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CORE AND COALITIONAL FAIRNESS: THE CASE OF

INFORMATION SHARING RULE

ANUJ BHOWMIK

Abstract. We investigate two of the most extensively studied cooperative
notions in a pure exchange economy with asymmetric information. One of

them is the core and the other is known as coalitional fairness. The set of
agents is modelled by a mixed market consisting of some large agents and an

ocean of small agents; and the commodity space is an ordered Banach space
whose positive cone has an interior point. The information system in our

framework is the one introduced by Allen in [1]. Thus, the same agent can have
common, private or pooled information when she becomes member of different
coalitions. It is shown that the main results in Grodal [20], Schmeidler [26]
and Vind [31] can be established when the economy consists of a continuum
of small agents. We also focus on the information mechanism based on size of
coalitions introduced in [18] and obtain a result similar to the main result in
[18]. Finally, we examine the concept of coalitional fairness proposed in [21].

We prove that the core is contained in the set of coalitionally fair allocations
under some assumptions. This result provides extensions of Theorem 2 in [21]

to an economy with asymmetric information as well as a deterministic economy
with infinitely many commodities. Although we consider a general commodity
space, all our results were so far unsolved to the case of information sharing
rule with finitely many commodities.

1. Introduction

The classical deterministic Arrow-Debreu-McKenzie model on an economic sys-
tem consists of finitely many agents and commodities, refer to [3, 23]. In this model,
the set of Walrasian allocations is properly contained in the core. To see whether
any core allocation can be supported by prices so as to becomes a Walrasian alloca-
tion, Debreu and Scarf [9] expanded the original economy by replicating each agent
m many times. They showed that each allocation in the core of any replicated
economy assigns the same consumption bundle to all agents of the same type and
as m becomes larger, more and more core allocations are ruled out and eventually
only the competitive allocations remain. Since no agent prefers her net trade to
that of another agent of the same type, Schmeildler and Vind [27] introduced the
concept of fair net trade in an exchange economy with finitely many agents, where
an agent was able to compare her net trade with that of another agent with dif-
ferent type. A net trade is fair if the net trade of each agent is at least good for
her as the net trade of any other agent would be. Thus, each agent evaluates the
other agent’s position on the same terms that she judges her own. To define it
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2 A. BHOWMIK

formally, let x = (x1, · · · , xn) be an allocation of commodities among agents in an
exchange economy with n agents. The net trade of agent i is xi − ai, where xi is
the commodity bundle received by i at x and ai is the initial endowment of agent
i. The net trade y = (y1, · · · , yn), defined by yi = xi − ai, is said to be fair if for
all agents i and j, yi �i yj , where �i denotes the preference relation of agent i.
In other words, if a net trade is fair then the market does not discriminate among
agents. It was shown in [27] that a fair net trade exists. An analogous idea of
discrimination was considered in Jaskold-Gabszewicz [21] in terms of coalitions and
it was termed as the coalitional fairness. The allocation x is called coalitionally un-

fair if there exist two disjoint coalitions S1 and S2 such that
∑

i∈S1
yi <

∑
i∈S2

yi.
In this case, agents in S1 could have benefited by achieving the net trade of S2.
Formally, there exists another allocation z = (z1, · · · , zn) such that zi ≻ xi for all
i ∈ S1 and

∑
i∈S1

(zi−ai) =
∑

i∈S2
yi. So, S1 is treated under x in a discriminatory

way by the market. The allocation x is called coalitionally fair 1 if there does not
exist any two such disjoint coalitions. It is known that any Walrasian allocation is
coalitionally fair and the set of coalitionally fair allocations is a subset of the core.

In [4], Aumann remarked that in an economy with finitely many agents the influ-
ence of an agent is not negligible, thus the competition is imperfect. To achieved the
perfect competition, he introduced the concept of non-atomic agents. The conse-
quence of an economy with an atomless measure space of agents is that the influence
of a single agent on market prices is insignificant and so, it leads to characterization
of Walrasian allocations in terms of the core, refer to [4]. Thus, the core and the
set of coalitionally fair allocations are two indistinguishable co-operative notions in
atomless economies under standard assumptions. Eight years later, three notes in
the same issue of Econometrica gave a sharper interpretation to Aumann’s core-
Walras equivalence theorem as a characterization of perfect competition. Firstly,
Schmeidler [26] proved that if an allocation f is blocked by a coalition S via an
allocation g, then for any ε > 0, f can be blocked via the same allocation g by a
coalition S′ ⊆ S with µ(S′) ≤ ε. Schmeidler’s result was further generalized in [20]
by restricting the set of coalitions to those consisting of finitely many arbitrarily
small sets of agents with similar characteristics, which are presumably easier to
form and also interpret. Precisely, Grodal proved that an allocation belongs to
the core if and only if it cannot be blocked by a coalition which is the union of
at most ℓ + 1 sub-coalitions, each of which has measure and diameter less than
ε, where ℓ denotes the number of commodities. Finally, Vind [31] showed that if
some coalition blocks an allocation then there is a blocking coalition with any mea-
sure less than the measure of the grand coalition. These results imply that, for a
finite-dimensional commodity space, the set of Walrasian allocations of an atomless
economy coincides with the set of allocations that are not blocked by coalitions of
arbitrarily given measure less than that of the grand coalition.

It is recognized by several researchers that Aumann’s atomless model corresponds
to an extreme situation since the consumption in real economic exchange is far from
being perfect. An example of this kind of model is that an economy where some
agents concentrate in their hands initial ownerships of some commodities which
are large with respect to the aggregate endowments of those commodities. It was
Aumann [4] who first pointed out that such a market is probably best represented
by a mixed model, in which some agents are insignificant and others are individually

1See Shitovitz [29] for a similar concept.
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significant. Interestingly, the equivalence relationship between the core and the set
of Walrasian allocations fails to be hold in this framework. However, the core
is equivalent to the set of Walrasian allocations if there are at least two large
agents and all large agents have the same characteristics, that is, the same initial
endowments and the same preferences, refer to [28]. Thus, if the above assumptions
violate then one cannot claim that any allocation in the core is also coalitionally
fair. An interesting and weaker result in this direction was proved by Jaskold-
Gabszewicz in [21]. Indeed, in a pure exchange mixed economy with finitely many
commodities, Jaskold-Gabszewicz [21] showed that the core is contained in the set
of coalitionally fair allocations if coalitions are restricted to those measurable sets
which are either atomless or containing all atoms. The result may fail if coalitions
are any arbitrary measurable sets, refer to Proposition 2 in [21].

In the past few decades, an economy involving uncertainty and asymmetric in-
formation is one of the most important research areas in the theoretical economics.
It is well known that information structure within coalitions have major influence
on the set of allocations which can have attainable alternative, refer to [18]. Due
to different information and communication opportunities among agents, several
alternative core concepts had been proposed in [32, 33]. Precisely, Wilson [32]
introduced the concepts of fine and coarse cores, the first one takes into account
that agents within a coalition pool their initial private information whereas the
later involves the common information of all agents within a coalition. The fine
core may be empty, since blocking is “easy”, whereas the coarse core is large, since
blocking is “difficult”. In the private core introduced by Yannelis [33], agents have
no access to the communication system. Thus, the information of each agent is
not modified when a coalition is formed and each member of the coalition uses
only her own private information whenever a coalition blocks an allocation. It is
worth to point out that under standard assumptions, the private core is non-empty
(see [33]). Thus, the initial private information of each agent can be susceptible
to alter when she becomes a member of a coalition. Using Yannelis’s approach,
Graziano and Pesce [19] proposed an extension of the notion of coalitionally fair
allocations2 in asymmetric information economies. In fact, according to their defi-
nition, a function x = (x1, · · · , xn) is called an allocation if xi is Pi-measurable for
all 1 ≤ i ≤ n, and it is termed as coalitionally fair there are no coalitions S1, S2 and
z = (z1, · · · , zn) ∈ Rℓn

+ satisfying zi is Pi-measurable and zi ≻i xi for all i ∈ S1 and∑
i∈S1

(zi − ai) =
∑

i∈S2
(xi − ai), where Pi is agent i’s initial private information.

One of the key results in [19] claims that in an asymmetric information economy
with a mixed measure space of agents and a finite dimensional commodity space,
the private core is a subset of the set of coalitionally fair allocations if coalitions
are restricted to those measurable sets which are either atomless or containing all
atoms. In their result, the allocations were restricted to a certain class of functions
(refer to the assumption (A.6) in [19]) and the feasibility was taken as free disposal.
Since joining a coalition has no direct consequences on information, it is necessary
to define similar concepts by adopting the mechanism that agents within a coalition
use either the pooled information or the common information. In all these concepts,
the rule that allocates the information to agents within a coalition is fixed priori
and does not depend on any specific property of the coalition.

