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Abstract

Theory suggests that commodity futures price levels and returns data may exhibit both

nonlinear and nonreversible features. This paper attempts to provide a thorough empiri-

cally investigation of these claims. The data set is composed of 25 individual continuous

contract commodity futures series which fall within a number of industry sectors including

softs, precious metals, energy, and livestock. Employing both time-domain and frequency-

domain tests examining the higher order cumulant properties of these series, it is shown

that they exhibit both nonlinearities and irreversibility differing across industry sector. Fur-

thermore, in modeling these series I estimate a number of parametric models able to capture

irreversibility such as the linear mixed causal/noncausal autoregressive model and various

purely causal nonlinear models, since there is a close connection between these two classes

of models. It is shown that the linear causal ARMA model is unable to adequately account

for the features of the data and while the mixed causal/noncausal model improves model fit

significantly by capturing latent irreversibility, the vast majority of the nonlinearity these

series exhibit is of the “nonlinear in variance” type. Finally, out of sample forecasts and an

evaluation of the estimated unconditional distribution of the mixed causal/noncausal mod-

els suggest that there may still exist model misspecification.

Keywords: mixed causal/noncausal autoregressions, nonlinear models, commodity futures,

speculative price bubbles.

JEL: C22, C50, C51, C52, C58

1 Introduction

Recent theoretical arguments suggest that both nonlinearities and time irreversibility may prove

important in describing the probabilistic nature of finance and macro time-series data. This

paper seeks to investigate these claims empirically by applying some of the more recent ap-

proaches designed to accommodate these features to a data set comprised of 25 commodity

∗I’d like to thank Christian Gourieroux for his helpful comments and suggestions.
†University of Toronto, Department of Economics, p.karapanagiotidis@utoronto.ca
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futures contract prices ranging across various industry sectors including softs, precious metals,

energy, and livestock. The main tool at my disposal is the model of a linear autoregressive

stochastic process composed of a mix of both causal and noncausal components. That is, rather

than assume that the process at any time period depends strictly on only the past shocks, the

model allows it to depend on both the past and future shocks – that is, the process can be causal,

noncausal, or both.

The paper is as follows. Section 2 will discuss some of the background literature related to

the study of commodity futures prices. This will include a discussion of both the theory and

empirical evidence, with an eye towards the concepts of nonlinear processes, time irreversibil-

ity, and speculative price “bubbles.” Section 3 will discuss the details of the futures contracts

including the underlying commodities, the markets they are traded in, and how the continuous

contracts are reconstituted from individual contracts of varying maturities. Section 4 will dis-

cuss features of the data series themselves including tests suggesting nonlinear features. Section

5 will show that the linear causal ARMA models with Gaussian innovations fail to adequately

capture the structure of the data. Section 6 will introduce the theory of mixed causal/noncausal

autoregressions. Section 7 will discuss estimation of the mixed AR(r, s) models and discuss

the empirical estimation results. Section 8 will also consider some purely causal models which

are both nonlinear in mean or variance. Finally, section 9 will consider the results of an out of

sample forecasting exercise amongst competing models.

2 Literature review

The study of commodity futures is not new. For example the seminal paper by Black (1976)

studied the nature of futures contracts on commodities, suggesting that the capital asset model

of Sharpe (1964) could be employed to study the expected price change of the futures contract.

More generally, existing research has examined the futures contract price dynamics as a

function of either the price of commodity storage or as reflection of an underlying risk pre-

mia paid to speculators for taking on risk. One earlier example of the latter approach can be

seen in the Keynesian notion of “backwardation”–that the expected future spot price should
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be higher than the current futures contract price–reflecting the idea that producers are on net

hedgers and that speculators, in order to take on the risk offered by producers, must be offered

a positive risk premium. In this way many studies have attempted to measure the risk premium

in futures contract returns, if it exists. For example, Dusak (1973) studied the behaviour of

futures prices within a model of capital market equilibrium and found no risk premium for U.S.

corn, soybeans, and wheat futures between 1952 and 1967. More recently, Fama and French

(1987) considered both the cost of storage model and the risk premium model in studying the

behaviour of futures prices for 21 commodities.

Other authors have focused exclusively on the cost of storage as an important contributor

to the dynamics of future contracts prices. For example, Working (1949) pioneered the study

of the cost of storage as an important component in the relationship between the current spot

price of a commodity and the corresponding futures contract price for future delivery. More

recently, in a series of papers throughout the 1990’s, Deaton and Laroque modeled the cost

of storage within a rational expectations framework. Perhaps the most interesting implication

of this modeling exercise was the fact that the price process under rational expectations and

storage tends to follow a piecewise linear stochastic process. That is, since storage cannot

be negative (i.e. we cannot borrow that which hasn’t yet been produced–and is not certain

to be produced at all) we are presented with a natural asymmetry between speculators and

hedgers (one that differs from the notion of backwardation proposed by Keynes); see Deaton

and Laroque (1996). From an intertemporal equilibrium perspective, when the price today is

high (relative to tomorrow) nothing will be stored so there will be little speculation; however,

when the price tomorrow is high (relative to today), speculation will take place and storage

will be positive. This notion of price process asymmetry is important in particular to this paper

since it provides a theoretical rationale for investigating the possibility that commodity price

processes may possess nonlinear or time irreversible properties.

Empirical evidence also suggests commodity price processes may be better modeled as non-

linear. For example, DeCoster, Labys, and Mitchell (1992) find strong evidence of nonlinear

features in four commodity futures returns: coffee, sugar, silver, and gold. Specifically, they

employ the correlation dimension technique originally developed by Grassberger and Procaccia
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(1983) to detect the presence of chaotic structure by embedding overlapping subsequences of

the data in m-space for various embedding dimensions, m. The results strongly suggest nonlin-

ear structure and, importantly, the inspection of ARCH filtered residuals suggest the structure

does not simply reflect heteroskedasticity. These results reinforce earlier work done by Blank

(1991) who found nonlinear dynamics in soybean futures prices and Frank and Stengos (1989)

who find similar results for gold and silver rates of return, again rejecting pure ARCH dy-

namics. Finally, Yang and Brorsen (1993) also find that GARCH(1,1) dynamics are not able

to provide a complete picture of the nonlinear structure in a number of commodity futures re-

turns series (although the inclusion of time varying conditional variance does improve model fit

substantially). Of note, however, is the fact that these studies all employ the assumption of con-

ditionally Gaussian GARCH innovations and it would be worthwhile to consider other, more

leptokurtic, conditional distributions such as a t-distribution or even skewed t-distribution.

More recent evidence for nonlinear structure comes from Sigl-Grub and Schiereck (2010),

who employ commitment of traders information on 19 commodity futures contracts between

1986 and 2007 (using the commitment of traders information as a proxy for speculation) and

find that the autoregressive persistence of futures returns processes tend to increase with spec-

ulation. In order to study this phenomenon they find a STAR model specification (i.e. smooth

autoregressive transition), as discussed in Terasvirta (1994), works well in describing the data.

Nonlinear structure is closely related to the concept of time irreversibility of a stochas-

tic process. We say that a process is reversible if the joint distribution of the process (Xτ ),

for τ = t1, t2, t3, . . ., is the same as the joint distribution of the reversed process (Xτ∗) for

τ ∗ = −t1 + m,−t2 + m,−t3 + m for any integer m and set of time indices τ . Further-

more, any stochastic process can admit either a purely causal, purely noncausal, or mixed

causality representation (that is, where the process is a function of past innovations, future in-

novations, or both, respectively). Consider then the strictly linear and causal class of ARMA

processes Xt =
∑∞

j=0 bjǫt−j .
1 Weiss (1975) showed that when ǫt is Gaussian and uncorre-

lated the process Xt is time reversible (so that the joint density of Xt and X∗
t =

∑∞
j=0 bjǫt+j

are the same) and that the only time reversible non-Gaussian, i.i.d. ǫt, ARMA processes are

1Where bj represents the coefficients of the rational lag polynomial defined by the ARMA, i.e. the coefficient

from
(1+β1L+...+βqL

q)
(1−α1L−...−αpLp) .
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the pure moving average processes Zt =
∑q

j=0 βjǫt−j where the βj’s represent a symmetric

or skew-symmetric set. Later, Findley (1986) extended this result to the more general mixed

representation Yt =
∑∞

j=−∞ γjǫt−j . Therefore, the Gaussian linear processes represent a very

special case and in general these linear ARMA processes with non-Gaussian innovations are

not time reversible.

Later, Ramsey and Rothman (1996) suggested that the notion of irreversibility of a stochas-

tic process might be useful in modeling time asymmetries exhibited by business cycle move-

ments. Seminal papers such as Burns and Mitchell (1946) and more recently, Neftci (1984),

had done work in the area of business cycle asymmetries, noting that business cycle upswings

were longer and slower than downswings and defining the notion of time asymmetry in terms

of the transition probabilities on the signs of the series’ first differences. In generalizing this

work, Ramsey and Rothman (1996) defined stochastic process time asymmetry in terms of

both “longitudinal” and “transversal” asymmetry. Longitudinal asymmetry refers to asymme-

try where the 2nd derivative of the process is asymmetric about the zero of the 1st derivative;

that is the process behaves differently when rising than when it is falling. Transversal asymme-

try is characterized by different process dynamics above and below some horizontal plane in

the time direction; that is, asymmetries in the vertical displacement of the series from its mean

value. Of course, a series can be both longitudinally and transversely asymmetric. Therefore,

the concept of time irreversibility captures the notion of a longitudinally asymmetric series and

purely transversally asymmetric series are inherently time reversible – that is the asymmetry

does not depend on the time direction as it does with longitudinal asymmetry. Interestingly,

however, it can be shown that tranversally asymmetric, but longitudinally symmetric, series are

time reversible, but their derivatives are time irreversible. This point is exploited by Ramsey

and Rothman in attempting to detect and distinguish between the two types of asymmetry in an

empirical study of an extended version of the renowned Nelson and Plosser (1982) dataset.

These two notions of time asymmetry can be shown to have implications for the functional

form of the process. For example, a natural candidate for a transversally asymmetric process

is the threshold autoregressive model of Tong and Lim (1980) since this process exhibits limit

cycle behaviour consistent with this type of asymmetry. Piecewise linear processes of this type
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were also found to be useful in modeling nonlinear series such as the famous Canadian Lynx

data (see Priestley (1989) for further discussion). Ramsey and Rothman (1996) define time

irreversibility as stemming from two sources: 1) the underlying model may be nonlinear even

though the innovations are symmetrically (or perhaps Gaussian) distributed; or 2) the under-

lying innovations may be drawn from a non-Gaussian probability distribution while the model

is linear. Importantly, it can also be shown that under the latter type of irreversibility, even

though the causal (noncausal) represention is linear with i.i.d. non-Gaussian innovations, the

equivalent noncausal (causal) representation, with i.i.d. shocks, must necessarily be nonlinear

if the process is irreversible (Rosenblatt, 2000).

Consequently, Breidt et. al. (1991) derived the maximum likelihood estimator for the au-

toregressive mixed causal/noncausal model Xt(1 − α1L − . . . − αsL
s) = ǫt, where ǫt is i.i.d.

non-Gaussian and where some of the roots of the lag polynomial lie inside the unit circle. This

is important since these mixed causality models provide a natural way to model longitudinal

asymmetry in a linear fashion but where the equivalent, purely causal, i.i.d. shock representa-

tion is necessarily nonlinear.

The models of mixed causality from Breidt et. al. (1991) have been extended by Lanne

and Saikkonen (2008) and applied to the U.S. inflation rate where the authors find evidence of

noncausality. Moreover, Lof (2011) applies the mixed causal/noncausal model to the historical

real S&P 500 dataset available from Robert Shiller and again finds evidence of noncausality.

In Breidt et. al. (2001) the authors study the so-called “All-Pass” model which is a special

case of the mixed causal/noncausal model in that (1 − αL)Xt = (1 − 1
α
L)ǫt = −α−1L(1 −

αL−1)ǫt. This model is interesting since it is linear with i.i.d. non-Gaussian shocks, ǫt, but

exhibits features similar to a GARCH model, since Xt can be shown to be zero mean, serially

uncorrelated, heavy tailed (if ǫt is heavy tailed), but yet dependent through the higher moments.

Therefore, the all-pass model represents a linear model with “nonlinear features.” However, the

authors suggest the all-pass model is much more constrained than the GARCH and should not

be considered a serious alternative.

Furthermore, in developing a process useful for modeling price bubble behaviour, Gourier-

oux and Zakoian (2012) develop a special case of the mixed causal/noncausal autoregressive
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model from Breidt et. al. (1991) which exploits the fact that the causal representation of the

noncausal AR(1) model with i.i.d. Cauchy innovations, Xt = ρXt+1 + ǫt, is necessarily non-

linear. Deriving the conditional Markov transition probabilities for the causal representation

they show that both processes (Xt) and (X2
t ) admit semi-strong causal linear representations

with causal innovations that are martingale difference sequences but no longer i.i.d. Interest-

ingly, the weak innovations also display GARCH type effects. Moroever, the process remains

stationarity despite the presence of a unit root; this unit root is expected since the unconditional

moments of Xt do not exist. However, as discussed in their paper, typical linear unit root tests

will fail in detecting the explosive bubbles of the noncausal AR(1) Cauchy process, even if the

martingale property is satisfied. The noncausal AR(1) Cauchy model is also easily introduced

in a mixed causal/noncausal framework, unlike previous bubble modeling strategies such as

those discussed in Blanchard and Watson (1982) or Evans (1991).

Given the nature of the futures contract, expectations of the future clearly play a role in the

current price. Of course, modeling a process as partly noncausal does not imply that agents

somehow “know the future.” Rather, modeling them this way allows for the possibility that the

information set available to decision makers in the economy may be strictly larger than that

available to the econometrician. For example, it can be shown that if agents in the commodity

futures market have rational expectations, the innovations in the mixed causal/noncausal model

may not represent the “true” fundamental shocks observed by decision makers, since the infor-

mation set available to the econometrician is limited (Hansen and Sargent, 1991). Rather, they

simply represent another equivalent linear representation with i.i.d. innovations.

In conclusion, this paper will attempt to bring these concepts of nonlinearity, time irre-

versibility, and price bubbles together in evaluating the statistical properties of commodity

futures price series for 25 different physical commodities, across 5 different industry sectors.

I hope to provide a robust empirical investigation of whether or not these series exhibit the

aforementioned properties and how we might therefore best model and forecast these series.

Before considering the models, however, let us first discuss the details of the data employed in

the next section.
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3 The futures contract

A futures contract is a contract between two parties to either buy or sell some good (in this

case commodities) at a future date, given a predetermined “futures price” Ft,t+k set today. This

price is called the delivery price.2 The commodity futures contract will specify terms of the

agreement not limited to including:

◦ The quality of the good, often categorized by pre-specified “grades.”

◦ The amount and units of the underlying good.

◦ The monetary denomination of the contract.

◦ Whether the good is to be delivered to the buyer upon the exercise date (otherwise the

buyer will have to pick up the good themselves). It will also specify the location of

delivery if applicable.

⋄ Contracts can alternatively be settled in cash if stipulated in advance.

◦ The date of delivery at some period in the future. Typically delivery is acceptable at any

point during the specified month after the last trading date.

◦ The last trading date is the date upon which trading of the contract ceases.

◦ The delivery price Ft,t+k.

◦ A margin call rule.

Supposing that today is denoted as time t, the date of delivery is t + h, h > 0, and the price

agreed upon at time t is to be paid at time t + k, k > 0 (i.e. Ft,t+k), we have that there are as

many futures contracts at time t as there are (h, k, l,m), where l denotes delivery locations and

m denotes a margin call rule.

2See J.C. Hull (2009) Options, Futures, and Other Derivatives, Prentice Hall, New Jersey, for an overview of

futures contracts.
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3.0.1 The margin call and “marking to market” process

Unlike forward contracts, which are typically highly customized instruments sold on over-

the-counter (OTC) markets, futures are typically standardized instruments traded on organized

futures exchanges. To avoid the counterparty risk associated with future settlement of forward

contracts (considering the possibly large loss positions that may accrue to either side of such

contracts), futures contracts are subject to a margin rule. An investor who wishes to trade

futures contracts must first deposit collateral with the exchange called the initial margin. The

clearing house (often a 3rd party institution, although the Chicago Mercantile Exchange (CME)

and Intercontinental Exchange (ICE) both handle clearing house operations themselves) will

then operate as an intermediate between buyers who wish to take on long positions and sellers

taking on short positions. That is, the clearing house becomes the buyer to each seller and the

seller to each buyer so that in the event of counterparty default the clearing house assumes the

risk of loss. In order to minimize these potential losses, each day investors accounts are settled,

a process known as “marking to market.”

As an example of marking to market, consider a trader who goes long on a futures contract

with a delivery price of $100 specified immediately at time period t. Suppose later, at time

period t + j that a similar contract is now trading at $99. Since the investor has taken the long

position, they could “zero” out their position by simultaneously purchasing the same contract’s

short position. That is, since the original arrangement contracted them to purchase at some

future date, they could simultaneously contract to sell under the same contractual arrangements.

However, since the price has now changed, the investor has realized a loss of (−$1)e−rf (k−j) =

(Ft+j,t+k−Ft,t+k)e
−rf (k−j) since the future price they would pay at time t+k exceeds the price

they would receive (where rf is the unit time period risk free rate of interest).3

Each day the clearing house calculates investor’s net financial position in this manner by

comparing the prices of comparable contracts to each investor’s net long or short position.

Essentially, what this means is that each day a new futures contract is rewritten with a new

3Since the relationship above defines in essence the present value of the futures contract, it is clear that upon

open interest, that is upon initial negotiation of the contract, its value must be zero. Moreover, this relationship

also implies that upon the delivery date, the present value is equal to Ft+j,t+k − Ft,t+k = St+k − Ft,t+k since

k = j, where Sτ is the spot price of the underlying good at time τ . (Black, 1976)
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contracted price to deliver equal to the corresponding current future’s contract price. In this

way a futures contract is like a series of forward contracts (since the delivery price doesn’t

change on a forward as time progresses). (Black, 1976)

If an investor is allowed to build up a substantial net loss over a time period, eventually their

collateral (or initial margin) depletes beyond a pre-specified level. At this point the clearing

house issues a “margin call,” and in order to continue trading the investor is required to deposit

more collateral. If they do not, the clearing house is obligated to liquidate the investor’s assets.

Therefore, outstanding balances are tallied each day, a new contract is issued by the clear-

inghouse to reflect the changing value of the outstanding contract, and a margin call is issued

if the level of an investor’s collateral diminishes beyond a certain threshold.

Marking to market in practice requires that account values are reevaluated according to

the current market price of a comparable futures contract (not the current spot price of the

underlying good). Therefore, standardization is important in promoting a sufficient volume of

trades as to allow for a competitive price.

3.1 The commodity futures

This paper will consider a number of physical commodity futures contracts from a broad range

of categories. The categories are as follows:

Table 1: Commodities sectors

Energy Metals Softs Soy Livestock

Brent crude oil Copper Corn Soybeans Lean hogs

Light crude oil Gold Rice Soybean meal Live cattle

Heating oil Palladium Wheat Soybean oil

Natural gas Platinum Sugar

Gas oil Silver Orange juice

Gasoline RBOB Cocoa

Coffee

Cotton

Lumber

10



3.1.1 Energy

Brent crude oil is a class of sweet light crude oil (a “sweet” crude is classified as containing less

than 0.42% sulfur, otherwise it is known as “sour”). The term “light” crude oil characterizes

how light or heavy a petroleum liquid is compared to water. The standard measure of “light-

ness” is the American Petroleum Institute’s API gravity measure. The New York Mercantile

Exchange (NYMEX) defines U.S. light crude oil as having an API measure between 37 (840

kg/m3) and 42 (816 kg/m3) and foreign as having between 32 (865 kg/m3) and 42 API.

Therefore, various grades are defined in the standardized contract. Both foreign and domes-

tic light crude oil products are required to admit various characteristics based on sulfur levels,

API gravity, viscosity, Reid vapor pressure, pour point, and basic sediments or impurities. Ex-

act grade specifications are available in the CME Group handbook, Chapter 200, 200101.A and

B.

The price of Brent crude is used as a benchmark for most Atlantic basin crude oils, although

Brent itself derives from North Sea offshore production. Other important benchmarks also

include North America’s West Texas Intermediate and the middle east UAE Dubai Crude which

together track the world’s internationally traded crude oil supplies. The representative light

crude oil future employed in this paper is written on West Texas Intermediate and exchanged

by the CME Group. The delivery point for (WTI) light crude oil is Cushing, Oklahoma, U.S.,

which is also accessible to the international spot markets via pipelines. Likewise, the Brent

crude oil future is exchanged by ICE and admits delivery at Sullom Voe, an island north of

Scotland.

Heating oil is a low viscosity, liquid petroleum product used as a fuel for furnaces or boil-

ers in both residential and commercial buildings. Heating oil contracts take delivery in New

York Harbor. Just as in crude oil contracts, very detailed stipulations exist regarding product

quality grades; see the CME handbook, Chapter 150, 150101. Natural gas is a hydrocarbon

gas mixture consisting primarily of methane, used as an important energy source in generating

both heating and electricity. It is also used as a fuel for vehicles and is employed in both the

production of plastics and other organic chemicals. Natural gas admits delivery at the Henry

Hub, a distribution hub on the natural gas pipeline system in Erath, Louisiana, U.S. Contract
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details are available in the CME handbook, Chapter 220, 220101. Gas oil (as it is known in

Northern Europe) is Diesel fuel. Diesel fuel is very similar in its physical properties to heat-

ing oil, although it has commonly been associated with combustion in Diesel engines. Gas

oil admits delivery in the Amsterdam-Rotterdam-Antwerp (ARA) area of the Netherlands and

Belgium. Contract grade specifications are available from the exchange, ICE.

The Gasoline RBOB classification stands for Reformulated Blendstock for Oxygenate Blend-

ing. RBOB is the base gasoline mixture produced by refiners or blenders that is shipped to ter-

minals, where ethanol is then added to create the finished ethanol-blended reformulated gaso-

line (RFG). Gasoline RBOB admits delivery in New York Harbor and quality grade details are

outlined in the CME handbook, Chapter 191, 191101.

3.1.2 Metals

Gold and silver, have both traditionally been highly sought after precious metals for use in

coinage, jewelry, and other applications since before the beginning of recorded history. Both

also have important applications in electronics engineering and medicine. The CME exchange

licenses storage facilities located within a 150 mile radius of New York city, in which gold or

silver may be stored for delivery on exchange contracts. The quality grades for gold and silver

are defined in the CME handbook, Chapters 113 and 112, respectively.

Platinum, while also considered a precious metal, also plays an important role, along with

the metal Palladium in the construction of catalytic converters. Catalytic converters are used

in the exhaust systems of combustion engines to render output gases less harmful to the envi-

ronment. Palladium also plays a key role in the construction of hydrogen fuel cells. Finally,

copper is a common element used extensively in electrical cabling given its good conductivity

properties. Platinum, Palladium, and Copper offer a number of delivery options, including de-

livery to warehouses in Zurich, Switzerland. See the CME handbook Chapters 105, 106 and

111 respectively.
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3.1.3 Softs and Livestock

“Soft goods” are typically considered those that are either perishable or grown in an organic

manner as opposed to “hard goods” like metals which are extracted from the earth through

mining techniques.

In the grains category we have corn, rice, and wheat which are all considered “cereal

grains”; that is, they represent grasses from which the seeds can be harvested as food. Sugar,

derived from sugarcane, is also a grass but the sugar is derived not from the seeds but from in-

side the stalks. Corn, rice, and wheat all admit a number of standardized delivery points within

the U.S. See the CME handbook chapters 10, 14, and 17 for grade specifications and delivery

options. Sugar delivery point options and grade details are available online from ICE, under

the Sugar No.11 contract specification.

