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Abstract

Theory suggests that physical commodity prices may exhibit nonlinear features

such as bubbles and various types of asymmetries. This paper investigates these

claims empirically by introducing a new time series model apt to capture such fea-

tures. The data set is composed of 25 individual, continuous contract, commodity

futures price series, representative of a number of industry sectors including softs,

precious metals, energy, and livestock. It is shown that the linear causal ARMA

model with Gaussian innovations is unable to adequately account for the features

of the data. In the purely descriptive time series literature, often a threshold au-

toregression (TAR) is employed to model cycles or asymmetries. Rather than take

this approach, we suggest a novel process which is able to accommodate both bub-

bles and asymmetries in a flexible way. This process is composed of both causal

and noncausal components and is formalized as the mixed causal/noncausal au-

toregressive model of order (r, s). Estimating the mixed causal/noncausal model

with leptokurtic errors, by an approximated maximum likelihood method, results

in dramatically improved model fit according to the Akaike information criterion.

Comparisons of the estimated unconditional distributions of both the purely causal

and mixed models also suggest that the mixed causal/noncausal model is more rep-

resentative of the data according to the Kullback-Leibler measure. Moreover, these

estimation results demonstrate that allowing for such leptokurtic errors permits

identification of various types of asymmetries. Finally, a strategy for computing

the multiple steps ahead forecast of the conditional distribution is discussed.

Keywords: commodity futures, mixed causal/noncausal model, nonlinear dynamic

models, commodity futures, speculative bubble.
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1 Introduction

Financial theory has proposed general approaches for pricing financial assets and their

derivatives, based on arbitrage pricing theory [Ross (1976)], or equilibrium models:

for example the Capital Asset Pricing Model [Sharpe (1964)] or Consumption-Based

Capital Asset Pricing Model [Breeden (1979)]. Traders have also relied on technical

analysis for insight into price movements [see e.g. Frost (1986)].

These approaches are generally applied separately on the different segments of the

market, each segment including a set of basic assets plus the derivatives written on these

basic assets. These segments are used for different purposes and can have very different

characteristics. A standard example is the stock market, where the basic assets are

the stocks and the derivatives are both options written on the market index and futures

written on the index of implied volatility, called the VIX. These derivatives have been

introduced to hedge and trade against volatility risk. A large part of the theoretical and

applied literature analyzes this stochastic volatility feature.

Another segment also largely studied is the bond market, including the sovereign

bonds, but also the bonds issued by corporations and the mortgage backed securities; the

associated derivatives in this case are insurance contracts on the default of the borrowers,

such as Credit Default Swaps (CDS) or Collateralized Debt Obligations (CDO). These

derivatives have been introduced to manage the counterparty risks existing in the bond

market.

This paper will focus on another segment, that is the segment of commodities. This

segment includes the spot markets, derivatives such as the commodity futures with and

without delivery, and derivatives such as options, puts and calls, written on these futures.

This segment has special features compared to other segments, such as the stock
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market for instance. At least three features make the commodity markets rather unique:

i) The basic assets are physical assets. There is a physical demand and a physical

supply for these commodities and by matching their demand and supply, we may

define a “fundamental price” for each commodity. It is known that the analysis of

these fundamental prices can be rather complex even if it concerns the real econ-

omy only. This is mainly a consequence of both shifts in demand and supply and

of various interventions to control the fundamental price of commodities. What

follows are examples of such effects which differ according to the commodity.

Cycles are often observed on commodity prices. They can be a consequence of

costly, irreversible investment, made to profit from high prices. For instance, farm-

ers producing corn can substitute into producing cattle, when grain prices are low.

The production of milk (or meat) will increase and jointly the production of grain

will diminish. As a consequence the prices of milk (or meat) will decline, whereas

the price of grain will increase. This creates an incentive to substitute grain to cat-

tle in the future and so forth, which introduces cycles in the price evolution of both

corn and cattle. Other substitutions between commodities can also create a change

of trend in prices. For example, the development of alternative fuel derived from

soy created a significant movement in soy prices.

These complicated movements can also be affected by different interventions to

sustain and/or stabilize the prices. The interventions can be done by governments

(e.g. U.S., or European nations) for agricultural commodities, as well as by (mo-

nopolistic or oligopolistic) producers such as the Organization of Petroleum Ex-

porting Countries (OPEC) for petroleum production or the De Beers company for

diamonds. The real demand and supply will affect the spot prices and futures con-
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tracts with delivery.

ii) Recently the commodity markets have also experienced additional demand and

supply pressures by financial intermediaries. These intermediaries are not inter-

ested in taking delivery of the underlying products upon maturity and are only

interested in cashing in on favourable price changes in the futures contracts. This

behaviour betrays the original purpose of the futures markets which was to enable

both producers and consumers to hedge against the risk of future price fluctuations

of the underlying commodity.

To try to separate the market for the physical commodity from simply gambling

on their prices, pure intangible assets have been introduced that are the commod-

ity futures without delivery. Thus the market for commodity derivatives has been

enlarged. As usual, the speculative effect is proportional to the magnitude and im-

portance of the derivative market. This speculative effect is rather similar to what

might be seen in the markets for CDS or on the implied volatility index (VIX).

iii) The different spot and futures markets for commodities are not very organized and

can involve a small number of players and very often feature a lack of liquidity.

The economic literature mainly focuses on two features of commodity prices, that

are their cross-sectional and serial heterogeneity, respectively. Below, I will discuss

the literature specific to each. The cross-sectional analysis tries to understand how the

prices of futures contracts with delivery are related with the spot prices, or to explain the

difference between the prices of futures with and without delivery. The analysis of the

serial heterogeneity of prices focuses on the nonlinear dynamic features due to either the

cycles and rationing effects coming from the real part of the market, or the speculative

bubbles created by the behaviour of financial arbitrageurs.
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The questions above can be considered from either a structural, or a descriptive point

of view. A “structural” approach attempts to construct a theoretical model involving the

relevant economic variables of interest which may be important in explaining relation-

ships which drive commodity spot and futures prices. The descriptive approach does

not explain “why” these series exhibit particular features, but rather provides a frame-

work to estimate the relationships between the prices, make forecasts, and price the

derivatives.

What follows is a discussion on how these two approaches above have been ad-

dressed in the literature.

i) Cross-sectional heterogeneity

The study of cross-sectional heterogeneity of commodity futures prices has its roots

in both the theory of normal backwardation and the theory of storage. The Keynesian

theory of normal backwardation implies a greater expected future spot price than the

current futures contract price, assuming that producers are on net hedgers and that spec-

ulators, in order to take on the risk offered by producers, must be offered a positive risk

premium.

Of the two theories, the theory of storage has probably had the greater influence.

Instead of focusing on the net balance of trader’s positions as in the theory of normal

backwardation, the theory of storage focuses on how the levels of inventory, that is the

“stocks,” of the underlying commodities affect the decisions of market participants. In-

ventories play an important role since it is known that both the consumption and supply

of many commodities are inelastic to price changes. For example, it is known that gaso-

line and petroleum products are everyday necessities and both their consumption and

production adjust slowly to price changes. Moreover, given real supply and demand

shocks the inelastic nature of these markets can lead to wild price fluctuations. There-
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fore, the role of inventories is important in buffering market participants from price

fluctuations, by avoiding disruptions in the flow of the underlying commodities, and by

allowing them to shift their consumption or production intertemporally.

The cost of storage is essentially a “no arbitrage” result. Let the difference of the

current futures price and the spot price be known as the basis. If the basis is positive,

it must necessarily equal the cost of holding an inventory into the future, known as

the cost of carry, since otherwise a trader could purchase the good on the spot market,

enter into a futures contract for later delivery, and make a sure profit (or loss). From

the reverse point of view, the basis could never be negative since holders of inventories

could always sell the good at the spot price, and enter a futures contract to buy at the

lower price, with no cost of carry.

However, empirical examination of the basis reveals that it is often negative. Kaldor

(1939) was the first to suggest a solution to this problem known as the convenience yield.

The convenience yield measures the benefit of owning physical inventories, rather than

owning a futures contract written on them. When a good is in abundance, an investor

gains little by owning physical inventories. However, when the good is scarce, it is

preferable to hold inventories. Therefore, in equilibrium the basis should be equal to the

difference between the cost of carry and the convenience yield, permitting the basis to

be negative when inventories are scarce.

Working (1933,1948,1949) used the theory of storage to describe the relationship

between the price of storage and inventories for the wheat market, called the “Working

curve” or the storage function. The Working curve is positively sloped and for some

positive threshold storage level, relates inventories to the costs of storing them; how-

ever, below this positive threshold of inventories, the function takes on negative values,

illustrating that positive inventories can be held even when the returns from storage are
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negative, thereby incorporating the notion of Kaldor’s convenience yield into the storage

function.

Later work generalized these results in considering motivations for both storage be-

haviour and the convenience yield. For example, Brennan (1958) considered storage

from the speculative point of view, suggesting that on the supply side, in addition to

cost of storage, we expand the notion of the convenience yield to include a risk pre-

mium to holders of inventories who may speculate upon, and benefit from, a possible

rise of demand on short notice.

Modern structural models distinguish between what is the fundamental price con-

nected with the underlying physical supply and demand, from the cost of storage and

any speculation. For example, in looking at oil price speculation, Knittel and Pindyck

(2013) address what is meant by the notion of “oil price speculation” and how it relates

to investment in oil reserves, inventories, or derivatives such as futures contracts. Al-

though the price of storage is not directly observed, it can be determined from the spread

between futures and spot prices. In their model there are two interrelated markets for

a commodity: the cash market for immediate or “spot” purchase/sale, and the “storage

market” for inventories. The model attempts to distinguish between the physical supply

and demand market and the effect of speculators on both the futures and spot prices.

Other structural work on the basis has employed the CAPM model. For example

Black (1976) studied the nature of futures contracts on commodities, suggesting that

the capital asset model of Sharpe (1964) could be employed to study the expected price

change of the futures contract. Dusak (1973) also studied the behaviour of futures prices

within a model of capital market equilibrium and found no risk premium for U.S. corn,

soybeans, and wheat futures between 1952 and 1967. Breeden (1979) developed the

consumption CAPM model which allowed us to consider the futures price as composed
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of both an expected risk premium and a forecast of the future spot price.

Econometrically, Fama and French (1987) found evidence that the response of fu-

tures prices to storage-cost variables was easier to detect than evidence that futures

prices contain premiums or power to forecast spot prices.

Other econometric work has been purely descriptive in attempting to model the basis

process itself. For example, Gibson and Schwartz (1990) model the convenience yield

as a mean reverting continuous time stochastic process, where the unconditional mean

represents the state of inventories which satisfy industry under normal conditions.

The cost of storage also imposes a natural constraint on inventories in that they

cannot be negative; this has effects which show up empirically. For example, inventory

levels and the basis tend to share a positive relationship as the theory of storage and

convenience yield would suggest. Brooks et al. (2011) employ actual physical inventory

levels data on 20 different commodities between 1993-2009 and show that inventory

levels are informative about the basis, so that when inventories are low the basis is

possibly negative (and vice versa). They also find that futures price level volatility

is a decreasing linear function of inventories so that when the basis is negative, price

volatility is higher. Empirical evidence also suggests that the basis behaves differently

when it is positive versus when it is negative. For example, Brennan (1991) expanded

the work of Gibson and Schwartz (1990) by incorporating the non-negativity constraint

of inventories and so the convenience yield is downward limited.

Finally, there is econometric evidence that corroborates Brennan (1958) above. Sigl-

Grub and Schiereck (2010), employ commitment of traders information on 19 commod-

ity futures contracts between 1986 and 2007 (using the commitment of traders informa-

tion as a proxy for speculation) and find that the autoregressive persistence of futures

returns processes tend to increase with speculation.
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ii) Price dynamics

Another part of the literature tries to understand the nonlinear dynamic patterns ob-

served in futures prices that can manifest as either cycles or speculative bubbles. Gen-

erally, we observe more or less frequent successive peaks and troughs in the evolution

of prices. These peaks and troughs have non standard patterns which can be classified

according to the terminology in Ramsey and Rothman (1996) where they distinguish

the concepts of “longitudinal” and “transversal” asymmetry. The notion of longitudinal

asymmetry employed in Ramsey and Rothman (1996) builds upon other previous work,

for example the study of business cycle asymmetry from Neftci (1984).

