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1 Introduction

Sample selection is a common problem in empirical work. Unobserved heterogeneity among units
in the data poses a further challenge for practitioners. However, the increased availability of panel
data and some recent developments in the literature have alleviated these challenges. In the case
of strictly exogenous covariates, Wooldridge (1995), Kyriazidou (1997) and Rochina-Barrachina
(1999) offer several ways to tackle both the selectivity and unobserved effects that are allowed to
be correlated with covariates in the model. For a comparison of these methods, see Dustmann and
Rochina-Barrachina (2007).

The above panel data models, as well as their generalizations that followed later [see Semykina
and Wooldridge (2010) and the references therein], largely focus on binary sample selection. How-
ever, in many instances researchers face selection (or regime switching) of polychotomous and/or
sequential nature. Examples include production technology studies of the industries which contain
fully specialized, partly specialized and integrated firms, studies of higher education decisions and
many others.

To fill this void, we contribute to the literature by considering a generalized panel data model
of polychotomous switching which also allows for the dependence between unobserved effects and
covariates in the model. The model we consider can be thought of as a generalization of a standard
switching regression model. We show that Wooldridge’s (1995) estimator can be readily extended
to the case of polychotomous and/or sequential selection. For consistency, our method requires
strict exogeneity of covariates conditional on unobserved effects. We showcase our model using an
empirical illustration in which we estimate scope economies for the publicly owned electric utilities
in the U.S. during the period from 2001 to 2003.

2 Model

Consider a generalized panel data switching regression model with correlated unobserved effects:

yrit =

{
xr
itβ

r + αr
i + urit if Dit = r

− otherwise
(2.1a)

Dr∗
it = wr

itγ
r
t + ξri + vrit , i = 1, . . . , N ; t = 1, . . . , T ; r = 1, . . . , R (2.1b)

where xr
it and wr

it are 1×Kr and 1×Lr vectors of exogenous covariates (which may overlap)1 with
corresponding conformable parameter vectors βr and γr

t . (α
r
i , ξ

r
i ) are individual-specific unobserved

effects that are allowed to be correlated with right-hand-side covariates. The outcome variable yrit is
observed only if the rth regime is selected. The regime selection (switching) is governed by a latent
variable Dr∗

it with observable categorical realizations: Dit = r if the rth regime is selected. While
the disturbances urit and v

r
it are orthogonal to (xr

it,w
r
it), their distributions are however allowed to

be correlated, namely E[uritv
r
it|x

r
it,w

r
it] 6= 0.

We first formalize the regime switching equation (2.1b). For convenience, define xr
i ≡ (xr

i1, . . . ,x
r
iT )

and wr
i ≡ (wr

i1, . . . ,w
r
iT ).

Assumption 1. For i = 1, . . . , N , t = 1, . . . , T and r = 1, . . . , R, the conditional mean of unob-
served effects ξri in a regime switching equation r is a linear projection onwr

i , i.e., ξ
r
i = L [ξri |w

r
i ]+a

s
i ,

1While our model does not require exclusion restrictions and can accommodate the case of xr
it = w

r
it, in practice it is

helpful to have some elements of wr
it excluded from x

r
it.
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where E [asi |x
r
i ,w

r
i ] = 0. The composite error erit ≡ vrit + asi is identically and independently dis-

tributed, conditional on (xr
i ,w

r
i ), with the type I extreme value distribution over i.

Specifically, we let the linear projection L [ξri |w
r
i ] take Chamberlain’s (1980) form, i.e.,2

L [ξri |w
r
i ] = wr

i1δ
r
t1 + · · ·+wr

iTδ
r
tT ≡ wr

i δ
r
t . (2.2)

Thus, our model allows for dependence between unobserved effects ξri and right-hand-side covariates
wr

it. This formulation of correlated effects is essentially the one used in (Wooldridge, 1995, p.124).3

One may alternatively permit L [ξri |w
r
i ] to take a more restrictive, but parsimonious, specification

à la Mundlak (1978) which restricts δrt1 = · · · = δrtT (e.g., Semykina and Wooldridge, 2010).4 We
also note that, unlike Wooldridge (1995) who assumes a normally distributed error in the selection
equation, we assume the extreme value distribution, which is dictated by a polychotomous nature
of the choice set.