Orange juice is derived from oranges which grow as the fruit of citrus tree, typically flour-

ishing in tropical to subtropical climates. The juice traded is in frozen concentrated form.

Orange juice is deliverable to a number of points in the U.S., including California, Delaware,

Florida, and New Jersey warehouses. See the ICE FCOJ Rulebook available online for further

information and quality grade details. Coffee is derived from the seeds of the coffea plant,

referred to commonly as coffee “beans.” Cocoa represents the dried and fully fermented fatty

seeds contained in the fruit of the cocoa tree. Finally, cotton is a fluffy fibre that grows around

the seeds of the cotton plant. Delivery point information and quality grade details for Coffee,

Cocoa, and Cotton are also available via the ICE Rulebook chapters available online.

In the soy category we have soybeans, a species of legume widely grown for its edible

beans; soybean meal which represents a fat-free, cheap source of protein for animal feed and

many other pre-packaged meals; and finally, soybean oil is derived from the seeds of the soy

plant and represents one of the most widely consumed cooking oils. All three soybean products

admit a number of standardized delivery points within the U.S. See the CME handbook chapters

11, 12, and 13 for grade specifications and delivery options.

Lean hogs refers to a common type of pork hog carcass used typically for consumption. A

lean hog is considered to be 51-52% lean, with 0.80-0.99 inches of back fat at the last rib, with

a 170-191 lbs. dressed weight (both “barrow” and “gilt” carcasses). Live cattle are considered
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55% choice, 45% select, yield grade 3 live steers (a castrated male cow). Finally, lumber is

traded as random length 2×4’s between 8-20 feet long. Lean hogs futures are not delivered

but are cash settled based on the CME Lean Hog Index price. Cattle is to be delivered to the

buyer’s holding pen. Lumber shall be delivered on rail track to the buyer’s producing mill. See

CME handbook Chapters 152, 101, and 201, respectively for details.

3.1.4 Data specification

The following table outlines dates each commodity futures price series is available for, the time

to maturity, currency denomination, commodity exchange and code, and basic unit/characteristics

of the product traded.

Table 2: Commodities specification

Commodity Start date CEM Currency unit Exchange Code Basic unit

Soybean meal 7/18/1977 FHKNZ U.S.$/st CME ZM/SM 100 st’s

Soybean oil 7/18/1977 FHKNZ U.S.$/100lbs CME ZL/BO 60,000 lbs

Soybeans 7/18/1977 FHKNX U.S.$/100bushel CME ZS/S 5,000 bushels

Orange juice 7/18/1977 FHKNUX U.S.$/100lbs ICE OJ 15,000 lbs

Sugar 7/18/1977 HKNV U.S.$/100lbs ICE SB 112,000 lbs

Wheat 7/18/1977 HKNUZ U.S.$/100bushel CME ZW/W 5,000 bushels

Cocoa 7/18/1977 HKNUZ U.S.$/MT ICE CC 10 MT

Coffee 7/18/1977 HKNUZ U.S.$/100lbs ICE KC 37,500 lbs

Corn 7/18/1977 HKNUZ U.S.$/100bushel CME CZ/C 5,000 bushels

Cotton 7/18/1977 HKNZ U.S.$/100lbs ICE CT 50,000 lbs

Rice 12/6/1988 FHKNUX U.S.$/100hw CME ZR/RR 2,000 hw

Lumber 4/7/1986 FHKNUX U.S.$/mbf CME LBS/LB 110 mbf

Gold 7/18/1977 GMQZ U.S.$/oz CME GC 100 troy oz

Silver 7/18/1977 HKNUZ U.S.$/100oz CME SI 5,000 troy oz

Platinum 4/1/1986 FJNV U.S.$/oz CME PL 50 troy oz

Palladium 4/1/1986 HMUZ U.S.$/oz CME PA 100 troy oz

Copper 12/6/1988 HKNUZ U.S.$/100lbs CME HG 25,000 lbs

Light crude oil 3/30/1983 All U.S.$/barrel CME CL 1,000 barrels

Heating oil 7/1/1986 All U.S.$/gallon CME HO 42,000 gallons

Brent crude oil 6/23/1988 All U.S.$/barrel ICE CO 1,000 barrels

Gas oil 7/3/1989 All U.S.$/MT ICE QS? 100 MT

Natural gas 4/3/1990 All U.S.$/mmBtu CME NG 10,000 mmBtu

Gasoline RBOB 10/4/2005 All U.S.$/gallon ICE HO 42,000 gallons

Live cattle 7/18/1977 GJMQVZ U.S.$/100lbs CME LE/LC 40,000 lbs

Lean hogs 4/1/1986 GJMQVZ U.S.$/100lbs CME HE/LH 40,000 lbs
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The units are described as follows. A barrel is considered to be 42 U.S. gallons. An

mmBtu is one million British Thermal Units, a traditional unit of energy equal to about 1055

joules per Btu. An MT is one metric tonne, which is a unit of mass approximately equal to

1,000 kilograms. Lbs and oz are the abbreviations for pounds and ounces respectively. A

“Troy oz” is a slightly modified system whereby one troy oz is equal to approximately 1.09714

standard oz. A bushel is a customary unit of dry volume, equivalent to 8 gallons. An mbf is

a specialized unit of measure for the volume of lumber in the U.S, called a “board-foot.” A

board-foot (or “bf”) is the volume of a one-foot length of a wooden board, one foot wide and

one inch thick. Therefore an mbf is one million such board-feet. Finally, an “st” or short tonne

is a unit of mass smaller than the metric tonne, equivalent to approximately 907 kilograms.

The column CEM represents the range of “contract ending months” that each futures con-

tract may be specified for. The month codes are as follows: F - January, G - February, H -

March, J - April, K - May, M - June, N - July, Q - August, U - September, V - October, X -

November, and Z - December. These are the standard codes employed by the exchanges.

All of the price series are generated by Bloomberg as a “continuous rolling contract,”

whereby the prices for the individual outstanding contracts in existence at time t are combined

into one using a type of formula described in the next section, 3.2.

All series end on February 8th, 2013, and represent daily closing prices for those days the

commodities are traded on the exchange. In June 2007 the CBOT (Chicago Board of Trade)

which acted as the exchange for soy products, wheat corn, and rice, merged with the CME

(Chicago Mercantile Exchange) to form the CME Group. Moreover, most of the energy futures

were originally traded on the NYMEX (New York Mercantile Exchange) and the metals were

traded on the COMEX (Commodity Exchange; a division of the NYMEX). However, on Au-

gust 18, 2008, the NYMEX (along with the COMEX) also merged with the CME Group. Gas

oil was originally traded on the IPE (International Petroleum Exchange) which was acquired

by ICE (IntercontinentalExchange) in 2001. Therefore, care must be taken in interpreting the

various exchange codes which have changed over time.

For most CME contracts, the last trading day is typically the 15th business day before the

first day of the contract month. The delivery date is then freely chosen as any day during the
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contract month.

3.2 Rolling over the futures contract

As futures contracts specify a set date upon which the underlying goods are to be exchanged,

their price series can not continue indefinitely (as say could the underlying spot price of the

commodity). For this reason, we need a method whereby we can “extend” the futures price

series indefinitely by appending contracts for the same underlying good together across time.

In the terminology of traders, this is called “rolling over” the futures contract.

Consider first, the “fair price” of the futures contract implied by the spot-futures parity the-

orem. The theorem implies that given the assumption of well functioning competitive markets,

no arbitrage should ensure that the following relationship between the futures and spot price of

the underlying commodity holds at time t:

Ft,t+k = St(1 +
k

365
(rf + c))

where rf is the risk free annual rate of interest and c ∈ [0, 1] is some adjustment parameter

for cost of carry. That is, given the exploitation of arbitrage opportunities, we should have that

the cost of purchasing the underlying good at price St today and holding it until t + k (given

opportunity cost of capital and cost of carry) should be equal to the current futures price Ft,t+k.

Of course, this relationship implies that as the maturity date approaches (i.e. as k → 0) we

have that Ft,t = St.

Note that of course this relationship is an approximate one and it is clear that it will not hold

exactly in reality (for example, when goods are perishable and cannot be stored indefinitely).

None the less the relationship is useful for considering the rolling over of futures contracts since

it becomes clear that an adjustment must be made to the price series if we want it to maintain

the same units.

The reason is as follows: suppose for the sake of argument that the futures price does adhere

to the spot-future parity theorem. Upon the approach of the futures maturity we wish to extend

the price series. In order to do so as a trader we would have to close out our current position

and open a new position in the futures contract of the next maturity. For example, suppose we
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are holding a futures contract that expires at time t + k and k is approaching 0. We could sell

this futures contract and purchase a new contract on the same underlying good but that expires

at time t+ k + j. However in doing so we would clearly incur a loss since we have that:

(1 + k
365

(rf + c)) < (1 + k+j

365
(rf + c))

in the spot-futures parity theorem. This is known as rollover risk and the difference in the two

prices is called calendar spread.

However, this loss for the trader should not be considered as part of the overall price series

historical data we use for forecasting since it represents a predictable discontinuity in the se-

ries. Therefore typically futures price series are adjusted for this calendar spread by the data

provider. There are a few ways to go about doing this, each with their pros and cons: 4

1. Just append together prices without any adjustment. This will clearly distort the series

since it will now include spurious autocorrelation.

2. Directly adjust the prices up or down according to either the new or old contract at the

rollover time period. This can be done by simply subtracting the difference between the

two price series, or multiplying one of the price series by ratio of the two (i.e. absolute

difference or relative difference respectively). This method works but it causes either the

newer or older contract prices to diverge further and further from their original values

as we append additional contracts. Moreover, it leaves the choice of adjustment a rather

arbitrary one.

3. Continuously adjust the price series over time. A similar method is employed by the

CME and ICE in the construction of the data series employed in this paper. This method

melds together the old and new prices in a continuous manner with more weight placed

on the series with the longer time to maturity.

As an example, consider the following two futures contracts on the same underlying

4See Bob Fulks (2000) “Back-Adjusting Futures Contracts,” Trading Recipes DB a widely disseminated PDF

document available on the world wide web. Alternatively Masteika, Rutkauskas, and Alexander (2012) “Contin-

uous futures data series for back testing and technical analysis,” IPEDR, 29, provides a more recent treatment of

the relevant issues.
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good, one with time to maturity t+ k, the other with t+ k + j:

Ft,t+k = St(1 +
k

365
(rf + c)) + ǫ1,t

Ft,t+k+j = St(1 +
k + j

365
(rf + c)) + ǫ2,t

Pt = αFt,t+k + (1− α)Ft,t+k+j (1a)

where ǫi,t represents a residual deviation away from the spot-futures parity fair value,

α = k
K

, where K is an upper bound on k + j (that is it represents the time to maturity

when the future is first issued) and j is sufficiently large so that the difference in futures

prices aren’t negligible. Therefore, we have that Pt represents the “merged” futures price

that takes into account both contracts.

4 Features of the data

All continuous contract futures series represent daily closing prices for those days the com-

modities are traded on the exchange, ending on February 8th, 2013. The start dates for each of

the series are given above in Table 2. Summary statistics for price level series are given in the

following Tables, 3 and 4, and plots and histograms of each series are available in Appendix

A (Figures 22 to 29). Furthermore, the equivalent tables to 3 and 4 for the continuously com-

pounded returns series (i.e. rt = ln(Pt/Pt−1)) are also available in the Appendix A (Tables 20

and 21).
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Table 3: Summary statistics - 1 of 2 - price level series

Series Mean Median Stnd. Dev. Skewness Kurtosis

Soybean meal 210.347 185.800 70.151 1.729 6.190

Soybean oil 26.399 23.750 10.449 1.709 5.516

Soybeans 716.563 629.000 249.577 1.755 5.735

Orange juice 118.926 115.125 33.531 0.592 2.663

Sugar 11.586 9.830 6.343 1.946 7.283

Wheat 401.672 357.500 151.036 1.878 6.656

Cocoa 1835.268 1621.000 744.051 0.926 3.466

Coffee 126.325 124.450 48.051 0.699 3.495

Corn 298.578 258.250 126.933 2.097 7.126

Cotton 67.665 65.150 19.798 2.688 16.481

Rice 9.243 8.440 3.557 0.844 3.503

Lumber 267.773 261.700 70.562 0.463 2.458

Gold 510.664 385.400 351.245 2.202 7.139

Silver 9.406 6.037 7.680 2.272 7.910

Platinum 755.715 534.000 463.352 1.169 3.096

Palladium 286.657 206.150 203.778 1.303 3.935

Copper 168.275 115.400 111.428 1.060 2.562

Light crude oil 38.103 26.740 27.475 1.371 3.827

Heating oil 112.316 67.655 86.145 1.292 3.484

Brent crude oil 41.547 25.410 32.501 1.205 3.199

Gas oil 375.818 226.500 281.273 1.161 3.180

Natural gas 3.987 3.142 2.478 1.370 4.950

Gasoline RBOB 227.116 223.895 57.877 0.023 2.309

Live cattle 75.023 71.488 15.871 1.219 4.915

Lean hogs 63.726 63.345 13.133 0.165 2.830
* Note that the Kurtosis measure employed here is not an excess Kurtosis measure.
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Table 4: Summary statistics - 2 of 2 - price level series

Quantiles

Series T 0% 25% 50% 75% 100% C.V. f(ω)

Soybean meal 9280 117.700 166.700 185.800 233.700 548.100 0.334 193.877

Soybean oil 9280 13.070 19.790 23.750 28.140 70.400 0.396 204.664

Soybeans 9280 410.000 562.750 629.000 774.313 1771.000 0.348 199.646

Orange juice 9280 54.650 92.800 115.125 136.600 219.950 0.282 191.674

Sugar 9280 2.690 7.690 9.830 12.623 45.640 0.547 198.670

Wheat 9280 214.750 305.500 357.500 436.000 1280.000 0.376 198.684

Cocoa 9280 682.000 1303.000 1621.000 2230.000 5368.000 0.405 204.087

Coffee 9280 41.500 91.500 124.450 148.293 314.800 0.380 194.797

Corn 9280 142.750 223.000 258.250 327.313 831.250 0.425 199.060

Cotton 9280 28.520 56.700 65.150 74.850 215.150 0.293 184.060

Rice 6309 3.430 6.730 8.440 11.030 24.460 0.385 201.108

Lumber 7005 138.100 205.500 261.700 315.800 492.400 0.264 180.010

Gold 9280 142.800 329.600 385.400 478.800 1888.700 0.688 212.997

Silver 9280 3.510 5.000 6.037 11.013 48.700 0.816 202.275

Platinum 7009 333.100 408.700 534.000 1012.700 2276.100 0.613 212.473

Palladium 7009 76.200 133.250 206.150 366.400 1082.800 0.711 207.577

Copper 6309 60.600 84.850 115.400 249.300 462.850 0.662 211.914

Light crude oil 7793 10.420 19.190 26.740 52.240 145.290 0.721 209.987

Heating oil 6944 29.520 51.948 67.655 168.920 410.600 0.767 209.983

Brent crude oil 6427 9.640 18.125 25.410 61.950 146.080 0.782 209.602

Gas oil 6160 91.250 167.688 226.500 560.125 1325.250 0.748 209.189

Natural gas 5964 1.079 2.129 3.142 5.430 15.378 0.621 193.989

Gasoline RBOB 1920 79.270 188.145 223.895 273.853 357.100 0.255 141.956

Live cattle 9280 38.400 65.050 71.488 81.650 133.850 0.212 199.270

Lean hogs 7009 21.200 54.800 63.345 72.466 106.275 0.206 166.416
* C.V. stands for coefficient of variation, which is equal to σ/µ. Also, f(ω) is the maximal element of the normalized spectral density. In all cases

above the argmax frequency is ω = 0 and this low frequency peak dominates the entire spectrum. Finally, T is the sample size.

2
0



Note some of the salient features from the summary statistics in table 3. If we are to

interpret the series as strictly stationary, the sample moments suggest highly leptokurtic uncon-

ditional distributions for most of the series. Exceptions to this exist, however, in orange juice,

lumber, platinum, copper, gasoline RBOB, and lean hogs. Perhaps more importantly we should

consider the fact that most of the series are also positively skewed, again with a few exceptions

in gasoline RBOB and lean hogs (and possibly orange juice). Examination of the histograms

in appendix A yield similar interpretations. Moreover, some of the histograms indicate a bi-

modal structure, especially amongst those that are highly skewed, suggesting the possibility

of a mixture between low price and high price regimes. A good example of this is the copper

series.

The series themselves all exhibit a very high level of persistence in the sense that (equiva-

lently) their autocorrelation functions die off very slowly and their normalized spectral densities

exhibit extremely sharp peaks at the zero frequency and are near zero elsewhere in the spectrum

(see table 4). Of course, this is suggestive of a unit root process, however, augmented Dickey-

Fuller unit root tests of the series are inconclusive in rejecting the null of a unit root (including

a constant but no time trend). This should not come as a surprise given what we know about the

properties of some exotic parametric processes which are able to ellude detection but traditional

unit root testing: see for example the causal representation of the noncausal AR(1) model with

i.i.d. Cauchy innovations discussed later in section 6.4 (see Gourieroux and Zakoian, 2011).

Clearly a linear unit root test is not of much use if the causal representation of the process

may be nonlinear and strictly stationary, with moments that do not exist. Futhermore, a careful

visual inspection of the time series themselves do not suggest the typical pattern associated

with a linear unit root (even when the innovations do not represent weak white noise). Finally,

linear unit root tests have been shown to have low power in the presence of nonlinearity (such

as multiple regimes, for example).

Interestingly, a quick examination of the price level plots for many of the series suggests

the presence of “bubble” like movements. That is, quick periods of dramatic price increases

followed by an equally quick and precipitous decline. The question of what process might

describe these bubble dynamics will be left for later examination when we describe the models,
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but for now let us just say that a case can be made that at least for some of these bubble episodes

speculative behaviour or the act of investors attempting to “corner the market” have driven their

occurrences. For example, consider the large bubble in the silver price level series from figure

22, that takes place within the first 2000 days of 7/18/1977. This bubble reflects a famous

episode of speculative excess after a failed effort by the brothers Nelson B. Hunt and William H.

Hunt to corner the silver market in the late 1970’s and early 1980’s (Eichenwald, 1989), where

at one point the combined holdings of the brothers included more than a half of the world’s

deliverable silver futures. Another example comes from the copper futures series, where rogue

trader Yasuo Hamanaka of Sumitomo Corporation, attempted to corner the international copper

market over a ten year period leading up to 1996 (Gettler, 2008). In this latter case, the bubble

doesn’t even stand out as a period of abnormal price dynamics. Given the number of these

episodes that can be recounted from history, and the way in which they are difficult to identify

by a simple visual inspection of the price series themselves, one might wonder whether they

prove to be the exception or the rule in driving futures price level dynamics.

Inspection of the partial autocorrelation functions, ρ(s), of the levels series reveals a general

stylized fact of ρ(1) ≈ 1 and small but significant ρ(s) for some s > 1. This would suggest that

if the model is linear then a causal AR(1) on the levels might suffice. In terms of the returns

series, they exhibit small but significant (partial) autocorrelations; however, autocorrelation

functions of the squares and absolute values are moderate and slowly declining to about the 50th

lag. Moreover, a visual inspection of the returns series themselves reveals volatility clustering.

These facts are both in line with the general stylized features of financial data and the possibility

of modeling the returns as conditionally heteroskedastic (note that from table 20 we see that the

returns unconditional distributions are also leptokurtic and negatively skewed). Interestingly,

both of the squared and absolute value of returns for lean hogs, live cattle, and the lumber

exhibit no signicant autocorrelation except in spikes at periodic intervals in their autocorrelation

functions, perhaps reflecting seasonal volatility spikes in their market – why this effect does not

show up for other soft goods is curious, as is why the “in between spike” periods exhibit little

autocorrelation. For reference I include the respective plots for the series which exhibits both

the stylized features of the returns and the seasonally significant lags (I omit the other plots
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given space considerations and their similarity; they are available upon request). See figures

1 and 2. Finally, of interest is the aberration in the cotton series returns which exhibit no

autocorrelation at all in its squared values, but a significant amount in its absolute values.

4.1 Testing for nonlinearity

Of course, if this was all there was to say about the structure of the series, it would seem reason-

able to simply fit a conditionally heteroskedastic model, such as an ARCH, to the returns and

be done. However, as we shall see the autocovariance function is only useful for characterizing

the process up to its 2nd order properties. That is, the autocovariance has nothing to say when

it comes to higher order structure. It turns out that both the linear mixed causal/noncausal mod-

els with non-Gaussian innovations, and the causal nonlinear models more generally, are only

indentified by higher order cumulant moments of order k ≥ 3.

Figure 2: Autocorrelation function for Live cattle, squared returns
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A number of tests for nonlinear structure have been suggested in the literature. For example,

the BDS (Brock, Dechert and Scheinkman, 1987) test can be employed on the residuals of a

best fitting ARMA (chosen according to say an information criterion like the AIC and a suitable

test of weak white noise residuals) in order to look for deterministic chaos. This test involves

the correlation dimension technique originally developed by Grassberger and Procaccia (1983)

to detect the presence of chaotic structure by embedding overlapping subsequences of the data
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Figure 1: Autocorrelation functions for Soybean meal
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in m-space. Of course, one alternative to deterministic chaos is stochastic nonlinearity and so

the test can be considered more broadly as a test for nonlinearity.

From a frequency domain approach, the Hinich bispectrum test (1982) can test both Gaus-

sianity and linearity and is related to the test developed by Subba Rao and Gabr (1984) and

discussed in Priestley (1989) (see the rest of this section for more details). It has a less broad

alternative than the BDS test since the alternative is linearity. Of course the bispectrum test has

zero power against some types of nonlinearity since some processes may have zero bispectrum

but non zero trispectrum and higher. Hinich (1996) also discusses a newer test which is the

time domain analogue of the frequency domain bispectrum type tests.

For more details on various tests for nonlinearity the interested reader can consult Barnett

et. al. (1996).

4.2 The BDS test

The BDS test is a test for independence. Therefore, we are required to first remove any linear

dependence from the series before testing the residuals for possible nonlinear dependence. If

the residuals from a best fitting linear causal model are not i.i.d., the linear causal model cannot

be adequate in describing the dynamics of the data.

Testing of the innovations from the best fitting causal linear Gaussian ARMA model sug-

gests nonlinear dynamics left uncaptured in both the levels and returns series. The 25 series

are fit according to the AIC criterion to select a “best” fitting model and the residuals are then

tested via the BDS test statistic up to an embedding dimension of m = 15.5 Generally, for all

the series (both returns and levels), the best fitting linear Gaussian ARMA model residuals are

not i.i.d. at the 5% test significance level. However, there is one exception in the lean hogs

price levels series, where for the largest value of ǫ (the parameter that defines “near points” in

the m-dimensional space, i.e. ‖u − v‖ < ǫ), we are not able to reject the null hypothesis of

i.i.d. residuals. Interestingly, this result is despite remaining autocorrelation that exists in the

5In order to facilitate this search for a best fitting model I employ the auto.arima() function in R due to Hyn-

dman, R.J. and Khandakar, Y. (2008) ”Automatic time series forecasting: The forecast package for R”, Journal

of Statistical Software, 26(3). I employ the constraint of no differencing, and a maximum order of p + q = 10,

p ≤ 11 and q ≤ 3. AIC’s are specified not to be approximated and are generated directly from the MLE while the

“stepwise” selection procedure is avoided to make sure all possible model combinations are tested.
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residuals due to the seasonal patterns discussed earlier (the best model chosen does not include

seasonal lags, given that the seasonal pattern tends to occur even 43rd day or so) – therefore,

the result should be even more suggestive of i.i.d. innovations if the seasonality is accounted

for. Note that this anomolous result for lean hogs will also be borne out when we inspect

its bicoherence function. It should also be noted that the estimation selection process reveals a

great difficulty in fitting a linear Gaussian ARMA model to the levels data and often models are

rejected in that their parameters lie too close to the border of both stationarity and invertibility

regions, resulting in estimator convergence problems. Finally, in section 5, I will also show that

the causal linear ARMA Gaussian models can be improved upon by employing conditionally

t-distributed innovations instead; although this still does not resolve the problem of uncaptured

nonlinear structure.