Longitudinal asymmetry refers to asymmetry where the process behaves differently

when traveling in direct time versus in reverse time. For example, longitudinal asym-

metry may manifest as a process where the peaks rise faster than then they decline (and

behaves in the opposite way in reverse). Figure 1 provides a plot which illustrates these

features for the coffee price level, continuous futures contract without delivery. In the

right panel (which provides a zoom) we can see how the peaks tend to rise quickly, but

take a long time to decline into the trough.

Transversal asymmetry is characterized by different process dynamics above and

below some horizontal plane in the time direction; that is, in the vertical displacement of

the series from its mean value. For example, the coffee process also exhibits transversal

asymmetry in that the peaks in the positive direction are very sharp and prominent, while

the troughs are very drawn out and shallow (again see Figure 1 right panel). So, a series

can be both longitudinally and transversely asymmetric.

The theoretical literature has been able to derive price evolutions with such patterns

as a consequence of self-fulfilling prophecies. The initial rational expectation (RE)

models were linear: the demand is a linear function of the current expected future prices
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Figure 1: Plots of daily continuous contract futures price level series, Coffee with zoom
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and exogenous shocks on demand, and the supply is a linear function of the current

price and of supply shocks. In this way we can consider the path of equilibrium prices.

Muth (1961) was the first to employ such a framework which incorporated expectations

formation directly into the model.

Since the equilibrium in RE models is both with respect to prices and information,

these models have an infinite number of solutions, even if the exogenous shocks have

only linear dynamic features. Some of these solutions have nonlinear dynamic features

which are similar to the asymmetric bubble patterns described above. Among these

solutions featuring bubbles, some can exhibit isolated bubbles and others can demon-

strate a sequence of repeating bubbles. For example, Blanchard (1979) and Blanchard

and Watson (1982) derived RE bubble models for the stock market which presumed the

price process is composed of both the fundamental competitive market solution for price
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1 plus a non-stationary martingale component that admits a rational expectation repre-

sentation [Gourieroux, Laffont, and Monfort (1982)], but exhibits bubble like increases

or decreases in price. Blancard and Watson (1982) described a possible piecewise linear

model for the martingale bubble component which spurred later authors to test statis-

tically for the presence of this component. Later, Evans (1991) suggested that such

econometric tests may be limited in their ability to detect a certain important class of

rational bubbles which exhibit repeating explosive periods.

Generally these basic modeling attempts were focused on the stock market and it is

not clear what analog there is (if any) of the “fundamental” price of the futures contract

without delivery. Moreover, they take into account only the expected prices, not the

level of volatility and they incorporate linear functions for the price, and so the solution

may not be unique.

More recent RE models have exhibited features consistent with the asymmetries dis-

cussed above with regards to both Ramsey and Rothman (1996) and the cost of storage

models and the natural asymmetry which occurs since inventories cannot be negative.

For example, Deaton and Laroque (1996) construct a RE model of commodity spot

prices, in which they generate a “harvest” process2 which drives a competitive price

in agricultural markets composed of both final consumers and risk-neutral speculators.

From an intertemporal equilibrium perspective, when the price today is high (relative

to tomorrow) nothing will be stored so there will be little speculation; however, when

the price tomorrow is high (relative to today), speculation will take place and storage

will be positive. Because inventories cannot be negative, the market price process under

storage will follow a piecewise linear dynamic stochastic process.

1That is, where price is the linear present value of future dividends.
2The process may possibly be serially correlated. The authors discuss at least the major differences

that occur in the model dynamics when harvests are i.i.d. versus serially correlated.
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Moreover, both theory and evidence suggests that RE models might take the form of

a noncausal process. For example, Hansen and Sargent (1991) showed that if agents in

the commodity futures market can be described by a linear RE model, and have access

to an information set strictly larger than that available to the econometrician modeling

them, then the true shocks of the moving average representation that describe the RE

equilibrium process will not represent the shocks the econometrician estimates given a

purely causal linear model. In fact, the shocks of the model will have a non-fundamental

representation and we say that the model is at least partly “noncausal.” Of course,

modeling a process as partly noncausal does not imply that agents somehow “know the

future.” Rather, it simply represents another equivalent linear representation.

Through simulation studies, Lof (2011) also showed that if we simulate the market

asset price from both an RE model with homogenous agents and that from a model with

boundedly rational agents with heterogenous beliefs [based on the model by Brock and

Hommes (1998)], and then estimate both a purely causal model and a model with a

noncausal component on this data (given that the econometrician has full information)

we find that on average the rational expectations model is better fit by the causal model,

while the heterogenous agents model is better fit by a noncausal model.

Given these features, the time series literature has rapidly realized that the standard

linear dynamic models, that is, the autoregressive moving average (ARMA) processes

with Gaussian shocks, are not appropriate for representing the evolution of either com-

modity spot or futures prices. Indeed, they are not able to capture the nonlinear dynamic

features due to asymmetric cycles and price bubbles described above. For describing the

cycles created through the dynamics of investment between two substitutable commodi-

ties among producers (see the discussion of the example of cattle vs. grain above), it is

rather natural to consider an autoregressive model with a threshold, that is, the thresh-
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old autoregressive model (TAR) introduced by Tong and Lim (1980) in the time series

literature. Indeed, the cycles associated with substitutable products are in some ways

analogous to the predator-prey cycle for which the TAR model was initially introduced.

The TAR model has been applied on commodity prices to study the integration between

corn and soybean markets in North Carolina by Goodwin and Piggotts (2001) and U.S.

soybeans and Brazilian coffee by Ramirez (2009) to compare the asymmetry of such

cycles.

Contribution of the paper

Our paper contributes to the empirical literature on commodity futures prices by imple-

menting nonlinear dynamic models apt to reproduce the patterns of speculative bubbles

observed on the commodity price data. To focus on speculative bubbles and not on the

underlying cycles of the fundamental spot price, we consider the continuous contract fu-

tures price series available from Bloomberg on which it is believed that the speculative

effects will be more pronounced. We propose to analyze such series by means of the

mixed causal/noncausal models where the underlying noise defining the process has fat

tails. Indeed, it has been shown in Gourieroux and Zakoian (2012) that such models can

be used to mimic speculative bubbles, or more generally peaks and troughs with either

longitudinal or transversal asymmetry. The estimation of such mixed models will be

performed on 25 different physical commodities, across five different industrial sectors,

to check for the robustness of this modeling.

The rest of the paper is as follows. Section 2 discusses the details of the futures

contracts including the underlying commodities, the markets they are traded in, and the

features of the data series themselves including summary statistics. Section 3 shows

that the linear causal ARMA models with Gaussian innovations are unable to ade-

quately capture the structure of this commodity data. Section 4 introduces the theory

13



of mixed causal/noncausal processes, and discusses the special case of the noncausal

Cauchy autoregressive process of order 1. This section also demonstrates how the mixed

causal/noncausal process can accommodate both asymmetries and bubble type features.

Section 5 then introduces the mixed causal/noncausal autoregressive model of order

(r, s) and discusses its estimation by approximated maximum likelihood. Section 5.2

then details the results of estimating the mixed causal/noncausal autoregressive model

to the commodity futures price level data. Section 6 then compares the estimated un-

conditional distributions of both the purely causal and mixed models according to the

Kullback-Leibler measure. Section 7 then considers the appropriate method for fore-

casting the mixed causal/noncausal model given data on the past values of the process

and applies this method to forecast the futures data. Finally, the technical proofs and the

other material related to the data series are gathered in the appendices.

2 Description of the asset and data

2.1 The forward contract

A forward contract on a commodity is a contract to trade, at a future date, a given

quantity of the underlying good at a price fixed in advance. Such a forward contract will

stipulate:

◦ The names of those entering into the contract, i.e. the buyers and sellers.

◦ The date at which the contract is entered into at some time t.

◦ The date at which the contract matures at some future time t+ h.
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◦ The forward delivery price ft,t+h, negotiated and set in the contract at time t to be

paid at the future time t+ h.

◦ The monetary denomination of the contract.

◦ The characteristics and quality of the underlying good, often categorized by pre-

specified “grades.”

◦ The amount and units of the underlying good; typically commodity contracts will

stipulate a number of predefined base units e.g. 40,000 lbs of lean hogs.

◦ Whether the good is to be delivered to the buyers upon maturity at time t + h

(otherwise the buyer will have to pick up the good themselves).

◦ It will also specify the location of delivery if applicable and the condition in which

the good should be received.

Historically, such forward contracts were introduced to serve an economic need for

producers or consumers to be able to hedge against the risk of price fluctuations in

which they sell or purchase their products. For example, a producer of wheat might be

subject to future supply and demand conditions that are unpredictable. As such a risk

adverse producer would enter into a forward contract which would ensure a stable price

at a certain date in the future for their products. Therefore, despite whether the price of

their product rises or falls they can be certain of receiving the forward price. As another

example, consider the consumer’s side of the problem, where an airline company wishes

to guarantee a stable future price for inputs, e.g. jet fuel, in order to provide customers

with relatively unchanging prices of their outputs i.e. airline tickets.

Such traditional forward contracts still exist as bilateral agreements between two

parties, sold on so called “over the counter” (OTC) markets. These contracts still fulfill
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an important role for certain groups, for example large organizations such as national

governments since the parties involved are unlikely to default on their end of the con-

tract. However, if the investor is not sure of the financial integrity of the opposite party,

such a forward contract is by construction subject to counterparty risk. Therefore, as

opposed to nations which have the power to recover from counterparty loses and are

self insured, contracts catering to other types of investors must somehow incorporate an

insurance scheme into the contract itself to accommodate counterparty risk.

Counterparty risk presents itself as the forward contract approaches maturity since

if the forward price is below (resp. above) the spot price, ft,t+h < (resp. >)pt+h, then

the contract is profitable only to the buyer (resp. seller), except if the seller (resp. buyer)

defaults.

2.2 The futures contract

A futures contract on a commodity is a forward contract, but with an underlying in-

surance in place against possible counterparty risk. The insurance is paid by means of

insurance premia, called “margin” on the futures markets. There is an initial premium

or initial margin, and intermediary premia, or “margin calls.”

Therefore a futures contract with delivery contains the same information and con-

tractual stipulations as the forward contract. It still represents an agreement to either

buy or sell some underlying good at a future date, given a predetermined “futures price”

Ft,t+h set at time t today. However, in addition it will also specify

◦ A margin call scheme which:

⋄ Stipulates the initial margin; that is the amount the trader must first put up

as collateral to enter into futures contracts.
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⋄ Implements a mechanism whereby the margin account balance is maintained

a certain level sufficient to cover potential losses. If the margin account

balance drops below a threshold amount, the trader is obliged to put up more

collateral, known as the margin call.

Generally, the price of a futures contract with delivery, Ft,t+h, differs from the price

of a similar forward contract ft,t+h, since it must account for the price of the underlying

insurance against counterparty risks.

A futures contract requires the presence of an “insurance provider” usually either a

broker, or a clearing house. This provider will fix the margin rules for both the buyer

and seller and manage a reserve account to be able to hedge the counterparty risks in

case of default of either party unable to fulfill margin calls.3

Of course, the clearing house plays a second very important role: namely that of

“clearing the market” by trying to match demand and supply between buyers and sellers

of contracts. As a consequence, the clearing house facilitates the formation of futures

prices Ft,t+h as equilibrium prices. Therefore, we must distinguish between brokers

themselves who act as intermediaries, and the clearing house and brokering platforms

which also serve a more central purpose.