2See Donnini et al. [10] for an existence of a coalitionally fair allocation in the interim stage.
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In this paper, we consider the notion of information sharing rule introduced
by Allen in [1]. This includes various possibilities of the information available
for an agent within different coalitions, which means the same agent can have
common, pool or private information depending on the coalition in which she is a
member. We also restrict our attention to the information sharing rule based on
size of coalitions, as proposed in [18]. According to their rule, there is a family of
exogenous thresholds representing different sizes of coalitions, and each threshold
is associated with some information sharing rule. If an agent is a member of some
coalition then she can only access the information that is given by the information
sharing rule of the corresponding threshold. The feasibility condition in our paper
is defined to be exact, since when feasibility is defined with free disposal, the core
allocations may not be incentive compatible and contracts may not be enforceable,
refer to [2] for the case of private core. The commodity space in our model is an
ordered Banach space having an interior point in its positive cone. As stated in
[17], infinite dimensional commodity spaces arise if one allows an infinite variation
in any of the characteristics describing commodities. These characteristics could
be physical properties, locations or the time of delivery; and an infinite variation
in time occurs whenever infinitely many time periods are considered in each state
of nature.

The purpose of this paper is to explore the main results in [20, 21, 26, 31] to
an asymmetric information economy whose commodity space is an ordered Banach
space admitting an interior point its positive cone and feasibility is defined as exact,
where the information of each agent is given by any information sharing rule. It
is clear from Examples 3 and 4 in [18] that such extensions are impossible unless
we use some assumptions on information sharing rules. It can be also checked that
the approaches in [18] for the proof of Schmeidler’s theorem are not directly appli-
cable for the case of information sharing rule with infinite dimensional commodity
spaces and the exact feasibility condition (see Bhowmik and cao [5] for a similar
result in the case of the private core). It is crucial to remark that if the number of
commodities is finite then also the techniques for Vind’s theorem under the exact
feasibility condition cannot be the same as in [18], since the the blocking is difficult
by large coalitions under information structures and the exact feasibility condition.
We establish these results under mild assumptions. The extended version of Vind’s
theorem in our framework allows us to obtain an extension of the main result of
Hervés-Beloso et al. [18]. For particular interests, we also establish Grodal’s result
in our framework. In a mixed economy, we define the concept of a coalitionally fair
allocation using the information sharing rule. Thus, given an information sharing
rule, an allocation is called coalitionally fair if no coalition could redistribute among
its members the net trade of any other coalition in a way which would assign a pre-
ferred bundle to each of its members, where preferred bundles are measurable with
respect to the given information sharing rule. We show that Jaskold-Gabszewicz’s
result can be extended to an asymmetric information economy whose commodity
space is an ordered Banach space admitting an interior point in its positive cone
and information structure is general enough like [1, 18]. It is worth to point out
that Jaskold-Gabszewicz’s approach is not exactly valid if (i) the commodity space
is infinite dimension or (ii) agents have asymmetric information and the feasibil-
ity condition is defined as exact. In fact, in the first case, Lyapunov’s convexity
theorem does not hold in its standard form and it is only true in a weaker form.
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The last case deals with the information structure and thus, the blocking will be
difficult under the exact feasibility condition. In particular, our main results are
true under fine or private information sharing rule. It is also valid if the information
structure is a mixture3 of the private and the pooled information. The rest of the
paper is organized as follows. In Section 2, a general description of the model and
the concept of information sharing rule are provided. Section 3 deals with some
technical lemmas which are useful in the proofs of the main results. An atomless
economy is considered in Section 4, where extensions of Grodal, Schmeidler and
Vind’s theorems are obtained under information sharing rules and it is shown that
a result similar to the main result in [18] is also valid in our framework. In section
5, we establish a relation between the core and the set of coalitionally fair alloca-
tions in a mixed economy under the information sharing rule formation. Finally,
we conclude our paper with some remarks and open questions which basically give
the limitation of our main results.

2. Economic model and information sharing rule

In this section, we describe the basic model of a pure exchange asymmetric
information economy and discuss the concept of information sharing rule, which
means the information that an agent can dispose of when she becomes a member
of a coalition.

2.1. Description of the model. We consider a standard mixed model of a pure
exchange economy with asymmetric information. The space of economic agents is
denoted by a measure space (T,T , µ) with a complete, finite, and positive measure
µ. Since µ(T ) < ∞, the set T can be decomposed into two parts: one is atomelss
and the other contains countably many atoms. That is, T = T0 ∪ T1, where T0 is
the atomless part and T1 is the countable union of atoms. Let

T0 = {S ∈ T : S ⊆ T0} and T1 = {S ∈ T : T1 ⊆ S}.

Thus, T0 (resp. T1) is the subfamily of T containing no atoms (resp. all atoms).
Denote by

T2 = T0 ∪ T1 = {S ∈ T : S ∈ T0 or S ∈ T1}

the subfamily of T containing either no atoms or all atoms. The exogenous uncer-
tainty is described by a measurable space (Ω,G ), where Ω is a finite set denoting
all possible states of nature and the σ-algebra G denotes all events. The commodity

space is BΩ, where B is an ordered Banach space whose positive cone has an inte-
rior point. The order on B is denoted by ≤, and B+ = {x ∈ B : x ≥ 0} denotes the
positive cone of B. The symbol x ≫ 0 is employed to denote that x is an interior
point of B+, and put B++ = {x ∈ B+ : x≫ 0}. Suppose that BΩ is endowed with
the point-wise algebraic operations, the point-wise order and the product norm.
An element y ∈ BΩ

+ can be identified with the function y : Ω → B+ and vise-versa.
The economy extends over two periods. In the first period, agents arrange contracts
that may be contingent on the realized state of nature. Consumption takes place
in the second period when agents receive their private information.

Each agent t ∈ T is associated with the consumption set BΩ
+. The initial and

private information of agent t is described by a partition Pt of Ω. Recall that a

3By a mixture of the private and pooled information, we mean some coalition use the pooled
information and some other coalition keeps the private information.
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signal on Ω with values in some set X is just a mapping f : Ω → X. Note that any
partition P can be seen as a signal f : Ω → 2Ω defined by f(ω) = P(ω), where
P(ω) denotes the unique member of the partition P containing ω. Reciprocally,
a signal f : Ω → X induces a partition on Ω given by Pf = {f−1(s) : s ∈ f(Ω)}
and the unique member of this partition containing ω is f−1(s) if f(ω) = s. Thus,
the partition Pt gives a signal to agent t and if ω∗ is the true state of nature
in the second period then agent t observes Pt(ω∗). An assignment is a function
f : T × Ω → B+ such that f(·, ω) is Bochner integrable for all ω ∈ Ω. There is a
fixed assignment a; a(t, ω) represents the initial endowment density of agent t in
the state of nature ω. It is assumed that a(t, ω) ∈ B++ for all (t, ω) ∈ T × Ω. The
preference of agent t is described by a correspondence Pt : BΩ

+ ⇒ BΩ
+. For any

assignment f , defined a correspondence Pf : T ⇒ BΩ
+ such that Pf (t) = Pt(f(t, ·))

for all t ∈ T . The graph of Pf is defined by

GrPf
=
{
(t, x) ∈ T ×BΩ

+ : x ∈ Pf (t)
}
.

We assume that GrPf
∈ T ⊗ B(B), where B(B) is the Borel σ-algebra generated

by B. In addition, suppose that (i) for all (t, x) ∈ T × BΩ
+, Pt(x) is open in BΩ

+;

(ii) for all t ∈ T , Pt is monotone in the sense that x+ y ∈ Pt(x) for all x ∈ BΩ
+ and

y ∈ BΩ
++; and (iii) for all (t, x) ∈ T1 × BΩ

+, Pt(x) is convex. Thus, the economy E

can be described as

E =
{
(T,T , µ);BΩ

+; (Pt, a(t, ·))t∈T

}
.

Now, consider a special case when each agent t is associated with a state dependent

utility function Ut : Ω×B+ → R and a prior belief, which is given by a probability
measure Qt on Ω. The ex ante expected utility and ex ante preference relation of
agent t for a random bundle x : Ω → B+ are defined by

EQt(Ut(·, x(·))) =
∑

ω∈Ω

Ut(ω, x(ω))Qt(ω)

and

Pt(x) =
{
y ∈ BΩ

+ : EQt(Ut(·, y(·))) > EQt(Ut(·, x(·)))
}
,

respectively. For any k ≥ 1, the (k − 1)-simplex of Rk is defined as

∆k =

{
x = (x1, · · · , xk) ∈ Rk

+ :

k∑

i=1

xi = 1

}
.

Consider a function ϕ : (T,T , µ) → ∆|Ω| defined by ϕ(t) = Qt for all t ∈ T . For
each ω ∈ Ω, define a function ψω : T × B+ → R by ψω(t, x) = Ut(ω, x). Now we
impose some assumptions in the case of ex ante expected utility formulation. The
first two of these are similar to those in [8, 5, 6, 13], and the last two are standard.

(A1) The function ϕ is measurable, where ∆|Ω| is endowed with the Borel structure.

(A2) For each ω ∈ Ω, the function ψω is Carathéodory, that is, ψω(·, x) is measur-
able for all x ∈ B+, and ψω(t, ·) is norm-continuous for all t ∈ T .

(A3) For each (t, ω) ∈ T × Ω, Ut(ω, x+ y) > Ut(ω, x) if x, y ∈ B+ with y ≫ 0.