4.3 The frequency domain Bispectrum test

The bispectrum type tests rest on the following logic from Subba Rao and Gabr (1984). Sup-

pose (Xt) has the linear (possibly mixed causal/noncausal) representation,

Xt =
∞
∑

r=−∞

arǫt−r (2)

where (ǫt) is a sequence of i.i.d. variables, with E[ǫt] = 0, E[ǫ2t ] = σ2
ǫ , E[ǫ3t ] = µ3. It can be

shown that the autocovariance function of Xt is:

R(s) = σ2
ǫ

∞
∑

r=−∞

arar+s (3)

and that the third order cumulant k3 = C(t1, t2) is:

C(t1, t2) = E[XtXt+t1Xt+t2 ] = µ3

∞
∑

r=−∞

arar+t1ar+t2 (4)

Therefore, letting A(ω) =
∑∞

j=−∞ aje
−ijω be the transfer function we have the spectral
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density of Xt as:

h(ω) =
1

2π

∞
∑

s=−∞

R(s)e−isω (5a)

=
σ2
ǫ

2π

∞
∑

s=−∞

∞
∑

r=−∞

arar+se
−isω (5b)

=
σ2
ǫ

2π
|A(ω)|2 (5c)

and likewise we have that the bispectrum is given as:

h3(ω1, ω2) =
1

(2π)2

∞
∑

t1=−∞

∞
∑

t2=−∞

C(t1, t2)e
−i(t1ω1+t2ω2) (6a)

=
µ3

(2π)2

∞
∑

t1=−∞

∞
∑

t2=−∞

∞
∑

r=−∞

arar+t1ar+t2e
−i(t1ω1+t2ω2) (6b)

=
µ3

(2π)2
A(ω1)A(ω2)A

∗(ω1 + ω2) (6c)

where the asterisk denotes complex conjugate. Therefore, for the linear model we have that:

Xij =
|h3(ωi, ωj)|2

h(ωi)h(ωj)h(ωi + ωj)
=

µ2
3

2πσ2
ǫ

, for all (i, j) (7)

which is called the bicoherence between frequencies ωi and ωj . That is, for the linear model,

the bicoherence should be constant across bifrequencies. Moreover, for models where ǫt is

Gaussian, we have that µ3 is necessarily zero and so the bispectrum of Xt is zero as well (under

suitable conditions imposed on the sequence of ar’s). The essence of the Hinich and Subba Rao

& Gabr bispectral tests is therefore to test where or not 1) the bispectrum of Xt is significantly

different from zero, as measured by a test statistic related to Hotelling’s T 2 distribution and

2) if the process Xt is non-Gaussian test whether Xij is non-constant over a selected grid of

bifrequencies. Again, note that the derivation above is quite general and applies to the processes

of mixed causality.
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4.4 The estimated bispectral modulus and bicoherence functions

4.4.1 The Bilinear model

While these statistical tests are useful, it is often the case that a simple inspection of the esti-

mated bispectrum and bicoherence is enough to rule out either Gaussianity and linearity given

the dramatic shapes of the bispectrum and bicoherence function plots. For example, consider

first the particular bilinear process of Granger and Andersen (1978) defined as:

Xt = 0.75Xt−1ǫt−1 + ǫt, where ǫt ∼ N(0, 1) (8)

It is clear that Xt represents a nonlinear process (we say the process is “nonlinear in mean”).

A plot of the sample path of the process is given in Figure 13 within Appendix A, for the first

1000 values from a total sample path of T = 30000. Also included is the bicovariance function

E[(Xt − µx)(Xt−t1 − µx)(Xt−t2 − µx)] for (t1, t2) ≥ 0 and both the bispectrum (6c) and

bicoherence (7) for bifrequencies (ω1, ω2) ≥ 0 (with a spectral period of 1).

Notice that the autocovariance and spectral density functions are not helpful here since they

are unable to identify departures from Gaussianity and their shapes do not suggest anything out

of the ordinary. However, the shapes of the bicovariance and bispectral modulus suggest that

the process is definitely non-Gaussian and the curving, wing-like, segments of the bicoherence

reveal that the process is also nonlinear.

4.4.2 The GARCH model

As another example, consider the pure GARCH(1,1) process of Bollerslev (1986); that is (ǫt =

σtzt)|Ft−1 ∼ N(0, σ2
t ) with σ2

t = α0 + α1ǫ
2
t−1 + β1σ

2
t−1 and Ft−1 = {zt−1, zt−2 . . .}, where

zt ∼ N(0, 1). The ARCH and GARCH models form a special type of nonlinear process known

as multiplicatively nonlinear, or “nonlinear in variance” (as opposed to “in mean” as was the

case with the bilinear process above). From Hinich (2009) we know that since zt is i.i.d. and

symmetric we have that E[z3t ] = µ3 = 0 and so the bispectrum of the GARCH(1,1) is zero for

all bifrequencies (see (6c)). Moreover if zt is not symmetric then µ3 6= 0 and so the bispectrum

is a real constant for all bifrequencies. Of course, the interesting feature of the ARCH/GARCH
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models is the fact that up to 2nd order properties, they appear to be white noise (and so they

represent processes which are weak white noise, but not i.i.d.). Figure 14 within Appendix

A demonstrates the results discussed with parameters α0 = α1 = 0.1, β1 = 0.89 and sample

size T = 30000. Note that given the noise in the bicovariance estimate given a finite sample

the esimated bispectrum modulus trends to have a high variance as well. Moreover, it exhibits

a positive level since despite the symmetric distribution of zt, the finite sample rt skewness is

not quite zero (it is 0.1062087).

The fact that the shape of the bispectrum is unaffected by nonlinearity in variance shouldn’t

come as a surprise since the variance is an even moment. Therefore the GARCH model only

shows up in the even moments, such as the variance and kurtosis (unless the distribution of zt

is asymmetric, in which case the levels process unconditional mean and skewness is affected

directly). Likewise, models that are nonlinear in mean are likely to have an effect on the odd

moments of the unconditional distribution, such as the mean and the skewness.

Moreover, from Campbell, Lo, and MacKinlay (1996, Ch12.1) we know that models which

are nonlinear in mean have nonzero bicovariance (and higher) for all (t1, t2, . . .) Models that are

nonlinear in variance, but obey the martingale property (e.g. GARCH) have zero bicovariance

(and higher) unless one of the elements of (t1, t2, . . .) is equal to another. For example, they

show that the ARCH(1) has zero bicovariance but for t1 = t2 and t3 = 0 the tricovariance is

nonzero. This fact explains why testing the autocovariance function of the squared returns, i.e.

E[r2t r
2
t−t1

], for ARCH effects has become so commonplace (the McLeod and Li test (1983)).

Note that these features of the bicovariance function will be exploited in section 8 when I

employ a statistical test from Hsieh (1989), section 5, in determining more specifically the

functional form of any nonlinear structure.

4.4.3 The commodity futures data

For now, consider the shapes of the bispectrum modulus and bicoherence for both the levels and

returns of the 25 futures price series. An initial inspection of the estimated bispectrum modulus

and bicoherence function plots for the returns series reveals mostly noise centered around zero

(with the exception of a spike at the origin reflecting the non-zero skewness of the returns
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series)6 which suggests these series are not nonlinear in mean, although the ARCH effects

suggests they are strongly nonlinear in variance. Of course, this nonlinearity would show up

in the trispectrum but not the bispectrum. While some of the bicoherence plots suggest some

subtle structure (for example cotton, live cattle, and lean hogs), most of this could be due to

seasonality creating periodic skewness.

As for the price levels themselves, the bicovariance, bispectrum modulus, and bicoherence

all suggest definite nonlinearity in mean, with possibly the exception of the lean hogs series

(which corroborates with the BDS test results earlier). First, all of the bicovariance func-

tions are slowly declining and share the same shape with the exception of natural gas, gasoline

RBOB, lean hogs, and lumber; see Figure 15 within Appendix A. I’ve included the silver

price level series bicovariance plot as well, since it exhibits the representative shape of all the

others (although their heights differ according to the level of κ3 of the series, where κi is the

ith estimated cumulant). Finally, notice that the shape of all the bicovariance estimates implies

the obvious fact that the unconditional distributions of the price level series are not Gaussian.

Figure 3: Bispectrum, price levels

0
1/40 1/4 1/2

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06

Silver

Bispectrum modulus

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

0
1/4

1/2
0 1/4 1/2

 0

 200

 400

 600

 800

 1000

Silver (zoomed in)

Bispectrum modulus

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

Of course, this suggests that the bispectrum modulus will be similar for all the series except

the above mentioned four: natural gas, gasoline RBOB, lean hogs, and lumber. Since their

spectral densities all differ amongst the higher frequencies (recall that they exhibited large

6These series are skewed but not “auto-coskewed” as a process nonlinear in mean would exhibit.
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peaks at the zero frequency), it is not clear that their bicoherence functions will all be the

same, however. Inspection of the bispectrum modulus plots suggests they all exhibit the same

overall peaked shape exhibited in Figure 3. While the four anomalous series mentioned above

do exhibit slight deviations especially with regards to their “edges” (where either frequency

ω1 ≈ 0 or ω2 ≈ 0) they do not suggest any dramatically different features. It is interesting to

note by analogy that just as the area under the spectral density within any frequency interval

represents the proportion of the overall unconditional variance of the process explained by the

frequencies in the interval, the same applies to the area under the bispectral modulus – that is,

the area within any plane in the bifrequency domain represents the proportion of the overall

unnormalized skewness of the process explained by the bifrequencies in the plane. Therefore,

not only are the processes skewed (and therefore non-Gaussian), but the vast majority of this

skewness is generated by the extreme low frequency components of the process (i.e. the low

frequency trend movements). Of course, in this context most of the low frequency movements

that cause skewness in the unconditional process are the bubble movements.

The bicoherence plots are also quite revealing. With the exception of orange juice, cocoa,

coffee, cotton, gasoliner RBOB, lean hogs, and lumber, all of the bicoherence functions share

the same exponentially increasing shape (see Figures 16 and 17 within Appendix A for which

i’ve provided the biocoherence of the silver price level series as an example). As for the other

series, the bicoherence grows but at a much slower rate, with the exception of lean hogs, gaso-

line RBOB, and possibly cotton which suggests these series may be linear in mean. Another

notable feature is the fact that cocoa’s bicoherence seems to grow more linearly than exponen-

tially. Either way, probably the most interesting fact of these bicoherence plots is that they are

growing in bifrequencies close to each other; that is, they are growing in ω1 ≈ ω2 6= 0.

4.4.4 Conclusions

All the results above tend to suggest the presence of nonlinear structure in the price levels

(through perhaps both the mean and variance if we are to decompose the process as its first

order approximation Xt = f(ǫt, ǫt−1, . . .) ≈ f(0, ǫt−1, . . .) + ǫtf1(0, ǫt−1, . . .) ≡ g(ǫt−1, . . .) +

ǫth(ǫt−1, . . .)), and nonlinear structure in the returns through their variance. However, we will
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have to wait until section 8 in order to further determine the functional form of any nonlinearity

since we must first discuss the mixed causal/noncausal autoregressive model, and the concept

of reversibility of a time series, in section 6.

5 The linear causal ARMA model

In this section I will now show that the causal linear ARMA model with both Gaussian and non-

Gaussian innovations is unable to adequately capture the features of the futures price level data.

Recall that the returns data exhibited very little linear autocorrelation; however, upon fitting the

best Gaussian ARMA model, the innovations exhibited features suggestive of nonlinearity such

as a rejection of the i.i.d. hypothesis of the BDS test statistic and the presence of ARCH effects.

Moreover, an inspection of the bicovariance of returns suggested little in terms of nonlinearity

or irreversibility (although that is not to say that these returns series may not be nonlinear

or irreversible through their higher order cumulants beyond κ3). For this reason I will leave

modeling the returns for later, when I consider models that are nonlinear in variance in section

8.

In order to assess the ARMA model’s ability to fit the price level data, I employ the AIC

criterion, along with Ljung-Box statistics testing the hypothesis that both the innovations and

their squares exhibit no linear autocorrelation.

The standard Gaussian ARMA model is considered, as is the case where the innovations

are both t-distributed and skew t-distributed i.i.d. random variables. The skew t-distribution

is entertained as an option considering the skewed nature of the data series histograms. The

skewed t-distribution employed is of the two parameter type as described in Jones (2010). As

will be shown, while the t-distributed innovations improve model fit dramatically, they are

ultimately unable to generate i.i.d. residuals given a causal, linear ARMA model.

Table 5 presents the results of numerical maximum likelihood estimation. The model pa-

rameters, (p, q), were selected via normalized AIC (the AIC divided by the number of elements

in the log-likelihood summation) amongst a set of of possible set of (p, q) values such that

p ≤ 10 and q ≤ 2. The first row of the results for each series represents the Gaussian error term
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case, while the second and third rows represent the t-distributed and skew t-distributed cases

respectively. The lags column represents the number of lags (the natural log of the sample size

ln (T )) included in both the Ljung-Box and McLeod-Li test statistics, where p-values are pro-

vided in their respective columns. Finally, an ’x’ marks the model with the lowest normalized

AIC.

A few things are of note here. First, in every case, the addition of t-distributed errors im-

proves model fit dramatically, over the Gaussian case. Since the ARMA model with Gaussian

errors is nested (the t-distribution with infinite degrees of freedom is Gaussian) I employ like-

lihood ratio (LR) statistics to determine if the improvement in fit is statistically significant. In

every case the addition of t-distributed innovations passes a LR test at the 1% significance level.

However, in comparing the skewed t-distributed model to the standard t-distribution, the

results are mixed. In most cases the skewed t-distribution improves model fit and passes a LR

test at the 1% level. Likewise, corn and rice also pass at the 5% level and sugar and heating

oil at the 10% level. Exceptions to these results are found with natural gas, Brent crude oil,

light crude oil, gold, and coffee which all fail LR tests at the 10% level. This suggests that

there is little gain in employing a skewed t-distribution on the innovations of their ARMA

representations.

Moreover, even in the cases where the skewed t-distributed is found to be significant, the

level of skew is very small. For example, in the skewed-t case, the distribution is defined by two

skew parameters, α and β where their sum equals the degrees of freedom of the distribution.

If α > β then the distribution is positively skewed and vice versa if it is negatively skewed.

In most cases the skew is positive, however, for platinum, silver, orange juice, soybeans, lean

hogs, live cattle, gasonline RBOB, and gas oil the skew is negative. The fact that the skew

is negative for soybeans, but not for soybean meal or soybean oil seems strange. Since the

conditional distribution of the series price levels (for the causal model based on information at

t− 1) is defined by that of the innovations, it is interesting to note how the unconditional skew-

ness differs from the conditional: recall that all the unconditional distributions were positively

skewed. This inconsistency is most likely due to the uncaptured nonlinear structure. The ratio

of the estimated skew parameters α/β (and its inverse for negatively skewed series) ranges
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from 1.009 for copper to 1.151 for lumber, however most range around 1.035 to 1.065. Finally,

it is interesting to note how small the estimated t-distribution degrees of freedom parameter is.

For most series it ranges from 1.056 (nearly Cauchy distributed) to 2.73 for most series, with

exceptions: live cattle at 3.4, lumber at 4.23, and gasoline RBOB at 4.92.

Ultimately, however, the causal linear ARMA model is not able to fully capture the structure

of the data. The McLeod-Li test of autocorrelation in the squared residuals suggests uncaptured

nonlinearity in all cases. Plots of the residuals series also suggest ARCH effects. Interestingly,

in some cases (especially the Gaussian) the Ljung-Box test is unable to reject the null of no

autocorrelation in the residuals’ levels, despite autocorrelation in their squares. Either way, the

evidence presented in this section suggests that we need a better model if we are to adequately

capture the features of the futures price level data.
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Table 5: Estimation results of ARMA models - 1 of 2

p q Log-likelihood AICn Lag Ljung-Box McLeod-Li

Soybean meal 10 0 -26155.680 5.64567 9 1.000 0.000

2 1 -24203.947 5.21879 9 0.000 0.000

x 10 0 -24171.704 5.21806 9 0.000 0.000

Soybean oil 10 0 -5911.793 1.27806 9 1.000 0.000

5 0 -4653.824 1.00525 9 0.001 0.000

x 10 0 -4639.175 1.00392 9 0.007 0.000

Soybeans 10 0 -36719.741 7.92486 9 1.000 0.000

5 0 -34817.241 7.50949 9 0.000 0.000

x 10 0 -34779.631 7.50672 9 0.000 0.000

Orange juice 1 2 -21058.066 4.53994 9 0.429 0.000

3 0 -19408.642 4.18554 9 0.033 0.000

x 10 0 -19382.514 4.18479 9 0.070 0.000

Sugar 10 0 -3934.267 0.85141 9 1.000 0.000

3 0 -796.395 0.17299 9 0.000 0.000

x 1 2 -794.876 0.17284 9 0.000 0.000

Wheat 10 0 -33493.832 7.22887 9 1.000 0.000

5 0 -30990.145 6.68424 9 0.000 0.000

x 5 0 -30983.923 6.68311 9 0.000 0.000

Cocoa 10 0 -47045.067 10.15255 9 1.000 0.000

1 0 -45932.361 9.90114 9 0.002 0.000

x 10 0 -45847.856 9.89468 9 0.000 0.000

Coffee 10 0 -24225.191 5.22917 9 0.999 0.000

x 10 0 -21901.578 4.72806 9 0.000 0.000

10 0 -21901.239 4.72821 9 0.000 0.000

Corn 1 1 -29700.534 6.40253 9 0.706 0.000

2 1 -26849.379 5.78904 9 0.438 0.000

x 2 0 -26847.118 5.78856 9 0.419 0.000

Cotton 10 0 -16352.151 3.53056 9 1.000 0.000

3 0 -13515.309 2.91502 9 0.000 0.000

x 10 0 -13494.465 2.91445 9 0.000 0.000

Rice 2 1 2398.111 -0.75887 8 0.295 0.000

1 1 3554.157 -1.12529 8 0.000 0.000

x 2 2 3559.414 -1.12618 8 0.000 0.000

Lumber 1 1 -22031.108 6.29215 8 0.478 0.000

1 1 -21541.809 6.15272 8 0.484 0.000

x 1 1 -21531.166 6.14996 8 0.384 0.000

Gold 10 0 -32334.783 6.97881 9 1.000 0.000

3 0 -28530.443 6.15208 9 0.000 0.000

x 2 2 -28528.430 6.15142 9 0.000 0.000

Silver 10 0 -3714.602 0.80401 9 0.999 0.000

5 0 3469.612 -0.74644 9 0.000 0.000

x 10 0 3479.433 -0.74767 9 0.000 0.000
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Table 6: Estimation results of ARMA models - 2 of 2

p q Log-likelihood AICn Lag Ljung-Box McLeod-Li

Platinum 1 1 -27963.539 7.98160 8 0.237 0.000

5 0 -25925.178 7.40525 8 0.000 0.000

x 10 0 -25897.058 7.40422 8 0.000 0.000

Palladium 5 0 -24089.578 6.88080 8 0.257 0.000

10 0 -21354.485 6.10587 8 0.000 0.000

x 5 0 -21367.921 6.10420 8 0.000 0.000

Copper 10 0 -17319.500 5.50294 8 1.000 0.000

5 0 -15333.940 4.86737 8 0.000 0.000

x 10 0 -15311.933 4.86615 8 0.000 0.000

Light crude oil 5 0 -11110.308 2.85498 8 0.664 0.000

2 0 -8663.663 2.22530 8 0.001 0.000

x 1 1 -8663.256 2.22517 8 0.002 0.000

Heating oil 1 2 -17228.339 4.96423 8 0.255 0.000

x 2 0 -15489.176 4.46389 8 0.064 0.000

1 1 -15490.537 4.46393 8 0.070 0.000

Brent crude oil 2 2 -9405.228 2.92957 8 0.007 0.000

x 2 2 -7617.552 2.37340 8 0.001 0.000

2 2 -7616.836 2.37349 8 0.002 0.000

Gas oil 2 1 -22060.940 7.16659 8 0.487 0.000

1 0 -20644.213 6.70505 8 0.640 0.000

x 1 0 -20640.309 6.70411 8 0.532 0.000

Natural gas 2 2 2089.730 -0.69900 8 0.160 0.000

x 1 2 3892.707 -1.30361 8 0.014 0.000

1 1 3892.495 -1.30354 8 0.010 0.000

Gasoline RBOB 5 0 -5839.139 6.10563 7 0.814 0.000

3 0 -5765.853 6.02176 7 0.060 0.000

x 3 0 -5760.988 6.01772 7 0.070 0.000

Live cattle 10 0 -11363.842 2.45433 9 1.000 0.000

10 0 -10215.703 2.20684 9 0.721 0.000

x 10 0 -10210.809 2.20600 9 0.750 0.001

Lean hogs 1 1 -11779.078 3.36275 8 0.601 0.996

1 0 -9478.016 2.70605 8 0.221 0.994

x 5 0 -9462.261 2.70453 8 0.676 0.994
* Lags refers to the number of lags incorporated into both the Ljung-Box and McLeod-Li test statistics. This

value is ln (T ). Moreover, the values listed of the aforementioned statistics are the p-values. The AICn value is

the AIC normalized by the number of elements in the log-likelihood summation.
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6 The mixed causal/noncausal autoregressive model

6.1 The general form

Definition 6.1. The mixed causal/noncausal autoregressive process of order (r, s)

Let (xt) be a univariate stochastic process generated by a linear autoregressive

mixed causal/noncausal model with order (r, s). The process is defined by:

φ(L)ϕ(L−1)xt = ǫt, (9a)

where ϕ(L−1) = 1− ϕ1L
−1 − ϕ2L

−2 − . . .− ϕsL
−s, (9b)

φ(L) = 1− φ1L− φ2L
2 − . . .− φrL

r, (9c)

and (ǫt) is a sequence of i.i.d. random variables.

L is the lag operator where Lxt = xt−1 and L−1xt = xt+1. Moreover, we assume that

the lag polynomial operators ϕ(z−1) and φ(z) have their roots strictly outside the complex unit

circle. In other words,

ϕ(z) 6= 0 and φ(z) 6= 0 for complex z where |z| ≤ 1. (10)

Another way to write the model in (9), employed in Breidt et. al. (1991), is to consider an

autoregression of order k = r + s:

α(L)xt = ut, (11a)

where α(L) = 1− α1L− α2L
2 − . . .− αkL

k, (11b)

where the operator α(z) can be factorized as α(z) = α1(z)α2(z), where α1(z) (of order r)

contains all its roots strictly outside the complex unit circle and α2(z) (of order s) contains all

its roots strictly inside the unit circle. Of course, we can always map the parameters from model

(9) to (11) since we have that −(1/αsL
s)α2(L) = ϕ(L−1), where the coefficients of ϕ(L−1)

are given as ϕi = −αs−i/αs for i = 1, . . . , s − 1 and ϕs = 1/αs for i = s, and the roots of

α2(L) and ϕ(L−1) are inverses (in the sense that α2(z) = ϕ(1/z) = 0 for some complex z

where |z| < 1). The mapping places the constraint on the innovations of both models such that

ǫt = −(1/αsL
s)ut = −(1/αs)ut+s.
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6.2 Special cases and the linear moving average representation

The purely causal and purely noncausal autoregressive models are special cases in which the

process error terms (ǫt) can be interpreted in terms of innovations.