The latent variable Dr∗
it in (2.1b) can naturally be thought of as measuring an individual’s

propensity to select the regime r. Hence, the rth regime is said to be selected if and only if

Dit = r ⇔ Dr∗
it > Dj∗

it ∀ j = 1, . . . , R (j 6= r) . (2.3)

While one can treat the regime switching as a system of (R − 1) dichotomous decision rules, we
follow an alternative approach by considering the former in the random utility framework. That is,

Dit = r ⇔ Dr∗
it > max

j=1,...,R (j 6=r)

{
Dj∗

it

}
. (2.4)

After substituting for Dr∗
it in (2.4) from (2.1b) and making use of Assumption 1, we let

ǫrit ≡ max
j=1,...,R (j 6=r)

{
w

j
itγ

j
t +w

j
iδ

j
t + ejit

}
− erit . (2.5)

From (2.5) it then follows that

Dit = r ⇔ ǫrit < wr
itγ

r
t +wr

i δ
r
t . (2.6)

Given that erit is extreme value distributed, it follows that ǫrit is multinomial logistically distributed
over i with the corresponding marginal distribution Λr (·):

Pr [Dit = r |xr
i ,w

r
i ] = Λr (w

r
itγ

r
t +wr

i δ
r
t ) =

exp (wr
itγ

r
t +wr

i δ
r
t )∑

j exp
(
w

j
itγ

j
t +w

j
iδ

j
t

) . (2.7)

For some strictly positive monotonic transformation Jr(·), condition (2.6) is equivalent to

Dit = r ⇔ Jr(ǫ
r
it) < Jr (w

r
itγ

r
t +wr

i δ
r
t ) . (2.8)

We can now look at model (2.1) as a binary selection model, for each given regime r. That is, we
can essentially replace the regime switching equation (2.1b) for each r = 1, . . . , R with its equivalent
under Assumption 1:

D̃r∗
it = Jr(w

r
itγ

r
t +wr

i δ
r
t )− Jr(ǫ

r
it) , (2.9)

2Clearly, δr
tt is not identified here.

3The formulation of equation (2.1b) under Chamberlain’s (1980) specification (2.2) is also equivalent to a reduced
form of the following dynamic regime switching equation: Dr∗

it = ρrDr∗
it−1 +w

r
itγ

r + vrit.
4In this case, the linear projection in (2.2) is assumed to be a single index of the time averages of wr

it.
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where D̃r∗
it is a transformed latent variable such that Dit = r if and only if D̃r∗

it > 0, i.e., condition
(2.8) is satisfied. We follow Lee (1982, 1983) and consider Jr(·) ≡ Φ−1[Λr(·)], where Φ(·) is the
standard normal cdf. The advantage of such a transformation is that the random error Jr(ǫ

r
it) in

(2.9) is standard normal by construction, which would later enable us to make use of the truncated
moments of the standard normal. Incidentally, the use of Lee’s (1982, 1983) transformation as
means of relaxing the normality in the selection equation has also been pointed out but not further
developed in the panel data setting by Rochina-Barrachina (1999).

We next formalize the treatment of unobserved effects in the outcome equations of interest as
well as the dependence between the two disturbances in (2.1a) and (2.9), where the latter enables
us to correct for selectivity bias in the outcome equations.5 For convenience, we define ǫ̃ r

it ≡ Jr(ǫ
r
it).

Assumption 2. For i = 1, . . . , N , t = 1, . . . , T and r = 1, . . . , R:

(i) E [urit |x
r
i ,w

r
i , ǫ̃

r
it ] = E [urit |ǫ̃

r
it ] = L [urit |ǫ̃

r
it ]

(ii) E [αr
i |x

r
i ,w

r
i , ǫ̃

r
it ] = L [αr

i |x
r
i ,w

r
i , ǫ̃

r
it ] .

Assumption 2 states that the disturbance urit is mean independent of (xr
i ,w

r
i ) conditional on ǫ̃ r

it .
The latter holds if urit and ǫ̃ r

it are orthogonal to (xr
i ,w

r
i ), a standard assumption made in the

sample selection models in the presence of strictly exogenous covariates. Unlike Wooldridge (1995),
we also condition the expectation of urit on wr

i , which is necessary because outcome and selection
equations are permitted to have different covariates and non-zero cross-equation correlation between
unobserved effects. Further, Assumption 2 does not impose any restrictions on temporal dependence
of urit or in the relationship between urit and ǫ̃

r
it .