(A4) For each (t, ω) ∈ T1 × Ω, Ut(ω, ·) is concave.
By (A1) and (A2), it can be easily verified that GrPf

∈ T ⊗B(B). Note that the
conditions (i)-(iii) are also satisfied under the above assumptions.
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2.2. Information sharing rule. Any set in T is called a coalition of E . If S
and S′ are two coalitions of E with S′ ⊆ S then S′ is termed as a sub-coalition of
S. In a framework of asymmetric information, one of the natural questions is that
how the initial information of an agent is altered when she becomes member of a
coalition S. In addition, one may also think about the information available for an
agent in S who is also a member of a sub-coalition S′ of S. Are the information of a
common agent in S and S′ identical? In this subsection, we model these situations
using the information sharing rule, introduced in [1, 18].

The family of partitions of Ω is denoted by P. Since Ω is finite, P also has
finitely many elements: P1, · · · ,Pn. It is assumed that the set Ti = {t ∈ T :
Pt = Pi} is T -measurable for all 1 ≤ i ≤ n. For any non-null coalition S, let
Si = S ∩ Ti and P(S) = {i : µ(Si) > 0}. Thus, {Pi : i ∈ P(S)} is the structures
of information available in the non-null coalition S. There are three well known
information sharing rule in the literature: the coarse information sharing rule, fine
information sharing rule and private information sharing rule for S. To define these,
recall first that a partition P of Ω is finer than a partition Q of Ω, denoted by
P � Q, if for every A ∈ P there is some B ∈ Q such that A ⊆ B. In such a
case, Q is termed as coarser than P. Let Q be a subfamily of P. The meet of Q,
denoted by

∧
Q, is the finest partition that is coarser than every P ∈ Q. It was

given in [25] that two points ω and ω′ belong to the same element of
∧
Q if there

is a set {ω1, · · · , ωk} of states of nature such that ω1 = ω, ωk = ω′ and for each
1 ≤ i ≤ k − 1, ωi and ωi+1 belong to the same element of some partition P ∈ Q.
Moreover, the join of Q, denoted by

∨
Q, is the coarsest partition that is finer than

every P ∈ Q. It can be shown that

∨
Q =

{
⋂

P∈Q

AP : AP ∈ P,
⋂

P∈Q

AP 6= ∅

}
.

The coarse information sharing rule, fine information sharing rule and private

information sharing rule are rules that assign to each non-null coalition S and each
agent in S the information partition

∧
{Pi : i ∈ P(S)},

∨
{Pi : i ∈ P(S)} and Pt,

respectively. Next, we give the formal definition of an information sharing rule.

Definition 2.1. An information sharing rule is a rule Υ that assigns a function
Υ(S) to every coalition S which gives an information partition Υt(S) of Ω to each
agent t ∈ S.

The partition Υt(S) is intended as the signal that agent t receives when she
becomes a member of S. Thus, it is the information that agent t is able to use once
the coalition S has been formed. Given two information sharing rules Υ1 and Υ2,
the rule Υ1 is said to be finer than Υ2, denoted by Υ1 � Υ2, if Υ1

t (S) � Υ2
t (S) for

each non-null coalition S and each t ∈ S. In what follows, we give an example of an
information sharing rule which differs from the coarse, fine and private information
sharing rule.

Example 2.2. Let T = [0, 1] ∪ {2}. Suppose that (T,T , µ) is a measure space
of agents with µ(2) = 1 and [0, 1] is endowed with the Borel σ-algebra and the
Lebesgue measure. Assume Ω = {ω1, ω2, ω3}, and define the initial information of
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each agent by

Pt =





{{ω1, ω2}, {ω3}}, if t ∈
[
0, 12

]
;

{{ω1, ω3}, {ω2}}, if t ∈
(
1
2 , 1
]
;

{{ω2, ω3}, {ω1}}, if t = {2}.

Consider an information sharing rule Υ, defined by

Υt(S) =





∧
{Pt : t ∈ S}, if µ(S) < 1

2 ;

Pt, if 1
2 ≤ µ(S) ≤ 3

4 ;∨
{Pt : t ∈ S}, if µ(S) > 3

4 .

Throughout the rest of the paper, we use the following assumptions on informa-
tion sharing rule.

(P1) If S
′ is a non-null sub-coalition of a non-null coalition S with P(S′) = P(S)

then Υt(S
′) = Υt(S) for all t ∈ S′.

(P2) If S
′ is a non-null sub-coalition of a non-null coalition S then Υt(S) � Υt(S

′)
for all t ∈ S′.

(P3) For any non-null coalition S, Υt(S) � Pt for all t ∈ S.

(P4) For any non-null coalition S, the function ξS : (S,TS , µS) → P, defined by
ξS(t) = Υt(S), is measurable whenP is endowed with the power set as its σ-algebra.

Remark 2.3. As mentioned in [18], (P1) claims that if one non-null coalition is
contained in the other coalition and they have the same information structure then
any agent in the smaller coalition can use the same information as the information
she can use in the larger coalition. The assumption (P2) says that if we consider an
initial coalition and some additional agents join in the later stage then the members
in the original coalition cannot become worse off from an informational point of
view. The information sharing rules satisfying the last assumption are referred
to as nested by Allen in [1] and using this assumption, she established the non-
emptiness of the core for NTU games with finitely many players in the asymmetric
information framework. It is worth to mention that the assumptions (P1) and
(P2) are independent, refer to Examples 1 and 2 in [18]. The assumption (P3) is
standard if Υ is either the fine or private information sharing rule. It is also true if
the information sharing rule is a mixture of the fine and private information sharing
rules. However, this assumption is violated in the case of coarse information sharing
rule. In Example 2.2, (P3) is satisfied for any coalition S if and only if µ(S) ≥ 1

2 .
The assumption (P4) is equivalence to the TS-measurability of

SΥ
j = {t ∈ S : Υt(S) = Pj}

for all Pj ∈ P and any coalition S. Thus, the assumption (P4) is satisfied if Υ
is either the fine or private information sharing rule. Note that the assumptions
(P1)-(P4) are restricted on only non-null coalitions since informational structures
for null coalitions do not have influence on the proofs of our main results.

3. Blocking Mechanism

For any information sharing rule Υ and non-null coalition S, an assignment f is
termed as Υ(S)-assignment if f(t, ·) is Υt(S)-measurable µ-a.e. on S. Let F ⊆ P



CORE AND COALITIONAL FAIRNESS 9

denote the informational structure that associates with each agent t a signal Ft.
We call an assignment f is an allocation if f(t, ·) is Ft-measurable4 µ-a.e. and

∫

T

f(·, ω)dµ =

∫

T

a(·, ω)dµ

for all ω ∈ Ω. An allocation f is said to be Υ-blocked by a non-null coalition S in
E if there is an Υ(S)-assignment g such that g(t, ·) ∈ Pt(f(t, ·)) µ-a.e. on S, and∫

S

g(·, ω)dµ =

∫

S

a(·, ω)dµ

for all ω ∈ Ω. The core of E under the information sharing rule Υ, denoted by
CΥ(E ), is the set of allocations that are not Υ-blocked by any non-null coalition.
In particular, (i) if Ft = Pt for all t ∈ T and Υ is the private information sharing
rule, then the corresponding core is known as the private core of E ; (ii) if Ft = Pt

for all t ∈ T and Υ is the fine information sharing rule, then the corresponding core
is termed as the fine core of E ; (iii) if Ft =

∨
{Pt : t ∈ T} for all t ∈ T and Υ is

the fine information sharing rule, then the corresponding core is termed as the weak
fine core of E . It is clear that the fine core is a subset of the weak fine core. For any
two non-null coalitions S,R and information sharing rule Υ satisfying (P4), define
the set

IΥ(S,R) =
{
(i, j) : µ

(
Si ∩R

Υ
j

)
> 0
}
.

Let 1Ω denote the characteristic function on Ω, that is, 1Ω(ω) = 1 for all ω ∈ Ω. In
the rest of this section, we present some technical lemmas which will be employed
to prove the main results in the next two sections.

Lemma 3.1. Assume the assumptions (P3)-(P4) are satisfied for an information

sharing rule Υ. Suppose that f is an assignment and S is a non-null coalition. If

g is an Υ(S)-assignment and g(t, ·) ∈ Pt(f(t, ·)) µ-a.e. on S, then there exist an

λ ∈ (0, 1), a zij ∈ B++, and an assignment hij such that hij(t, ·) ∈ Pt(f(t, ·)) and

hij(t, ·) is Υt(S)-measurable µ-a.e. on Si ∩ S
Υ
j , and

∫

Si∩SΥ
j

hijdµ+ zij1Ω =

∫

Si∩SΥ
j

((1− λ)g + λa)dµ

for all (i, j) ∈ IΥ(S,S).

Proof. Since f and g are Bochner integrable, there exist a sub-coalition R of S
and a separable closed linear subspace Z of BΩ such that f(R, ·) ∪ g(R, ·) ⊆ Z,
µ(S \ R) = 0 and g(t, ·) ∈ Pt(f(t, ·)) for all t ∈ R. Let {cm : m ≥ 1} be a
monotonically decreasing sequence in (0, 1) converging to 0. Define a function
gm : R → Z+ by gm(t) = (1 − cm)g(t, ·) for all t ∈ R. Note that gm+1(t) ≥ gm(t)
for all t ∈ R and m ≥ 1. Pick an (i, j) ∈ IΥ(S,R). Define Qij : Si ∩ R

Υ
j ⇒ Z+ such

that Qij(t) = Z+ ∩ Pf (t) for all t ∈ Si ∩ RΥ
j . So, GrQij

∈ TR ⊗ B(Z). For all
m ≥ 1, let

Aij
m =

{
t ∈ Si ∩R

Υ
j : gm(t) ∈ Qij(t)

}

and

Bij
m = GrQij

∩ {(t, gm(t)) : t ∈ Si ∩R
Υ
j }.