6.2.1 The purely causal autoregressive process

When the noncausal operator in model (9), ϕ(L−1) is equal to identity, that is, if ϕi = 0 for

all i = 1, . . . , s, so that φ(L)xt = ǫt where φj 6= 0 for some j = 1, . . . , r, we say that the

process xt is purely causal and we have that ǫt is now equal to a causal innovation. In other

words, xt is strictly a function of the past of the process, Ft−1 = {xt−1, xt−2, . . . , xt−r}, and

the shocks ǫt are independent of the past. When ǫt admits second order moments and is zero

mean then ǫt = xt −E[xt|Ft−1]. If the lag polynomial operator φ(L) is invertible then (xt) has

the equivalent epresentation given as

xt = φ(L)−1ǫt =
∞
∑

j=0

φ∗
jǫt−j (12)

where φ∗
0 = 1 and the right hand side converges in mean squared (i.e. is covariance stationary).

6.2.2 The purely noncausal autoregressive process

Analogously, when the causal operator in model (9), φ(L) is equal to identity, that is, if φi = 0

for all i = 1, . . . , r, so that ϕ(L−1)xt = ǫt where ϕj 6= 0 for some j = 1, . . . , s, we say that the

process xt is purely noncausal and we have that ǫt is now equal to a noncausal innovation. In

other words, xt is strictly a function of the future of the process, Ft+1 = {xt+1, xt+2, . . . , xt+s},

and the shocks ǫt are independent of the future. When ǫt admits second order moments and is

zero mean then ǫt = xt − E[xt|Ft+1]. If the lag polynomial operator ϕ(L−1) is invertible then

(xt) has the equivalent representation given as

xt = ϕ(L−1)−1ǫt =
∞
∑

j=0

ϕ∗
jǫt+j (13)

where ϕ∗
0 = 1 and the right hand side converges in mean squared (i.e. is covariance stationary).
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6.2.3 The mixed causal/noncausal autoregressive process

Finally, again given the model in (9), if we have that ϕi 6= 0 for some i = 1, . . . , s, and φj 6= 0

for some j = 1, . . . , r, so that neither of the lag polynomial operators are equal to identity, then

(9a) defines both a causal and noncausal autoregression and we say that the process is a mixed

causal/noncausal autoregression of order (r, s).

From (12) and (13) we saw that if the process (xt) in (9a) is either purely causal or purely

noncausal then it admits a purely backward or purely forward representation. If the model is of

mixed causality then we say that the process has the two-sided moving average representation

given by

xt = ϕ(L−1)−1φ(L)−1ǫt =
∞
∑

j=−∞

θjǫt−j. (14)

where in this general case the error term ǫt is neither a causal or a noncausal innovation.

It will also be useful to define the following processes ut and vt. From (9a) and (10) let ut

be defined as

ut = φ(L)xt = ϕ(L−1)−1ǫt =
∞
∑

j=0

ϕ∗
jǫt+j, (15)

where ϕ∗
0 = 1 and the right hand side converges in mean squared (i.e. is covariance stationary).

We call (15) the forward looking representation.

Moreover, also from (9a) and (10) let vt be defined as

vt = ϕ(L−1)xt = φ(L)−1ǫt =
∞
∑

j=0

φ∗
jǫt−j, (16)

where φ∗
0 = 1 and the right hand side converges in mean squared (i.e. is covariance stationary).

We call (16) the backward looking representation.

6.3 Reversibility and the strong linear processes

The nonlinear features of the majority of strong moving average processes, and in particular the

mixed causal/noncausal processes, is due to their irreversibility properties. Let us first recall

the definition of a reversible process is given as follows (e.g. Ramsey & Rothman (1996))

Definition 6.2. Time reversible process
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A time series (Xt) is time reversible if for every positive integer n, every t1, t2, . . . , tn ∈
R, and all m ∈ N, the vectors (Xt1 , Xt2 , . . . , Xtn) and (X−t1+m, X−t2+m, . . . , X−tn+m)

have the same joint probability distributions.

Of course, this is the same as the condition from Brillinger and Rosenblatt (1967, p.210) that a

time reversible process must admit the same ith cumulant κi both backwards and forwards–that

is, we must have C(t1, t2, . . . , ti−1) = C(−t1,−t2, . . . ,−ti−1) for all i. 7

Note that if the process (Xt) is both Markov and strong stationary, then the condition in

Definition 1 reduces to ft|t−1(Xt|Xt−1) = ft−1|t(Xt|Xt−1) where ft|t−1(·) is the conditional

density of Xt, conditional on time t− 1 information. In other words, the transition probability

from state Xt−1 into state Xt does not depend on whether time is flowing forward or backward.

Intuitively, the notion of reversibility implies that if we take some process (Xt), and reverse

its time direction, that the probability law defining the joint process (or transition probability

for a stationary Markov process) remains unchanged. This of course implies a sort of “time

directional symmetry” both forwards and backwards in time. Therefore, the notion of reversible

processes is important in considering the process of mixed causality in (9a) since this process

implies both a forward and backward representation through the terms vt and ut in (15) and

(16).

Intuitively, the process (xt) is reversible if its distributional properties are the same in both

direct and reverse time. In general a strong linear process is not reversible. More precisely we

have the following proposition,

Proposition 6.3. Properties of the strong Gaussian process

i) A process admits both strong linear causal and nonlinear causal representa-

tions if and only if the process is Gaussian.

ii) If so, this process is also reversible.

The first results in (i) is due to the fact that the distribution of a Gaussian process is char-

acterized entirely by its mean and its covariance function, Rx(s) = Cov(xt, xt+s) and since

Rx(s) = Rx(−s), the result in (ii) follows. An important consequence of proposition 6.3 is

7see equation (4).
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that a general mixed causal/noncausal autoregressive process with non-Gaussian error terms

will feature nonlinear dynamics both in the direct and reverse time directions.

6.3.1 Example: Gaussian innovations

To illustrate proposition 6.3 let us consider the following example of a simulated AR(1) process

with standard Gaussian innovations given in Figure 4; that is a process defined by xt = ρxt−1+

ǫt where ǫt ∼ N(0, 1) and ρ = 0.8.

Figure 4: The Gaussian AR(1) process

Figure 5: The Gaussian AR(1) process in reversed time

Now consider the same sample path but in reversed time shown in figure 5. By proposition

6.3 we know that this simulated path must come from the same Gaussian AR(1) process as
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the original. This example illustrates a crucial point which is the linear ARMA(p,q) models

with Gaussian noise are reversible and their forward and backward probability laws both are

the same. Therefore, it is impossible to statistically identify between the causal and noncausal

representations of such a Gaussian process. However, what is most interesting about this re-

versibility is how special it is. In fact, reversibility of the ARMA processes represents the

exception rather than the rule.

To reinforce this connection, consider the following example. Given the mixed linear

AR(1,1), that is (1 − ϕ1L
−1)(1 − φ1L)xt = ǫt, with non-Gaussian innovations ǫt, it is im-

possible to distinguish between this model and the strictly causal linear AR(2) model, (1 −

ϕ1L)(1 − φ1L)xt = ǫt, by appealing only to the 2nd order properties of the process (i.e. au-

tocovariance function) since they imply the same spectral density. Denoting hx,m(ω) as the

unnormalized spectral density of the mixed process and hx,c(ω) as that of the strictly causal

process, we have

hx,m(ω) = |ϕ(
[

e−iω
]−1

)|−2|φ(e−iω)|−2σ2
ǫ/2π (17a)

= ϕ(e+iω)−1ϕ(e−iω)−1φ(e−iω)−1φ(e+iω)−1σ2
ǫ/2π (17b)

= |ϕ(e−iω)|−2|φ(e−iω)|−2σ2
ǫ/2π = hx,c(ω) (17c)

Of course, this also suggests we cannot identify between the linear mixed causal/noncausal

models and the strictly causal or noncausal models with Gaussian innovations, since the Normal

distribution is entirely characterized by its mean and variance and thus the linear (mixed or

otherwise) Gaussian process has higher order polyspectra equal to zero everywhere (i.e. its

bicovariance function E[(xt − µ)(xt−s1 − µ)(xt−s2 − µ)] = Rx,2(s1, s2) = 0 for all s1, s2).

It is also interesting to note that the mixed causal/noncausal autoregressive model from (9a)

is effectively doubly filtered strong white noise, where the noise is first filtered in direct time

and the resulting process is then filtered again in reverse time. As an example of how this fact

can affect the the final process, xt, let us consider the example of the mixed causality AR(1)
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model with t-distributed innovations, ǫt ∼ t(0, σ, γ). First, we have that from (16),

vt = φ(L)−1ǫt =
ǫt

(1− φ1L)
(18)

and so the variance and spectral density of the direct time (i.e. backward) filtered noise, vt, is

given respectively as

σ2
v =

σ2
ǫ

1− φ2
1

=
σ2

(1− φ2
1)

γ

(γ − 2)
for γ > 2 and (19a)

hv(ω) =
σ2
ǫ

2π

1

1− 2φ1 cosω + φ2
1

. (19b)

Therefore, the lag polynomial φ(L) represents a low-pass filter, with the emphasis on passing

along the low frequencies of ǫt increasing in φ1.

Next, xt represents the forward filtered output of ϕ(L−1)−1vt and so we have that

xt = ϕ(L−1)−1vt =
∞
∑

j=0

ϕj
1vt+j. (20)

Of course, the spectral density of xt is simply that of the AR(2) model:

hx(ω) =
σ2
ǫ

2π

1

|φ(e−iω)|2
1

|ϕ(e+iω)|2 , (21)

and so it is unidentified up to 2nd order properties. Finally, the variance of xt is given as

σ2
x =

σ2
v

1− ϕ2
1

=
σ2
ǫ

(1− ϕ2
1)(1− φ2

1)
=

σ2

(1− ϕ2
1)(1− φ2

1)

γ

(γ − 2)
(22)

Therefore, given the mixed AR(1) model, with ϕ1 ≈ 1 and φ1 ≈ 1 the process xt will rep-

resent a highly smoothed version of the original direct time process, vt, scaled by 1/
√

1− ϕ2
1.

See figure 6 for a plot of the simulated processes, vt and xt, given ϕ1 = φ1 = 0.9, γ = 3, and

σ = 1.
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Figure 6: Simulated processes vt and xt
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Generally, ARMA processes driven by non-Gaussian innovations are not reversible (except

for the unique case of symmetric or skew-symmetric coefficients in the Wold representation of

the process – see Hallin et. al. (1998) for a discussion). Therefore, in order to model possible

time asymmetries in commodity futures prices, we need to impose a non-Gaussian error term,

ǫt, in (9a).

6.3.2 Example: Cauchy innovations

Let us now consider a simulated path from the AR(1) process xt = ρxt−1 + ǫt with Cauchy

innovations, ǫt, where ρ = 0.8 as given in Figure 7,

Figure 7: The Cauchy AR(1) process
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Figure 8: The Cauchy AR(1) process in reversed time

and again, the path in reversed time is given in Figure 8. It is now clear that the process is

irreversible due to the time asymmetry of the process. Figure 7 provides a typical path from

the causal AR(1) process with Cauchy causal innovations; that is, it always includes some

jumps followed by an exponential decrease/increase after the jumps. However, in reverse time

the peaks follow the reverse pattern exhibiting exponential increases followed by a crash. In

this case, the time irreversibility is easily detected by examining the opposite natures of these

extreme behaviours.

Finally, consider the simulated mixed causal/noncausal process (1− ρL)(1− ρL−1)xt = ǫt

with Cauchy innovations as given in Figure 9.

Figure 9: The mixed Cauchy AR(1) process

45



Figure 10: The causal Cauchy AR(1) process

And compare the process above to the strictly causal version of the same process, that is (1 −

ρL)xt = ǫt, as given in Figure 10.

Moreover, consider Figure 11 which generates sample paths according to various values of

ρ1 and ρ2 in (1− ρ1L)(1− ρ2L
−1)xt = ǫt given the same set of simulated shocks (ǫt). Notice

the degree and time direction of the booms and crashes depends on the parameters ρ1 and ρ2.

Figure 11: The mixed causal/noncausal Cauchy model

-180

-160

-140

-120

-100

-80

-60

-40

-20

 0

 20

 40

 0  10  20  30  40  50  60  70  80  90  100

Rho1=0.8, Rho2=0.0

Rho1=0.6, Rho2=0.2

Rho1=0.4, Rho2=0.4

Rho1=0.2, Rho2=0.6

Rho1=0.0, Rho2=0.8

Now we can see how adding a symmetric noncausal lag polynomial to the autoregression

restores the time symmetry. Moreover, given these symmetric coefficients we chose, the model

xt = (1 − ρL)−1(1 − ρL−1)−1ǫt now satisfies reversibility despite the non-Gaussian nature of

the innovations (since the coefficients of the mixed causal/noncausal Wold representation form
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a symmetric set). However, for any other asymmetric choices of the mixed AR coefficients the

process would be irreversible. Such processes are useful in that they can capture all sorts of

time asymmetries we see in the data.

The linear forward looking autoregressive Cauchy process of order 1 arises then as special

case of the mixed model in (9a). That is, we have φj = 0 for all j = 1, . . . , r, s = 1, and (ǫt) is

an i.i.d. Cauchy sequence. Again, since it is known from proposition 6.3 that only the Gaussian

processes possess both causal and noncausal strong form linear autoregressive representations,

the causal form (i.e. backward looking or reversed process representation) of the AR(1) Cauchy

process is necessarily nonlinear. Moreover, the AR(1) Cauchy process is also time irreversible.

The theoretical properties of the AR(1) Cauchy process are reviewed next in section 6.4 (see

also Gourieroux and Zakoian (2012)).

6.4 The Cauchy autoregressive process of order 1

6.4.1 The noncausal strong form

As previously discussed, a special case of the mixed process of (9a) is the strictly noncausal

linear autoregressive process of order 1 with i.i.d. Cauchy innovations (recall the t-distribution

with 1 degree of freedom is equivalent to the Cauchy distribution). While this represents an

extreme case, it is a useful model to consider since it can serve as an example for understanding

the nature of the one-step ahead predictive density based on past information. Of course, from

Rosenblatt (2000) we know that this predictive density for a linear mixed (or strictly noncausal)

process is necessarily nonlinear when the innovations are not Gaussian.

To begin, consider the linear strong form of the autoregressive Cauchy process of order 1,

with backwards innovations (i.e. the forward looking process) defined as:

xt = ρxt+1 + ǫt, (23)

where |ρ| < 1 and ǫt/σǫ follows a standard i.i.d. Cauchy distribution. Note the backwards

innovations are defined as ǫt = xt −median(xt|xt+1) since, strictly speaking, the moments of

the Cauchy distribution do not exist.
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It can be shown that the unconditional distribution of the process in equation (23) is given

as

ft(xt) =
1− |ρ|
σǫπ

σ2
ǫ

σ2
ǫ + (1− |ρ|)2x2

t

. (24)

See Proposition 1 in Gourieroux and Zakoian (2012) for more details. Note that since, for

|ρ| < 1, the process in equation (23) is strong form stationary, we can be assured that ft(xτ ) =

ft+h(xτ ) for all τ and h both integers.

Moreover, the Markov transition distribution (conditional density) of the forward-looking

process is given as

ft|t+1(xt|xt+1) =
1

σǫπ

σ2
ǫ

σ2
ǫ + z2t

, where zt =
xt − ρxt+1

σǫ

, (25)

which follows from the definition of the standard Cauchy distribution.

Therefore, from Bayes theorem along with equations (24) and (25), we have that

ft+1|t(xt+1|xt) = ft|t+1(xt|xt+1)ft+1(xt+1)/ft(xt) (26a)

=
1

σǫπ

σ2
ǫ

σ2
ǫ + z2t

1−|ρ|
σǫπ

σ2
ǫ

σ2
ǫ+(1−|ρ|)2x2

t+1

1−|ρ|
σǫπ

σ2
ǫ

σ2
ǫ+(1−|ρ|)2x2

t

(26b)

=
1

σǫπ

σ2
ǫ

σ2
ǫ + z2t

σ2
ǫ + (1− |ρ|)2x2

t

σ2
ǫ + (1− |ρ|)2x2

t+1

, (26c)

which provides the causal transition density of the reversed process from equation (23) (i.e. the

one-step ahead predictive density).

Note that since in general we have

ft|t+1(xt|xt+1) =
1

σǫπ

σ2
ǫ

σ2
ǫ + z2t

6= 1

σǫπ

σ2
ǫ

σ2
ǫ + z2t

σ2
ǫ + (1− |ρ|)2x2

t+1

σ2
ǫ + (1− |ρ|)2x2

t

= ft+1|t(xt|xt+1), (27)

the process defined in equation (23) is irreversible. That is, the transition probabilities of the

Markov process backward through time are not the same as those forward in time.
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6.4.2 The causal weak form represention

Again, only the Gaussian autoregressive processes possess both causal and noncausal strong

form linear autoregressive representations. However, the noncausal AR(1) Cauchy model ad-

mits a weak form linear representation given as

xt = Et|t−1[xt|xt−1] + ηt

√

V art|t−1[xt|xt−1], where (28a)

Et|t−1[xt|xt−1] = sign(ρ)xt−1 and (28b)

Et|t−1[x
2
t |xt−1] =

1

|ρ|x
2
t−1 +

σ2
ǫ

|ρ|(1− |ρ|) , (28c)

which would otherwise be a weak double AR(1) process of the Ling & Li (2008) type, except

for the fact that ηt is not i.i.d. We say the representation is a weak one since both ηt is a weak

white noise (not i.i.d.) and ηt
√

V art|t−1[xt|xt−1] = ǫt is conditionally heteroskedastic. That is,

the weak innovations also display GARCH type effects.

Interestingly, the process remains stationarity despite the presence of a unit root; this unit

root is expected since the unconditional moments of xt do not exist. However, as discussed in

Gourieroux and Zakoian (2012), typical linear unit root tests will fail in detecting the explosive

bubbles of the noncausal AR(1) Cauchy process, even if the martingale property is satisfied.

6.4.3 The causal strong form represention

In order to represent the causal, reversed process, from equation (23) in strong form we must

appeal to the nonlinear (or generalized) innovations of the process (see Rosenblatt (2000),

Corollary 5.4.2. or Gourieroux and Jasiak (2003), section 2.1).

Intuitively, a nonlinear error term, (γt), of the causal process (xt) is a strong white noise

where we can write the current value of the process xt as a nonlinear function of its own

past value xt−1 and γt, say xt = G(xt−1, γt), and xt and γt satisfy a continuous one-to-one

relationship given any xt−1.

Moreover, since the conditional cumulative distribution function (CCDF) of xt|xt−1 is
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strictly monotone increasing and continuous, it has an inverse so we can write

xt = G(xt−1, γt) (29a)

= F−1(ϕ(γt)|xt−1) (29b)

⇔ γt = ϕ−1(F (xt|xt−1)), where γt ∼ IIN(0, 1) (29c)

and F (·|xt−1) is the CCDF of xt while ϕ(·) is the CDF of the standard Normal distribution.

Note that the choice of the Normal distribution as our strong form error term is purely conven-

tional; however, it has the advantage of being able to derive directly the Volterra representation

of the nonlinear time series, which defines xt as the limit of polynomials in the current and

lagged values of Gaussian white noise (see Gourieroux and Jasiak (2003), section 2.2, Property

5 and also section 8).

Finally, it should be noted that the AR(1) Cauchy model is easily introduced in a mixed

causal/noncausal framework unlike previous bubble modeling strategies described in the next

section.

6.5 Other bubble like processes

As described in Gourieroux and Zakoian (2011), several other examples of martingale pro-

cesses with bubbles have been introduced in the literature. However, none of these processes

are as easy to introduce into a mixed causal/noncausal model as the Cauchy AR(1) model.

Interestingly, these previous bubble processes also represent processes nonlinear in mean (see

section 8), but which still maintain the martingale property. For example, the bubble process of

Blanchard and Watson (1982) given as

xt+1 =















1
π
xt + ǫt+1 with probability π

ǫt+1 with probability (1− π)

(30a)

represents a martingale process but is piecewise nonlinear in that given the latent state, the

parameter on the autoregression switches between zero and 1/π. Note that (ǫt) is a nonlinear
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Gaussian error term.

Moreover, the process by Evans (1991) proposes to model the explosive parameter, (θt),

as a Bernoulli random variable, B(1, π). Again, this process represents one that is piecewise

nonlinear, but in this case is also a multiplicative error term model, with (ut) representing an

i.i.d. process with ut ≥ 0, Et[ut+1] = 1, and with parameters 0 < δ < (1 + r)α where r > 0,

π ∈ (0, 1], and

xt+1 =















(

δ + 1
π
(1 + r)θt+1

(

xt − δ
(1+r)

))

ut+1 if xt > α

(1 + r)xtut+1 if xt ≤ α.

(31a)

Notice that in this case the state is not latent, but observable in xt. In this way, the process is

similar to the self-exciting threshold autoregression of Tong and Lim (1980).

Ultimately, these two bubble processes were constructed for very specific theoretical rea-

sons. The Blanchard and Watson (1982) process is given as an example of a bubble consistent

with the rational expectations hypothesis and the Evans (1991) process is given as an example

of a stationary bubble process that defies linear unit root testing. Alone, and without further

modification, neither process should be considered a serious candidate to model bubbles in

commodity futures price levels.

6.6 Testing for reversibility in the data

There is clearly an intimate connection between the autoregressive mixed causal/noncausal

model from (9) and the class of time irreversible processes. It stands to reason that if a process

is time irreversible then it may be better modeled by a mixed causal/noncausal model than one

which is strictly causal.

In Ramsey and Rothman (1996) the authors suggest time irreversibility may be useful in

modeling the asymmetric nature of business cycles. They suggest a test for the time irreversibil-

ity of a process, based on the following theorem and the notion of a symmetric bicovariance

function E[xtxt−sxt−k],

Theorem 6.4. Reversibility of a time-series
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Let (xt) be a stationary time series with mean zero and assume the multivariate

characteristic generating functions of {xt, xt−k} and {xt−k, xt} can be expanded

as a convergent series in the moments and cross moments of the respective joint

probability distributions; that is, it is assumed that the joint probability distribu-

tions are uniquely characterized by their respective sequence of moments and cross

moments. Then (xt) is time reversible only if:

E[xi
tx

j
t−k] = E[xj

tx
i
t−k] for all j, k, i ∈ N

where the expectation is taken with respect to each respective joint distribution.

That is, (xt) is time reversible only if the “higher order” autocovariance functions of {xt, xt−k}

and {xt−k, xt} are the same. Therefore, just as it is impossible to identify the mixed model

from the strictly causal or noncausal models based on 2nd order properties of the process, it

is also impossible to determine whether the process is reversible or not, since we clearly have

that if i = j = 1 the condition in theorem 6.4 holds trivially for real processes. Moreover,

since the linear processes with Gaussian innovations have their “higher order” covariances

equal to zero everywhere (again since the Normal distribution is characterized by only its mean

and variance) it is clear that they are automatically time reversible and so again the theorem

above holds trivially. Of course, if the process (xt) is nonlinear with Gaussian innovations

it is quite possible that xt may then be time irreversible since the process xt itself is gener-

ally not Gaussian (Ramsey and Rothman (1996) provide the example of the Bilinear process

xt = α1xt−1 + β1ǫt−1 + γ1xt−1ǫt−1 + ǫt where ǫt ∼ N(0, 1) as an example). Ramsey and

Rothman refer to the latter type of time irreversibility as “Type 1” irreversibility and the former

type (where the model is linear, with non-Gaussian innovations) as “Type 2” irreversibility.