Finally, if the date and magnitude of the margin calls were known at the date of the

futures’ contract issue, the contract with delivery would simply reflect a portfolio (or

sequence) of forward contracts which are renewed each day [Black (1976)]. However,

the margin calls are fixed by the brokers or the clearing house according to the evolution

of the risk, i.e. to the observed evolution of the spot prices, but also to the margin rules

3There also exists a counterparty risk of the insurance provider itself. For instance, in 1987 the clearing

house for commodity futures in Hong Kong defaulted. This “double default” counterparty risk is not

considered in our analysis.
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followed by their competitors and so the interpretation as a portfolio of forwards is no

longer valid.

2.3 The futures contract without delivery

In the market for futures with delivery, historically some intermediaries or investors

have demonstrated that they are not on the market simply to buy or sell physical goods

for future delivery and that they do not actually take delivery of the underlying physical

good. Rather these investors are on the market simply to speculate on the future price

of the contract.

Given this trend, futures contracts without delivery have been introduced where in-

stead of taking delivery of the commodity they receive cash. When you do not have

delivery of a physical good, the derivative product becomes a purely “financial” asset.

Therefore there has been an attempt to separate these two types of instruments: a finan-

cial market designed purely for speculative purposes and a “real” market that provides

a mechanism for both producers and consumers to hedge against the risk of price fluc-

tuations.

This trend towards differentiation of futures with and without delivery was designed

to suppress the effect that speculation may have on the spot price of the underlying

good. For example, traders who are in a loss position may be unable to offset their

positions rapidly enough as maturity of the futures contract with delivery approaches.

Given this situation they are forced to purchase or sell the underlying good in the spot

markets in order to meet their contractual obligation. If many traders are in this situation

simultaneously and on the same side of the market, the effect could have a dramatic

impact on the spot price.
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2.4 Organization of the markets

In recent years, the futures commodity markets have become more organized. There is

standardization of the financial products and the margin rules. For example the Standard

Portfolio Analysis of Risk (SPAN) system has become common place as an instrument

to determine the margin levels (both the clearing houses associated with the Chicago

Mercantile Exchange (CME) and Intercontinental Exchange (ICE) have adopted its

use). The system represents a computational algorithm which determines each trad-

ing day the risk for each commodity future by scanning over sixteen different possible

price and volatility scenarios given the time to maturity of the contract. The sixteen sce-

narios consider various possible gains or losses for each futures contract, with each gain

or loss classification representing a certain fraction of the margin ratio.4 The results of

these tests are used to define the appropriate margin call requirements for the different

participants. Even if the SPAN methodology is a standard one, the choice of the risk

scenarios depends on the clearing house. Finally, the SPAN system is not perfect and is

likely to be modified in the near future. See for example, the “CoMargin” framework

discussed in Cruz Lopez et al. (2013).

Interestingly, the OTC forward markets are slowly becoming more organized like the

futures markets. For example the European Market Infrastructure Regulation (EMIR)

that entered into force on August 16, 2012, was designed to promote the trading of

standardized forward contracts on exchanges or electronic trading platforms which are

cleared by central counterparties and non-centrally cleared contracts should be subject

to higher capital requirements. Generally there is concern that the clearing houses need

to play a larger role in their function of mitigating counterparty risk, especially as it

4See https://www.theice.com/publicdocs/clear_us/SPAN_Explanation.pdf

available on the ICE exchange website.
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pertains to large valued contracts which could effect the economic base if they were left

to default.5

2.5 Example of a futures contract

Figure 2 provides an example of a set of futures contracts with delivery written on

coffee and traded on the ICE exchange.6 There are different contracts available for

different maturities, which are listed on the far left column. Coffee production generally

occurs in both the northern and southern hemispheres – there is a northern harvest taking

place between October and January and a southern harvest between May and September.

Given these differing harvests, coffee futures mature every two months from March to

September and every three months onward until the following March. Furthermore,

there exist contracts currently available for purchase that mature quite far into the future.

For example, the coffee future contract currently with the longest time to maturity is the

contract for March 2016 delivery.

The date this chart was accessed is also given as September 19th, 2013. Therefore,

when we speak of the futures price Ft,t+h, within the context of our model with daily

data (see the data section below) the time t would be the current date given above, and

the period h would represent the number of trading days until the contract matures. Such

contracts with delivery stipulate a last trading day which is typically the last business

day prior to the 15th day of the given contract’s maturity month. For instance, given the

December 2013 contract, the last business day before December 15th will fall on Friday

5However, having the clearing house play a more predominant role also raises concerns

over systemic risk – that is, could clearing houses themselves become “too big to fail” insti-

tutions? See the H. Plumridge (December 2nd, 2011) , “What if a clearing house failed?,”

Wall Street Journal, accessed Sept. 20, 2013 at http://online.wsj.com/article/

SB10001424052970204397704577074023939710652.html.
6The chart is provided by TradingCharts.com at http://tfc-charts.w2d.com/

marketquotes/KC.html.
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December 13th, 2013 (resp. Friday March 14th, 2014; Thursday May 15th, 2014; etc;

for the subsequent contracts).

The “open,” “high,” “low,” and “last,” describe the intraday trading activity of the

current trading session; that is, the opening price, the highest and lowest prices, and the

last price paid, respectively. The table also displays the last change in price, the current

volume of trades, and the set price and open interest from the last trading session of

the prior day. “Open interest” (also known as open contracts or open commitments)

refers to the total number of contracts that have not yet been settled (or “liquidated”) in

the immediately previous time period, either by an offsetting contractual transaction or

by delivery. Therefore, a larger open interest can complement the volume measure in

interpreting the level of liquidity in the market. As contracts approach maturity, both

the volume and open interest levels tend to rise; contracts with very distant times to

maturity are not very liquid.
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Figure 2: Coffee futures contracts, ICE exchange

Figure 3 provides a candlestick plot of the typical intraday trading activity between

September 13th, 2013, and September 19th, 2013, for the coffee future contract with

delivery in December 2013. Note that trading does not occur 24 hours a day (rather the

trading day takes place between 8:30AM-7:00 PM BST7) and so there are discontinu-

ities in the price series. The thin top and bottom sections of the candlestick, called the

shadows, represent the high and low prices, and the thick section called the real body,

denotes the opening and closing prices. Each candlestick describes trading activity over

a 30 minute period.8

7British Summer Time as the ICE exchange is located in London, England.
8There are 21 candlesticks each day, representing the 10.5 opening hours.
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Figure 3: Coffee futures with delivery in December 2013, ICE exchange, intraday price

$ US

2.6 Data on the commodity futures contracts

2.6.1 The continuous contract

The discussion above illustrates some of the difficulties in analyzing price data for

derivative products. For example, many of the products are very thinly traded with

low liquidity. Moreover, some products may only be available on one trading platform

and not another. For example, many futures contracts with delivery are available mu-

tually exclusively either on CME, or the ICE, and their associated clearing houses do
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not necessarily follow identical margin schemes. Also, OTC product data may only be

available through certain brokers proprietary trading platforms.

Perhaps the most consequential problem we face in attempting to analyze futures

contracts data is that the individual contracts of various maturities will eventually expire

and so we need a method whereby we can “extend” the futures price series indefinitely.

However, even in accomplishing this task we must consider that the contracts of various

maturities, while written on the same underlying good are not quite the same “asset” and

so the asset itself is changing over time. Therefore, we need some method to, not only

extend the series, but to standardize the price measurements across time and maturity,

and ensure that when we construct the series we are taking prices which are relevant,

e.g. with sufficient liquidity to be appropriately representative, deriving in essence a

new asset that no longer matures. In doing so we would also like to be able to bring

together information on prices available from different trading platforms in one place.

The Bloomberg console offers a solution to this problem by amalgamating futures

data for delivery from both the ICE and CME exchanges into one system. Bloomberg

also offers what is called called a continuous contract which mimics the behaviour of

a typical trader who is said to “roll over” the futures contract as it approaches maturity.

“Rolling over” refers to the situation where a trader would close out, or “zero,” their

account balance upon the approach of a futures contract’s maturity, if they do not intend

on taking delivery, by first purchasing an offsetting futures contract and then simulta-

neously reinvesting in another future with a further expiration month. In this way, an

artificial asset is created which tracks this representative trader’s futures account hold-

ings across time indefinitely. Details on how this is accomplished, as well as other

methods that can be employed, are outlined in Appendix 10. Users of the Bloomberg

console can customize criteria which define the rollover strategy, e.g. volume of trades
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or open interest; in this paper I choose to employ the continuous contract that mimics

the rolling over of the futures contract with the shortest time to maturity known as the

“front month” contract.

2.6.2 Industry sectors

I will consider a number of physical commodity futures contracts for a broad range of

products. The commodities are divided into various industry sectors that are expected

to behave similarly to each other. The industry sectors are given in Table 1.

Table 1: Commodity sectors

Energy Metals Softs Soy Livestock

Brent crude oil Copper Corn Soybeans Lean hogs

Light crude oil Gold Rice Soybean meal Live cattle

Heating oil Palladium Wheat Soybean oil

Natural gas Platinum Sugar

Gas oil Silver Orange juice

Gasoline RBOB Cocoa

Coffee

Cotton

Lumber

Within each futures contract itself there are specified a number of different product

grades. At the exchange level it is determined that any products which match pre-

specified grade criteria are considered part of the same futures contract. This is to

promote standardization of contracts and volume of trades. For example, the coffee

future discussed above is specified on the ICE exchange as the “Coffee C” future with

exchange code KC. This future allows a number of grades and a “Notice of Certifica-

tion” is issued based on testing the grade of the beans and by cup testing for flavor.

The Exchange uses certain coffees to establish the ”basis”. Coffees judged better are at

25



a premium; those judged inferior are at a discount. Moreover, these grades are estab-

lished within a framework of deliverable products, for example from the ICE product

guide for this KC commodity future we have that “Mexico, Salvador, Guatemala, Costa

Rica, Nicaragua, Kenya, New Guinea, Panama, Tanzania, Uganda, Honduras, and Peru

all at par, Colombia at 200 point premium, Burundi, Venezuela and India at 100 point

discount, Rwanda at 300 point discount, and Dominican Republic and Ecuador at 400

point discount. Effective with the March 2013 delivery, the discount for Rwanda will

become 100 points, and Brazil will be deliverable at a discount of 900 points.”

2.6.3 Energy

Brent crude oil is a class of sweet light crude oil (a “sweet” crude is classified as con-

taining less than 0.42% sulfur, otherwise it is known as “sour”). The term “light” crude

oil characterizes how light or heavy a petroleum liquid is compared to water. The stan-

dard measure of “lightness” is the American Petroleum Institute’s API gravity measure.

The New York Mercantile Exchange (NYMEX) defines U.S. light crude oil as having

an API measure between 37 (840 kg/m3) and 42 (816 kg/m3) and foreign as having

between 32 (865 kg/m3) and 42 API.

Therefore, various grades are defined in the standardized contract. Both foreign and

domestic light crude oil products are required to admit various characteristics based on

sulfur levels, API gravity, viscosity, Reid vapor pressure, pour point, and basic sedi-

ments or impurities. Exact grade specifications are available in the CME Group hand-

book, Chapter 200, 200101.A and B.

The price of Brent crude is used as a benchmark for most Atlantic basin crude

oils, although Brent itself derives from North Sea offshore production. Other impor-

tant benchmarks also include North America’s West Texas Intermediate and the middle
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east UAE Dubai Crude which together track the world’s internationally traded crude

oil supplies. The representative light crude oil future employed in this paper is written

on West Texas Intermediate and exchanged by the CME Group. The delivery point for

(WTI) light crude oil is Cushing, Oklahoma, U.S., which is also accessible to the inter-

national spot markets via pipelines. Likewise, the Brent crude oil future is exchanged

by ICE and admits delivery at Sullom Voe, an island north of Scotland.

Heating oil is a low viscosity, liquid petroleum product used as a fuel for furnaces or

boilers in both residential and commercial buildings. Heating oil contracts take delivery

in New York Harbor. Just as in crude oil contracts, very detailed stipulations exist

regarding product quality grades; see the CME handbook, Chapter 150, 150101. Natural

gas is a hydrocarbon gas mixture consisting primarily of methane, used as an important

energy source in generating both heating and electricity. It is also used as a fuel for

vehicles and is employed in both the production of plastics and other organic chemicals.