4By Ft-measurability, we mean the function is measurable with respect to the σ-algebra gen-
erated by Ft.
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Obviously, Aij
m is the projection of Bij

m on Si ∩R
Υ
j . Note that

{(t, gm(t)) : t ∈ Si ∩R
Υ
j } ∈ TR ⊗ B(Z)

for all m ≥ 1. Thus, by the measurable projection theorem, one has Aij
m ∈ TR for

all m ≥ 1. Define

Rij
m =

⋂
{Aij

k : k ≥ m}.

Since Pf (t) is open in BΩ
+ for all t ∈ R, one obtains

Si ∩R
Υ
j =

⋃
{Rij

m : m ≥ 1}.

Note that {Rij
m : m ≥ 1} is monotonically increasing. For all ω ∈ Ω, let

aij(ω) =
1

2µ(Si ∩RΥ
j )

∫

Si∩RΥ
j

a(·, ω)dµ

and then choose an b ∈ B++ such that b ≤ aij(ω) for all ω ∈ Ω and (i, j) ∈ IΥ(S,R).

It is easy to verify that there exists some m0 ≥ 1 such that µ(Rij
m0

) > 0 and

b−
1

µ(Rij
m0)

∫

(Si∩RΥ
j
)\Rij

m0

g(·, ω)dµ≫ 0

for all ω ∈ Ω and (i, j) ∈ IΥ(S,R). Define yij : Rij
m0

× Ω → B+ such that

yij(t, ω) = 2aij(ω)−
1

µ(Rij
m0)

∫

(Si∩RΥ
j
)\Rij

m0

g(·, ω)dµ.

By (P3), y
ij(t, ·) is Pj-measurable and yj(t, ·) ≫ b for all t ∈ Rij

m0
. Consider an

assignment hij : T × Ω → B+ defined by

hij(t, ω) =

{
(1− cm0)g(t, ω) + cm0(y

ij(t, ω)− b), if (t, ω) ∈ Rij
m0

× Ω;

g(t, ω) + 2cm0
aij(ω), otherwise.

Clearly, hij(t, ·) ∈ Pt(f(t, ·)) and hij(t, ·) is Υt(S)-measurable µ-a.e. on Si ∩ R
Υ
j .

Put, λ = cm0 and zij = cm0bµ(R
ij
m0

). It can be checked that
∫

Si∩RΥ
j

hijdµ+ zij1Ω =

∫

Si∩RΥ
j

((1− cm0)g + cm0a) dµ.

Since IΥ(S,R) = IΥ(S,S) and µ(R
Υ
j ) = µ(SΥ

j ), the proof has been completed. �

Corollary 3.2. Under the hypothesis of Lemma 3.1, there exist a z ∈ B++, and

an Υ(S)-assignment h satisfying h(t, ·) ∈ Pt(f(t, ·)) µ-a.e. on S, and
∫

S

hdµ+ z1Ω =

∫

S

((1− λ)g + λa)dµ,

where

z =
∑

(i,j)∈IΥ
(S,R)

zij

and the assignment h is defined by

h(t, ω) =

{
hij(t, ω), if (t, ω) ∈ (Si ∩R

Υ
j )× Ω;

g(t, ω), otherwise.
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For any allocation f , non-null coalition R and information sharing rule Υ, define

a correspondence Q
{Υ,R}
f : (T,T , µ) ⇒ BΩ

+ such that

Q
{Υ,R}
f (t) = {x ∈ Pf (t) : x is Υt(R)-measurable} .

An integrable selection of Q
{Υ,R}
f is a Bochner integrable function g : (T,T , µ) →

BΩ
+ such that g(t) ∈ Q

{Υ,R}
f (t) µ-a.e. The integration of Q

{Υ,R}
f over a coalition S

in the sense of Aumann is a subset of BΩ
+, defined as

∫

S

Q
{Υ,R}
f dµ =

{∫

S

gdµ : g is an integrable selection of Q
{Υ,R}
f

}
.

Note that
∫
S
Q

{Υ,R}
f dµ is convex. In proofs of the next two lemmas, this result will

be used.

Lemma 3.3. Suppose that the assumption (P4) is satisfied for an information

sharing rule Υ, 0 < λ < 1 and z ∈ B++. Let S,R be two non-null coalitions such

that S ⊆ R. Assume f, g, h are three assignments satisfying
∫

Si∩RΥ
j

gdµ,

∫

Si∩RΥ
j

hdµ ∈ cl

∫

Si∩RΥ
j

Q
{Υ,R}
f dµ

for all (i, j) ∈ IΥ(S,R). Then there exists an assignment y such that y(t, ·) ∈ Pf (t)

and y(t, ·) is Υt(R)-measurable µ-a.e. on S and
∫

S

(y − a)dµ = λ

∫

S

(g − a)dµ+ (1− λ)

∫

S

(h− a)dµ+ z1Ω.

Proof. Fix an (i, j) ∈ IΥ(S,R). Since cl
∫
Si∩RΥ

j

Q
{Υ,R}
f dµ is convex,

λ

∫

Si∩RΥ
j

gdµ+ (1− λ)

∫

Si∩RΥ
j

hdµ ∈ cl

∫

Si∩RΥ
j

Q
{Υ,R}
f dµ.

Choose an open neighbourhood W of 0 in B such that

z

|IΥ(S,R)|
−W ⊆ B++,

where |IΥ(S,R)| denotes the number of elements of IΥ(S,R). It follows that
(
λ

∫

Si∩RΥ
j

gdµ+ (1− λ)

∫

Si∩RΥ
j

hdµ+WΩ

)
⋂∫

Si∩RΥ
j

Q
{Υ,R}
f dµ 6= ∅.

So, there exist an Pj-measurable function w : Ω → W and an integrable selection

x of Q
{Υ,R}
f such that

λ

∫

Si∩RΥ
j

gdµ+ (1− λ)

∫

Si∩RΥ
j

hdµ+ w =

∫

Si∩RΥ
j

xdµ.

Define an assignment yij : T × Ω → B+ such that

yij(t, ω) =





x(t, ω) + 1
µ(Si∩RΥ

j
)

(
z

|IΥ
(S,R)

|
− w(ω)

)
, if (t, ω) ∈ (Si ∩R

Υ
j )× Ω;

h(t, ω), otherwise.
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So, one has yij(t, ·) ∈ Q
{Υ,R}
f (t) µ-a.e. on Si ∩R

Υ
j , and

∫

Si∩RΥ
j

yijdµ = λ

∫

Si∩RΥ
j

gdµ+ (1− λ)

∫

Si∩RΥ
j

hdµ+
z

|IΥ(S,R)|
1Ω.

The conclusion will be achieved by defining the assignment y : T × Ω → B+ such
that

y(t, ω) =

{
yij(t, ω), if (t, ω) ∈ (Si ∩R

Υ
j )× Ω, (i, j) ∈ IΥ(S,R);

h(t, ω), otherwise.

�

Corollary 3.4. Suppose that the assumption (P4) is satisfied for an information

sharing rule Υ, 0 < λ < 1 and z ∈ B++. Let f be an assignment and S a non-null

coalition. If g and h are two Υ(S)-assignments such that g(t, ·), h(t, ·) ∈ Pf (t) µ-
a.e. on S then there is an Υ(S)-assignment y such that y(t, ·) ∈ Pf (t) µ-a.e. on S
and ∫

S

(y − a)dµ = λ

∫

S

(g − a)dµ+ (1− λ)

∫

S

(h− a)dµ+ z1Ω.

Corollary 3.5. Assume (P2) and (P4) are satisfied for an information sharing

rule Υ, 0 < λ < 1 and z ∈ B++. Suppose that f is an assignment such that f(t, ·)
is Υt(T )-measurable µ-a.e. on T , and S is a non-null coalition. If g is an Υ(S)-
assignment such that g(t, ·) ∈ Pf (t) µ-a.e. on S then there is an assignment y such

that y(t, ·) ∈ Pf (t) and y(t, ·) is Υt(T )-measurable µ-a.e. on S and
∫

S

(y − a)dµ = λ

∫

S

(g − a)dµ+ (1− λ)

∫

S

(f − a)dµ+ z1Ω.

Lemma 3.6. Assume (P4) is satisfied for an information sharing rule Υ, 0 < λ < 1
and z ∈ B++. Let f be an assignment and S ∈ T0 a non-null coalition. Suppose

also that R is a coalition such that S ⊆ R and g is an assignment such that
∫

Si∩RΥ
j

gdµ ∈ cl

∫

Si∩RΥ
j

Q
{Υ,R}
f dµ

for all (i, j) ∈ IΥ(S,R). Then there exist a sub-coalition S′ of S and an assignment

h such that (i) µ(S′) = λµ(S) and P(S′) = P(S); (ii) h(t, ·) ∈ Pf (t) and h(t, ·) is

Υt(R)-measurable µ-a.e. on S′, and
∫

S′

(h− a)dµ = λ

∫

S

(g − a)dµ+ z1Ω.