6.6.1 The TR test applied to the data

From Brillinger and Rosenblatt (1967, p.210) we know that a stationary time reversible pro-

cess must admit the same ith cumulant κi both backwards and forwards–that is, we must have

C(t1, t2, . . . , ti−1) = C(−t1,−t2, . . . ,−ti−1) for all i 8. Of course, this implies that the imag-

inary part of the bispectrum must be zero, a fact exploited by Hinich and Rothman (1998) in

8see equation (4).
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developing a frequency domain statistical test of time reversibility.

Ramsey and Rothman (1996) also define a statistical time-domain test, called the “TR test,”

based on the difference between the 3rd order cumulants of the direct time and reversed sta-

tionary processes,

γ2,1(k) = E[(xt − µX)
2(xt−k − µX)]− E[(xt − µX)(xt−k − µX)

2] (32a)

= C(0, k)− C(k, k) (32b)

= C(0, k)− C(0,−k) (32c)

= C(−k,−k)− C(k, k). (32d)

Of course, this is equivalent to comparing the values of the bicovariances along the “main-

diagonal” or where t1 = t2 = k. Therefore, in light of the definition of reversibility above,

under the null hypothesis we have that γ2,1(k) = 0 for all k > 0.

The population characteristic in expression (32a) can be estimated by sample moment coun-

terpart. Moreover, under some mixing conditions (see Ramsey and Rothman (1996)) the statis-

tic is distributed asymptotically Normal. When (xt) is a stationary sequence of i.i.d. variables

then Theorem 2 from Ramsey and Rothman (1996) provides an expression for the exact finite

sample variance of this statistic under the null of reversibility. However, when (xt) is not i.i.d.

we must simulate the statistic’s variance under the null. Recall from above there can exist two

types of irreversible processes: type 1 processes where the model is nonlinear but with shocks

that may or may not be Gaussian, and type 2 where the model is linear but with non-Gaussian

shocks. Therefore there exist two cases under the null of reversibility: the model is linear with

Gaussian shocks or the model is nonlinear but reversible.

In order to simulate the finite sample variance of the TR statistic under the null Ramsey

and Rothman (1996) suggest we estimate the parameters of the best fitting (according to some

information criterion) linear causal ARMA model with Gaussian innovations. We then simulate

sample paths from this estimated process a number of times, each time computing the TR

statistic. After a sufficient number of iterations, the variance of these statistics is estimated by

sample moment. Of course, if the model is truly linear with Gaussian innovations then this is
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an exact simulation of the null; however, if the model is nonlinear but reversible then this is

only an approximation.

Monte carlo simulations are performed for each estimated linear causal ARMA model with

Gaussian innovations from section 5. N = 1500 individual sample paths of the same length

as the respective data series are generated from these models and the TR test statistic γ2,1(k)

is then computed for the more general case where γ2,1(k, s) = C(−k,−s) − C(k, s). In this

way we generate the finite sample distributions for each coordinate (k, s) of the TR statistic,

up to N observations. Inspection of these finite sample distributions suggest they differ sub-

stantially from Normality in that they are both leptokurtic and skewed and exhibit a “convex”

shape similar in appearance to a α-stable distribution with α = 1/2. Therefore, rather than

assume standard Normal statistical significance cutoff values, sample quantiles are estimated

accordingly for a two-sided test given 20%, 10%, 5%, and 1% significance levels of commiting

a type 1 error.

Table 7 presents the results of the estimated TR test statistics for the various commodity

futures price level series. The various percentage values indicate the significance level at which

we are able to reject the null hypothesis of a two-sided test – the absence of a value suggests we

are not able to reject the null hypothesis of reversibility for at least the 20% significance level.

Interestingly, we are unable to reject the null for most of the metals and energy commodity

futures, as well as for orange juice and sugar,9 and the strongest evidence for irreversibility

seems present in the soft goods and livestock, specifically the cocoa, coffee, and cotton futures

series.

Both Hinich and Rothman (1998) and Ramsey and Rothman (1996) apply their respec-

tive statistical tests to a number of economic time series (for example the Nelson and Plosser

(1982) dataset employed in their study of stochastic trends) and find evidence of irreversibil-

ity. Ramsey and Rothman (1996) also suggests that the “sign” of γ2,1(k) across k tells us

something about the nature of the longitudinal asymmetry (for example, considering whether

a business cycle series rises slowly and falls quickly or vice versa) and so it isn’t a stretch to

imagine that the “shape” of γ2,1(k) (e.g. its rate of change or prominent features) might also

9At least at the 10% or higher significance level.
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Table 7: TR test results

Series Lag (k, s)
(1,1) (1,2) (1,3) (1,4) (2,2) (2,3) (2,4) (3,3) (3,4) (4,4)

Soybean meal 5% 5% 5% 5% 5% 10% 5% 5% 5%

Soybean oil 20%

Soybeans 20% 20% 20% 20% 20% 20% 20% 20%

Orange juice

Sugar 20% 20%

Wheat 20% 20% 20% 20% 20% 20% 20% 20%

Cocoa 1% 5% 1% 1% 1% 1% 10% 1% 1% 1%

Coffee 1% 10% 5% 5% 5% 5% 10% 5% 5% 5%

Corn 20% 10% 20% 20% 20% 20% 10% 20% 20% 20%

Cotton 5% 5% 5% 5% 5% 5% 1% 5% 5% 5%

Rice 10% 20%

Lumber 10% 20% 20% 20% 20% 20% 20% 20% 20%

Gold

Silver 10% 5% 5% 5% 5% 5% 1% 5% 5% 5%

Platinum

Palladium 20% 5%

Copper 20%

Light crude oil 20% 20%

Heating oil

Brent crude oil

Gas oil

Naturas gas 1%

Gasoline RBOB

Live cattle 20% 10% 10% 10% 10% 10% 10% 10%

Lean hogs 5% 10% 5% 5% 5% 5% 20% 5% 5% 5%
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tell us something.

Note that just because a series doesn’t suggest irreversibility through its third cumulant

does not mean it may not be irreversible through higher order cumulants. Considering the

strong nature of the constraint imposed on the probability structure, reversibility is probably

the exception rather than the rule for most time series we encounter in economics.

7 Estimating the mixed causal/noncausal model

Estimation of the model parameters in (9) can be accomplished by maximizing the approxi-

mate likelihood function with respect to the parameters (MLE). Breidt et. al. (1991) studies

the properties of the maximum likelihood estimator for model (11). Moreover, Lanne et. al.

(2008,2011) extend these results to the model in (9), where the distribution of the error term is

allowed to depend on a degrees of freedom parameter.

As in Lanne et. al. we assume the regularity conditions of Andrews et. al. (2006) which

require the likelihood to be twice differentiable with respect to (y, λ) (where y is the complete

data vector and λ is a vector of parameters).

The rationale for approximating the likelihood centers on the fact that because of the (r, s)

lags in the mixed model, we effectively have no way of describing the density of the “tail ends”

of the data, both at the beginning and end. Moreover, we need to use a change of variables to

go between the density of ǫt and xt since the Jacobian determinant is not unitary.

The change of variables is as follows. Consider the time series xt for t = 1, . . . , T . Using

the expressions from (15) and (16) we have ut = φ(L)xt and vt = ϕ(L−1)xt and so we can we

write the matrix relation:
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Moreover, from ǫt = φ(L)ϕ(L−1)xt = φ(L)vt we have:
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And so we have the transformation ǫ = BAx. Note that by symmetry we could have started

the other way around, deriving a relationship between x and Ax by first taking ut = φ(L)xt

and then secondly generating BAx by ǫt = ϕ(L−1)ut.

Either way, we have that the elements of ǫ are independent of each other and the joint

density of ǫ under the true parameter vector is given as:

Lǫ(ǫ|Ω) = fv(v1, . . . , vr)

(

T−s
∏

t=r+1

fǫ(ǫt;λ)

)

fu(uT−s+1, . . . , uT ) (35)

where Ω = {ϕ, φ, λ, σ} represents the parameters of the model.

It can also be shown that the determinant of the B matrix is unity so that we can express

the joint density in terms of x as:

Lx(x|Ω) = fv(ϕ(L
−1)x1, . . . , ϕ(L

−1)xr)

(

T−s
∏

t=r+1

fx(ϕ(L
−1)φ(L)xt;λ)

)

fu(φ(L)xT−s+1, . . . , φ(L)xT )|det(A)| (36)

Since the determinant of A is independent of sample size,10 we can approximate the likelihood

10To show this we can employ the partitioned matrix determinant formula: det

([

A11 A12

A21 A22

])

=

det (A11) det
(

A22 −A21A11

−1A12

)

, where it can be shown that A11 is (T − s) × (T − s) with determi-

nant 1, and so the second term in the factorization represents the determinant of an s× s matrix, for all T .
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by using the second factor in the above expression. Bear in mind that for large samples, T will

dwarf r + s and so the approximation will be a good one.

Asymptotic properties of the approximate maximum likelihood estimators are discussed in

section 3.2 of Lanne et. al. (2008) and consistent estimation of the standard errors is detailed

in section 3.3.

7.1 Estimation results

In this section I will now compare estimation results from the mixed autoregressive model of

order (r, s) in (9a) as applied to the 25 futures price level data series. Estimation of the model

parameters numerically optimizes the likelihood function discussed in the last section.

As in section 5 where the linear causal ARMA model was shown to inadequately capture the

features of the price level data, I will again employ the AIC criterion, along with Ljung-Box

statistics testing the hypothesis that both the innovations and their squares exhibit no linear

autocorrelation. Similarly, I will consider the best fitting linear causal ARMA model from

section 5 as a benchmark model, where the innovations will be either t-distributed or skewed-t,

depending on which version of the model did better in that section. Please see section 5 for

details of the methodology employed again here.

Table 8 presents the results of numerical maximum likelihood estimation. The mixed AR

model orders, (r, s), were selected via normalized AIC (the AIC divided by the number of

elements in the log-likelihood summation) amongst a set of of possible set of (r, s) values such

that r ≤ 10 and s ≤ 10. The first row of the results for each series represents the benchmark

ARMA model from section 5, while the second and third rows represent the mixed AR model

with t-distributed and skew t-distributed innovations respectively. The lags column represents

the number of lags (the natural log of the sample size ln (T )) included in both the Ljung-Box

and McLeod-Li test statistics, where p-values are provided in their respective columns. Finally,

an ’x’ marks the model with the lowest normalized AIC.

The estimation results suggest that the mixed causal/noncausal AR(r, s) model improves

model fit over the baseline causal ARMA model with t-distributed innovations selected from

section 5. In the cases where the models are nested, I again employ LR tests. In most cases
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the mixed causal model improves model fit significantly at the 1% significance level. However,

both cotton and natural gas seem to suggest that a strictly causal model may be sufficient.

While LR tests aren’t useful here as the relevant models are non-nested, a comparison of the

log-likelihoods between the causal and mixed model options suggests little difference.

Again in comparing the skewed t-distributed model to the standard t-distribution, the results

vary by series. In most cases the skewed t-distribution improves model fit and passes a LR test

at the 1% level. Moreover, orange juice, lumber, silver, copper, light crude oil, and gas oil also

pass at the 5% level and coffee passes at the 10% level. Series that do not pass LR tests at

the 10% level are soybean meal and oil, sugar, corn, cotton, rice, gold, palladium, natural gas,

and lean cattle, suggesting that there is little gain in employing a skewed t-distribution on the

innovations of these mixed models.

Interestingly, the estimated t-distribution degree of freedom parameters from the mixed AR

model innovations are quite close to those of the benchmark causal ARMA model and range

from near 1 (i.e. Cauchy distributed) to around 3 or so in most cases, which suggests bubble

like behaviour as defined by Gourieroux and Zakoian (2011).

Despite the improved model fit, however, it is clear that the mixed AR model is still unable

to adequately capture the dynamics of the series. McLeod-Li tests of the null that the autoco-

variance of the squared residuals is zero is rejected in all series, suggesting they are not i.i.d.

Of course, this is evidence that there still exists uncaptured nonlinear structure in the residuals.

Interestingly, this is despite the fact that the mixed causal/noncausal AR(r, s) model can be

shown to have a nonlinear strictly causal equivalent representation, which suggests the causal

representation implied by the mixed AR(r, s) model must be misspecified.

Interestingly, an examination of the roots of the lag polynomials implied by the estimated

parameters also confirms the mixed causality nature of the series, at least as it applies to the

strong form linear representation. If we accept only the statistically significant estimated pa-

rameters 11 and solve for the roots of the implied causal and noncausal lag polynomials, φ(L)

and ϕ(L−1) (from (9a)), we find that that the roots of both appropriately lie outside the unit

circle (which implies that from (11a), α(L) = α1(L)α2(L), is such that the roots of α1(L) lie

11Tested at the 5% level, assuming Normally distributed parameters and employing the inverse of the observed

Hessian matrix at the MLE estimated value as the parameter covariance matrix.
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strictly outside the complex unit circle while those of α2(L) lie strictly inside). Of course, if a

purely causal model fit the data better, none of the lags of the noncausal polynomial, ϕ(L−1),

should be statistically significant yet they are.

For reference I have constructed tables with all of the roots of the lag polynomials of both

the benchmark causal ARMA models of order (p, q) and the mixed causal/noncausal AR mod-

els of order (r, s); see Tables 22 to 24 within Appendix A. For the case of ARMA models

with q 6= 0, the roots reported are those of
α(L)
β(L)

= δ(L) in δ(L)xt = ǫt, where α(L) and β(L)

are the AR and MA lag polynomials respectively.

Notice first that in some mixed model cases that one of the roots of the noncausal polyno-

mial ϕ(L−1) lies inside the unit circle (this applies to all the metals and gas oil). This poses

no problem of course to the validity of the mixed model representation, since we can always

factor out that particular root and absorb it into the causal polynomial φ(L). That is, consider

the estimated model from (9a) where we have factorized both the causal and noncausal lag

polynomials as,

(1− λ1,cL) . . . (1− λr,cL)(1− λ1,ncL
−1) . . . (1− λs,ncL

−1)xt = ǫt (37a)

⇔ (1− λ1,cL) . . . (1− λr,cL)(1− λr+1,cL)(1− λ2,ncL
−1) . . . (1− λs,ncL

−1)xt = ut (37b)

where λi,c represents the inverse of the ith causal root (nc for noncausal) and without loss of

generality we assume that |1/λ1,nc| < 1. Therefore, ut = − 1
λ1,nc

ǫt−1 and λ1,nc = 1/λr+1,c.

Perhaps most interesting is the fact that for many of the causal ARMA models, the roots

actually imply a mixed representation! For example the ARMA representations of wheat, cof-

fee, rice, gold, platinum, all the energy series except natural gas, and lean hogs all share at least

one root with absolute value less than one in their δ(L) polynomial, suggesting that this poly-

nomial could be factored and then estimated as a mixed causal/noncausal model (instead of the

traditional differencing technique employed). In fact, for light crude oil, gas oil, and heating

oil, the very large value (or lack of) of the other roots suggests that these series may be bet-

ter represented as nearly purely noncausal (this result is confirmed by the mixed roots of light

crude oil, but not for gas or heating oil which have causal roots relatively close to 1). Finally,
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note that the mixed representation for soybeans suggests the process may be better modeled as

purely causal, while the results for cotton, live cattle, and lean hogs suggest they may be purely

noncausal.

To summarize, the results so far suggest that most of the futures price levels series are better

fitted by mixed causal/noncausal AR(r, s) models that take into account their time irreversible

nature. Exceptions to this are found in cotton and natural gas, which fail likelihood ratio tests

of model fit improvement over the causal ARMA benchmark. However, despite the mixed AR

model’s improved model fit, there still exists uncaptured nonlinearity in the model residuals

(with perhaps the exception of the lean hogs series). In the next section I will discuss possible

nonlinear models to account for this.
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Table 8: Estimation results of mixed causal/noncausal AR(r, s) models - 1 of 2

p/r q/s Log-likelihood AICn Lag Ljung-Box McLeod-Li

Soybean meal 10 0 -24171.704 5.21806 9 0.000 0.000

x 10 10 -24081.130 5.20608 9 0.007 0.000

10 10 -24081.059 5.20628 9 0.007 0.000

Soybean oil 10 0 -4639.175 1.00392 9 0.007 0.000

x 10 10 -4582.938 0.99480 9 0.135 0.000

10 10 -4582.844 0.99500 9 0.138 0.000

Soybeans 10 0 -34779.631 7.50672 9 0.000 0.000

10 10 -34699.422 7.49944 9 0.000 0.000

x 10 10 -34695.177 7.49874 9 0.000 0.000

Orange juice 10 0 -19382.514 4.18479 9 0.070 0.000

10 10 -19320.480 4.17786 9 0.378 0.000

x 10 10 -19317.960 4.17753 9 0.389 0.000

Sugar 1 2 -794.876 0.17284 9 0.000 0.000

x 2 2 -767.750 0.16704 9 0.000 0.000

2 2 -767.645 0.16724 9 0.000 0.000

Wheat 5 0 -30983.923 6.68311 9 0.000 0.000

5 5 -30935.424 6.67711 9 0.000 0.000

x 5 5 -30926.145 6.67533 9 0.000 0.000

Cocoa 10 0 -45847.856 9.89468 9 0.000 0.000

2 1 -45896.441 9.89597 9 0.000 0.000

x 10 10 -45769.055 9.89051 9 0.003 0.000

Coffee 10 0 -21901.578 4.72806 9 0.000 0.000

10 10 -21842.943 4.72267 9 0.014 0.000

x 10 10 -21841.150 4.72249 9 0.012 0.000

Corn 2 0 -26847.118 5.78856 9 0.419 0.000

x 2 3 -26815.913 5.78413 9 0.776 0.000

2 3 -26815.622 5.78428 9 0.783 0.000

Cotton 10 0 -13494.465 2.91445 9 0.000 0.000

x 1 3 -13495.916 2.91137 9 0.000 0.000

1 3 -13495.906 2.91158 9 0.000 0.000

Rice 2 2 3559.414 -1.12618 8 0.000 0.000

x 1 3 3593.842 -1.13778 8 0.013 0.000

1 3 3594.173 -1.13756 8 0.013 0.000

Lumber 1 1 -21531.166 6.14996 8 0.384 0.000

10 10 -21446.974 6.14745 8 0.562 0.000

x 10 10 -21444.622 6.14706 8 0.546 0.000

Gold 3 0 -28530.443 6.15208 9 0.000 0.000

x 10 10 -28435.869 6.14662 9 0.000 0.000

10 10 -28435.811 6.14683 9 0.000 0.000

Silver 10 0 3479.433 -0.74767 9 0.000 0.000

10 10 3549.149 -0.76159 9 0.000 0.000

x 10 10 3552.141 -0.76202 9 0.000 0.000
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Table 9: Estimation results of mixed causal/noncausal AR(r, s) models - 2 of 2

p/r q/s Log-likelihood AICn Lag Ljung-Box McLeod-Li

Platinum 10 0 -25897.058 7.40422 8 0.000 0.000

10 10 -25810.911 7.39273 8 0.000 0.000

x 10 10 -25798.400 7.38944 8 0.000 0.000

Palladium 5 0 -21367.921 6.10420 8 0.000 0.000

x 8 8 -21265.772 6.08745 8 0.000 0.000

8 8 -21265.746 6.08773 8 0.000 0.000

Copper 10 0 -15311.933 4.86615 8 0.000 0.000

10 10 -15243.741 4.85506 8 0.000 0.000

x 10 10 -15240.889 4.85447 8 0.000 0.000

Light crude oil 2 0 -8663.663 2.22530 8 0.001 0.000

1 3 -8641.851 2.22079 8 0.015 0.000

x 1 3 -8639.603 2.22047 8 0.014 0.000

Heating oil 2 0 -15489.176 4.46389 8 0.064 0.000

x 10 10 -15381.000 4.44945 8 0.042 0.000

8 8 -15400.897 4.45176 8 0.000 0.000

Brent crude oil 2 2 -7617.552 2.37340 8 0.001 0.000

10 10 -7517.822 2.35393 8 0.000 0.000

x 10 10 -7512.764 2.35267 8 0.000 0.000

Gas oil 1 0 -20640.309 6.70411 8 0.532 0.000

10 10 -20535.023 6.69642 8 0.259 0.000

x 10 10 -20532.228 6.69584 8 0.261 0.000

Natural gas 1 2 3892.707 -1.30361 8 0.014 0.000

x 1 1 3891.158 -1.30364 8 0.017 0.000

1 1 3891.727 -1.30350 8 0.018 0.000

Gasoline RBOB 3 0 -5760.988 6.01772 7 0.070 0.000

2 1 -5761.929 6.01766 7 0.050 0.000

x 2 1 -5756.133 6.01266 7 0.056 0.000

Live cattle 10 0 -10210.809 2.20600 9 0.750 0.001

10 10 -10190.943 2.20604 9 0.915 0.000

x 8 8 -10193.265 2.20494 9 0.873 0.000

Lean hogs 5 0 -9462.261 2.70453 8 0.676 0.994

0 2 -9459.574 2.70146 8 0.572 0.993

x 0 2 -9455.188 2.70050 8 0.570 0.993
* Lags refers to the number of lags incorporated into both the Ljung-Box and McLeod-Li test statistics. This

value is ln (T ). Moreover, the values listed of the aforementioned statistics are the p-values. The AICn value is

the AIC normalized by the number of elements in the log-likelihood summation.
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8 Nonlinear models

The results from the last section suggest that most of the futures price levels series are better

fitted by mixed causal/noncausal AR(r, s) models that take into account their time irreversible

nature. However, despite the mixed AR model’s improved model fit, there still exists uncap-

tured nonlinearity in the model residuals (with perhaps the exception of the lean hogs series).

In this section I will try to establish more specifically the functional form of the nonlinear

structure in both the price levels and returns series.

8.1 The general form

Consider the most general form that a discrete time model can take

ǫt = f(. . . , Xt−2, Xt−1, Xt, Xt+1, Xt+2, . . . ), where ǫt ∼ i.i.d. (38)

Therefore this model takes some input, a stochastic process, (Xt), and reduces it to a mean zero

strong white noise process, ǫt, where f(·) is some as of yet unspecified function. Of course, if

f(·) is a purely linear function and we care only about the second order properties of ǫt, then

it is sufficient that ǫt is only a weak white noise (and if ǫt is Gaussian then this implies it is

also i.i.d.). If this is not the case then clearly the function f(·) is misspecified since there still

remains time dependent structure in ǫt left unaccounted for.

If f(·) is an invertible function then we can write the equivalent representation in terms of

the strong white noise as

Xt = h(. . . , ǫt−2, ǫt−1, ǫt, ǫt+1, ǫt+2, . . . ), where ǫt ∼ i.i.d., (39)

and h(·) = f−1(·). Of course, (39) represents the most general mixed causal/noncausal model

and if we impose the restriction that h(·) is linear then the mixed causality AR(r, s) model is a

special case.