Natural gas admits delivery at the Henry Hub, a distribution hub on the natural gas

pipeline system in Erath, Louisiana, U.S. Contract details are available in the CME

handbook, Chapter 220, 220101. Gas oil (as it is known in Northern Europe) is Diesel

fuel. Diesel fuel is very similar in its physical properties to heating oil, although it has

commonly been associated with combustion in Diesel engines. Gas oil admits delivery

in the Amsterdam-Rotterdam-Antwerp (ARA) area of the Netherlands and Belgium.

Contract grade specifications are available from the exchange, ICE.

The Gasoline RBOB classification stands for Reformulated Blendstock for Oxy-

genate Blending. RBOB is the base gasoline mixture produced by refiners or blenders

that is shipped to terminals, where ethanol is then added to create the finished ethanol-

blended reformulated gasoline (RFG). Gasoline RBOB admits delivery in New York

Harbor and quality grade details are outlined in the CME handbook, Chapter 191,
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191101.

2.6.4 Metals

Gold and silver, have both traditionally been highly sought after precious metals for

use in coinage, jewelry, and other applications since before the beginning of recorded

history. Both also have important applications in electronics engineering and medicine.

The CME exchange licenses storage facilities located within a 150 mile radius of New

York city, in which gold or silver may be stored for delivery on exchange contracts. The

quality grades for gold and silver are defined in the CME handbook, Chapters 113 and

112, respectively.

Platinum, while also considered a precious metal, also plays an important role, along

with the metal Palladium in the construction of catalytic converters. Catalytic convert-

ers are used in the exhaust systems of combustion engines to render output gases less

harmful to the environment. Palladium also plays a key role in the construction of hy-

drogen fuel cells. Finally, copper is a common element used extensively in electrical

cabling given its good conductivity properties. Platinum, Palladium, and Copper offer

a number of delivery options, including delivery to warehouses in Zurich, Switzerland.

See the CME handbook Chapters 105, 106 and 111 respectively.

2.6.5 Softs and Livestock

“Soft goods” are typically considered those that are either perishable or grown in an

organic manner as opposed to “hard goods” like metals which are extracted from the

earth through mining techniques.

In the grains category we have corn, rice, and wheat which are all considered “cereal

grains”; that is, they represent grasses from which the seeds can be harvested as food.
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Sugar, derived from sugarcane, is also a grass but the sugar is derived not from the seeds

but from inside the stalks. Corn, rice, and wheat all admit a number of standardized

delivery points within the U.S. See the CME handbook chapters 10, 14, and 17 for grade

specifications and delivery options. Sugar delivery point options and grade details are

available online from ICE, under the Sugar No.11 contract specification.

Orange juice is derived from oranges which grow as the fruit of citrus tree, typically

flourishing in tropical to subtropical climates. The juice traded is in frozen concentrated

form. Orange juice is deliverable to a number of points in the U.S., including California,

Delaware, Florida, and New Jersey warehouses. See the ICE FCOJ Rulebook available

online for further information and quality grade details. Coffee is derived from the seeds

of the coffea plant, referred to commonly as coffee “beans.” Cocoa represents the dried

and fully fermented fatty seeds contained in the fruit of the cocoa tree. Finally, cotton is

a fluffy fibre that grows around the seeds of the cotton plant. Delivery point information

and quality grade details for Coffee, Cocoa, and Cotton are also available via the ICE

Rulebook chapters available online.

In the soy category we have soybeans, a species of legume widely grown for its

edible beans; soybean meal which represents a fat-free, cheap source of protein for

animal feed and many other pre-packaged meals; and finally, soybean oil is derived

from the seeds of the soy plant and represents one of the most widely consumed cooking

oils. All three soybean products admit a number of standardized delivery points within

the U.S. See the CME handbook chapters 11, 12, and 13 for grade specifications and

delivery options.

Lean hogs refers to a common type of pork hog carcass used typically for consump-

tion. A lean hog is considered to be 51-52% lean, with 0.80-0.99 inches of back fat at

the last rib, with a 170-191 lbs. dressed weight (both “barrow” and “gilt” carcasses).
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Live cattle are considered 55% choice, 45% select, yield grade 3 live steers (a castrated

male cow). Finally, lumber is traded as random length 2×4’s between 8-20 feet long.

Lean hogs futures are not delivered but are cash settled based on the CME Lean Hog

Index price. Cattle is to be delivered to the buyer’s holding pen. Lumber shall be deliv-

ered on rail track to the buyer’s producing mill. See CME handbook Chapters 152, 101,

and 201, respectively for details.

2.6.6 Data sources

The following Table 2 outlines the dates for which there exists data for each commodity

futures price series, the time to maturity, currency denomination, commodity exchange

and code, and basic unit/characteristics of the product traded.
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Table 2: Commodity specifications

Commodity Start date CEM Currency unit Exchange Code Basic unit

Soybean meal 7/18/1977 FHKNZ U.S.$/st CME ZM/SM 100 st’s

Soybean oil 7/18/1977 FHKNZ U.S.$/100lbs CME ZL/BO 60,000 lbs

Soybeans 7/18/1977 FHKNX U.S.$/100bushel CME ZS/S 5,000 bushels

Orange juice 7/18/1977 FHKNUX U.S.$/100lbs ICE OJ 15,000 lbs

Sugar 7/18/1977 HKNV U.S.$/100lbs ICE SB 112,000 lbs

Wheat 7/18/1977 HKNUZ U.S.$/100bushel CME ZW/W 5,000 bushels

Cocoa 7/18/1977 HKNUZ U.S.$/MT ICE CC 10 MT

Coffee 7/18/1977 HKNUZ U.S.$/100lbs ICE KC 37,500 lbs

Corn 7/18/1977 HKNUZ U.S.$/100bushel CME CZ/C 5,000 bushels

Cotton 7/18/1977 HKNZ U.S.$/100lbs ICE CT 50,000 lbs

Rice 12/6/1988 FHKNUX U.S.$/100hw CME ZR/RR 2,000 hw

Lumber 4/7/1986 FHKNUX U.S.$/mbf CME LBS/LB 110 mbf

Gold 7/18/1977 GMQZ U.S.$/oz CME GC 100 troy oz

Silver 7/18/1977 HKNUZ U.S.$/100oz CME SI 5,000 troy oz

Platinum 4/1/1986 FJNV U.S.$/oz CME PL 50 troy oz

Palladium 4/1/1986 HMUZ U.S.$/oz CME PA 100 troy oz

Copper 12/6/1988 HKNUZ U.S.$/100lbs CME HG 25,000 lbs

Light crude oil 3/30/1983 All U.S.$/barrel CME CL 1,000 barrels

Heating oil 7/1/1986 All U.S.$/gallon CME HO 42,000 gallons

Brent crude oil 6/23/1988 All U.S.$/barrel ICE CO 1,000 barrels

Gas oil 7/3/1989 All U.S.$/MT ICE QS? 100 MT

Natural gas 4/3/1990 All U.S.$/mmBtu CME NG 10,000 mmBtu

Gasoline RBOB 10/4/2005 All U.S.$/gallon ICE HO 42,000 gallons

Live cattle 7/18/1977 GJMQVZ U.S.$/100lbs CME LE/LC 40,000 lbs

Lean hogs 4/1/1986 GJMQVZ U.S.$/100lbs CME HE/LH 40,000 lbs
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The units are described as follows. A barrel is considered to be 42 U.S. gallons. An

mmBtu is one million British Thermal Units, a traditional unit of energy equal to about

1055 joules per Btu. An MT is one metric tonne, which is a unit of mass approximately

equal to 1,000 kilograms. Lbs and oz are the abbreviations for pounds and ounces,

respectively. A “Troy oz” is a slightly modified system whereby one troy oz is equal

to approximately 1.09714 standard oz. A bushel is a customary unit of dry volume,

equivalent to 8 gallons. An mbf is a specialized unit of measure for the volume of

lumber in the U.S, called a “board-foot.” A board-foot (or “bf”) is the volume of a

one-foot length of a wooden board, one foot wide and one inch thick. Therefore an mbf

is one million such board-feet. Finally, an “st” or short tonne is a unit of mass smaller

than the metric tonne, equivalent to approximately 907 kilograms.

The column CEM represents the range of “contract ending months” that each futures

contract may be specified for. The month codes are as follows: F - January, G - February,

H - March, J - April, K - May, M - June, N - July, Q - August, U - September, V -

October, X - November, and Z - December. These are the standard codes employed by

the exchanges.

All series end on February 8th, 2013, and represent daily closing prices for those

days the commodities are traded on the exchange. In June 2007 the CBOT (Chicago

Board of Trade) which acted as the exchange for soy products, wheat corn, and rice,

merged with the CME (Chicago Mercantile Exchange) to form the CME Group. More-

over, most of the energy futures were originally traded on the NYMEX (New York Mer-

cantile Exchange) and the metals were traded on the COMEX (Commodity Exchange;

a division of the NYMEX). However, on August 18, 2008, the NYMEX (along with the

COMEX) also merged with the CME Group. Gas oil was originally traded on the IPE

(International Petroleum Exchange) which was acquired by ICE (IntercontinentalEx-
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change) in 2001. Therefore, care must be taken in interpreting the various exchange

codes which have changed over time.

For most CME contracts, the last trading day is typically the 15th business day

before the first day of the contract month. The delivery date is then freely chosen as any

day during the contract month.

2.7 Features of the price level series

When dealing with financial data we typically consider the continuously compounded

returns series, rt = ln(Pt/Pt−1), since the price level process is nonstationary and so

we are obliged to transform the initial price data. However, in the case of futures price

data without delivery, an examination of the time evolution of the price level processes

does not necessarily suggest the presence of trends, either of the stochastic type (i.e.

random walk), or due to a deterministic increase or decrease.

Figure 4: Plots of daily continuous contract futures price level series, Sugar and Lean

hogs
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For example, let us consider the two plots in Figure 4, that display the time evo-
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lution of the futures prices of sugar and lean hogs. Both series do not exhibit obvious

deterministic time trends and their dramatic bubbles (especially in sugar) suggest that

they cannot have been generated by a random walk. Interestingly, lean hogs exhibits the

well known “pork cycle,” or cyclical patterns related to pork production.

The price level series all exhibit a very high level of linear persistence in the sense

that their estimated autocorrelation function, ρ̂(s), are all ρ̂(1) ≈ 1 with small, but

significant, ρ̂(s) for some s > 1 (see Table 3 for the autocorrelation at lag 1). Moreover,

their normalized spectral densities exhibit extremely sharp peaks at the zero frequency

and are near zero elsewhere in the spectrum. Of course, this is suggestive of a unit root

process, however, augmented Dickey-Fuller unit root tests of the series are inconclusive

in rejecting the null of a unit root (including a constant, but no time trend).9

This is unsurprising given what we know about the properties of some exotic para-

metric processes which are able to elude detection by traditional unit root testing (see

for example the causal representation of the noncausal AR(1) model with i.i.d. Cauchy

innovations discussed later in Section 4.2). A linear unit root test is not of much use if

the causal representation of the process may be nonlinear and strictly stationary, with

moments that do not exist. Finally, linear unit root tests have been shown to have low

power in the presence of nonlinearity (such as multiple regimes, for example).

Since all continuous contract futures series are constructed through the “rolling

over” mechanism, they reflect the price of a reconstituted futures contract in which

the time to maturity, h, remains fixed throughout the time evolution of the price level,

despite the fact that the reconstitution is generated from individual contracts of different

maturities each representing daily closing prices for those days these futures contracts

are traded on the exchange. The different starting dates for each of the series are given

9The estimated spectral density and Dickey-Fuller test results are available upon request.
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in Table 2 and all the continuous contract series end on end on February 8th, 2013.

Summary statistics for the price levels series are given in Table 3 and plots and

histograms of all the price level series are available in Appendix 14 (Figures 10.i to

11.iv).