Proof. Pick an (i, j) ∈ IΥ(S,R). Let W be an open neighbourhood of 0 in B such

that
z

λ|IΥ(S,R)|
−W ⊆ B++.

Applying an argument similar to that in the proof of Lemma 3.3, one obtains an

assignment yij such that yij(t, ·) ∈ Q
{Υ,R}
f (t) µ-a.e. on Si ∩R

Υ
j and

∫

Si∩RΥ
j

yijdµ =

∫

Si∩RΥ
j

gdµ+
z

λ|IΥ(S,R)|
.
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By Lemma 3.3 in [5], one can find a sequence {Sij
n : n ≥ 1} ⊆ TSi∩RΥ

j
such that

µ(Sij
n ) = λµ(Si ∩R

Υ
j ) and

lim
n→∞

∫

S
ij
n

(yij − a)dµ = λ

∫

Si∩RΥ
j

(yij − a)dµ.

The function xijn : Ω → B, defined by

xijn (ω) = λ

∫

Si∩RΥ
j

(yij(·, ω)− a(·, ω))dµ−

∫

S
ij
n

(yij(·, ω)− a(·, ω))dµ,

is Pj-measurable for all n ≥ 1 and limn→∞ ‖xijn (ω)‖ = 0 for all ω ∈ Ω. Choose an
nij ≥ 1 such that

z

|IΥ(S,R)|
+ xijnij

(ω) ≫ 0

for each ω ∈ Ω and then consider the function hij : Sij
nij

× Ω → B+ defined by

hij(t, ω) = yij(t, ω) +
1

µ(Sij
nij )

(
z

|IΥ(S,R)|
+ xijnij

(ω)

)
.

Obviously, hij(t, ·) ∈ Q
{Υ,R}
f (t) µ-a.e. on Sij

nij
and

∫

S
ij
n

(hij(·, ω)− a(·, ω))dµ = λ

∫

Si∩RΥ
j

(yij(·, ω)− a(·, ω))dµ+
z

|IΥ(S,R)|
.

Put

S′ =
⋃{

Sij
nij

: (i, j) ∈ IΥ(S,R)

}
.

Note that µ(S′) = λµ(S) and P(S′) = P(S). Thus, the sub-coalition S′ of S and
the assignment h : T ×Ω → B+, defined by h(t, ω) = hij(t, ω), if (t, ω) ∈ Sij

nij
×Ω;

and h(t, ω) = g(t, ω), otherwise, are desired. �

Corollary 3.7. Suppose that the assumption (P4) is satisfied for an information

sharing rule Υ, 0 < λ < 1 and z ∈ B++. Let f be an assignment and S ∈ T0 a

non-null coalition. If g is an Υ(S)-assignment such that
∫

Si∩SΥ
j

gdµ ∈

∫

Si∩SΥ
j

Pfdµ,

then there are a sub-coalition S′ of S and an assignment h such that (i) µ(S′) =
λµ(S) and P(S) = P(S′); (ii) h(t, ·) ∈ Pf (t) and h(t, ·) is Υt(S)-measurable µ-a.e.
on S′, and ∫

S′

(h− a)dµ = λ

∫

S

(g − a)dµ+ z1Ω.

Moreover, if (P4) is also satisfied for Υ, then h is an Υ(S′)-assignment.

Corollary 3.8. Assume (P4) is satisfied for an information sharing rule Υ, 0 <
λ < 1 and z ∈ B++. Let f be an assignment and S ∈ T0 a non-null coalition. If g
is an assignment such that g(t, ·) is Υ(T )-measurable µ-a.e. on S and

∫

Si∩TΥ
j

gdµ ∈ cl

∫

Si∩TΥ
j

Pfdµ



14 A. BHOWMIK

for all (i, j) ∈ IΥ(S,T ). Then there exist a sub-coalition S′ of S and an assignment

h such that (i) µ(S′) = λµ(S) and P(S′) = P(S); (ii) h(t, ·) ∈ Pf (t) and h(t, ·) is

Υ(T )-measurable µ-a.e. on S′, and
∫

S′

(h− a)dµ = λ

∫

S

(g − a)dµ+ z1Ω.

4. Core Solutions in Atomless Economies

In this section, we put our attention to only atomless economies. It is well
known that the information transmission within coalitions is costly: the larger
the coalition, the more difficult to communicate among its members. Thus, it is
reasonable to consider small coalitions. As mentioned in [18], one can argue in
a symmetric way whenever coalitions are large. In fact, if a coalition becomes
a member of a large coalition then she believes that her private information is
negligible and/ irrelevant as it is already available within the coalition. As a result,
she makes her private information public within the coalition. Thus, it is also
important to consider large coalitions. This section explores the idea of finding a
coalition of any size as well as a characterization of the core in terms of the core
for higher information structure.

4.1. Blocking coalition for a given measure. Recall that the result in [26] rely
heavily on Lyapunov’s convexity theorem, which is not true in its exact form in
an infinite dimensional setting. Thus, the exact extension of Schmeidler’s result
is not possible in an economy with infinitely many commodities, as mentioned in
[15]. Indeed, Núñez [24] gave an example of an atomless economy, with infinitely
many commodities, where an assignment f is blocked by the grand coalition via
an assignment g, but there is no other different coalition blocking f via the same
allocation g. Despite the impossibility for obtaining the result in the exact strong
form, Hervés-Beloso [15] first established a variation of Schmeidler’s result in an in-
finite dimensional setting. In particular, they showed that in continuum economies
whose commodity space is the space of bounded sequences if an assignment f is
blocked by a coalition S via g then for every ε ∈ (0, µ(S)) there is a sub-coalition
S′ and an assignment g′ such that f is blocked by S′ via g′. In the case of asym-
metric information, Hervés-Beloso et al. [16, 17] obtained results similar to those in
[26, 31] in an economy with either finite dimensional commodity space or the real
bounded sequences as the commodity spaces. Later, these results were generalized
to an atomless economy with an ordered Banach space whose positive cone has an
interior point as the commodity space, refer to [13]. Since the results obtained so
far in an asymmetric economy without exact feasibility condition, Bhowmik and
Cao [5] proved these results in an asymmetric information economy with an atom-
less measure space of agents, an ordered Banach space whose positive cone has an
interior point as the commodity space and the exact feasibility condition. Recently,
Hervés-Beloso and Moreno-Garćıa [18] established similar results under informa-
tion sharing rule in economies with finitely many commodities. We now give an
extension of Proposition 5.1 in an economy with infinitely many commodities and
the exact feasibility condition.

Theorem 4.1. Suppose that the assumptions (P1), (P3) and (P4) are satisfied for

an information sharing rule Υ and that T = T0. If an allocation f is Υ-blocked by
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a non-null coalition S, then f is also Υ-blocked by a coalition Sε with µ(Sε) = ε
for any ε ∈ (0, µ(S)).

Proof. Suppose that f is Υ-blocked by a non-null coalition S via g. Choose an
ε ∈ (0, µ(S)). Let α ∈ (0, 1) be such that ε = αµ(S). It follows from Corollary
3.2 that there are an Υ(S)-assignment h, a z ∈ B++ and a λ ∈ (0, 1) such that
h(t, ·) ∈ Pf (t) µ-a.e. on S and

∫

S

(h− a)dµ+
z

α
1Ω = (1− λ)

∫

S

(g − a)dµ = 0.

By Corollary 3.7, there exist a sub-coalition S′ of S with µ(S′) = αµ(S) and an
Υ(S′)-assignment y such that y(t, ·) ∈ Pf (t) µ-a.e. on S

′ and

∫

S′

(y − a)dµ = α

∫

S

(h− a)dµ+ z1Ω.

Combining the last two equalities, one obtains
∫

S′

(y − a)dµ = 0.

Thus, f is Υ-blocked by the coalition S′ via y. This completes the proof. �

Remark 4.2. The assumption (P1) is essential to extend Schmeidler’s theorem
to an economy with finitely many commodities under information sharing rule, as
noted in [18]. Similar to [18], it can be verified that the assumption (P1) is enough
to prove Theorem 4.1 for an economy with finitely many commodities and the exact
feasibility condition. However, to get a positive result in an infinite dimensional
setting, the assumptions (P3) and (P4) play crucial roles to overcome the difficulty
with weak form of Lyapunov’s convexity theorem. Thus, at this stage, it is unclear
that whether the conclusion of Theorem 4.1 is positive in an infinite dimensional
setting without these additional assumptions.

Next, we derive an extension of Grodal’s theorem in [20] under the formation of
an information sharing rule.

Theorem 4.3. Suppose that the assumptions (P1), (P3) and (P4) are satisfied for

an information sharing rule Υ and that T = T0. Let T be endowed with a pseudo-

metric which makes T a separable topological space such that B(T ) ⊆ T . If an

allocation f is Υ-blocked by a coalition then for every ε, δ > 0 there is a coalition

R such that µ(R) ≤ ε and f is Υ-blocked by R; and R =
⋃
{Ri : 1 ≤ i ≤ m} for a

finite collection of coalitions {R1, · · · , Rm} with the diameter of Ri is smaller than

δ for all i = 1, · · · ,m.