We specify the linear projection of urit on ǫ̃
r
it as

L [urit |ǫ̃
r
it ] = πrt ǫ̃

r
it , (2.10)

where πrt is time-varying to allow for temporal dynamics in the relationship between the two dis-
turbances. A common alternative to (2.10) is the assumption of bivariate normality of the two
errors which also implies linearity of the conditional mean of urit (e.g., Lee, 1983). Our assumption
is however less restrictive.

In order to account for correlated effects in outcome equations, Assumption 2 (ii) specifies the
structure of unobserved heterogeneity. We follow Wooldridge (1995) and consider the following
Chamberlain-type specification

L [αr
i |x

r
i ,w

r
i , ǫ̃

r
it ] = xr

i1ϕ
r
1 + · · ·+ xr

iTϕ
r
T +wr

i1ω
r
1 + · · ·+wr

iTω
r
T + ψr

t ǫ̃
r
it

≡ xr
iϕ

r +wr
iω

r + ψr
t ǫ̃

r
it . (2.11)

We now derive the selection bias corrected outcome equations. Taking the conditional mean of yrit
from (2.1a) for each regime r, we obtain

E [yrit |x
r
i ,w

r
i , Dit = r ] = xr

itβ
r + xr

iϕ
r +wr

iω
r + (ψr

t + πrt )E [ǫ̃ r
it |x

r
i ,w

r
i , Dit = r ]

= xr
itβ

r + xr
iϕ

r +wr
iω

r + ρrtE [ǫ̃ r
it |ǫ̃

r
it < Jr(w

r
itγ

r
t +wr

i δ
r
t ) ] , (2.12)

where we have used (2.10) and (2.11) in the first equality, and (2.8) and strict exogeneity of (xr
i ,w

r
i )

in the last equality. ρrt ≡ (ψr
t +π

r
t ). Given that ǫ̃ r

it is standard normal by construction, the expected
value term in (2.12) equals the negative of the inverse Mills ratio, i.e.,

E [ǫ̃ r
it |ǫ̃

r
it < Jr(·) ] = −

φ [Jr(·)]

Φ [Jr(·)]
= −

φ [Jr(·)]

Λr(·)
, (2.13)

5For a counterpart in Wooldridge (1995), see his Assumption 3′ on p.126.
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where φ(·) is the standard normal pdf.

The model can be consistently estimated in two stages. In the first stage, we estimate γr
t

(and δrt ) via maximum likelihood as specified in (2.7) performed for each time period t separately.
The obtained estimates γ̂r

t are then used to compute the selection bias correction term. In the
second stage, we consistently estimate the main parameters of interest βr via pooled least squares
performed on (2.12) that includes predicted inverse Mills ratios (for each regime r, separately).

Remark 1. One needs to account for the use of the predicted regressors in the second stage when
computing standard errors for βr. Also, it may be of particular interest to conduct inference across
equations for different regimes. We suggest following Newey (1984) and casting the model in a
multiple-equation system GMM framework which permits the derivation of an asymptotic variance-
covariance matrix for our two-stage estimator. Alternatively, paired (nonparametric) bootstrap can
be employed.

Remark 2. For expository purposes, the covariates wr
it and parameters γr

t in the regime switch-
ing equation (2.1b) are both assumed to be regime-varying. In practice, one needs to impose an
identifying restriction on parameters to be regime-invariant for regime-varying covariates unless the
latter vary with individuals only. That is, depending on the empirical application, the first stage is
to be estimated via conditional, multinomial or mixed logit.

Remark 3. An obvious drawback of the regime switching formulation in (2.1b) is the independence
of irrelevant alternatives (IIA) which may be hard to justify in a given application. The latter can be
easily relaxed by reformulating the regime switching as a nested (sequential) process. For instance,
consider a two-tier regime switching. Redefine equation (2.1b) as6

Djr∗
it = w

j
1,itγ

j
1,t +w

jr
2,itγ

jr
2,t + ξjri + vjrit , j = 1, . . . , J ; r = 1, . . . , Rj

where w
j
1,it and w

jr
2,it are partitioned sets of covariates: those varying across the first-tier limbs

indexed by j and those varying across the second-tier branches indexed by r, respectively.