Now, suppose that (39) represents a purely causal process (Xt) and that h(·) is sufficiently

well behaved as to permit a Taylor series expansion about the point 0 = {0, 0, 0, . . . }. That is
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we have,

Xt = µ+
∞
∑

u=0

guǫt−u +
∞
∑

u=0

∞
∑

v=0

guvǫt−uǫt−v +
∞
∑

u=0

∞
∑

v=0

∞
∑

w=0

guvwǫt−uǫt−vǫt−w + . . . (40a)

where µ = h(0), gu =
∂h(0)

∂ǫt−u
, guv =

∂2h(0)

∂ǫt−u∂ǫt−v
, guvw =

∂3h(0)

∂ǫt−u∂ǫt−v∂ǫt−w
, etc. (40b)

The expansion above in (40a) is well known as the discrete time Volterra series. In its current

form it would prove very difficult to practically implment this form as a statistical model given

the large number of possible parameter configurations.

8.2 The causal truncated model

Now suppose that instead of an expansion at 0 = {0, 0, 0, . . . } we expand (39) at the point

{0, ǫt−1, ǫt−2, . . . } and with respect to ǫt only so we have,

Xt = h(0, ǫt−1, ǫt−2, . . . ) + ǫth1(0, ǫt−1, ǫt−2, . . . ) + ǫ2th11(0, ǫt−1, ǫt−2, . . . )/2 + . . . (41)

In nearly every nonlinear specification employed in economics, we drop all the terms higher

than the first order from (41) and approximate the true (purely causal) nonlinear model in (39)

by

Xt = m(ǫt−1, ǫt−2, . . . ) + s(ǫt−1, ǫt−2, . . . )ǫt (42)

where m(ǫt−1, ǫt−2, . . . )≡ h(0, ǫt−1, ǫt−2, . . . ) is the conditional mean equation and s(ǫt−1, ǫt−2, . . . )

≡ h1(0, ǫt−1, ǫt−2, . . . ) is the conditional scale equation, and since Et−1[(Xt − m(·))2] =

V art−1(Xt) we have that s(ǫt−1, ǫt−2, . . . )
2 is the conditional variance equation (where (ǫt)

is i.i.d. with E[ǫ2t ] = 1). Note that by dropping the higher order terms from (41) we link the

higher order conditional moments of the process to the second conditional moment since we

have that for k ≥ 2, Et−1[(Xt −m(·))k] = s(·)kE[ǫt]
k.

All of the nonlinear models we are familar with fall into either of two categories: those

that are nonlinear in mean and those that are nonlinear in variance. For example, the TAR (and

STAR models) of Tong and Lim (1980) , the Bilinear model of Granger and Andersen (1978),

and the nonlinear AR and MA models Xt = ǫt+
∑p

i=1 αiXt−i+
∑p

i=1

∑q

j=1 αi,jXt−iXt−j+. . .
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and Xt = ǫt +
∑p

i=1 βiǫt−i +
∑p

i=1

∑q

j=1 βi,jǫt−iǫt−j + . . . respectively, are all examples of

models that are nonlinear in mean. As an example of a model that is nonlinear in variance

one need not look further than the celebrated ARCH model of Engle (1982). Therefore, the

distinguishing feature of each type of model is whether m(·) or s(·)ǫt are linear or nonlinear

functions of the current and past innovations. Notice that even if s(·) is a linear function of

past innovations, this still implies that s(·)ǫt is a nonlinear function of the current and past

innovations.

8.3 The Hsieh test for causal nonlinear functional form

Hsieh (1989), section 5, proposes a useful statistical test that attempts to distinguish between

the two types of functional nonlinearity. Let (et) be the sequence of residuals from the best

fitting estimated linear causal model of some stochastic process (Xt) (and assume the special

causal form of (39) given as (42)). Now suppose that (et) is not suggestive of an i.i.d. residual

(e.g. McLeod-Li tests or BDS statistics from previous sections); this implies that there remains

nonlinear structure left unaccounted for. Since all the linear structure is accounted for, the

residuals (et) should be weak white noise. Moreover, if m(·) was purely linear to begin with

then et = s(ǫt−1, ǫt−2, . . . )ǫt and so there is no higher order dependence through the conditional

mean and any remaining dependence must then be through the higher order moments such as

the conditional variance. However, if m(·) was not linear, this implies that there exists a purely

nonlinear function of the past residuals which can explain et. This suggests a statistical test of

the following null hypothesis of nonlinearity through the conditional mean:

H0 : E[et|et−1, et−2, . . . , et−k] = 0 (43a)

H1 : E[et|et−1, et−2, . . . , et−k] 6= 0 (43b)

Of course, if there exists a purely nonlinear function of the past residuals which explains the

current residual, then this function itself can be expanded in another Taylor series expansion

about the point 0 = {0, 0, . . . }, which will include the cross products et−iet−j for all i, j > 0

up to some finite k. Therefore, we should have that if the null hypothesis is false, then the
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bicovariance of the mean zero process et, E[etet−iet−j], should be non-zero for at least some

i, j (although there do exist processes nonlinear in mean whose odd product moments are zero–

see Pemberton and Tong (1981)).

Hsieh proposes to estimate the normalized bicovariance E[etet−iet−j]/E[e2t ]
1.5 by sample

moment equivalents and then under suitable assumptions about the behaviour of (et), we have

that the estimator is asymptotically Gaussian with mean zero and a variance which can be

consistently estimated by 1
T

∑T

t=max {i,j}+1 e
2
t e

2
t−ie

2
t−j]/

(

1
T

∑T

t=1 e
2
t

)3

.

8.3.1 Monte carlo exercise

Hsieh (1989) conducts a monte carlo simulation exercise which demonstrates the test has good

statistical power in rejecting the null hypothesis for a variety of models which are nonlinear

in mean such as the nonlinear MA, TAR, Tent map (i.e. an example of a deterministic chaos

process), and ARCH-M (i.e. ARCH in mean model). However, in these simulations Hsieh

generates sample paths according to Gaussian innovations. Of course, if the innovations are t-

distributed instead then it is not clear how many samples, T , are required before the test statistic

converges to an asymptotically Gaussian distribution (e.g. if the innovations are Cauchy then

standard central limit theorems no longer apply since they require a finite variance assumption).

If we use standard Gaussian p-values in determining the rejection region of the test statistic we

are likely to under reject the null hypothesis, leading to lower test power. My Tables 10 and

11 duplicate the monte carlo experiments of Table 11,12 from Hsieh (1989), section 5, but

where I’ve also included sample paths generated by processes with t-distributed innovations of

various degrees of freedom. My Table 10 directly duplicates Hsieh’s Table 11, while my Table

11 generates simulated sample paths of T = 10, 000 values instead of only T = 1, 000.

It is clear from these results that the test suffers from poor power when the innovations

are t-distributed with low degrees of freedom and the sample paths are of length T = 10, 000.

For example, at degree of freedom v = 3, the test rejects the nonlinear MA model at the

(2,1) lag only %35.75 of the time. Considering that the estimation results suggest from section

7.1 suggest a low degree of freedom parameter on the t-distributed innovations of the mixed

12That is, they give the percentage of null rejections at the 1% level of a two-tailed test assuming a standard

Normal distribution.
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Table 10: Power of bicovariance test - % of rejections - 2,000 iterations, T=1,000

Lag AR(1) MA(1) Nonlinear MA Threshold AR(1) ARCH(1)

α = .5 β = .5 γ = .8 αi ∈ {−.5, .4} α = 1, β = .5

1 1 0.05 0.05 0.15 0.15 0.10 0.30 0.15 0.05 0.00 100.00 97.35 65.95 0.15 0.15 0.00

2 1 0.80 0.70 0.60 0.70 0.75 0.60 99.75 81.40 23.20 1.55 0.65 0.15 0.50 0.30 0.05

2 2 0.15 0.30 0.00 0.05 0.10 0.00 0.20 0.05 0.05 0.15 1.70 7.85 0.15 0.25 0.10

3 1 1.65 0.70 0.75 1.35 0.80 0.60 0.30 0.20 0.25 1.15 0.85 0.65 0.50 0.30 0.00

3 2 1.55 0.75 0.10 1.00 0.70 0.85 0.40 0.35 0.15 0.35 0.35 0.25 0.40 0.30 0.05

3 3 0.35 0.20 0.15 0.00 0.20 0.20 0.20 0.20 0.20 0.05 0.05 0.20 0.20 0.10 0.00

4 1 1.15 1.05 0.65 1.20 0.70 0.80 0.85 0.85 0.35 1.20 1.40 0.60 0.80 0.55 0.30

4 2 1.80 1.20 0.07 0.70 1.00 0.45 0.55 0.70 0.45 0.75 0.80 0.50 0.60 0.35 0.10

4 3 1.80 0.90 0.40 0.80 0.70 0.85 0.70 0.60 0.55 0.60 0.55 0.10 0.90 0.10 0.25

4 4 0.30 0.15 0.15 0.20 0.25 0.05 0.10 0.15 0.25 0.15 0.20 0.15 0.15 0.10 0.05
* The first column for each model represents the Gaussian error term case, the second represents the

t-distribution case with degree of freedom v = 6 and the third represents degree of freedom v = 3.

Table 11: Power of bicovariance test - % of rejections - 2,000 iterations, T=10,000

Lag AR(1) MA(1) Nonlinear MA Threshold AR(1) ARCH(1)

α = .5 β = .5 γ = .8 αi ∈ {−.5, .4} α = 1, β = .5

1 1 0.10 0.20 0.30 0.25 0.25 0.30 0.05 0.25 0.05 100.00 99.65 78.90 0.15 0.15 0.00

2 1 1.05 1.30 0.90 1.15 0.90 0.70 100.00 98.55 35.75 20.00 3.10 0.10 0.75 0.05 0.20

2 2 0.05 0.30 0.10 0.25 0.25 0.25 0.30 0.40 0.15 9.00 76.80 68.6 0.55 0.20 0.05

3 1 0.75 0.90 0.65 0.75 0.65 0.75 0.65 0.35 0.50 1.00 0.95 0.50 0.60 0.30 0.10

3 2 1.15 0.80 0.50 1.15 0.85 1.05 0.30 0.60 0.45 0.55 0.20 0.05 0.50 0.35 0.15

3 3 0.05 0.15 0.40 0.25 0.20 0.25 0.30 0.40 0.10 0.05 0.60 5.50 0.25 0.05 0.10

4 1 0.80 1.00 0.60 1.20 0.70 1.10 1.10 1.15 0.35 0.65 1.25 0.50 0.55 0.10 0.10

4 2 1.05 1.00 1.10 1.25 1.10 0.45 0.75 0.85 0.45 1.15 0.80 0.55 0.75 0.15 0.15

4 3 0.75 1.10 0.90 1.25 0.80 0.85 0.30 0.75 0.70 0.95 0.35 0.10 0.60 0.20 0.00

4 4 0.10 0.25 0.60 0.15 0.30 0.40 0.25 0.60 0.15 0.01 0.20 0.35 0.25 0.20 0.25
* The first column for each model represents the Gaussian error term case, the second represents the

t-distribution case with degree of freedom v = 6 and the third represents degree of freedom v = 3.
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causal/noncausal AR(r, s) processes, if we are to test the futures series for the functional form

of remaining nonlinearity, we cannot assume that the Hsiesh (1989) test statistic converges

quickly to asymptotic Normality.

Table 12 checks the power of the Hsieh statistic for various other models which are nonlin-

ear in mean. The first two models are the stochastic parameter AR(1) and the exponential AR(1)

model which are chosen given their ability to represent bubble phenomenon. The specific form

of the true data generated processes (DGP) are given as:

Stochastic parameter AR(1)

Xt = 0.1 + αtXt−1 + ǫt, where ǫt ∼ skew-t(0, 0.1, v1 = 6, v2 = 5) and (44a)

αt = 0.089 + 0.007ǫt−1 + 0.99αt−1 (44b)

Exponential AR(1)

Xt = γtXt−1 + ǫt, where ǫt ∼ t(0, 0.125, v = 10) and (44c)

γt = 0.99 + 0.2 exp {−1.0
(

0.99X2
t−30 + 0.992X2

t−40 + 0.993X2
t−50

)

} (44d)

Sample path simulations from the models in (44) appear similar to the futures price levels series

(see Figure 12).

Also included in Table 12 are the nonlinear AR(2) and Bilinear(1,0,1,1) models along with

the All-pass model which is not nonlinear yet exhibits features similar to the GARCH model.

The All-pass is included as a benchmark model. The true DGP are given as:

Nonlinear AR(2)

Xt = 0.1 + 0.8Xt−1 − 0.3Xt−2 + 0.1Xt−1Xt−2 + 0.2X2
t−1 − 0.2X2

t−2 + ǫt (45a)

where ǫt ∼ t(0, 0.1, v = 10) (45b)

Bilinear(1,0,1,1)

Xt = 0.8Xt−1 + 0.45Xt−1ǫt−1 + ǫt, where ǫt ∼ t(0, 1, v = 10) (45c)

All-pass

Xt = 0.5Xt−1 − (1/0.5)ǫt−1 + ǫt, where ǫt ∼ t(0, 1, v = 3) (45d)
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Figure 12: Simulated SPAR(1) and EAR(1) processes
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Table 12: Power of bicovariance test - % of rejections - 2,000 iterations, T=10,000

Lag SPAR(1) EAR(1) NLAR(2) Bilinear All-pass

1 1 0.75 9.50 99.50 0.35 4.30

2 1 4.55 15.50 99.20 0.30 0.00

2 2 0.45 4.85 99.70 0.10 3.60

3 1 5.70 14.70 34.45 0.70 0.15

3 2 5.30 10.60 99.50 0.05 0.05

3 3 0.45 2.20 98.80 0.05 2.15

4 1 6.05 15.70 1.35 0.75 0.30

4 2 5.35 8.95 98.60 0.00 0.25

4 3 4.70 5.65 69.30 0.00 0.10

4 4 0.25 0.90 5.15 0.10 1.05

Interestingly, the test exhibits low power even when testing models where under the null

hypothesis the error term ǫt is relatively close to Gaussian. For example, both of the models

which can drive “bubble” type phenomenon (the SPAR(1) and EAR(1)) exhibit low rejection

rates where the degree of freedom of the t-distributed error term, v, is around 10. Moreover,

the Bilinear model is not rejected for lags (i, j) ≥ 1 but it is rejected when at least one lag

is equal to zero at rates ranging from 56% to 61% (not shown in table). Moreover, while the

power of the test is low among many alternative models nonlinear in mean, the rate of rejecting

when the null hypothesis is true is also very low. For example, the AR(1), MA(1), ARCH(1),

and All-pass all exhibit very low rejection levels and so the probability of commiting a type I
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error is low. Given these facts it is clear that use of the Hsieh test statistic must be interpreted

cautiously and that we should most likely reject the null hypothesis at a much lower significance

level than 1% in most cases. These results also suggest a reinterpretation of Hsieh (1989) that

found nonlinearity in forex returns to be generated strictly through the conditional variance

and not the conditional mean, since it is likely that these forex returns are better modeled by a

conditionally fat tailed distribution such as the t-distribution with low degrees of freedom; in

fact Hsieh himself admits as much on page 364 of Hsieh (1989), but fails to acknowledge the

poor power of the test under such a change.

8.3.2 Testing for the functional form of nonlinearity in the commodity futures data

I now employ the Hsieh statistic in an attempt to interpret the functional form of the nonlinearity

that exists in the futures price levels series. Recall that the Hsiesh statistic is equivalent to the

rescaled bicovariance measure applied to the residuals of the best linear approximate causal

model, where the scaling applied is the asymptotic standard deviation. That is, we employ the

estimator

HS(i, j) =





1

T

T
∑

t=max {i,j}+1

etet−iet−j



 /

(

1

T

T
∑

t=1

e2t

)1.5

(46)

which is asymptotically Gaussian distributed with asymptotic variance

var(HS(i, j)) =





1

T

T
∑

t=max {i,j}+1

e2t e
2
t−ie

2
t−j



 /

(

1

T

T
∑

t=1

e2t

)3

(47)

where without loss of generality we assume that et has unconditional mean of zero. Therefore,

we reject the null hypothesis in (43a) of no nonlinearity through the conditional mean of et

at lag (i, j) ≥ 0, if
√
T (HS(i, j)) /

√

V ar(HS(i, j)) is greater in absolute value than some

critical quantile value of the standard Gaussian distribution.

Figures 18 - 21 in Appendix A provide a two-dimensional map of the normalized statistic

results for all lags from (30, 30) ≥ (i, j) ≥ (0, 0). The different colors indicate the critical

value rejection levels respectively: red indicates a rejection at the 1% level, orange at the 5%

level, and yellow at the 10% level. Inspection of the figures suggests that all of the series

may be better modeled by including a nonlinear component in the conditional mean equation,
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however, it is difficult to know in what form this nonlinear conditional mean should manifest.

Interestingly, the sporadic spattering of rejections in the Hsieh figures is consistent with a

process where the nonlinearity in the mean equation is not persistent (i.e. the effect of non-

linear shocks die out immediately and not slowly over time). Therefore, the patterns are more

consistent with a nonlinear moving average type representation than a nonlinear autoregressive

model. For example, tests show that estimating the additional cross product term ǫt−iǫt−j in

the conditional mean, where (i, j) are set to lags where a sigificant rejection occurs, improves

model fit beyond the best causal, linear, approximate model. Of course, the trouble in formu-

lating such a model is that there does not appear to be any consistent pattern in the nature of the

rejection lags. Also of interest is the fact that spikes in the bicovariance do not seem to match

up with the odd spikes in the ACF of the squared innovations that were observed when exam-

ining certain returns series (see Figure 2), suggesting these large spikes are entering through

the variance and not the mean (the best approximate causal linear model in most cases includes

a root very close to unity, and so the innovations from these models exhibit properties quite

similar to the returns series).

8.4 Estimation of nonlinear causal models

In order to be more definitive, I estimate all the nonlinear models listed above from equations

(44a) to (45d) by maximum likelihood and compare the results to both the benchmark best

mixed causal/noncausal AR(r, s) model from section 7.1 and the same benchmark mixed model

but with GARCH(1,1) innovations. The GARCH innovations are meant only to capture any

possible nonlinearity that is entering through the conditional variance and is not guaranteed be

the best specification of this type. Finally, the SPAR and EAR specifications employed include

two lags rather than one to allow for more interesting dynamics and I also include a TAR(3,3)

model (which includes three lags in both the high and low states, with a threshold variable of

Xt−30) and an All-pass model which is a linear model that exhibits GARCH like properties.

The results suggest that the mixed model with GARCH(1,1) innovations provides far supe-

rior model fit to any of the other strictly causal nonlinear models which formulate the nonlinear-

ity through the conditional mean. The GARCH(1,1) model beats the other models according to
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the normalized AIC criterion for every futures price level series, with the exception of the lean

hogs series where adding GARCH(1,1) innovations adds little. Furthermore, both the Ljung-

Box and McLeod-Li type statistics suggest the innovations of this nonlinear in variance model

are much closer to i.i.d. (only in the case of the metals and some of the energy series do we find

the results lacking in this regard but this is due only to lag 1 serial correlation in the rescaled

residuals which most likely could be corrected by a more appropriate nonlinear in variance type

specification).

Models such as the SPAR(2) or EAR(2) which are able to generate bubble like behaviour

through nonlinear conditional mean equations appear inadequate. Of particular interest is the

fact that the coefficients on the innovations which enter into the stochastic autoregressive pa-

rameters of the former model, i.e. the γ1 in αt = γ0 + γ1ǫt−1 + αt−1 are not found to be

significantly different from zero, suggesting the past lagged innovations ǫt−1, ǫt−2, . . . do not

affect the current autoregressive persistence of the price levels series (at least within the scope

of this specification).

Morever, the mixed causal/noncausal AR(r, s) estimation results from section 7.1, which

implied bubble like behaviour through the conditional mean via t-distributed error terms with

low degrees of freedom parameters seem inferior to a specification with t-distributed GARCH

type innovations according to measures of model fit and residual whiteness. Interestingly, the

GARCH specification is estimated with much larger degree of freedom parameters on the t-

distributed error terms. Estimation results from section 7.1 suggested t-distributed degree of

freedom parameters somewhere between just over 1 and 3, while under the GARCH(1,1) error

term specification we see these parameters roughly double. Therefore, despite the nonlinear

purely causal equivalent representation of the linear mixed causal/noncausal AR(r, s) models

employing t-distributed error terms with low degrees of freedom parameters, it appears they are

unable to account as effectively for the type of nonlinear structure that causes bubbles in the

commodity futures price levels as is a specification which is nonlinear in variance.
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8.4.1 Stylized facts

What is perhaps most surprisingly is the consistency of these results across futures price level

series. Therefore, the results from this section, as well as the previous ones, suggests a set of

“stylized facts” that describe this particular futures price level data set, if we are to assume a

model of the type from equation (42):

1. The vast majority of the nonlinear structure in the futures price levels series is gener-

ated through the changing conditional variance (the structure is nonlinear through the

variance).

2. An approximately linear model captures the vast majority of any persistence suggested by

the autocovariance and bicovariance. What remains shows up mainly in the tricovariance

and higher.

3. There exists remaining nonlinear structure through the conditional mean of the residuals

of the approximate linear model; however, this structure is not “persistent” in the sense

that innovations die out quickly and do not persist in effect for more than one period.

4. There appears to exist two types of nonlinear structure:

◦ That which is “persistent” as exhibited by the tricovariance (but where this persis-

tence does not show up in the autocovariance and bicovariance of the linear model

residuals, i.e. structure that is captured reasonably well by a GARCH type model).

◦ That which is periodic in the tricovariance and appears as periodic “spike-like”

patterns in the ACF of the squared innovations of the linear model (or the returns–

see below). I call this “seasonal” nonlinearity through variance. Series of this type

are orange juice, live cattle, lean hogs, and lumber.

5. The price levels series exhibit irreversibility and an AR model of mixed causality im-

proves upon a strictly causal model by standard measures of model fit. However, the

amount of irreversibility detectable by the bicovariance estimator varies across industry

sector, with the most significant appearing in some of the soft goods such as cocoa and

coffee and the livestock goods.
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6. The conditional distribution of both the price levels series and the returns series is better

modeled as student t-distributed rather than Gaussian. Moreover, the use of a parametric

skewed student t-distributed error term adds little in most cases.