Note some of the salient features from the summary statistics in Table 3. If we are to

interpret the series as strictly stationary, the sample moments suggest highly leptokurtic

unconditional distributions for most of the series. Exceptions to this exist, however,

in orange juice, lumber, platinum, copper, gasoline RBOB, and lean hogs. Perhaps

more importantly we should consider that most of the series are also positively skewed,

again with a few exceptions in gasoline RBOB and lean hogs (and possibly orange

juice). Visual examination of the histograms in Appendix 14 corroborate these statistics.

Moreover, some of the histograms indicate a bimodal structure, especially among those

series that are highly skewed, suggesting the possibility of a mixture between low price

and high price regimes. A good example of this is the copper series.
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Table 3: Summary statistics - commodity futures price level series

Levels Quantiles

Series 10% 50% 90% Mean Stnd. Dev. Skewness Kurtosis ACF(1) Sample size

Soybean meal 149.600 185.800 314.200 210.347 70.151 1.729 6.190 0.998 9280

Soybean oil 16.640 23.750 39.993 26.399 10.449 1.709 5.516 0.999 9280

Soybeans 503.750 629.000 1057.600 716.563 249.577 1.755 5.735 0.998 9280

Orange juice 79.250 115.125 170.350 118.926 33.531 0.592 2.663 0.998 9280

Sugar 6.040 9.830 20.503 11.586 6.343 1.946 7.283 0.998 9280

Wheat 267.250 357.500 622.750 401.672 151.036 1.878 6.656 0.998 9280

Cocoa 991.000 1621.000 2971.100 1835.268 744.051 0.926 3.466 0.997 9280

Coffee 64.700 124.450 192.000 126.325 48.051 0.699 3.495 0.997 9280

Corn 203.750 258.250 435.000 298.578 126.933 2.097 7.126 0.998 9280

Cotton 49.059 65.150 85.720 67.665 19.798 2.688 16.481 0.997 9280

Rice 5.360 8.440 14.601 9.243 3.557 0.844 3.503 0.999 6309

Lumber 181.700 261.700 366.920 267.773 70.562 0.463 2.458 0.996 7005

Gold 277.700 385.400 964.230 510.664 351.245 2.202 7.139 0.999 9280

Silver 4.400 6.037 18.050 9.406 7.680 2.272 7.910 0.998 9280

Platinum 367.200 534.000 1555.420 755.715 463.352 1.169 3.096 0.999 7009

Palladium 111.000 206.150 645.140 286.657 203.778 1.303 3.935 0.999 7009

Copper 74.000 115.400 358.860 168.275 111.428 1.060 2.562 0.999 6309

Light crude oil 16.400 26.740 85.712 38.103 27.475 1.371 3.827 0.999 7793

Heating oil 45.733 67.655 264.865 112.316 86.145 1.292 3.484 0.999 6944

Brent crude oil 15.796 25.410 100.128 41.547 32.501 1.205 3.199 0.999 6427

Gas oil 147.000 226.500 894.875 375.818 281.273 1.161 3.180 0.999 6160

Natural gas 1.631 3.142 7.366 3.987 2.478 1.370 4.950 0.998 5964

Gasoline RBOB 153.220 223.895 304.360 227.116 57.877 0.023 2.309 0.995 1920

Live cattle 60.500 71.488 95.100 75.023 15.871 1.219 4.915 0.998 9280

Lean hogs 46.550 63.345 81.380 63.726 13.133 0.165 2.830 0.995 7009
* Note that ACF(1) represents the autocorrelation function at lag 1 and T is the sample size. Also the kurtosis measure employed here is not the

excess kurtosis.
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3 The linear causal ARMA model

In this section we show that the causal linear ARMA model, with Gaussian innovations,

is unable to adequately capture the features of the futures price level data.

In order to assess the ARMA model’s ability to fit the price level data, I estimate a

number of different ARMA(p, q) specifications and choose among the best fitting ac-

cording to the Akaike information criteria (AIC). The software used to estimate the

ARMA model is the popular “R project for statistical computing” available for down-

load at http://www.r-project.org/. In order to facilitate the (p, q) parameter

search we employ the auto.arima() function in the R forecast package due to Hyn-

dman and Khandakar (2008). Given computational constraints, maximum orders of

p + q = 13, p ≤ 10 and q ≤ 3 are chosen. AIC’s are specified not to be approximated

and the “stepwise” selection procedure is avoided to make sure all possible model com-

binations are tested.

The arima() routine called by auto.arima() obtains reasonable starting parameter

values by conditional sum of squares and then the parameter space is more thoroughly

searched via a Nelder and Mead (1965) type algorithm. The pseudo-likelihood function

is computed via a state-space representation of the ARIMA process, and the innovations

and their variance found by a Kalman filter. Since the assumption of Gaussian shocks

may be misspecified, robust sandwich estimator standard errors are employed of the

type introduced by White (1980).

If the ARMA model captures the nonlinear features of the data, the residuals (et)

should be approximately representative of a strong white noise series. Therefore, we

test for this feature in two ways: 1) we employ the Ljung-Box test with the null of

weak white noise residuals [Ljung and Box (1978)] and 2) the BDS test with the null of
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independent residuals [Brock, Dechert and Scheinkman, and LeBaron (1996)].

3.1 Test specifications

The Ljung-box test statistic is given as

LB(S) = T
S
∑

s=1

T + 2

T − s
ˆ̺(s)2, (1)

where ̺(s) is the estimated autocorrelation function of the ARMA model residuals. The

null hypothesis is that the autocorrelation function of the ARMA residuals is jointly 0

up to the Sth lag. Finally, LB(S) ∼ χ2(S), if the residuals are representative of the

true theoretical (ǫt) which is a strong white noise (and neglecting the fact that ˆ̺(s) is an

estimated quantity itself).

The BDS test was designed to be employed on the residuals of a best fitting linear

model in order to look for deterministic chaos in the residual nonlinear structure. This

test involves the correlation dimension technique originally developed by Grassberger

and Procaccia (1983) to detect the presence of chaotic structure by embedding over-

lapping subsequences of the data in k-space. Given a k-dimensional time series vector

xt,k = (xt, xt+1, . . . , xt+k−1)
′ called the k-history, the BDS test treats this k-history as

a point in a k-dimensional space. The BDS test statistic, called the correlation integral

is given as

Ck(ǫ, T ) =
2

Tk(Tk − 1)

∑

i<j

Iǫ(xi,k,xj,k), where Tk = T − k + 1, (2)

and where Iǫ(u, v) is an indicator variable that equals one if ‖u − v‖ < ǫ and zero

otherwise, where ‖·‖ is the supnorm. The correlation integral estimates the fraction of
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data pairs of xt,k that are within ǫ distance from each other in k-space. Despite the

original purpose of the test, it is effectively a test for independence since if we can

reject the null hypothesis of correlation of (xt)
Tk

t=1 in every k-dimensional embedding

space this is equivalent to being i.i.d. That is, if the k-histories show no pattern in

k-dimensional space, then we should have that Ck(ǫ, T ) ≈ C1(ǫ, T )
k.

It is shown that the BDS statistic
√
T
[

Ck(ǫ, T )− C1(ǫ, T )
k
]

is asymptotically Nor-

mal with mean zero and finite variance under the null hypothesis [see Tsay (2010),

Ch.4.2.1]. If we cannot reject the null hypothesis the alternative is quite broad since, de-

pending on the correlation structure in the k-dimensional spaces, the nonlinearity could

have come about due to either deterministic nonlinearity, i.e. chaos [see Blank (1991),

Decoster et al. (1992), and Yang and Brorsen (1993)], or stochastic nonlinearity.

For the Ljung-Box test we specify the number of lags S as S = ln(T ) rounded to

the nearest integer, where T is the sample size given in Table 3. According to Tsay

(2010), Ch.2.2, pg.33, simulation studies suggest that this choice maximizes the power

of the test. For the BDS test we consider embedding dimensions k up to k = 15, which

trades off number of dimensions for computational efficiency.

3.2 Results

Table 4 presents estimation results for the ARMA model. Generally, for all the series,

the best fitting linear ARMA model residuals reject the BDS null hypothesis of i.i.d.

shocks at the 1% test significance level (in fact all of the test statistic p-values are ex-

tremely close to 0). There is one exception in the lean hogs price levels series, where

for ǫ = 2.6 (the parameter that defines “near points” in the k-dimensional space, i.e.

‖u − v‖ < ǫ), we are not able to reject the null hypothesis of i.i.d. residuals (however,
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we are able to reject for smaller ǫ = 1.95). The p-values in this case decline monotoni-

cally from 0.731 at k = 2 down to 0.165 at k = 15.

Plots of all the residuals series also suggest ARCH effects (see Figure 5 for an

example). Interestingly, except in the case of coffee, the noises are still weak white

according to the Ljung-Box test as we are unable to reject the null hypothesis at the

10% level, although we are able to reject platinum at the 13% level and soybean meal at

the 15% level.

Interestingly, the ARMA estimation software is unable to fit an autoregressive model

to the gold series, and so we skip testing its residuals for whiteness.

Figure 5: Soybean meal residuals from ARMA model

Clearly, the causal linear ARMA model is not able to fully capture the structure of

the data as the residuals are weak white noise, but not i.i.d. Therefore, the evidence

presented in this section suggests that we need a better model if we are to adequately

capture the nonlinear dynamic features of the futures price level data.
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Table 4: ARMA estimation results

Series p qa AIC Log-likelihood Ljung-Box Pvalb

Soybean meal 6 2 52395.00 -26188.50 0.15

Soybean oil 8 3 11859.05 -5917.52 0.92

Soybeans 9 2 73548.21 -36762.11 0.52

Orange juice 4 3 42121.61 -21052.80 0.40

Sugar 10 2 7842.39 -3908.20 1.00

Wheat 7 2 67069.47 -33524.74 1.00

Cocoa 8 3 94368.76 -47172.38 0.72

Coffee 4 2 48866.80 -24426.40 0.06

Corn 7 3 59385.84 -29681.92 0.63

Cotton 10 0 32760.78 -16369.39 1.00

Rice 10 3 -4799.02 2413.51 0.96

Lumber 8 3 44027.92 -22001.96 1.00

Gold 0 3 102914.50 -51453.27 n/a

Silver 9 3 7424.04 -3699.02 0.94

Platinum 8 2 55936.82 -27957.41 0.13

Palladium 9 3 48209.69 -24091.84 0.99

Copper 10 0 34719.50 -17348.75 1.00

Light crude oil 7 2 22244.11 -11112.06 0.95

Heating oil 9 2 34465.28 -17220.64 1.00

Brent crude oil 7 2 18807.92 -9393.96 0.90

Gas oil 5 3 44142.24 -22062.12 0.92

Natural gas 3 2 -4178.27 2095.13 0.23

Gasoline RBOB 5 3 11715.32 -5848.66 0.99

Live cattle 6 1 22771.40 -11377.70 0.99

Lean hogs 3 2 23567.63 -11777.81 0.70

a The orders of the ARMA(p, q) model are given in the first and second columns.
b The column denoted “Ljung-Box Pval” indicates the p-value statistic for this test – there-

fore we reject the null hypothesis at x% probability of committing a type I error if

Pval < x.
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4 The linear mixed causal/noncausal process

The linear mixed causal/noncausal process takes the form of a two sided infinite moving

average representation,

Yt =
∞
∑

i=−∞

aiǫt−i, (3)

where (ǫt) is a strong white noise, that is a sequence of independently and identically

distributed (i.i.d.) variables, that doesn’t necessarily admit finite moments. The mixed

causal/noncausal process is composed of both a purely causal component that depends

only on past shocks, that is the sum of aiǫt−i for all i > 0, and a purely noncausal

component that depends only on future shocks, that is the sum of aiǫt−i for all i < 0.

We have a unique representation for (3), up to a scale factor on ǫt, except in the case

where the white noise (ǫt) is Gaussian [see e.g. Findley (1986) and Cheng (1992)].