Then, make a modified Assumption 1 where (an appropriately defined) vjrit can be assumed to

be identically and independently distributed, conditional on (xjr
i ,w

j
1,i,w

jr
2,i), with the generalized

extreme value distribution over i. It is easy to show that the “nested logit” counterpart of (2.7)
then takes the following form

Pr [Dit = rj] =
exp

(
w

j
1,itγ

j
1,t +w

j
1,iδ

j
1,t + ̺jIj

)

∑J
m=1 exp

(
wm

1,itγ
m
1,t +wm

1,iδ
m
1,t + ̺mIm

) ×
exp

((
w

jr
2,itγ

jr
2,t +w

jr
2,iδ

jr
2,t

)
/̺j

)

∑Rj

k=1 exp
((

w
jk
2,itγ

jk
2,t +w

jk
2,iδ

jk
2,t

)
/̺j

) ,

where Ij ≡ log
(∑Rj

k=1 exp
((

w
jk
2,itγ

jk
2,t +w

jk
2,iδ

jk
2,t

)
/̺j

))
is the so-called “inclusive value”, and ̺j

is the scale parameter which captures the dissimilarity between second-tier regimes and can be

shown to equal
(
1− Corr[vjrit , v

jk
it ]

)1/2
. For more on the estimation of nested logit models, see

Wooldridge (2010). The modified switching regression model can then be estimated under the
remaining assumptions in two stages as above.

6We assume that all covariates and parameters are varying with branches for expository purposes only. However,
when estimating the model in practice, appropriate identifying restrictions and normalizations are due.
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3 Empirical Illustration

To showcase our generalized model, we estimate scope economies for an unbalanced sample of 117
electric utilities owned by local governments in the U.S. in 2001–2003. The data include firms
of three types: (i) upstream – utilities that generate electricity, (ii) downstream – utilities that
distribute electricity, and (iii) integrated – utilities that both generate and distribute electricity. All
power generators use fossil fuel only.

In order to quantify scope economies, we first need to estimate production technologies for the
industry. We employ the dual approach and estimate the underlying production technology using
the cost function in which all covariates are exogenous as justified by economic theory. Given the
nature of product and the government regulation, it is widely accepted that electric utilities treat
output quantities, input (and output) prices as fixed.

We define the following two outputs: net electricity generated (y1) and peak demand (y2). The
inputs are physical capital (x1), fuel (x2) and others (x3) (including labor) with the corresponding
vector of prices (w1, w2, w3). Here we opt for a parsimonious specification to avoid multicollinearity
and to conserve degrees of freedom given a small sample size. The price of capital (w1) is the sum of
the interest rate on long-term liabilities and the depreciation rate. We compute the fuel price (w2)
by dividing the fuel expenses by the fuel consumption measured in British thermal units (BTU).
We follow Arocena et al. (2012) and proxy the price of other inputs (w3), which includes labor and
other operating expenses, by the state index of average wages for all employees from the U.S. Census
Bureau. Lastly, the cost (C) is defined as the sum of capital, fuel and operating expenses, where
the latter includes generation, distribution, administrative and general operation and management
expenses, customer accounts, customer service and sales expenses.

Given the three types of utilities, not all firms produce both outputs and make use of all three
inputs in their operations. The three technological processes can be summarized as follows.

upstream: T 1 : {(x1, x2, x3) → y1}

downstream: T 2 : {(x1, x3) → y2}

integrated: T 3 : {(x1, x2, x3) → (y1, y2)}

That is, there are many observations in the data in which upstream and downstream utilities
report zero values for some combination of x2, y1 and y2. The latter is a “zero-value observation”
problem common to studies of electric utilities that estimate a common technology (cost function)
for all types of utilities (e.g., Arocena et al., 2012).

However, the assumption of a common technology shared by utilities of all three types is quite
unrealistic and unlikely to hold in practice. We relax it by allowing technologies to be type-specific
and estimating the cost function for each of the three utility types separately: C1(w1, w2, w3, y1;β

1)
for upstream, C2(w1, w3, y2;β

2) for downstream and C3(w1, w2, w3, y1, y2;β
3) for integrated firms.

Note that our approach does not suffer from the problem of having to deal with zero-value variables
because they do not appear in the equations.