Proof. By Theorem 4.1, there are a non-null coalition S and an assignment g such
that f is Υ-blocked by S via g and µ(S) ≤ ε. By Lemma 3.1, there exist a
λ ∈ (0, 1), zij ∈ B++ and an assignment hij such that hij(t, ·) ∈ Pt(f(t, ·)) and
hij(t, ·) is Υt(S)-assignment µ-a.e. on Si ∩ S

Υ
j , and

∫

Si∩SΥ
j

(hij − a)dµ+ zij1Ω = (1− λ)

∫

Si∩SΥ
j

(g − a)dµ
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for all (i, j) ∈ IΥ(S,S). For every (i, j) ∈ IΥ(S,S) and non-null sub-coalition E of Si∩S
Υ
j ,

let

bijE =
1

µ(E)

[∫

(Si∩SΥ
j
)\E

(hij − a)dµ+ zij1Ω

]
.

Choose an α > 0 such that for all (i, j) ∈ IΥ(S,S) and non-null coalition E ⊆ Si ∩S
Υ
j

with µ((Si ∩ S
Υ
j ) \E) < α, one has bijE ∈ B++. Pick an (i, j) ∈ IΥ(S,S) and let E be

a sub-coalition of Si∩S
Υ
j such that µ((Si∩S

Υ
j )\E) < α. Define yij : E×Ω → B+

by letting

yij(t, ω) = hij(t, ω) + bijE (t, ω)

for all (t, ω) ∈ (Si ∩ SΥ
j ) × Ω. Clearly, yij(t, ·) ∈ Pf (t) and yij(t, ·) is Υt(S)-

measurable µ-a.e. on Si ∩ S
Υ
j . Further,

∫

E

(yij − a)dµ = (1− λ)

∫

Si∩SΥ
j

(g − a)dµ.

For each (i, j) ∈ IΥ(S,S), suppose that {tijk : k ≥ 1} is a sequence dense in Si ∩ S
Υ
j .

For all k ≥ 1, put

Sij
k = B

(
tijk ,

δ

2|IΥ(S,S)|

)
.

Let

Aij
1 = Sij

1 and Aij
k = Sij

k \ {Sij
m : 1 ≤ m < k}

for all k ≥ 2. Select some k0 such that µ((Si ∩S
Υ
j ) \Rij

k0
) < α for all (i, j) ∈ IΥ(S,S),

where

Rij
k0

=
⋃{

Aij
k : 1 ≤ k ≤ k0

}
.

Thus, for all (i, j) ∈ IΥ(S,S), there are a λ ∈ (0, 1) and a function yij : Rij
k0
×Ω → B+

such that yij(t, ·) ∈ Pf (t) and y
ij(t, ·) is Υt(S)-measurable µ-a.e. on Rij

k0
and

∫

R
ij

k0

(yij − a)dµ = (1− λ)

∫

Si∩SΥ
j

(g − a)dµ.

Finally, for all 1 ≤ k ≤ k0, define

Rk =
⋃{

Aij
k : (i, j) ∈ IΥ(S,S)

}
and R =

⋃
{Rk : 1 ≤ k ≤ k0}.

Since P(Rk) = P(S), yij(t, ·) is Υt(Rk)-measurable µ-a.e. on Rk for all k ≥ 1.
Moreover, the diameter of Rk is less than δ. Consider an assignment y : T×Ω → B+

defined by

y(t, ω) =

{
yij(t, ω), if (t, ω) ∈ Rij

k0
× Ω;

g(t, ω), otherwise.

It can be simply checked that
∫

R

(y − a)dµ = (1− λ)

∫

S

(g − a)dµ = 0.

Since y(t, ·) ∈ Pf (t) and y is Υ(Rk)-assignment for all k ≥ 1, the proof is completed.
�
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We now intend to prove an extension of Vind’s theorem under information shar-
ing rule and exact feasibility settings. Such a result is not necessarily true without
some additional assumptions as the following example shows.

Example 4.4. Consider an economy with Ω = {ω1, ω2, ω3}; one commodity in each
state; and the space of agents is [0, 3] with the Borel σ-algebra and the Lebesgue
measure. Assume that

Pt =





{{ω1, ω2}, {ω3}}, if t ∈ [0, 1);

{{ω1, ω3}, {ω2}}, if t ∈ [1, 2);

{ω1, ω2, ω3}, if t ∈ [2, 3].

and the preference of each agent t is represented by a utility function Ut, where

Ut(x, y, z) =





x+ y + z, if t ∈ [0, 1);

x+ z, if t ∈ [1, 2);

z, if t ∈ [2, 3].

Let Ft =
∨
{Pt : t ∈ [0, 3]} = {{ω1}, {ω2}, {ω3}} and a(t, ωi) = 4 for all t ∈ T and

i = 1, 2, 3. Suppose that Υ is the private information sharing rule. Consider an
allocation f defined by

f(t) =





(11, 0, 0), if t ∈ [0, 1);

(1, 12, 0), if t ∈ [1, 2);

(0, 0, 12), if t ∈ [2, 3].

Note that f is Υ-blocked by all non-null coalitions contained in [0, 1), but it cannot
be Υ-blocked by any coalition whose measure is sufficiently close to 3.

Thus, to exploit the veto power of large coalitions, we now give an assumption
on the informational structure F .

(P5) For all t ∈ T , Υt(T ) � Ft.

It is worthwhile to point out that the assumption (P5) is standard under the fine
or private information sharing rule whenever Ft = Pt for all t ∈ T . It is also true
in the case when Υt(T ) = Ft for all t ∈ T . As a particular case, it is true when
Υt(T ) and Ft are both pooled information for all t ∈ T . However, it does not hold
if Ft = Pt and Υt(T ) is the coarse information sharing rule.

Theorem 4.5. Suppose that the assumptions (P1)-(P5) are satisfied for an infor-

mation sharing rule Υ and that T = T0. If an allocation f /∈ CΥ(E ), then f is

Υ-blocked by a coalition Sε with µ(Sε) = ε for any ε ∈ (0, µ(T )).

Proof. Suppose that f is Υ-blocked by a coalition S via g. By Theorem 4.1, for
any ε ∈ (0, µ(S)), there is a coalition Sε such that µ(Sε) = ε and f is Υ-blocked by
Sε. If µ(S) = µ(T ), the proof has been completed. So, assume that µ(S) < µ(T )
and choose an ε ∈ (µ(S), µ(T )). Define

α = 1−
ε− µ(S)

µ(T \ S)
.
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By Corollary 3.2, there are a λ ∈ (0, 1), z ∈ B++ and an Υ(S)-assignment h such
that h(t) ∈ Pf (t) µ-a.e. on S and

∫

S

(h− a)dµ+
2

α
z1Ω = (1− λ)

∫

S

(g − a)dµ = 0.

It follows from Corollary 3.5 that there is an assignment hε such that hε(t, ·) ∈ Pf (t)
and hε(t, ·) is Υt(T )-measurable µ-a.e. on S, and

∫

S

(hε − a)dµ = α

∫

S

(h− a)dµ+ (1− α)

∫

S

(f − a)dµ+ z1Ω.

By Corollary 3.8, there are a sub-coalition R of T \ S and an assignment f̂ such

that µ(R) = (1 − α)µ(T \ S) and P(R) = P(T \ S); f̂(t, ·) ∈ Pf (t) and f̂(t, ·) is
Υt(T )-measurable µ-a.e. on R; and

∫

R

(f̂ − a)dµ = (1− α)

∫

T\S

(f − a)dµ+ z1Ω.

Let D = S ∪ R then P(D) = P(T ). Consider an assignment y : T × Ω → B+

defined by

y(t, ω) =





hε(t, ω), if (t, ω) ∈ S × Ω;

f̂(t, ω), if (t, ω) ∈ R× Ω;

g(t, ω), otherwise.

It can be easily verified that f is Υ(D)-blocked by the coalition D via y. �

Corollary 4.6. Suppose that CΥ
ε (E ) denotes the set of allocations which are not

Υ-blocked by any coalition whose measure ε. Thus, it follows from Theorem 4.5

that CΥ(E ) = CΥ
ε (E ) for all ε ∈ (0, µ(T )).

Remark 4.7. We stress that the argument in the proof of Theorem 4.5 is very
different than those in [18] even in the case of finitely many commodities. In
particular, Lemma 3.1 plays a vital role whose proof is not straightforward. If
the commodity space is an infinite dimensional space then Lyapunov’s convexity
theorem does not hold. Hence, in addition to Lemma 3.1, we need other results in
the previous section to prove Theorem 4.5.

4.2. Information sharing rule for a given measure. In this subsection, we
define an information sharing rule, introduced by Hervés-Beloso et al. [18], that
depend on the measure of a coalition. As a consequence, we provide a sharper
characterization of core solutions.

An in [18], suppose that {Ak : k ∈ K} is a partition of the interval [0, µ(T )].
It can be taken as a family of thresholds in the sense that for each coalition S
there is exactly one Ak such that µ(S) ∈ Ak. Further, each Ak is associated with
an information sharing rule Υk. If an agent t takes part in a coalition S then
she has only access to the specific information prescribed by the sharing rule Υk0

if µ(S) ∈ Ak0 . We assume that there is an k0 ∈ K such that Υk0 � Υk for all
k ∈ K, Ak0 6= {µ(T )} and the assumptions (P1)-(P5) are satisfied for Υk0 . We

now define the information mechanism Υ̃, where information that an agent t can

dispose of when she becomes a member of coalition S is defined as Υ̃t(S) = Υk
t (S)

if µ(S) ∈ Ak. The next theorem can be seen as an extension of Theorem 5.1 in [18]
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to an economy with an ordered Banach space whose positive cone has an interior
point as the commodity space and the exact feasibility condition.