For Gaussian white noise, there exists an equivalent purely causal linear representation

where (ǫ∗t ) is another Gaussian white noise. This implies that for non-Gaussian (ǫt),

a mixed linear process including a noncausal component (i.e. ∃i < 0, ai �= 0) will

necessarily admit a nonlinear causal dynamic. For more details see Appendix 11.1.

4.1 The asymmetries

As an example, let us consider the effect of shocks (ǫt) on the model above in (3).

Let ǫt be distributed Cauchy which admits no first and second-order finite moments.

Moreover, let ai = ρi1 for i ≥ 0, ai = ρi2 for i ≤ 0, and |ρk| < 1 for k = 1, 2, where we

are free to choose ρ1 and ρ2 as such.

In choosing various values for ρk, k = 1, 2, we will see how the general lin-

ear causal/noncausal model is able to exhibit bubble like phenomenon with asymme-
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tries of the type discussed in Ramsey and Rothman (1996) (see the Introduction, Sec-

tion 1, (ii), Price dynamics). Consider the simulated sample path of the linear mixed

causal/noncausal model with standard Cauchy shocks as depicted in Figure 6, where

we have zoomed in on a bubble episode to focus on the dynamics.

Within Figure 6 we have an example of a positive shock ǫt > 0 around time t = 57.

Depending on the values chosen for ρ1 and ρ2, the bubble’s build up and subsequent

crash exhibits different rates of ascent and descent. For example, consider the parameter

combination (ρ1 = 0.8, ρ2 = 0). This represents the purely causal case where the shock

occurs at time t = 57 and its effect dies off slowly, and so we have a quick rise and a

subsequently slow decline. Also consider the opposite case where (ρ1 = 0, ρ2 = 0.8).

This is the purely noncausal case where the bubble builds up slowly until time t = 57

and then quickly declines. The other cases represent mixed causal/noncausal models

where the bubble rises and falls at rates which depend on the ratio of ρ1/ρ2 = α. If

α > 1 the bubble rises quicker than it declines; if α < 1 then it rises slower than

it declines, and if α = 1 then it behaves symmetrically around time t = 57. These

asymmetries can be classified within the framework of Ramsey and Rothman (1996) as

being longitudinally asymmetric in that the probabilistic behaviour of the process is not

the same in direct and reverse time.

Of course, for a negative shock ǫt < 0 the behaviour would be duplicated, but instead

we would see a crash instead of a bubble. This suggests that the mixed causal/noncausal

process can also exhibit transversal asymmetries, that is asymmetries in the vertical

plane, by modifying the distribution of the shocks. For example, if we were to only

accept positive Cauchy shocks, ǫt > 0, this would induce a process that only exhibited

positive bubbles which would represent a transversally asymmetric process.

Therefore, by managing both the moving average coefficients, ai, and the distribu-
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tion of the shocks ǫt in (3), the mixed causal/noncausal model can exhibit both lon-

gitudinal and transversal asymmetries of the type discussed by Ramsey and Rothman

(1996).

Figure 6: The mixed causal/noncausal model with Cauchy shocks
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4.2 The purely causal representation

As discussed above, in general we have a unique linear representation as (3) except when

the white noise process is Gaussian. This implies that, for fat tailed distributions, such

as the t-distribution or Cauchy distribution, the purely causal strong form representation

will necessarily admit a nonlinear representation [Rosenblatt (2000)].
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4.2.1 Example: The noncausal autoregressive process with Cauchy shocks

Consider the noncausal autoregressive process of order 1 with Cauchy shocks,

xt = ρxt+1 + ǫt, (4)

where |ρ| < 1 and ǫt/σǫ follows a standard i.i.d. Cauchy distribution. The shocks can

be interpreted as backward innovations, defined as ǫt = xt − median(xt|xt+1), since,

strictly speaking, the moments of the Cauchy distribution do not exist.

This process admits both a strong purely causal representation which is necessarily

nonlinear with i.i.d. shocks, and a weak form purely causal representation which is

linear, but where the shocks are weak white noise and not i.i.d.

More precisely, the noncausal process (xt) is a Markov process in direct time with

a causal transition p.d.f. given as [Gourieroux and Zakoian (2012), Proposition 2, and

Appendix 11.3 of this paper]:

ft+1|t(xt+1|xt) =
1

σǫπ

σ2
ǫ

σ2
ǫ + z2t

σ2
ǫ + (1− |ρ|)2x2

t

σ2
ǫ + (1− |ρ|)2x2

t+1

. (5)

In particular the causal conditional moments associated with the equation above exist up

to order three, whereas the noncausal conditional moments associated with the forward

autoregression in (4), and the unconditional moments, do not exist.

i) The causal strong autoregressive representation

In order to represent (4) as a causal, direct time, process in strong form, we must ap-

peal to the nonlinear (or generalized) innovations of the process [see Rosenblatt (2000),

Corollary 5.4.2. or Gourieroux and Jasiak (2005), Section 2.1].

Intuitively, a nonlinear error term, (ηt), of the causal process (xt) is a strong white
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noise where we can write the current value of the process xt as a nonlinear function of

its own past value xt−1 and ηt, say,

xt = G(xt−1, ηt), ηt ∼ i.i.d., (6)

where xt and ηt satisfy a continuous one-to-one relationship given any xt−1. For more

details see Appendix 11.4.

ii) The causal weak autoregressive representation

Only the Gaussian autoregressive processes possess both causal and noncausal strong

form linear autoregressive representations. The noncausal AR(1) Cauchy model there-

fore admits only a weak form linear representation given as [Gourieroux and Zakoian

(2012), Section 2.3]:

xt = Et|t−1[xt|xt−1] + η∗t

√

V art|t−1[xt|xt−1]. (7)

The representation is weak since (η∗t ) is a weak white noise (not i.i.d.) and

η∗t
√

V art|t−1[xt|xt−1] = ǫ∗t is conditionally heteroskedastic. That is, the weak innova-

tions also display GARCH type effects.

The conditional moments of xt are given as:

Et|t−1[xt|xt−1] = sign(ρ)xt−1 and (8a)

Et|t−1[x
2
t |xt−1] =

1

|ρ|x
2
t−1 +

σ2
ǫ

|ρ|(1− |ρ|) . (8b)

Interestingly, from equation (8a), we see that for ρ > 0 the process exhibits a unit

root (this is the martingale property), but is still stationary; this unit root is expected
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since the unconditional moments of xt do not exist. Usually when we consider the

properties of a unit root model this is within the context of models with a nonstationary

stochastic trend. However, in the example above the causal process (xt) has a unit root

when being strongly stationary. So the unit root does not generate a stochastic trend, but

can generate bubbles due to the martingale interpretation [see Gourieroux and Zakoian

(2012), and the discussion in Section 4.3].

4.3 Other bubble like processes

As described in Gourieroux and Zakoian (2012), several other examples of martingale

processes with bubbles have been introduced in the literature. However, none of these

processes are as easy to introduce into a general dynamic framework as the set of mixed

causal/noncausal processes.

Interestingly, these previous bubble processes are piecewise linear, but still maintain

the martingale property. For example, the bubble process introduced in Blanchard and

Watson (1982) is given by:

xt+1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
π
xt + ǫt+1, with probability π,

ǫt+1, with probability (1− π),

(9a)

where ǫt is a Gaussian error term and π ∈ (0, 1). This is a martingale process, with a

piecewise linear dynamic in that given the latent state, the parameter on the autoregres-

sion switches between zero and 1/π.

Evans (1991) proposes to model the explosive rate parameter, (θt), say, as a Bernoulli

random variable, B(1, π). Again, this process represents one that is piecewise linear, but

in this case is also a multiplicative error term model, with (ut) representing an i.i.d. pro-
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cess with ut ≥ 0, Et[ut+1] = 1, and with parameters 0 < δ < (1 + r)α where r > 0,

π ∈ (0, 1], and

xt+1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

δ + 1
π
(1 + r)θt+1

(

xt − δ
(1+r)

))

ut+1 if xt > α

(1 + r)xtut+1 if xt ≤ α.

(10a)

In this case the regime is not latent, but is a function of the observable xt. In this way,

the process is an extension of the self-exciting threshold autoregression of Tong and

Lim (1980).

For illustration I have simulated sample paths from the two bubble processes above

along with the causal AR(1) Cauchy process (see Figure 7). The Blanchard and Watson

process is simulated by choosing π = 0.8 and ǫt ∼ IIN(0, 1). The Evans process is

simulated in accordance to the parameters chosen in simulating bubbles for Table 1, on

page 925, of their paper; that is, we have α = 1, δ = 0.5, 1 + r = 1.05, π = 0.75 and a

sample path of length T = 100 is generated. Moreover, ut is log-normally distributed,

where ut = exp [yt − τ 2/2] and yt ∼ IIN(0, 0.052). Finally, the causal AR(1) Cauchy

is simulated by choosing ρ = 0.8 in equation (4) and σ = 0.1 as the scale parameter of

the Cauchy distribution.

The bubble processes above were constructed for very specific theoretical reasons.

The Blanchard and Watson (1982) process is given as an example of a bubble consistent

with the rational expectation hypothesis and the Evans (1991) process is given as an

example of a stationary process with periodically collapsing bubbles that defies standard

linear unit root testing. Alone, and without further modification, neither process should

be considered a serious candidate to model bubbles in commodity futures price levels.

On the other hand, unlike these previous bubble processes, the AR(1) Cauchy model is
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easily introduced in a mixed causal/noncausal framework.

5 Estimation of the mixed causal/noncausal process

In this section we introduce the mixed causal/noncausal autoregressive model which

will be estimated in an attempt to model the asymmetric bubble features exhibited by

the commodity futures price level data. The model is a linear parameterization of the

general mixed causal/noncausal model in (3) and represents the mixed causal/noncausal

analog of the causal autoregressive model. The model is discussed in the next Section

5.1 and estimation of the model via maximum likelihood is discussed in Section 5.2.

5.1 The mixed causal/noncausal autoregressive model of order (r, s)

Definition 5.1. The mixed causal/noncausal autoregressive process of order (r, s)

Let (xt) be a univariate stochastic process generated by a linear autoregres-

sive mixed causal/noncausal model with order (r, s). The process is defined

by

α(L)xt = ǫ∗t , ǫ∗t ∼ i.i.d., (11a)

where α(L) = 1− α1L− α2L
2 − . . .− αpL

p, (11b)

such that L is the lag operator (i.e. Lxt = xt−1 and L−1xt = xt+1), p =

r + s, and the operator α(z) can be factorized as α(z) = φ(z)ϕ∗(z). We

have that φ(z) (of order r) contains all its roots strictly outside the complex

unit circle and ϕ∗(z) (of order s) contains all its roots strictly inside the unit

circle.10

Therefore, φ(z) represents the purely causal autoregressive component and ϕ∗(z) rep-

10To ensure the existence of a stationary solution, we assume that all roots have a modulus strictly

different from 1.
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resents the purely noncausal autoregressive component [Breidt et al. (1991)].

5.1.1 Moving average representation of the stationary solution

If α(L) has no roots on the unit circle, and ǫt belongs to a Lν-space with ν > 0 (that

is E[|ǫt|ν ] < ∞), then a unique stationary solution to the difference equation defined in

(11b) exists [see Appendix 11.1]. We can write:

xt = α(L)−1ǫ∗t =
∞
∑

l=−∞

γlǫ
∗
t−l, (12)

where the series of moving average coefficients is absolutely summable,
∑∞

l=−∞|γl| <

∞.

