂ = 0.0670, β̂ = 0.7772, θ̂ = 0.2240, 0.0300 0.0116 0.9174 0.9959

â = 37.6, δ̂ = 84.7

AR(3)-NGARCH φ̂0 = 0.0001, φ̂1 = 0.0431, φ̂2 = −0.0021, φ̂3 = −0.0412, ω̂ = 6.7 × 10−6, 0.5562 0.1833 0.2998 0.7764

α̂ = 0.1382, β̂ = 0.7623, θ̂ = 0.5809, â = 77.9, δ̂ = 175.3

AR(3)-EGARCH φ̂0 = 0.0002, φ̂1 = 0.0430, φ̂2 = 0.0174, φ̂3 = −0.0245, ω̂ = −0.4789, 0.4608 0.1512 0.9328 0.9935

α̂ = −0.1210, β̂ = 0.9484, θ̂ = 0.1727, â = 2.8 × 106, δ̂ = 6.4 × 106

AR(3)-GJR φ̂0 = 0.0002, φ̂1 = 0.0383, φ̂2 = −0.0013, φ̂3 = −0.0457, ω̂ = 8.3 × 10−6, 0.5398 0.1583 0.6446 0.9538

α̂ = 0.0657, β̂ = 0.7739, θ̂ = 0.2316, â = 59.8, δ̂ = 134.5
† p-values of Ljung-Box test statistics Q(M) and Li-Mak test statistics Q2(M).

Table 4

The values of ARE for all pricing models.

ηt|Ft−1 ∼ N(0, 1) ηt|Ft−1 ∼ SNG(a) ηt|Ft−1 ∼ SNIG(δ)
Models IV TM TM TM

κ 22 46 109 173 234 All 22 46 109 173 234 All 22 46 109 173 234 All
GIM-NGARCH 0.7 1.40 0.83 2.34 4.77 6.39 3.31 1.60 1.07 1.32 2.94 4.87 2.39 1.74 0.78 2.47 3.65 5.50 2.90
GIM-EGARCH 0.8 0.75 1.30 2.74 5.20 7.42 3.76 0.80 1.23 3.00 4.67 6.87 3.56 2.21 1.03 1.19 2.59 4.35 2.22

GIM-GJR 0.7 1.76 1.54 3.36 5.46 6.71 3.98 0.72 1.69 2.71 4.51 6.61 3.50 1.62 3.61 3.62 5.48 8.58 4.86

AR(3)-NGARCH 0.7 1.17 0.85 2.48 4.09 6.12 3.10 2.35 1.79 1.41 3.41 4.86 2.77 1.51 0.91 1.76 3.40 4.80 2.55
AR(3)-EGARCH 0.9 4.93 1.84 4.03 6.75 11.24 5.70 2.08 2.04 2.51 4.62 7.00 3.77 7.15 5.73 1.94 2.75 4.51 3.92
AR(3)-GJR 0.7 1.77 1.78 3.82 5.90 7.23 4.36 0.62 0.98 2.86 4.59 6.03 3.28 1.19 2.04 2.60 4.12 5.92 3.37

Benchmarks‡ IV TM
κ 22 46 109 173 234 All

BS 1.0 2.53 3.93 5.95 8.28 10.09 6.57
GIM-GARCH 0.6 6.42 4.34 5.26 7.79 10.42 6.80
† The ARE is based on all options, and the smallest ARE is in bold.
‡ The ARE of BS pricing model and GIM-GARCH pricing model with ηt|Ft−1 ∼ N(0, 1) is calculated with IV=(κσBS)2

and (κσe)2, respectively. Here, σBS is the annualized volatility of the log-return series.



20 ZHU AND LING

prices, where

ARE =
1

N

N
∑

j=1

∣

∣

∣V model
j − V market

j

∣

∣

∣

V market
j

× 100,

and N is the total number of options considered, V market
j is the market price of j-th

option, and V model
j is the model-based price of j-th option. For each pricing model,

since V model
j depends on the choice of IV h1, we choose h1 to be (κσe)

2, where σe is the

estimated volatility of the last day of the log-return series, and κ is taken as follows:

κ = min
κ0∈{0.1,0.2,··· ,2.0}

ÃRE(κ0),

where ÃRE(κ0) is the ARE of this pricing model with h1 = (κ0σe)
2 and ηt|Ft−1 ∼

N(0, 1). Based on this choice of IV, Table 4 reports the detailed results of ARE along

with different models, distributions of ηt, and TMs. From Table 4, we find that (i)

except the GIM-GJR model with ηt|Ft−1 ∼ SNIG(δ), each pricing model with non-

normal innovation has a smaller ARE than that with normal innovation, even κ is

optimally chosen for the normal innovation; (ii) the performance of each pricing model

becomes worse when the value of TM increases; (iii) for each pricing model, the perfor-

mance of two non-normal cases is comparative; (iv) the performance of the GIM-type

pricing models and ARMA-type pricing models is also comparative, and although the

GIM-EGARCH pricing model is inadequate, the GIM-EGARCH pricing model with

ηt|Ft−1 ∼ SNIG(δ) has the best performance; see Figure 4 for the plot of difference

of model-based prices and market prices in this case. Overall, all of our pricing models

have a good performance no matter of model-adequacy and much better than the op-

tions based on the BS pricing formula and Duan’s standard GARCH(1,1) model with

ηt|Ft−1 ∼ N(0, 1). Our best ARE is 2.22 less than 2.36, which is the best ARE based

on the ESS-TGARCH-M pricing model in Xi (2013).

7. Concluding remarks. In this paper, we construct a risk-neutralized Esscher

measure for the asset return which can be decomposed into the conditional mean plus a

noise with time-varying volatility components under a physical probability measure P .

Using this risk-neutralized measure, six ARCH-type model-based pricing procedures

are proposed to value the derivatives. Simulation studies show that our pricing models

can capture the “volatility skew” of implied volatilities in the European option. A small

application to the European HSI option highlights the importance of our model-based

pricing procedure with non-normal innovations. As the empirical studies suggested, the

performance of our pricing procedure varies in terms of IV, TM, and the distribution

of innovation. Hence, two promising directions for future study are (i) choosing an

“optimal” IV by the range of TM in some sense, and (ii) estimating the distribution

of innovation non-parametrically.
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Fig 4. The values of V model − V market based on the GIM-EGARCH pricing model with ηt|Ft−1 ∼
SNIG(δ).
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