7. Since the linear approximate model with t-distributed error terms nearly always exhibits a

root close to unity, the residuals from this model exhibit very similar properties to the re-

turns (the returns have a normalized martingale structure imposed upon them). Therefore

the facts above also apply to the returns series to more or less the same degree.
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Table 13: Estimation results of nonlinear models - 1 of 5

Model Log-likelihood AICn Lag Ljung-Box McLeod-Li

Soybean meal SPAR(2) -24504.380 5.28441 9 0.000 0.000

EAR(2) -24072.060 5.21821 9 0.000 0.000

All-pass -46979.330 10.12702 9 0.000 0.000

NLAR(2) -24945.070 5.37898 9 0.000 0.000

TAR(3,3) -24116.740 5.21681 9 0.000 0.000

Bilinear(2,2) -24204.230 5.21906 9 0.000 0.000

GARCH(1,1) -22937.117 4.95942 9 0.751 0.708

Benchmark -24081.130 5.20608 9 0.007 0.000

Soybean oil SPAR(2) -4656.400 1.00591 9 0.002 0.000

EAR(2) -4618.474 1.00292 9 0.020 0.000

All-pass -28967.230 6.24469 9 0.000 0.000

NLAR(2) -4871.949 1.05194 9 0.000 0.000

TAR(3,3) -4620.182 1.00134 9 0.002 0.000

Bilinear(2,2) -4658.458 1.00570 9 0.005 0.000

GARCH(1,1) -3512.315 0.76400 9 0.734 0.760

Benchmark -4582.938 0.99480 9 0.135 0.000

Soybeans SPAR(2) -45145.660 9.73392 9 0.000 0.000

EAR(2) -34620.300 7.50386 9 0.000 0.000

All-pass -60764.490 13.09828 9 0.000 0.000

NLAR(2) -46590.610 10.04497 9 0.000 0.000

TAR(3,3) -34680.750 7.50092 9 0.000 0.000

Bilinear(2,2) -35863.470 7.73237 9 0.000 0.000

GARCH(1,1) -33444.821 7.22912 9 0.892 0.434

Benchmark -34695.177 7.49874 9 0.000 0.000

Orange juice SPAR(2) -20639.290 4.45124 9 0.000 0.000

EAR(2) -19288.700 4.18173 9 0.023 0.000

All-pass -45570.890 9.82345 9 0.000 0.000

NLAR(2) -21590.930 4.65594 9 0.000 0.000

TAR(3,3) -19333.580 4.18261 9 0.081 0.000

Bilinear(2,2) -19411.960 4.18602 9 0.076 0.000

GARCH(1,1) -18861.845 4.06896 9 0.153 0.146

Benchmark -19317.960 4.17753 9 0.389 0.000

Sugar SPAR(2) -2139.321 0.46332 9 0.000 0.000

EAR(2) -827.275 0.18142 9 0.000 0.000

All-pass -27336.900 5.89329 9 0.000 0.000

NLAR(2) -1150.396 0.24971 9 0.000 0.000

TAR(3,3) -804.275 0.17628 9 0.000 0.000

Bilinear(2,2) -801.858 0.17436 9 0.000 0.000

GARCH(1,1) 647.095 -0.13758 9 0.192 0.504

Benchmark -767.750 0.16704 9 0.000 0.000
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Table 14: Estimation results of nonlinear models - 2 of 5

Model Log-likelihood AICn Lag Ljung-Box McLeod-Li

Wheat SPAR(2) -32535.590 7.01565 9 0.000 0.000

EAR(2) -30885.460 6.69457 9 0.000 0.000

All-pass -54095.140 11.66077 9 0.000 0.000

NLAR(2) -33380.030 7.19725 9 0.000 0.000

TAR(3,3) -30926.310 6.68915 9 0.000 0.000

Bilinear(2,2) -31221.280 6.73168 9 0.000 0.000

GARCH(1,1) -29671.139 6.40137 9 0.796 0.343

Benchmark -30926.145 6.67533 9 0.000 0.000

Cocoa SPAR(2) -49865.960 10.75145 9 0.000 0.000

EAR(2) -45570.540 9.87661 9 0.000 0.000

All-pass -73788.550 15.90550 9 0.000 0.000

NLAR(2) -94362.340 20.34282 9 0.000 0.000

TAR(3,3) -45712.130 9.88608 9 0.000 0.000

Bilinear(2,2) -50781.320 10.94811 9 0.000 0.000

GARCH(1,1) -44888.458 9.70075 9 0.590 0.304

Benchmark -45769.055 9.89051 9 0.003 0.000

Coffee SPAR(2) -22925.260 4.94401 9 0.000 0.000

EAR(2) -21772.590 4.71995 9 0.000 0.000

All-pass -48397.790 10.43276 9 0.000 0.000

NLAR(2) -22577.010 4.86851 9 0.000 0.000

TAR(3,3) -21828.080 4.72196 9 0.000 0.000

Bilinear(2,2) -21965.270 4.73642 9 0.000 0.000

GARCH(1,1) -20775.766 4.49282 9 0.072 0.296

Benchmark -21841.150 4.72249 9 0.012 0.000

Corn SPAR(2) -26969.930 5.81589 9 0.383 0.000

EAR(2) -26732.280 5.79464 9 0.358 0.000

All-pass -53238.200 11.47606 9 0.000 0.000

NLAR(2) -27762.680 5.98635 9 0.000 0.000

TAR(3,3) -26781.970 5.79308 9 0.458 0.000

Bilinear(2,2) -26899.520 5.80007 9 0.000 0.000

GARCH(1,1) -25319.245 5.46103 9 0.674 0.911

Benchmark -26815.913 5.78413 9 0.776 0.000

Cotton SPAR(2) -13733.350 2.96257 9 0.000 0.000

EAR(2) -13474.960 2.92198 9 0.000 0.000

All-pass -38875.670 8.38036 9 0.000 0.000

NLAR(2) -14774.740 3.18662 9 0.000 0.000

TAR(3,3) -13479.650 2.91690 9 0.000 0.000

Bilinear(2,2) -13511.260 2.91405 9 0.000 0.000

GARCH(1,1) -12757.530 2.75259 9 0.570 1.000

Benchmark -13495.916 2.91137 9 0.000 0.000
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Table 15: Estimation results of nonlinear models - 3 of 5

Model Log-likelihood AICn Lag Ljung-Box McLeod-Li

Rice SPAR(2) 3556.749 -1.12470 9 0.000 0.000

EAR(2) 3495.877 -1.11388 9 0.000 0.000

All-pass -14455.260 4.58474 9 0.000 0.000

NLAR(2) 3441.419 -1.08876 9 0.000 0.000

TAR(3,3) 3520.635 -1.11790 9 0.000 0.000

Bilinear(2,2) 3553.963 -1.12477 9 0.000 0.000

GARCH(1,1) 4368.026 -1.38272 8 0.191 0.000

Benchmark 3593.842 -1.13778 8 0.013 0.000

Lumber SPAR(2) -21625.670 6.17897 9 0.583 0.000

EAR(2) -21419.520 6.16234 9 0.417 0.000

All-pass -39866.820 11.38544 9 0.000 0.000

NLAR(2) -22534.870 6.43806 9 0.000 0.000

TAR(3,3) -21459.780 6.15649 9 0.434 0.000

Bilinear(2,2) -21536.720 6.15271 9 0.000 0.000

GARCH(1,1) -20674.554 5.92261 8 0.977 0.587

Benchmark -21444.622 6.14706 8 0.546 0.000

Gold SPAR(2) -29566.970 6.37572 9 0.000 0.000

EAR(2) -28457.470 6.16847 9 0.000 0.000

All-pass -55169.260 11.89228 9 0.000 0.000

NLAR(2) -29556.980 6.37314 9 0.000 0.000

TAR(3,3) -28452.750 6.15433 9 0.000 0.000

Bilinear(2,2) -28819.910 6.21404 9 0.000 0.000

GARCH(1,1) -26328.729 5.68365 9 0.000 0.053

Benchmark -28435.869 6.14662 9 0.000 0.000

Silver SPAR(2) 2903.283 -0.62369 9 0.000 0.000

EAR(2) 3365.470 -0.72708 9 0.000 0.000

All-pass -24813.100 5.34931 9 0.000 0.000

NLAR(2) 3048.051 -0.65532 9 0.000 0.000

TAR(3,3) 3428.187 -0.73885 9 0.000 0.000

Bilinear(2,2) 3462.235 -0.74482 9 0.000 0.000

GARCH(1,1) 6259.295 -1.34727 9 0.010 0.000

Benchmark 3552.141 -0.76202 9 0.000 0.000

Platinum SPAR(2) -28328.710 8.08869 9 0.000 0.000

EAR(2) -25834.250 7.42758 9 0.000 0.000

All-pass -46273.850 13.20743 9 0.000 0.000

NLAR(2) -29268.830 8.35645 9 0.000 0.000

TAR(3,3) -25840.610 7.40840 9 0.000 0.000

Bilinear(2,2) -26376.620 7.53065 9 0.000 0.000

GARCH(1,1) -24335.574 6.95859 8 0.199 0.066

Benchmark -25798.400 7.38944 8 0.000 0.000
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Table 16: Estimation results of nonlinear models - 4 of 5

Model Log-likelihood AICn Lag Ljung-Box McLeod-Li

Palladium SPAR(2) -21440.460 6.12258 9 0.000 0.000

EAR(2) -21297.540 6.12374 9 0.000 0.000

All-pass -43885.670 12.52588 9 0.000 0.000

NLAR(2) -23227.250 6.63201 9 0.000 0.000

TAR(3,3) -21320.970 6.11319 9 0.000 0.000

Bilinear(2,2) -21457.230 6.12651 9 0.000 0.000

GARCH(1,1) -19180.988 5.48535 8 0.003 0.176

Benchmark -21265.772 6.08745 8 0.000 0.000

Copper SPAR(2) -16441.300 5.21684 9 0.000 0.000

EAR(2) -15223.650 4.86776 9 0.000 0.000

All-pass -35168.300 11.15196 9 0.000 0.000

NLAR(2) -16934.920 5.37274 9 0.000 0.000

TAR(3,3) -15266.520 4.86623 9 0.000 0.000

Bilinear(2,2) -15344.670 4.86814 9 0.000 0.000

GARCH(1,1) -13610.866 4.33674 8 0.567 0.001

Benchmark -15240.889 4.85447 8 0.000 0.000

Light crude oiil SPAR(2) -9367.224 2.40719 9 0.000 0.000

EAR(2) -8661.489 2.23983 9 0.000 0.000

All-pass -29975.810 7.69528 9 0.000 0.000

NLAR(2) -10224.860 2.62684 9 0.000 0.000

TAR(3,3) -8651.234 2.23167 9 0.000 0.000

Bilinear(2,2) -8662.182 2.22543 9 0.000 0.000

GARCH(1,1) -6605.455 1.69867 8 0.702 0.103

Benchmark -8639.603 2.22047 8 0.014 0.000

Heating oil SPAR(2) -15488.810 4.46523 9 0.016 0.000

EAR(2) -15405.810 4.47224 9 0.022 0.000

All-pass -32778.580 9.44364 9 0.000 0.000

NLAR(2) -17069.280 4.91999 9 0.000 0.000

TAR(3,3) -15432.210 4.46723 9 0.095 0.000

Bilinear(2,2) -15488.700 4.46433 9 0.000 0.000

GARCH(1,1) -13772.541 3.97077 8 0.132 0.000

Benchmark -15381.000 4.44945 8 0.042 0.000

Brent crude oil SPAR(2) -7636.773 2.38032 9 0.000 0.000

EAR(2) -7615.577 2.39159 9 0.004 0.000

All-pass -23826.660 7.41726 9 0.000 0.000

NLAR(2) -8129.052 2.53293 9 0.000 0.000

TAR(3,3) -7597.920 2.37890 9 0.000 0.000

Bilinear(2,2) -7624.903 2.37569 9 0.000 0.000

GARCH(1,1) -5807.002 1.81130 8 0.444 0.019

Benchmark -7512.764 2.35267 8 0.000 0.000
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Table 17: Estimation results of nonlinear models - 5 of 5

Model Log-likelihood AICn Lag Ljung-Box McLeod-Li

Gas oil SPAR(2) -21630.640 7.02846 9 0.210 0.000

EAR(2) -20533.240 6.72447 9 0.842 0.000

All-pass -36860.730 11.97134 9 0.000 0.000

NLAR(2) -20881.070 6.78437 9 0.000 0.000

TAR(3,3) -20565.270 6.71330 9 0.860 0.000

Bilinear(2,2) -20653.250 6.71005 9 0.000 0.000

GARCH(1,1) -18993.143 6.17121 8 0.997 0.001

Benchmark -20532.228 6.69584 8 0.261 0.000

Natural gas SPAR(2) 3903.088 -1.30597 9 0.000 0.000

EAR(2) 3819.260 -1.28822 9 0.000 0.000

All-pass -12712.390 4.26543 9 0.000 0.000

NLAR(2) 3731.592 -1.24911 9 0.000 0.000

TAR(3,3) 3848.145 -1.29327 9 0.000 0.000

Bilinear(2,2) 3891.110 -1.30296 9 0.000 0.000

GARCH(1,1) 5236.231 -1.75415 8 0.538 0.422

Benchmark 3891.158 -1.30364 8 0.017 0.000

Gasoline RBOB SPAR(2) -5807.628 6.06635 8 0.000 0.000

EAR(2) -5639.084 6.04180 8 0.000 0.000

All-pass -11610.390 12.10567 8 0.000 0.000

NLAR(2) -5931.780 6.19372 8 0.000 0.000

TAR(3,3) -5678.679 6.02083 8 0.000 0.000

Bilinear(2,2) -5769.072 6.02301 8 0.000 0.000

GARCH(1,1) -5693.417 5.94931 7 0.883 0.976

Benchmark -5756.133 6.01266 7 0.056 0.000

Live cattle SPAR(2) -10370.960 2.23776 9 0.005 0.000

EAR(2) -10219.650 2.21661 9 0.000 0.000

All-pass -35258.520 7.60072 9 0.000 0.000

NLAR(2) -17638.990 3.80405 9 0.000 0.000

TAR(3,3) -10217.490 2.21157 9 0.000 0.000

Bilinear(2,2) -10242.390 2.20940 9 0.000 0.001

GARCH(1,1) -9947.719 2.15393 9 0.991 0.867

Benchmark -10190.943 2.20604 9 0.915 0.000

Lean hogs SPAR(2) -9598.605 2.74257 9 0.000 1.000

EAR(2) -9431.913 2.71358 9 0.279 1.000

All-pass -26839.060 7.66098 9 0.000 0.000

NLAR(2) -9974.069 2.84917 9 0.000 0.875

TAR(3,3) -9438.812 2.70807 9 0.349 1.000

Bilinear(2,2) -9474.789 2.70638 9 0.339 1.000

GARCH(1,1) -9452.342 2.70025 8 0.600 0.985

Benchmark -9455.188 2.70050 8 0.570 0.993
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9 Forecasting

Up until this point the entire discussion has been focused on evaluating within-sample model

fit. This section will therefore attempt to measure the ability of the various models to not only

fit the training sample, but also to be able to forecast ahead out of sample within a reasonable

horizon. In order to facilitate forecast comparisons I have set aside an additional 107 sample

data points beyond the most recent date available within-sample, which is February 8th, 2013

(recall the the discussion from section 3.1.4). Therefore, this out of sample period extends

between February 11th to July 15th, 2013. 13

9.1 The optimal MMSE forecast

Given the general stochastic process from equation (39), let Ft represent the information set

generated by the stochastic process at time t. It can be shown that in the general case, the

optimal one step ahead predictor of Xt (denoted X̂t|t−1 = g(Ft−1)) under the minimum mean

squared error (MMSE) criterion is the conditional expectation, E[Xt|Ft−1]. That is, the argmin

of the quadratic loss function, the expected mean squared error E

[

(

Xt − X̂t|t−1

)2
]

, can be

shown to be g(Ft−1) = E[Xt|Ft−1]. See see Priestley (1981, pg. 76) for proof.

Of course, in the special case where the ǫt’s in (39) are uncorrelated and Gaussian, and

h(·) is a purely linear function then we have from Rosenblatt (2000) that the one step ahead

predictor is linear and so coincides with the orthogonal linear projection of Ft−1 onto the space

spanned by Xt. Moreover, if we restrict equation (39) to be of the purely causal linear form

then the same result applies, even if the innovations are non-Gaussian.

Given these results forecasts from the strictly causal linear ARMA models with t-distributed

innovations, ǫt, from section 5 are easy to generate recursively. However, for the AR models of

mixed causality from section 7.1 the one step ahead predictor is not so easily calculated since

13Feburary 9th and 10th fall on a weekend.
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we have from equation (9a) that: 14

ET [xT+1] = φ1xT + φ2xT−1 + · · ·+ φrxT−r+1 + ET [uT+1] (48a)

where ET [uT+1] 6= 0 (48b)

and where uT+1 is given as in (15).

9.1.1 A numerical algorithm

Despite this difficulty Lanne, Luoto, and Saikkonen (2010) suggest a means whereby we can

simulate the one step ahead predictor. What follows is an abridged version of their discussion.

Please see their paper for more details.

Since ET [uT+1] 6= 0 we can therefore simulate this expectation as follows:

1. First we require the density of ǫ+ = {ǫT+1, ǫT+2, . . . }, conditional on the data x =

{xT , xT−1, . . . }.

2. From equation (36) it can be shown that:

Lx,ǫ+(x, ǫ
+|Ω)

Lx(x|Ω)
= p(ǫ+|x; Ω) = fu,ǫ+(u(φ), ǫ

+)

fu(u(φ))
(49)

where Ω represents the parameters of the mixed causal/noncausal AR(r, s) model and

u(φ) = {φ(L)xT−s+1, . . . , φ(L)xT} = {uT−s+1, . . . , uT}. Therefore, we can use monte

carlo simulations to approximate both the numerator and denominator of (49) in order to

approximate the desired conditional expectation:

ET [uT+1] ≈
1

fu(u(φ))

∫

(

M−1
∑

j=0

ϕ∗
jǫT+1+j

)

fu,ǫ+(u(φ), ǫ
+)dǫ+ (50)

under the assumption of some finite M , and that as M → ∞, (ϕ∗
j) → 0, and where

uT+1 ≈
∑M−1

j=0 ϕ∗
jǫT+1+j from (15).

14Note that since the strictly causal nonlinear in mean models from section 8 were not found to improve model

fit–with the exception of adding nonlinear MA terms–I will not compare their point forecasts; although later I will

consider the unconditional distribution of the simulated process that is nonlinear in variance.
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3. In order to do this, however, we need to accomplish a change of variables between

(u(φ), ǫ+) and ({ǫT−s+1, . . . , ǫT}, ǫ+). Given (15) we have that an approximate map-

ping between these two sets is given as:
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which can be written as Ce ≈ w. Therefore, inverting C and noting that its determinant

is unity we can write the numerator in (49) as:

fu,ǫ+(u(φ), ǫ
+) ≈

s
∏

j=1

fǫ(ǫT−s+j(u(φ), ǫ
+))

T+M
∏

t=T+1

fǫ(ǫt) (52)

where i’ve written the elements ǫT−s+j(u(φ), ǫ
+) as such to indicate that they are func-

tions of both u(φ) and ǫ+.

4. Therefore, if we simulate N i.i.d. draws of the M length vector ǫ+i (i.e. for i = 1, . . . , N )

according to fǫ(·), an approximation to the desired expectation in (50) is given as:

ET [uT+1] ≈
N−1

∑N

i=1

(

∑M−1
j=0 ϕ∗

jǫi,T+1+j

)

∏s

j=1 fǫ(ǫT−s+j(u(φ), ǫ
+

i ))

N−1
∑N

i=1

∏s

j=1 fǫ(ǫT−s+j(u(φ), ǫ
+

i ))
(53)

◦ Notice that conditional on time T information, we can also easily compute the expec-

tation ET [uT+h] for any horizon h by simply replacing the term
∑M−1

j=0 ϕ∗
jǫi,T+1+j in

(53) with
∑M−h

j=0 ϕ∗
jǫi,T+h+j for any integer h ≥ 1. Therefore, once we have computed

the denominator in (53) we need not calculate it again in computing expectations across

horizons h.
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◦ Moreover, if we so desire, we can also compute interval forecasts by replacing

∑M−1
j=0 ϕ∗

jǫi,T+1+j with 1
(

∑M−1
j=0 ϕ∗

jǫi,T+1+j < α
)

; that is, we take the conditional ex-

pectation, given time T information, of the indicator function of uT+1 so that if uT+1 < α

we return 1 and 0 otherwise. Therefore, with this change (53) then becomes an estimate

of the conditional cummulative distribution function (CDF) at α, or the probability that

uT+1 < α. Given an appropriately chosen grid of αi’s we can then generate an approxi-

mation to the shape of the CDF across its support.

◦ While the methods described above are computationally intensive, it is clear that they are

ripe for parallelization since we can potentially draw each of the N i.i.d. samples of ǫ+i

at the same time. In order to save time in this way I have implemented the algorithm in

parallel using the CUDA development libraries designed and freely available from Nvidia

at http://www.nvidia.ca/object/cuda home new.html. All that is required is a Nvidia GPU

(graphics processing unit) and knowledge of the C programming language.

9.2 Monte carlo results

Simulated mixed AR(r, s) models of the types from section 7.1 were generated, with T =

10000, according to a number of different parameter choices well within the stationarity re-

gion. Both an equivalent causal ARMA model of the type from section 5 and a mixed AR(r, s)

model were then estimated in-sample and then forecast out-of-sample, generating T0 = 500

forecast errors. These results were consistent in demonstrating an improvement in forecasts

under the mixed AR(r, s) specification as opposed to the best causal ARMA, especially when

the simulated process was mostly noncausal. Surprisingly, even when the t-distributed innova-

tions were not generated i.i.d. but rather according to a GARCH(1,1) specification, the mixed

AR(r, s) forecasts still proved superior although their performance was significantly degraded.

84



9.3 Forecasting the commodity futures price level data

In comparing point forecasts, the out of sample data set is used to generate forecast errors

according to

ζT+h = E[XT+h|FT ]− x∗
T+h, for 10 ≥ h ≥ 1, (54)

where x∗
T+h is the true out of sample outcome for a particular series at time T + h. Next, the

root mean squared errors are computed as the root of the average squared errors for each series

i at horizon h as

RMSEi,h =

√

√

√

√

1

T0

T0
∑

j=1

ζ2T+h. (55)

Table 18 presents the ratios of the RMSE’s for each of the futures price level data series

for horizons h = {1, 5, 10} with T0 = 98 forecast errors generated from the 107 out-of-sample

data points. The numerator is the purely causal ARMA model forecasts with t-distributed errors

from section 5 and the denominator represents the forecast errors from the mixed AR(r, s)

models of section 7.1, so ratios that are greater than 1 suggest smaller forecast errors amongst

the mixed AR(r, s) models.

The results of the forecasting exercise seem somewhat consistent with Table 7 in that series

which exhibited the most significant levels of time irreversibility in their estimated bicovariance

measures tended to gain the most from partly noncausal point forecasts. For example, from the

softs category, cocoa, coffee, cotton, and lumber all exhibit improved point forecasts and these

series were found to be significantly time irreversible. Contrastingly, orange juice and sugar

were not found to reject the null of reversibility according to the TR test and their forecasts

proved more accurate when modeled as strictly causal. Also consistent with Table 7 is the

poor mixed causal/noncausal point forecasts for the metals and energy sectors which failed to

reject the null of reversibility. However, despite these consistencies, the poor mixed causality

forecasts for both the soybean products and livestock categories are anomalous. Particularly

surprising in light of their TR test results are the poor mixed causal/noncausal forecasts of

soybeanmeal and lean hogs and the very much improved mixed forecasts of natural gas and

gasoline RBOB. In light of these results it would be desirable to have access to a larger out of

sample pool with which to forecast, as 107 elements may represent too small a sample to draw
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Table 18: Ratio of out of sample forecast RMSE’s

Series Horizon

1 5 10

Soybean meal 00.784 00.849 00.897

Soybean oil 00.801 00.843 00.806

Soybeans 00.271 00.403 00.447

Orange juice 00.998 00.988 00.994

Sugar 00.919 00.954 00.971

Wheat 00.945 00.951 00.945

Cocoa 01.029 01.010 01.018

Coffee 00.988 01.005 01.016

Corn 00.475 00.570 00.624

Cotton 00.998 01.007 01.011

Rice 00.884 00.960 01.004

Lumber 00.989 01.003 01.003

Gold 00.076 00.121 00.159

Silver 00.357 00.448 00.613

Platinum 00.382 00.496 00.655

Palladium 00.334 00.471 00.542

Copper 00.425 00.537 00.596

Light crude oil 00.879 00.944 00.955

Heating oil 00.912 00.855 00.807

Brent crude oil 00.529 00.468 00.554

Gas oil 00.331 00.433 00.521

Natural gas 01.002 00.992 01.001

Gasoline RBOB 01.051 01.090 01.138

Live Cattle 00.999 00.999 01.000

Lean hogs 00.011 00.016 00.020
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any strong conclusions.