Theorem 4.8. Assume T = T0. Then C Υ̃(E ) = CΥk0
(E ).

Proof. Since CΥk0
(E ) ⊆ C Υ̃(E ), it only requires to show that C Υ̃(E ) ⊆ CΥk0

(E ).

Let f ∈ C Υ̃(E ) and assume that f /∈ CΥk0
(E ). Hence, there are a coalition S and

an Υk0(S)-assignment g such that g(t, ·) ∈ Pf (t) µ-a.e. on S and
∫

S

g(·, ω)dµ =

∫

S

a(·, ω)dµ

for all ω ∈ Ω. Pick k ∈ K satisfying µ(S) ∈ Ak. If k = k0, we arrived at a
contradiction. Assume now that k 6= k0. By Theorem 4.5, there must exist some

coalition S̃ such that µ(S̃) ∈ Ak0
and f is Υk0 -blocked by S̃. Thus, f /∈ C Υ̃(E ),

and this again yields a contradiction. �

Remark 4.9. Theorem 4.8 says that the core of E under the information sharing

rule Υ̃ depends on the finest information sharing rule associated with some thresh-
old. It is also important to note that the theorem depends neither on the number
of thresholds nor no the precise thresholds.

5. Coalitional Fairness

In this section, we present an extension of Theorem 2 in [21] to an asymmetric
information economy whose commodity space is an ordered Banach space contain-
ing an interior point in its positive cone. The information that each agent can have
when she becomes a member of a coalition is susceptible of being altered. It can be
noted that the proof of Theorem 2 in [21] or Theorem 3.8 in [19] contains two parts,
but a similar technique is enough to prove both parts. In contrast with them, the
proofs of two parts of our result are different. Thus, we plan to decompose the result
into two theorems. Since we are dealing with an asymmetric information economy
with the exact feasibility condition and an infinitely dimensional commodity space,
the techniques of our results are different than those in [19] and [21].

Definition 5.1. An allocation f is called CΥ
(T1,T0)

-fair if there do not exist two

disjoint coalitions S1 ∈ T1, S2 ∈ T0 and an Υ(S1)-assignment g such that g(t, ·) ∈
Pt(f(t, ·)) µ-a.e. on S1 and

∫

S1

(g(·, ω)− a(·, ω))dµ =

∫

S2

(f(·, ω)− a(·, ω))dµ

for each ω ∈ Ω.

Theorem 5.2. Suppose that the assumptions (P1)-(P5) are satisfied for an infor-

mation sharing rule Υ and that f ∈ CΥ(E ). Then f is CΥ
(T1,T0)

-fair.

Proof. On the contrary, suppose that f is not CΥ
(T1,T0)

-fair. Thus, there must exist

two disjoint coalitions S1 ∈ T1 and S2 ∈ T0, and an Υ(S1)-assignment g such that
g(t, ·) ∈ Pt(f(t, ·)) µ-a.e. on S1 and

∫

S1

(g − a)dµ =

∫

S2

(f − a)dµ.
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Since f ∈ CΥ(E ), one obtains µ(S2) > 0. Now, Corollary 3.2 yields a λ ∈ (0, 1), a
z ∈ B++ and an Υ(S1)-assignment h such that h(t, ·) ∈ Pt(f(t, ·)) µ-a.e. on S1 and

∫

S1

(h− a)dµ+ 7z1Ω = (1− λ)

∫

S1

(g − a)dµ = (1− λ)

∫

S2

(f − a)dµ.

By Corollary 3.8, one obtains a sub-coalition R2 of S2 with P(R2) = P(S2) and an
assignment h2 such that h2(t, ·) ∈ Pf (t) and h2(t, ·) is Υt(T )-measurable µ-a.e. on
R2, and ∫

R2

(h2 − a)dµ = λ

∫

S2

(f − a)dµ+ z1Ω.

As a result, one has
∫

S1

(h− a)dµ+

∫

R2

(h2 − a)dµ+

∫

T\S2

(f − a)dµ+ 6z1Ω = 0.

Applying Corollary 3.5, one has an assignment x1 such that x1(t, ·) ∈ Pf (t) and
x1(t, ·) is Υt(T )-measurable µ-a.e. on R1 and

∫

R1

(x1 − a)dµ =
1

2

∫

R1

(h1 − a)dµ+
1

2

∫

R1

(f − a)dµ+ z1Ω.

By Corollary 3.8, one obtains a sub-coalition R3 of R2 with P(R3) = P(R2) and
an assignment h3 such that h3(t, ·) ∈ Pf (t) and h3(t, ·) is Υt(T )-measurable µ-a.e.
on R3 and ∫

R3

(h3 − a)dµ =
1

2

∫

R2

(h2 − a)dµ+ z1Ω.

The rest of the proof is decomposed into two cases.

Case 1. µ(T \ (S1 ∪ S2)) = 0. In this case, define the blocking coalition R4 =
S1 ∪ R3. So, P(R4) = P(T ) and f is Υ-blocked by the coalition R4 via the
assignment h4, defined by

h4(t, ω) =

{
x1(t, ω), if (t, ω) ∈ S1 × Ω;

h3(t, ω) +
z

µ(R3)
, otherwise.

This is a contradiction.

Case 2. µ(T \ (S1 ∪ S2)) 6= 0. Since T \ (S1 ∪ S2) is atomless, by Corollary 3.8,
there exist a sub-coalition R5 of T \ (S1 ∪ S2) with P(R5) = P(T \ (S1 ∪ S2)) and
an assignment h5 such that h5(t, ·) is Υt(T )-measurable and h5(t, ·) ∈ Pf (t) µ-a.e.
on R5, and ∫

R5

(h5 − a)dµ =
1

2

∫

T\(S1∪S2)

(f − a)dµ+ z1Ω.

Define R6 = S1 ∪R3 ∪R5 then P(R6) = P(T ). Define an assignment h6 : T ×Ω →
B+ by

h6(t, ω) =





x1(t, ω), if (t, ω) ∈ S1 × Ω;

h3(t, ω), if (t, ω) ∈ R3 × Ω;

h5(t, ω), otherwise.

Note that f is Υ-blocked by the coalition R6 via the allocation h6, which is again
a contradiction. �
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Definition 5.3. An allocation f is called CΥ
(T0,T1)

-fair if there do not exist two

disjoint non-null coalitions S1 ∈ T0, S2 ∈ T1 and an Υ(S1)-assignment g such that
g(t, ·) ∈ Pt(f(t, ·)) µ-a.e. on S1 and

∫

S1

(g(·, ω)− a(·, ω))dµ =

∫

S2

(f(·, ω)− a(·, ω))dµ

for each ω ∈ Ω.

The following assumption is stronger than the assumption (P5) and it has a key
role in the proof of the next theorem. It holds under the fine or private information
sharing rule whenever Ft = Pt for all t ∈ T . However, it does not hold when
Υt(S) is the private information for any agent t in some non-null coalition S ⊆ T0,
and ΥT (T ) and Ft are both pooled information for all t ∈ T . Note that in the last
case, (P5) is satisfied.

(P6) For all non-null coalition S ∈ T0 and t ∈ S, Υt(S) � Ft.

Theorem 5.4. Suppose that (P1)-(P4) and (P6) are satisfied for an information

sharing rule Υ and that f ∈ CΥ(E ). Then f is CΥ
(T0,T1)

-fair.

Proof. On the contrary, suppose that f is not CΥ
(T0,T1)

-fair. Then there exist two

disjoint non-null coalitions S1 ∈ T0 and S2 ∈ T1, and an Υ(S1)-assignment g such
that g(t, ·) ∈ Pt(f(t, ·)) µ-a.e. on S1 and

∫

S1

(g − a)dµ =

∫

S2

(f − a)dµ.

By Corollary 3.2, one has a λ ∈ (0, 1), a z ∈ B++ and an Υ(S1)-assignment h such
that h(t, ·) ∈ Pt(f(t, ·)) µ-a.e. on S1, and

∫

S1

(h− a)dµ+ 19z1Ω = (1− λ)

∫

S1

(g − a)dµ.

Applying Corollary 3.7, one can find a sub-coalition R1 of S1 and an Υ(R1)-
assignment g1 such that P(R1) = P(S1), g1(t, ·) ∈ Pf (t) µ-a.e. on R1, and

∫

R1

(g1 − a)dµ = λ

∫

S1

(g − a)dµ+ z1Ω.

Combining above two equations, one has
∫

S1

(h− a)dµ+

∫

R1

(g1 − a)dµ+ 18z1Ω =

∫

S1

(g − a)dµ.

Since P(R1) = P(S1), h is an Υ(R1)-assignment. Thus, Corollary 3.4 implies that
there must exist an Υ(R1)-assignment h1 such that h1(t, ·) ∈ Pf (t) µ-a.e. on R1

and ∫

R1

(h1 − a)dµ =
1

2

∫

R1

(h− a)dµ+
1

2

∫

R1

(g1 − a)dµ+ z1Ω.