Lastly, we recognize that the utility type is likely to be a product of an endogenous choice made
by firms, which we model explicitly. We condition the choice of the utility type on (the log of)
regime-invariant total sales (S) and total revenues (R) to capture (exogenous to firms) demand.

We estimate the first stage via multinomial logit, where we restrict γ1
t = 0 (upstream type)

for the identification. We have explored relaxing the IIA assumption by formulating a (partly
degenerate) nested two-tier selection: (i) specialized (upstream/downstream) vs. (ii) integrated
utilities. We however have consistently failed to reject the null of multinomial logit, i.e., ̺i = ̺ii = 1.
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Figure 1: Kernel Densities of Scope Economies Estimates

In the second stage, we use the translog form for the dual cost function, onto which we impose
the symmetry and linear homogeneity (by dividing input prices by w3) restrictions. To conserve
degrees of freedom, we define correlated effects in both stages using Mundlak’s (1978) specification,
as discussed in Section 2.

We use the fitted generalized model to compute scope economies exhibited in the electric utility
industry. Unlike what is customarily done in the literature, we do not compute the statistic at some
arbitrarily chosen data point (such as mean or median) but rather compute scope economies using
actual data for integrated firms. The observation-specific scope economies are computed as

SE =
C1(w1, w2, w3, y1;β

1) + C2(w1, w3, y2;β
2)− C3(w1, w2, w3, y1, y2;β

3)

C1(w1, w2, w3, y1;β
1) + C2(w1, w3, y2;β

2)
. (3.1)

Figure 1 plots kernel densities of the scope economies estimates from our generalized model (solid)
as well as of the estimates obtained using two auxiliary (misspecified) models: (i) a model of
heterogeneous technologies which estimated separate cost functions but ignores endogenous selection
(dashed); and (ii) a model of common technology which fits one cost function for all types of utilities
with zero-value observations set equal to 0.0001, as widely practiced in the literature (dot-dashed).

The figure suggests that the models that fail to account for technological heterogeneity and en-
dogenous switching tend to underestimate scope economies: kernel densities based on both auxiliary
models are to the left from that based on our generalized model. We attribute this to selectivity
and misspecification biases present in the former models. We also formally test for the presence
of endogenous switching via a joint Wald test of H0 : ρr1 = · · · = ρrT = 0 for r = 1, 2, 3. The
test rejects the null for upstream and downstream utilities with p-values less than 0.02. The corre-
sponding median scope economies estimates from the three models (in the order used in the previous
paragraph) are 0.31, 0.17 and 0.05. In particular, our generalized model predicts that integration
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Table 1: Scope Economies Categories, %

(I) (II) (III)

Scope Diseconomies 0 1.4 4.3
Scope Invariance 50.2 60.1 84.0
Scope Economies 49.8 38.5 11.7

NOTE: Model (I) – generalized model of heterogeneous
technologies with endogenous selection; Model (II) – aux-
iliary model of heterogeneous technologies which ignores
selection; Model (III) – auxiliary model of common tech-
nology.

of a power generator and a power distributor reduces cost by a median of 31%. The distribution of
our estimates is consistent with findings reported in the literature (e.g., Kwoka, 2002).

However, kernel densities of the scope economies estimates in Figure 1 do not account for sam-
pling errors associated with the estimation of models. Table 1 reports the breakdown of integrated
electric utilities into three categories: Scope Diseconomies (SD), Scope Invariance (SI) and Scope
Economies (SE). We classify a utility as exhibiting SD/SI/SE if its scope economies point estimate
is statistically less/equal/greater than zero at the 95% significance level. Here we use a bootstrap
two-stage, multiple-equation variance-covariance matrix obtained using 9,999 replications.

Based on our preferred generalized model, we find that as many as 50% of integrated electric
utilities enjoy scope economies. The cost of the remaining half is invariant to the scope. The
two auxiliary models however document a far worse picture, according to which 61% to 88% of
integrated utilities exhibit scope invariance or, at worst, significant diseconomies of scope.

4 Conclusion

We consider a generalized panel data model of polychotomous switching which also allows for the
dependence between unobserved effects and covariates in the model. We contribute to the literature
by extending Wooldridge’s (1995) estimator to the case of polychotomous and/or sequential selec-
tion. The model is showcased using an empirical illustration in which we estimate scope economies
for the publicly owned electric utilities in the U.S. during the period from 2001 to 2003.
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