The strong stationary representation is derived as follows. Let us factorize φ(L) and

ϕ∗(L) as

φ(L) =
r
∏

j=1

(1− λ1,jL), where |λ1,j| < 1, (13a)

and ϕ∗(L) =
s
∏

k=1

(1− 1

λ2,k

L), where |λ2,k| < 1. (13b)

The noncausal component can also be written as

ϕ∗(L) =
(−1)sLs

∏s
k=1 λ2,k

s
∏

k=1

(1− λ2,kL
−1). (14)
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We get the Taylor series expansions

(1− λ1,jL)
−1 =

∞
∑

l=−∞

λl
1,jL

l, (15a)

and (1− λ2,kL
−1)−1 =

∞
∑

l=−∞

λl
2,kL

−l, (15b)

which are valid because the roots are such that |λ1,j| < 1, ∀j and |λ2,k| < 1, ∀k. Thus

we get

xt = φ(L)−1ϕ∗(L)−1ǫ∗t =

∏s
k=1 λ2,k

(−1)sLs

1
∏r

j=1(1− λ1,jL)
∏s

k=1(1− λ2,kL−1)
ǫ∗t

=

∏s
k=1 λ2,k

(−1)sLs

r
∏

j=1

(

∞
∑

l=−∞

λl
1,jL

l

)

s
∏

k=1

(

∞
∑

l=−∞

λl
2,kL

−l

)

ǫ∗t =
∞
∑

l=−∞

γlǫ
∗
t−l. (16)

5.1.2 An alternative representation

Since such a representation in (11a) is defined up to a scale factor on ǫ∗t , another equiv-

alent representation is given as

Φ(L)xt = φ(L)ϕ(L−1)xt = ǫt, (17a)

where ϕ(L−1) = 1− ϕ1L
−1 − ϕ2L

−2 − . . .− ϕsL
−s, (17b)

φ(L) = 1− φ1L− φ2L
2 − . . .− φrL

r, (17c)

and (ǫt) is the sequence of i.i.d. random variables defined as ǫt = −(1/ϕ∗
sL

s)ǫ∗t =

−(1/ϕ∗
s)ǫ

∗
t+s.

We can always map the parameters from model (17) to (11) since we have

−(1/ϕ∗
sL

s)ϕ∗(L) = ϕ(L−1), where the coefficients of ϕ(L−1) are given as ϕi =

−ϕ∗
s−i/ϕ

∗
s for i = 1, . . . , s − 1, and ϕs = 1/ϕ∗

s for i = s, and the roots of ϕ∗(L)
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and ϕ(L−1) are inverses (in the sense that ϕ∗(z) = ϕ(1/z) = 0 for some complex z

where |z| < 1).

From the original representation in equation (11) we have that

α(L)xt = ǫ∗t ⇔ xt − α1xt−1 − · · · − αpxt−p = ǫ∗t , (18)

and so under this standardization, the autoregressive coefficient associated with the cur-

rent time period, xt, is normalized to one (i.e. α0 = 1).

However, given the alternative representation we have that

1

ϕ∗
s

xt+s +
ϕ∗
1

ϕ∗
s

xt+(s−1) + · · ·+ xt + · · ·+ φr−1xt−(r−1) + φrxt−r =

ϕsxt+s + ϕs−1xt+(s−1) + · · ·+ xt + · · ·+ φr−1xt−(r−1) + φrxt−r = ǫt, (19)

and so under this alternative standardization, the autoregressive coefficient chosen as

equal to 1 does not coincide with the most recent time period, t+ s; rather the standard-

ization applies the autoregressive coefficient equal to 1 to the “intermediate” value xt,

where the autoregression depends also on s future lags and r past lags.

5.2 ML estimation of the mixed causal/noncausal autoregressive

model

In estimating the parameters of the mixed causal/noncausal autoregressive process in

Section 5.1, we can apply the usual maximum likelihood estimation (MLE) approach.

The likelihood function represents the distribution of the sample data, conditional on the

parameters of the model. The maximum likelihood method estimates the parameters of
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the model as the values of the parameters which maximize this likelihood function.

Let θ represent the vector of parameters, including the vectors of causal and noncausal

autoregressive coefficients, φ and ϕ, and the parameters characterizing the fat tailed,

t-distributed, error term,11 that are its degree of freedom parameter λ and scale σ. The

maximum likelihood estimator is given as

θ̂mle = argmax
θ

f(xT |θ), (20)

where

f(xT |θ) = f(xT , xT−1, xT−2, . . . , x1|θ)

= f(xT |xT−1, . . . , x1; θ)f(xT−1|xT−2, . . . , x1; θ) . . . f(x3|x2, x1; θ)f(x2|x1; θ)f(x1|θ),

(21)

and xT = {xT , xT−1, xT−2, . . . , x1} is the joint vector of sample data.

i) Approximation of the likelihood in the causal autoregressive model

In causal time series analysis of autoregressive models, say for the autoregressive

model of order p, we know that the likelihood function can be approximated by neglect-

ing the effect of starting values. For example, the causal AR(p) model’s likelihood:

f(xT |θ) = f(xT , xT−1, xT−2, . . . , x1|θ)

= f(xT |xT−1, . . . , xT−p; θ)f(xT−1|xT−2, . . . , xT−p−1; θ) . . . f(x3|x2, x1; θ)f(x2|x1; θ)f(x1|θ),

(22)

11We employ either a t-distributed or skew t-distributed error term in order to identify the mixed

causal/noncausal model. See Appendix 11.5.
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can be approximated by neglecting the conditional densities of the initial values xt for

all t ≤ p. For large sample size, T , this approximation error becomes negligible and the

estimator obtained by maximizing the approximated likelihood is still asymptotically

efficient.

ii) Approximation of the likelihood in the mixed causal/noncausal autoregressive

model

The maximum likelihood approach can also be used in the general framework of the

mixed causal/noncausal processes, that is the parameters estimated by:

θ̂mle = argmax
θ

f(xT |θ), . (20)

Under standard regularity conditions, including the strong stationarity of the process and

appropriate mixing conditions, the ML estimator is consistent and its asymptotic prop-

erties, that is its speed of convergence and asymptotic distribution, are easily derived

[see Breidt et al. (1991)].

However, in practice the closed form expression of the likelihood, f(xT |θ), is diffi-

cult to derive and the likelihood function has to be approximated, without loosening the

asymptotic properties of the ML estimator. Two approaches are typically suggested:

i) Take the autoregressive expression α(L)xt = ǫt, and approximate the likelihood

by:
T
∏

t=p+1

fǫ(α(L)xt|β), (23)

where β are the parameters characterizing the distribution of the error. Such an

approximation is wrong and leads in general to an inconsistent estimator. The
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reason is as follows. Since the approximation is based on the autoregression:

xt − α1xt−1 − α2xt−2 − · · · − αpxt−p = ǫt, (24)

the approximation above is valid if ǫt is independent of the explanatory variables,

xt−1, . . . , xt−p. But in a mixed model with a noncausal component, ǫt appears in the

moving average representation of xt−1, . . . , and xt−p, which creates dependence.

This is the well known error-in-variables model encountered in linear models and

usually solved by introducing instrumental variables, with, in general, a loss of

efficiency.

ii) Consider the moving average expression of xt =
∑∞

l=−∞ aiǫt−i with the identifi-

cation restriction a0 = 1. Set to zero the values of the noise corresponding to the

indices outside the observation period, {1, 2, . . . , T}, that is, ǫt = 0, if t ≤ 0 and if

t ≥ T + 1. Thus we truncate the moving average representation into:

xt ≈
T−1
∑

i=−T+t

ai(α)ǫt−i =
T
∑

τ=1

at−τ (α)ǫτ , for t = 1, . . . , T, (25)

where the dependence on the autoregressive parameters is explicitly indicated. We

get a linear system of equations, which relates the observations {x1, . . . , xt} and

the errors {ǫ1, . . . , ǫT} in a one-to-one relationship. Therefore, the joint distribution

of {x1, . . . , xt} can be deduced from the joint distribution of {ǫ1, . . . , ǫT}, which

has a closed form by applying the change of variables Jacobian formula. However,

this approach is difficult to implement numerically, since the matrix of the transfor-

mation, A(α), with generic elements at−τ (α), t, τ = 1, . . . , T has a large T × T

dimension. This makes difficult, first the inversion of this matrix, and second the
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numerical computation of its determinant.

This explains why a methodology has been introduced to circumvent this numeri-

cal difficulty, which explains how to approximately invert this matrix and compute the

determinant, by using appropriately both the causal and noncausal components [see

Breidt et al. (1991), Lanne and Saikkonen (2008), and Appendix 12 of this paper].

This approximated likelihood is used in our application to commodity futures prices.

The approximation requires knowledge of the causal and noncausal orders (r, s) respec-

tively. If they are unknown, the approach is applied to all pairs of orders (r, s) such that

r + s = p as given. The selected orders are the ones which minimize the AIC criterion,

based on the log-likelihood value.

More precisely, Lanne and Saikkonen (2008) note that the matrix A(α) can be

approximately written as

A(α) ≈ Ac(φ)Anc(ϕ
∗), (26)

where Ac(φ) (resp. Anc(ϕ
∗)) depends on the causal (resp. noncausal) autoregressive

coefficients only, and is lower (resp. upper) triangular with only 1’s on the diagonal.

Therefore, the Jacobian

|det (A(α))| ≈ |det (Anc(φ))||det (Anc(ϕ
∗))| = 1 (27)

and can be neglected. Therefore, the likelihood function can be approximated by

T−s
∏

t=r+1

fǫ(ϕ(L
−1)φ(L)xt;λ, σ), (28)

where θ = {φ,ϕ, λ, σ} represents the parameters of the model, that is, the vectors

of causal and noncausal autoregressive coefficients respectively, and the t-distribution
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degree of freedom and scale parameter assumed on (ǫt).

They show that the only autoregressive representation which leads to consistent es-

timators is the representation with the autoregressive coefficient equal to 1 for xt with r

lagged values before, and s lagged values afterwards, as given above in the autoregres-

sive equation (19).

Example 1: Causal AR(1) process

Let us consider the causal AR(1) process

xt = α1xt−1 + ǫt, where |α1| < 1. (29)

This is the usual case and so we can employ the MLE to estimate α1 by maximizing

the approximate likelihood function
∏T

t=2 fǫ(xt −α1xt−1). This case does not present a

problem since we already have the coefficient in front of xt equal to 1.

Example 2: Noncausal AR(1) process

However, given the noncausal AR(1) process

xt = α1xt−1 + ǫt, where |α1| > 1, (30)

the estimator which maximizes the approximate likelihood function
∏T

t=2 fǫ(xt−α1xt−1)

is now biased. Indeed, since xt can be written as the noncausal moving average xt =
∑∞

j=0

(

1
α1

)j

ǫ∗t+1+j , there now exists a dependence between xt and xt−1.

The methodology leading to consistent estimation consists in the case of regressing

xt−1 on xt, instead of regressing xt on xt−1. We can rewrite the noncausal regression

57



above as

xt =
1

α1

xt+1 −
1

α1

ǫt+1 =
1

α1

xt+1 + ǫ∗t+1 where |α1| > 1, (31)

which now restores the independence between the regressand and the regressor, and so

the MLE which maximizes
∏T

t=2 fǫ∗(xt − 1
α1
xt+1) is asymptotically unbiased.

5.3 Estimation results

In this Section I will evaluate estimation results from the mixed autoregressive model

of order (r, s) as applied to the 25 commodity futures price level series. Estimation of

the model parameters numerically optimizes the approximated likelihood function dis-

cussed in the last section. As in Lanne and Saikkonen (2008) and Lanne, Luoto, and

Saikkonen (2012), we assume the regularity conditions of Andrews et al. (2006) are

satisfied, which require the likelihood to be twice differentiable with respect to both

xT and θ. The approximated likelihood algorithm is computed in Fortran and the op-

timization of the likelihood function is performed using a set of Fortran optimization

subroutines called the PORT library, designed by David M. Gay at Bell Laboratories

[Gay (1990)].

As in Section 3 where the linear causal ARMA model with Gaussian innovations

was shown to inadequately capture the features of the price level data, I will again

employ the AIC criterion as a measure of model fit, along with Ljung-Box statistics

testing the hypothesis that the innovations exhibit no linear autocorrelation. In this way,

I will consider the best fitting linear causal ARMA model, with Gaussian innovations,

from Section 3 as a benchmark model.