By Corollary 3.7, one has a sub-coalition R2 of S1 \ R1 and an Υ(R2)-assignment
h2 such that h2(t, ·) ∈ Pf (t) µ-a.e. on R2 and

∫

R2

(h2 − a)dµ =
1

2

∫

S1\R1

(h− a)dµ+ z1Ω.
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Thus, one concludes that
∫

R1

(h1 − a)dµ+

∫

R2

(h2 − a)dµ+ 7z1Ω =
1

2

∫

S2

(f − a)dµ.

Let R3 = R1 ∪R2 and define an assignment h3 : T × Ω → B+ such that

h3(t, ω) =





h1(t, ω), if (t, ω) ∈ R1 × Ω;

h2(t, ω), if (t, ω) ∈ R2 × Ω;

g(t, ω), otherwise,

Note that P(R3) = P(S1) and h3 is an Υ(R3)-assignment satisfying h3(t, ·) ∈ Pf (t)
µ-a.e. on R3. Moreover,

∫

R3

(h3 − a)dµ+ 7z1Ω =
1

2

∫

S2

(f − a)dµ.

If
∫
S2
(f − a)dµ = 0 then f is Υ-blocked by the coalition R3 via the assignment

y : T × Ω → B+, defined by

y(t, ω) =

{
h3(t, ω) +

7z
µ(R3)

, if (t, ω) ∈ R3 × Ω;

g(t, ω), otherwise,

which is a contraction with the fact that f ∈ CΥ(E ). So,
∫
S2
(f − a)dµ 6= 0 which

means µ(T \ S2) > 0. In this case,
∫

R3

(h3 − a)dµ+
1

2

∫

T\S2

(f − a)dµ+ 7z1Ω = 0.

Note that f(t, ·) is Υt(T \S2)-measurable µ-a.e. on T \S2. Applying Corollary 3.7,
the above equality can be expressed as

∫

R3

(h3 − a)dµ+

∫

R4

(h4 − a)dµ+ 6z1Ω = 0

for some sub-coalition R4 of T \ S2 with P(R4) = P(T \ S2) and an Υ(R4)-
assignment h4 satisfying h4(t, ·) ∈ Pf (t) µ-a.e. on R4, and

∫

R4

(h4 − a)dµ =
1

2

∫

T\S2

(f − a)dµ+ z1Ω.

Note that P(R3) ⊆ P(T \ S2). So, h3(t, ·) is Υt(T \ S2)-measurable µ-a.e. on R3.
Again, applying Lemma 3.3 for the coalition R3 ∩ R4, Lemma 3.6 for coalitions
R3 \R4 and R4 \R3 as above, one can find three sub-coalitions

R5 = R3 ∩R4, R6 ⊆ R3 \R4, R7 ⊆ R4 \R3

with

P(R6) = P(R3 \R4) and P(R7) = P(R4 \R3)

and three assignments hi for i = 5, 6, 7 such that hi(t, ·) is Υt(T \ S2)-measurable
and hi(t, ·) ∈ Pf (t) µ-a.e. on Ri for i = 5, 6, 7 and

7∑

i=5

∫

Ri

(hi − a)dµ = 0.
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Put, R = R5 ∪R6 ∪R7 and note that P(R) = P(T \ S2). Thus, f is Υ-blocked by
R via the assignment y : T × Ω → B+, defined by

y(t, ω) =

{
hi(t, ω), if (t, ω) ∈ Ri × Ω, i = 5, 6, 7;

g(t, ω), otherwise,

which is again a contradiction. �

The following definition and theorem are extensions of those in [21] to an asym-
metric information economy.

Definition 5.5. An allocation f is said to be CΥ-fair relative to T0 and T1

if it is CΥ
(T0,T1)

-fair and CΥ
(T1,T0)

-fair. The set of such allocations is denoted by

CΥ
{T0,T1}

(E ).

Theorem 5.6. Assume the assumptions (P1)-(P4) and (P6) are satisfied for an

information sharing rule Υ. Then CΥ(E ) ⊆ CΥ
{T0,T1}

(E ).

Proof. Let f ∈ CΥ(E ). Applying Theorem 5.2 and Theorem 5.4, one has f is
both CΥ

(T1,T0)
-fair and CΥ

(T0,T1)
-fair. So, f ∈ CΥ

{T0,T1}
(E ), and this completes the

proof. �

6. Conclusion

In this section, we compare our results with those in others and provide some
open questions.

Remark 6.1. In an asymmetric information economy with a continuum of non-
atomic agents [0, 1], consider the following information sharing rules.

Υ̃1
t (S) =

{
Pt, if µ(S) < ε;
∧
{Pt : t ∈ S}, if µ(S) ≥ ε,

Υ̂1
t (S) =

{ ∧
{Pt : t ∈ S}, if µ(S) < ε;

Pt, µ(S) ≥ ε,

Υ̃2
t (S) =





∨
{Pt : t ∈ S}, if µ(S) < ε;

Pt, if ε ≤ µ(S) ≤ δ;
∧
{Pt : t ∈ S}, if µ(S) > δ,

Υ̂2
t (S) =





∧
{Pt : t ∈ S}, if µ(S) < ε;

Pt, if ε ≤ µ(S) ≤ δ;
∨
{Pt : t ∈ S}, if µ(S) > δ,

where 0 < ε, δ < 1. Note that if Ft = Pt for all t ∈ T then the private information

sharing rule satisfies (P1)-(P5). Thus, it follows from Theorem 4.8 that C Υ̃1

(E ) =

C Υ̂1

(E ) is the private core of E . On the other hand, if Ft = Pt or
∨
{Pt : t ∈

T} then the fine information sharing rule satisfies (P1)-(P5). As a consequence,

Theorem 4.8 claims that C Υ̃(E ) = C Υ̂(E ) is the fine (resp. weak fine) core of E if
Ft = Pt (resp.

∨
{Pt : t ∈ T}) for all t ∈ T .
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Remark 6.2. Since the assumptions (P1)-(P5) are satisfied trivially under the fine
and private information sharing rules if Ft = Pt for all t ∈ T , Vind’s theorem in the
case of the fine core and the private core in [5] are particular cases of Theorem 4.5
in our paper. Note that Vind-type theorem for the weak fine core is also obtained
as a corollary of Theorem 4.5 in our paper. In addition, Grodal’s theorem in [5] is
obtained as a special case of our Theorem 4.3. However, it is unclear to the author
that whether a similar result is true in an asymmetric information economy with a
Banach lattice as the commodity space and the feasibility is defined as exact.

Remark 6.3. It is known that Vind’s theorem or its extensions in general equi-
librium theory have been employed to establish some characterization theorems of
Walrasian equilibria and relations among several cores, refer to [6, 7, 11, 12, 16, 17].
It would be interesting to know whether those results can be obtained using Theo-
rem 4.5 under the framework of information sharing rule.

Remark 6.4. Comparing with Hervés-Beloso et al. [18], we additionally use as-
sumptions (P3) and (P4) to obtain the main results in Section 4. Thus, any infor-
mation sharing rule in our results in Subsection 4.1 does not take into account the
common information of any coalition, which was not the case in [18]. These assump-
tions are played vital roles in the proofs of our results in Section 4. All these results
are technically different from those in [18]. In addition, we extend Grodal’s theorem
in [20] to an asymmetric information economy where each agent’s information is
given by information sharing rules, which was not established in [18].

Remark 6.5. We now compare our assumptions with those in [19]. Note that
assumptions for initial endowments and utility functions in [19] and our paper are
similar. Moreover, the set of allocations of Theorem 3.8 in [19] was required to
satisfy a certain property. More precisely, for every allocation f : T × Ω → Rℓ

+ in

Theorem 3.8 in their paper there is some 1 ≤ j ≤ ℓ such that the jth-coordinate
f j(t, ω) > 0 µ-a.e. and all ω ∈ Ω. This restriction is not employed in our results.
Further, the main result in Section 5 is technically different from that in [19] and is
valid in an asymmetric information economy whose commodity space is either the
finite dimensional space or an infinite dimensional space having an interior point
in its positive cone. It is also valuable to mention that an extension of Theorem 2
in [21] to an asymmetric information economy with the exact feasibility condition
is first appeared in our paper. Note also that Theorem 5.6 in this paper is the first
extension of Theorem 2 in [21] to the infinite dimensional framework.

Remark 6.6. Our fairness concept deals with the net trade allocation. However,
some other concepts of fairness have been introduced without the notion of net
trade. Firstly, Foley [14] proposed a concept of fair allocation which is efficient and
satisfies the condition that each agent prefers to keep her own bundle rather than
to receive bundles of other agents. In an exchange economy, such an allocation
exists as shown by Varian in [30]. Differently from Jaskold-Gabszewicz [21], Varian
[30] also introduced the notion of a coalitionally fair allocation. According to the
definition in [30], an allocation is coalitionally fair if no coalition envies the aggregate
bundle of other coalition of the same size or smaller. Besides, Zhou [34] proposed
the concept of a strictly fair allocation. In this paper, we study the notion of a
coalitionally fair allocation given in [21]. It would be interesting to work on other
fairness notions in an asymmetric information economy under information sharing
rules.
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