Interestingly, forecasts of ET [uT+h] generated from the simulation algorithm described in

Lanne, Luoto, and Saikkonen (2010) tend to be sensitive to model misspecification. In many

of the troublesome cases, especially the soy products, metals, and to a lesser extent the en-

ergy sector, these forecasts fluctuated wildly from one sample of ǫ+i , i = 1, . . . , N to the next.

Moreover, increasing N to reasonable levels does not seem to improve the situation. Examina-

tion of the forecast errors suggests this is a problem specific to these series and their estimated

models, as other series such as sugar or live cattle do not exhibit this problem at all.

There is evidence in the literature of similarly varied point forecasting results when at-

tempting to model financial data by the mixed causal/noncausal model from section 6. Lanne,

Nyberg, and Saarinen (2011) estimated mixed causal/noncausal models for the Marcellino,

Stock, and Watson (2006) dataset which includes 170 monthly U.S. macroeconomic and finan-

cial time series. The dataset is split into 5 categories of variables: A) income, output, sales and

capacity utilization B) employment and unemployment related C) construction, inventories and

orders D) interest rates and asset prices and E) nominal prices, wages, and money. However,

unlike the current study they employ a number of different transformations designed to ensure

stationarity, such as log differencing. Within the (D) category, they forecast log differenced ex-

change rates, S&P 500 and NYSE indices, interest rates, and bond yields. Generally for all of

the categories with the exception of (D), the authors find that, on average, modeling the series

as partly noncausal improves point forecasts. However, the series in (D) prove more troubling

for the mixed causal/noncausal representation to generate superior point forecasts to the strictly

causal model. The authors attribute this failure to both the low estimated degrees of freedom of

the t-distributed error terms and the presence of conditional heteroskedasticity, suggesting that

perhaps another parametric distribution may prove a better choice. Interestingly, these results

prove similar to Table 18, despite the lack of transformations and the difference in type of fi-

nancial asset. Some other points of note are that the authors suggest that models selected under

the BIC (Bayesian information criterion) as opposed to the AIC tended to forecast better and

that the MAFE (Mean absolute forecast error) proves less sensitive to dramatic outliers than

the MSFE employed here.
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With regards to conditional heteroskedasticity, in section 8 I showed that a model which

is nonlinear through its variance appears to improve model fit. However, simulated mixed

AR(r, s) series under the assumption of GARCH(1,1) innovations failed to generate the same

dramatic variability in the forecast errors of ET [uT+h] as is exhibited by the data for the soy,

metals, and energy sectors. Unfortunately, it is not possible to modify the algorithm of Lanne,

Luoto, and Saikkonen (2010) to account for non-i.i.d. innovations of the GARCH type, since

these innovations depend on past information through their scale parameter. Specifically, in

simulating i.i.d. innovations in step (4) of the algorithm above we’d need to normalize the

heteroskedastic errors by their their time dependent scale parameters which are functions of

past shocks {ǫT−s+1, . . . , ǫT}. However, this poses a problem since {ǫT−s+1, . . . , ǫT} is exactly

that which we wish to compute based on draws of ǫ+i .

9.4 Comparison of the estimated unconditional distributions

Another means by which we can evaluate the various models is by comparing their uncondi-

tional distributions estimated by sample histogram. Histograms are computed for each of the

models from section 5, 7.1, and the mixed AR(r, s) model with GARCH(1,1) innovations from

8, by simulating them for a sufficiently large number of points. Then a histogram is computed

from the true futures price level series.

The metric employed in comparing the estimated unconditional distributions is the Kullback-

Leibler divergence measure which represents a non-symmetric measure of the difference be-

tween two probability distributions P and Q (i.e. the KL(P,Q) 6= KL(Q,P ) in general).

Specifically, the Kullback-Leibler measure from continuous distributions Q to P, denoted KL(Q,P ) =
∫∞

−∞
ln
(

p(x)
q(x)

)

p(x)dx, is the measure of the information lost when we use Q to approximate

P. 15 Since the Kullback-Leibler measure is “information monotonic”, as an ordinal mea-

sure of making comparisons it is invariant to the choice of histogram bin size. Table 19 re-

ports the Kullback-Leibler measures of the sample histogram densities for both KL(P,Q) and

KL(Q,P ) where p(x) denotes the estimated p.d.f. of the sample data and the q(x)’s are es-

timated from the simulated linear causal ARMA, mixed AR(r, s), and mixed AR(r, s) (with

15In employing estimated sample histograms I use the discretized version of the Kullback-Leibler formula

where areas of zero support are padded with 1−315.
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GARCH(1,1) innovations) models from sections 5, 7.1, and 8, respectively.

Table 19: Kullback-Leibler divergence measures

KL(Q,P) KL(P,Q)

Series ARMA MIXED MIX/GARCH ARMA MIXED MIX/GARCH

Soybean meal n.s. 00.329 01.370 n.s. 97.216 263.671

Soybean oil 01.965 00.316 00.284 495.751 55.752 71.478

Soybeans n.s. 00.310 00.503 n.s. 49.584 124.888

Orange juice 00.976 00.216 00.487 351.966 60.033 229.859

Sugar 01.768 00.500 00.286 326.343 168.821 96.815

Wheat 00.535 00.427 00.211 44.699 32.956 06.182

Cocoa 00.625 01.247 00.297 230.260 37.961 107.290

Coffee 04.519 00.216 00.410 703.097 81.218 192.468

Corn 01.526 00.549 00.339 185.980 144.244 82.144

Cotton 00.808 12.710 02.349 114.104 25.918 16.083

Rice 00.429 00.311 uns. 59.220 123.030 uns.

Lumber 00.149 00.136 00.211 07.610 08.477 81.658

Gold n.s. uns. uns. n.s. uns. uns.

Silver n.s. uns. uns. n.s. uns. uns.

Platinum n.s. 00.662 00.633 n.s. 96.789 140.821

Palladium n.s. 01.368 uns. n.s. 440.585 uns.

Copper n.s. 00.832 00.943 n.s. 173.295 206.154

Light crude oil n.s. 00.813 00.759 n.s. 202.916 301.470

Heating oil n.s. 01.043 29.883 n.s. 326.858 159.701

Brent crude oil n.s. 00.759 138.219 n.s. 118.503 01.424

Gas oil n.s. 00.709 00.506 n.s. 132.528 86.560

Natural gas 00.906 00.753 00.404 303.694 325.575 143.436

Gasoline RBOB 01.429 00.261 00.280 483.674 08.649 19.078

Live Cattle 00.562 18.227 00.701 31.469 76.491 34.953

Lean hogs 02.649 00.032 00.044 640.295 03.308 03.313

average 01.346 01.858 08.529 284.154 121.335 112.831

selective average 01.206 00.650 01.029
* P represents the sample data. “n.s.” stands for non-stationary, i.e. the simulations from the causal linear model were

explosive. “uns.” within the context of the MIX/GARCH models implies that the simulated sample paths were for

a lack of better words “unstable”: highly eratic with extremely long tails and extremely irregular, almost “chaotic”

type behaviour. In general, while stationary, models with “uns.” listed represented poor possibilities as having come

from the sample data DGP. Finally, the selective average omits the outliers in bold.

Table 19 is broken into two sections: the three left columns report the Kullback-Leibler

measure where the three prospective models are used to approximate the sample data; in this

case if the sample data density has zero support, it does not punish the prospective density for

allocating too much probability to this region since this component of the Kullback-Leibler

sum is zero. On the other hand, the three right columns report the Kullback-Leibler measure
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when the sample density is used to approximate each of the three prospective models; in this

case the opposite occurs if the prospective density has zero support. Finally, smaller values

indicate less information lost by the approximation and are preferred.

Either way, the results of these comparisons suggest the following. First, of the estimated

linear causal ARMA models where the unconditional distribution exists, the Kullback-Leibler

measures suggest that it is a poor fit to the sample data. The linear causal ARMA model seems

unable to produce the sharp bubble like behaviour we see in most of the series and the shape of

its unconditional density is often much too uniform.

In terms of a comparison between the mixed causal/noncausal AR(r, s) model with t-

distributed innovations and the modification where I allow these innovations to be GARCH(1,1),

it appears that the results are not so clear. For one, many of the GARCH simulated sample

paths are highly irregular with extremely long tailed unconditional distributions. From these I

was unable to generate a robust estimate of the unconditional distribution without drawing ex-

tremely long samples. For these I have indicated “uns.” in the appropropriate spot of the table.

It is interesting that these poorly behaved processes tend to coincide with the same models that

proved difficult to forecast above, specifically the metals category which exhibits some of the

largest bubbles of all the series. Ultimately, however, the “stable” GARCH type processes tend

to generate simulated sample paths appearing visually more similar to the sample data than the

non-GARCH mixed models and this is borne out when we take the average across Kullback-

Leibler measures for the KL(P,Q) category. In the KL(Q,P ) category, however, there exist a

few distinct outlier values (denoted in bold text), which when omitted from the average reveal

that the non-GARCH mixed model tends to slightly edge out the alternative.

9.5 Conclusions

Given these results, what does seem clear is that that the mixed causal/noncausal AR(r, s)

model, while improving model fit, is unable to generate robust forcasts for many of the com-

modity futures price series’ using the algorithm from Lanne, Luoto, and Saikkonen (2010).

However, when reliable forecasts are generated, they improve upon the purely causal linear

model amongst some of the series from the softs and energy sectors; for example, cocoa, coffee,
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cotton, rice and lumber all benefit from the mixed causal/noncausal AR(r, s) representation,

especially in the longer horizons, as do natural gas and gasoline RBOB. Interestingly, these

results tend to coincide with the measures of which series were most significantly irreversible

as measured by the TR test from Table 7. However, the disappointing mixed causal/noncausal

forecasts for the livestock series as well as the superior forecasts for the two aforementioned

energy series are surprising. Finally, a benefit of the mixed AR(r, s) model is that it allows us

to forecast models where the purely causal forecast would otherwise be explosive.

Results from an analysis of the estimated unconditional distributions of the mixed AR(r, s)

model specification suggest that it represents a better approximation to the sample data than a

purely causal linear model, again when simulations are available and the model is not explosive.

However, both comparison of the Kullback-Leibler measures and inspection of the simulated

processes themselves from both the GARCH and non-GARCH type error term versions of

the mixed AR(r, s) model suggest that this process may not be an ideal specification of the

DGP of the sample data. While the GARCH type process tends to appear visually as a better

match, and exhibits better in-sample model fit according to the AIC measure, its behaviour

can be very eratic and ill-behaved for very long sample paths, especially when applied to the

metals category. Given the results from this section, along with those from section 8, it may be

interesting to consider other processes which are nonlinear in variance but take advantage of

the apparent irreversibility of the commodity futures price levels data.
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A Appendix: Tables and Charts

Table 20: Summary statistics - 1 of 2 - continuously compounded returns series

Series Mean Median Stnd. Dev. Skewness Kurtosis

Soybean meal 0.011 0.000 1.656 -0.739 12.097

Soybean oil 0.009 0.000 1.543 -0.012 5.360

Soybeans 0.009 0.000 1.536 -1.237 17.737

Orange juice 0.002 0.000 1.950 0.537 16.902

Sugar 0.009 0.000 2.542 0.208 9.952

Wheat 0.013 0.000 1.752 -0.583 13.055

Cocoa -0.009 0.000 1.947 -0.033 6.329

Coffee -0.007 0.000 2.330 -0.290 13.336

Corn 0.013 0.000 1.596 -1.261 29.734

Cotton 0.003 0.000 1.882 -8.655 335.767

Rice 0.014 0.000 1.693 0.148 30.219

Lumber 0.012 0.000 2.002 0.338 9.098

Gold 0.026 0.000 1.226 -0.048 10.568

Silver 0.021 0.000 2.131 -0.851 48.379

Platinum 0.021 0.000 1.393 -0.515 7.518

Palladium 0.028 0.000 1.973 -0.207 9.473

Copper 0.016 0.000 1.735 -0.308 7.384

Light crude oil 0.015 0.000 2.296 -0.872 20.222

Heating oil 0.032 0.000 2.305 -1.346 23.633

Brent crude oil 0.032 0.009 2.186 -0.964 21.828

Gas oil 0.032 0.000 2.124 -1.168 20.918

Natural gas 0.012 0.000 3.387 0.234 9.900

Gasoline RBOB 0.025 0.010 2.459 -0.100 7.238

Live cattle 0.012 0.000 1.117 -1.243 15.123

Lean hogs 0.005 0.000 2.152 -1.078 70.267
* The returns have been premultiplied by 100.

Note also that the Kurtosis measure employed here is not an excess Kurtosis measure.
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Table 21: Summary statistics - 2 of 2 - continuously compounded returns series

Quantiles

Series T 0% 25% 50% 75% 100% C.V.

Soybean meal 9279 -20.002 -0.779 0.000 0.826 10.483 155.217

Soybean oil 9279 -11.352 -0.857 0.000 0.842 8.247 176.207

Soybeans 9279 -23.224 -0.720 0.000 0.801 7.806 166.468

Orange juice 9279 -16.173 -0.820 0.000 0.860 23.897 1102.497

Sugar 9279 -18.218 -1.210 0.000 1.236 27.492 276.489

Wheat 9279 -23.884 -0.944 0.000 0.914 9.868 135.456

Cocoa 9279 -15.390 -1.078 0.000 1.028 12.561 -205.881

Coffee 9279 -25.655 -1.050 0.000 1.050 23.773 -338.867

Corn 9279 -32.932 -0.746 0.000 0.771 8.662 120.554

Cotton 9279 -77.653 -0.796 0.000 0.833 16.811 560.699

Rice 6308 -24.040 -0.760 0.000 0.789 27.461 121.364

Lumber 7004 -19.176 -1.121 0.000 1.083 17.328 173.106

Gold 9279 -9.909 -0.463 0.000 0.559 9.745 46.709

Silver 9279 -44.496 -0.786 0.000 0.947 41.534 101.993

Platinum 7008 -12.274 -0.626 0.000 0.752 7.622 67.511

Palladium 7008 -14.372 -0.855 0.000 0.950 15.253 69.732

Copper 6308 -11.714 -0.840 0.000 0.890 11.644 108.660

Light crude oil 7792 -40.048 -0.992 0.000 1.084 14.894 151.589

Heating oil 6943 -39.094 -1.095 0.000 1.214 13.994 72.931

Brent crude oil 6426 -38.564 -1.025 0.009 1.126 13.151 69.271

Gas oil 6159 -34.026 -1.003 0.000 1.100 13.867 67.125

Natural gas 5963 -32.769 -1.739 0.000 1.703 32.435 291.098

Gasoline RBOB 1919 -13.031 -1.206 0.010 1.396 17.476 97.901

Live cattle 9279 -13.818 -0.491 0.000 0.597 8.512 90.024

Lean hogs 7008 -45.042 -0.760 0.000 0.828 34.969 393.417
* C.V. stands for coefficient of variation, or σ/µ, and T denotes the sample size. Note that the spectral density

for all series is roughly uniform, suggesting weak white noise.
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Figure 13: Bilinear model
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Figure 14: GARCH model

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0  100  200  300  400  500  600  700  800  900  1000

GARCH(1,1) process, first 1000 values

-2

 0

 2

 4

 6

 8

 10

 12

0 5 10

Autocovariance

 0

 5

 10

 15

 20

0 1/4 1/2

Spectral density (unnormalized)

 0  10  20  30  40  50  0  10  20  30  40  50

-10

-5

 0

 5

 10

Bicovariance

Bicovariance

       5

       0

      -5

0

1/4

1/2 0

1/4

1/2

 0

 200

 400

 600

 800

 1000

Bispectrum modulus

Bispectrum modulus

     150

     100

      50

0

1/4

1/2 0

1/4

1/2
 0

 0.2

 0.4

 0.6

 0.8

 1

Bicoherence

bicoherence

     0.3

     0.2

     0.1

95



Figure 15: Bicovariance plots, 800 lags
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Figure 16: Bicoherence plots
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Figure 17: Bicoherence plots
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Figure 18: Hsieh (1989) statistic plots - 1 of 4
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Figure 19: Hsieh (1989) statistic plots - 2 of 4
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Figure 20: Hsieh (1989) statistic plots - 3 of 4
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Figure 21: Hsieh (1989) statistic plots - 4 of 4
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Table 22: Lag polynomial roots of the mixed and benchmark models - 1 of 3

Model p/r,q/s Sig.p/r Sig.q/s cR cMC ncR ncMC #CC

Soybean meal skew-t arma 10,0 1,8,9 1.010 1.571 4

1.581

1.582

1.583

t-dist mixed 10,10 1,3,5,7,9,10 1,2,3,4,6,9 1.385 1.354 -1.716 1.091 4/4

-2.532 1.414 1.530

1.474 1.530

1.500 1.561

Soybean oil skew-t arma 10,0 1,10 1.033 1.478 4

1.306 1.558

1.600

1.619

t-dist mixed 10,10 1,2,4,9,10 1,2,3,4,8 1.373 1.341 1.009 1.666 4/3

-1.797 1.359 1.285 1.669

1.390 1.474

1.510

Soybeans skew-t arma 10,0 1,2,5,8,9 1.028 1.514 4

1.551

1.556

1.582

skew-t mixed 10,10 1,2,5,8,10 1 -1.559 1.358 0.944 4/0

1.749 1.464

1.477

1.558

Orange juice skew-t arma 10,0 1,2,3,10 1.033 1.505 4

1.572

1.623

1.660

skew-t mixed 10,10 1,2,5,9 1,2,5 1.556 1.518 1.060 2.460 4/1

1.542 1.843

1.555 -2.750

1.608

Sugar skew-t arma 1,2 1 1,2 1.000 4.590 3

4.756

5.010

5.487

t-dist mixed 2,2 1,2 1,2 4.373 1.002 1/0

14.637

Wheat skew-t arma 5,0 1,5 0.992 2.350 2

2.655

skew-t mixed 5,5 1,2,3,5 1,3,4 1.006 1.814 1.789 2.046 2/1

2.071 -2.434

Cocoa skew-t arma 10,0 1 1.022 0

skew-t mixed 10,10 1,6,9 1,2,4,9,10 1.436 1.417 -1.435 1.202 4/4

1.486 1.740 1.408

1.499 1.414

1.508 1.426



Table 23: Lag polynomial roots of the mixed and benchmark models - 2 of 3

Model p/r,q/s Sig.p/r Sig.q/s cR cMC ncR ncMC #CC

Coffee t-dist arma 10,0 1,3 0.995 4.740 1

skew-t mixed 10,10 1,2,5,6,10 1,2,5,6,7 1.375 1.027 1.684 5/2

1.403 1.571 1.762

1.428 -1.645

1.430

1.446

Corn skew-t arma 2,0 1,2 1.000 0

51.190

t-dist mixed 2,3 1 1,2,3 -32.542 1.002 5.484 0/1

Cotton skew-t arma 10,0 1,2,6,7 1.007 1.738 3

1.707

1.615

t-dist mixed 1,3 0 1,2,3 1.003 5.317 0/1

Rice skew-t arma 2,2 1,2 1,2 0.997 3.099 3

2.917 3.332

-3.552 3.493

t-dist mixed 1,3 1 1,2,3 -15.328 1.001 5.003 0/1

Lumber skew-t arma 1,1 1 1 1.005 13.181 4

13.237

13.314

13.375

skew-t mixed 10,10 1,2,4-10 1,5 1.015 1.235 -1.862 1.218 4/2

-1.454 1.247 1.752

1.336

1.900

Gold t-dist arma 3,0 1,2,3 0.999 5.618 1

t-dist mixed 10,10 1,2,6,10 1 -1.450 1.395 0.974 4/0

1.489 1.416

1.431

1.434

Silver skew-t arma 10,0 1,2,4,8 1.003 1.606 3

-1.874 1.715

1.751

skew-t mixed 10,10 1,3-6,9,10 1,4,5,7 1.479 1.424 0.996 4

-1.533 1.424 1.600 1.721 4/2

1.451 -2.070 1.643

1.327

Platinum skew-t arma 10,0 1,4,7,8,9 0.957 1.493 4

1.528

1.572

1.582

skew-t mixed 10,10 1,2,3,5-9 1,2,6-8,10 -1.786 1.355 0.974 1.304 4/4

1.376 1.257 1.328

1.385 1.401

1.860 1.594

Legend: p/r,q/s: (p,q) or (r,s) pairs for ARMA(p,q) and Mixed causal/noncausal AR(r, s) models respectively.

Sig.p/r,q/s: Significant lags at the 5% level assuming Normal distributed parameters.

cR,cMC: Causal lag polynomial; real roots and modulus of complex roots respectively.

ncR,ncMC: Noncausal lag polynomial; real roots and modulus of complex roots respectively.

#CC: Number of complex conjugate roots with the same modulus (causal/noncausal).



Table 24: Lag polynomial roots of the mixed and benchmark models - 3 of 3

Model p/r,q/s Sig.p/r Sig.q/s cR cMC ncR ncMC #CC

Palladium skew-t arma 5,0 1,2,4,5 1.006 2.431 1

-2.434

3.525

t-dist mixed 8,8 1,2-7 1,2,3,7,8 -1.618 1.621 0.989 1.547 3/3

1.632 1.536 1.574

1.884 1.619

Copper skew-t arma 10,0 1,2,6 1.055 2.020 2

1.696 2.101

skew-t mixed 10,10 1,2,3,6 1,6,7,8 1.728 0.952 1.352 3/3

1.737 -1.323 1.482

1.831 1.751

Light crude oil t-dist arma 2,0 1,2 0.999 0

-23.729

skew-t mixed 1,3 1 1,2,3 -14.222 1.002 6.144 0/1

Heating oil t-dist arma 2,0 1,2 0.999 0

-27.213

t-dist mixed 10,10 1-4,7,9,10 1-6,9,10 1.245 1.279 1.032 1.259 4/4

-2.553 1.307 -1.505 1.303

1.349 1.315

1.368 1.372

Brent crude oil t-dist arma 2,2 1,2 1,2 0.989 2.466 3

2.255 2.621

-2.716 2.695

skew-t mixed 10,10 1,4,9,10 1,2,5,6,9 1.261 1.292 1.068 1.276 4/3

-1.527 1.331 1.101 1.388

1.336 -1.723 1.540

1.500

Gas oil skew-t arma 1,0 1 0.998 0

skew-t mixed 10,10 3,7,9,10 1,4,7-10 1.230 1.324 0.925 1.346 4/4

-2.140 1.328 -1.264 1.483

1.341 1.542

1.508 1.563

Natural gas t-dist arma 1,2 1 1 1.001 34.697 4

34.765

34.839

34.886

t-dist mixed 1,1 1 1 -31.650 1.001 0/0

Gasoline RBOB skew-t arma 3,0 1,3 0.972 4.452 1

skew-t mixed 2,1 2 1 4.390 1.005 1/0

Live cattle skew-t arma 10,0 1,5 1.019 2.408 1

1.973

-2.543

t-dist mixed 10,10 1 3,4,6 0.994 1.896 0/3

1.728

1.891

Lean hogs skew-t arma 5,0 1,4,5 0.984 2.555 1

-2.525

2.744

skew-t mixed 0,2 1.004 0/0

55.339



Figure 22: Plots of daily continuous contract futures price level series
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Figure 23: Plots of daily continuous contract futures price level series
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Figure 25: Plots of daily continuous contract futures price level series
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Figure 26: Histograms of daily continuous contract futures price level series, 100 bins
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Figure 27: Histograms of daily continuous contract futures price level series, 100 bins
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Figure 28: Histograms of daily continuous contract futures price level series, 100 bins
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Figure 29: Histograms of daily continuous contract futures price level series, 100 bins
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