Table 5.i presents the results of maximum likelihood estimation. The mixed AR
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model orders, (r, s), were selected via AIC among a possible set of (r, s) values such

that r ≤ 10 and s ≤ 10. The first row of the results for each series represents the

benchmark ARMA model, with Gaussian innovations, from Section 3, while the second

and third rows represent the mixed AR(r, s) model with both t-distributed and skew t-

distributed errors, respectively. Recall that the mixed causal/noncausal model is only

identified for non-Gaussian error terms. The lags column represents the number of

lags included in the Ljung-Box statistic, where p-values are provided in their respective

columns. Finally, an ’x’ marks the model with the lowest normalized AIC.

The estimation results suggest that the mixed causal/noncausal model improves

model fit over the baseline causal ARMA model, with Gaussian innovations. When

the models are nested, I employ likelihood ratio (LR) tests. In every case the mixed

causal/noncausal model improves model fit significantly at the 1% significance level.

In comparing the skewed t-distributed error term mixed causal/noncausal model to

the standard t-distribution error term model, the results vary by series. In most cases the

skewed t-distribution improves model fit and passes a LR test at the 1% level. Moreover,

orange juice, lumber, silver, copper, light crude oil, and gas oil also pass at the 5% level

and coffee passes at the 10% level. Series that do not pass LR tests at the 10% level are

soybean meal and oil, sugar, corn, cotton, rice, gold, palladium, natural gas, and lean

cattle, suggesting that there is little gain in employing a skewed t-distribution on the

innovations of these mixed models.

Interestingly, the estimated t-distribution degree of freedom parameter, λ, for the

mixed causal/noncausal model error terms range between near 1 (i.e. Cauchy dis-

tributed) to around 3 or so in most cases, which suggests bubble like behaviour as

discussed in Gourieroux and Zakoian (2012). The only exceptions to this are found

in lumber (λ ≈ 3.88), gasoline RBOB (λ ≈ 4.93), and live cattle (λ ≈ 3.39).
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Moreover, an examination of the roots of the lag polynomials implied by the esti-

mated parameters also confirms the partly noncausal nature of the series. If we accept

only the statistically significant estimated parameters 12 and solve for the roots of the

implied causal and noncausal lag polynomials, φ(L) and ϕ(L−1) (from (17a)), we find

that the roots of both appropriately lie outside the unit circle.13 Of course, if the data

generating process was purely causal, none of the lags of the noncausal polynomial,

ϕ(L−1), should be statistically significant.

Moreover, if we fit the best (according to the AIC criterion) purely causal ARMA

model, with t-distributed error terms instead of Gaussian ones, we often find that the

estimated roots of the causal lag polynomial lie inside the unit circle. This suggests

misspecification of the noncausal component, as well as the fact that the noncausality is

not identified in the purely causal ARMA model with Gaussian innovations.

For reference I have constructed tables with all of the roots of the lag polynomials

of both the causal ARMA models of order (p, q), with t-distributed innovations, and

the mixed causal/noncausal AR models of order (r, s) (see Tables 7.i to 7.iii within

Appendix 14).

For example, estimating purely causal ARMA models with t-distributed innovations

suggest the following results: wheat, coffee, rice, gold, platinum, all the energy se-

ries except natural gas, and lean hogs all share at least one root with absolute value

less than one in their
α(L)
β(L)

= δ(L) lag polynomial (that is
α(L)
β(L)

= δ(L) in the ARMA

model δ(L)xt = ǫt, where α(L) and β(L) are the AR and MA lag polynomials re-

spectively), suggesting that this polynomial could be factorized and then estimated as

12Tested at the 5% level, assuming Normally distributed parameters and employing the inverse of the

observed Hessian matrix at the MLE estimated value as the parameter covariance matrix.
13Which implies that (11a), α(L) = φ(L)ϕ∗(L), is such that the roots of φ(L) lie strictly outside the

complex unit circle while those of ϕ∗(L) lie strictly inside.
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a mixed causal/noncausal model (instead of the traditional differencing technique em-

ployed).

Furthermore, the very large valued roots of the causal polynomial for light crude

oil, gas oil, and heating oil, suggest that these series may be better represented as purely

noncausal since these large causal roots have little effect on the causal impulse response.

This result is confirmed by looking at the mixed causal/noncausal model roots of light

crude oil, but not for gas or heating oil which have causal polynomial roots relatively

close to 1. Finally, the mixed causal/noncausal representation for soybeans suggests

that the process may be better modeled as purely causal, while the results for cotton,

live cattle, and lean hogs suggest they may be purely noncausal.

To summarize, our results suggest that most of the futures price series exhibit much

better in-sample model fit, according to the AIC criterion, when modeled by a mixed

causal/noncausal autoregressive specification that takes into account their possible non-

causal components. Moreover, this noncausality is unidentified in the purely causal

ARMA model with Gaussian innovations. Finally, estimation of purely causal ARMA

models with fat tailed, t-distributed, innovations reinforces the series’ noncausal nature,

as often the causal lag polynomial roots lie inside the complex unit circle.
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Table 5.i: Estimation results of mixed causal/noncausal AR(r, s) models

Series p/r q/s AIC Log-likelihood Ljung-Box λ

Soybean meal 6 2 52395.000 -26188.500 0.152 ∞
x 10 10 48208.261 -24081.130 0.007 2.070

10 10 48210.118 -24081.059 0.007 2.072

Soybean oil 8 3 11859.050 -5917.523 0.919 ∞
x 10 10 9211.876 -4582.938 0.135 2.455

10 10 9213.688 -4582.844 0.138 2.455

Soybeans 9 2 73548.210 -36762.110 0.521 ∞
10 10 69444.844 -34699.422 0.000 2.073

x 10 10 69438.354 -34695.177 0.000 2.086

Orange juice 4 3 42121.610 -21052.800 0.395 ∞
10 10 38686.959 -19320.480 0.378 2.326

x 10 10 38683.919 -19317.960 0.389 2.331

Sugar 10 2 7842.392 -3908.196 0.999 ∞
x 2 2 1549.499 -767.750 0.000 1.702

2 2 1551.289 -767.645 0.000 1.702

Wheat 7 2 67069.470 -33524.740 0.998 ∞
5 5 61896.849 -30935.424 0.000 2.028

x 5 5 61880.290 -30926.145 0.000 2.047

Cocoa 8 3 94368.760 -47172.380 0.716 ∞
2 1 91804.882 -45896.441 0.000 2.558

x 10 10 91586.110 -45769.055 0.003 2.584

Coffee 4 2 48866.800 -24426.400 0.064 ∞
10 10 43731.886 -21842.943 0.014 1.923

x 10 10 43730.300 -21841.150 0.012 1.925

Corn 7 3 59385.840 -29681.920 0.625 ∞
x 2 3 53647.827 -26815.913 0.776 1.811

2 3 53649.243 -26815.622 0.783 1.811

Cotton 10 0 32760.780 -16369.390 1.000 ∞
x 1 3 27005.831 -13495.916 0.000 2.455

1 3 27007.812 -13495.906 0.000 2.455
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Table 5.ii: Estimation results of mixed causal/noncausal AR(r, s) models

Series p/r q/s AIC Log-likelihood Ljung-Box λ

Platinum 8 2 55936.820 -27957.410 0.129 ∞
10 10 51667.822 -25810.911 0.000 1.572

x 10 10 51644.800 -25798.400 0.000 1.585

Rice 10 3 -4799.022 2413.511 0.958 ∞
x 1 3 -7173.685 3593.842 0.013 2.076

1 3 -7172.345 3594.173 0.013 2.075

Lumber 8 3 44027.920 -22001.960 1.000 ∞
10 10 42939.948 -21446.974 0.562 3.874

x 10 10 42937.244 -21444.622 0.546 3.876

Gold 0 3 102914.500 -51453.270 n/a ∞
x 10 10 56917.739 -28435.869 0.000 1.317

10 10 56919.621 -28435.811 0.000 1.318

Silver 9 3 7424.036 -3699.018 0.935 ∞
10 10 -7052.297 3549.149 0.000 1.063

x 10 10 -7056.283 3552.141 0.000 1.066

Palladium 9 3 48209.690 -24091.840 0.992 ∞
x 8 8 42569.544 -21265.772 0.000 1.225

8 8 42571.492 -21265.746 0.000 1.225

Copper 10 0 34719.500 -17348.750 1.000 ∞
10 10 30533.482 -15243.741 0.000 1.349

x 10 10 30529.777 -15240.889 0.000 1.354

Light crude oil 7 2 22244.110 -11112.060 0.949 ∞
1 3 17297.702 -8641.851 0.015 1.409

x 1 3 17295.206 -8639.603 0.014 1.415

Heating oil 9 2 34465.280 -17220.640 0.998 ∞
x 10 10 30808.001 -15381.000 0.042 1.535

8 8 30841.794 -15400.897 0.000 1.538

Brent crude oil 7 2 18807.920 -9393.960 0.901 ∞
10 10 15081.643 -7517.822 0.000 1.458

x 10 10 15073.528 -7512.764 0.000 1.462
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Table 5.iii: Estimation results of mixed causal/noncausal AR(r, s) models

Series p/r q/s AIC Log-likelihood Ljung-Boxa λf

c Platinum 8 2 55936.820 -27957.410 0.129 ∞
d 10 10 51667.822 -25810.911 0.000 1.572
e xb 10 10 51644.800 -25798.400 0.000 1.585

Gas oil 5 3 44142.240 -22062.120 0.922 ∞
10 10 41116.045 -20535.023 0.259 1.566

x 10 10 41112.456 -20532.228 0.261 1.574

Natural gas 3 2 -4178.268 2095.134 0.226 ∞
x 1 1 -7772.315 3891.158 0.017 1.666

1 1 -7771.454 3891.727 0.018 1.666

Gasoline RBOB 5 3 11715.320 -5848.658 0.988 ∞
2 1 11535.858 -5761.929 0.050 4.662

x 2 1 11526.267 -5756.133 0.056 4.925

Live cattle 6 1 22771.400 -11377.700 0.986 ∞
10 10 20427.885 -10190.943 0.915 3.331

x 8 8 20426.530 -10193.265 0.873 3.392

Lean hogs 3 2 23567.630 -11777.810 0.704 ∞
0 2 18929.149 -9459.574 0.572 2.728

x 0 2 18922.375 -9455.188 0.570 2.737

a The Ljung-Box statistics are given as p-values, where the lag parameter chosen is the log sample

size, ln(T ).
b The ’x’ row for each series denotes the model with the lowest AIC.
c The first row in each series is the causal ARMA(p, q) model with Gaussian innovations estimated in

Section 3.
d The second row is the mixed causal/noncausal AR(r, s) with t-distributed errors.
e The third row is the same model but with skew t-distributed errors.
f The λ column indicates the estimated degree of freedom parameter for the error term distribution–in

the skewed t-distributed case this value represents the sum of the two skew parameters. See Appendix

11.5.

6 Comparison of the estimated unconditional distribu-

tions

Another way to evaluate the mixed causal/noncausal autoregressive model is by com-

paring its model based unconditional distribution by sample histogram. Histograms are
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estimated for both the purely causal ARMA and mixed causal/noncausal autoregressive

models, both employing t-distributed error terms, by simulating long sample paths of

length T = 200000, given the model parameters estimated by MLE in Section 5.3.

The mixed causal/noncausal autoregressive model seeks to capture both the asym-

metries and bubble features present in commodity futures prices. The transversal asym-

metry and bubble features present in the series can be examined visually by considering

the sample histograms of the price series presented in Figures 11.i to 11.iv in Appendix

14. Note the long, positively-skewed, tails many of the series exhibit, illustrating how

these price series tend to spend most of the time in the shallow troughs, occasionally

interrupted by brief, but dramatic, positive bubbles.

The metric employed in comparing the estimated unconditional distributions is the

Kullback-Leibler divergence measure, which is a non-symmetric measure of the differ-

ence between two probability distributions P and Q. Specifically, the Kullback-Leibler

measure, from continuous distributions Q to P, denoted KL(Q,P ) =
∫∞

−∞
ln
(

p(x)
q(x)

)

p(x)dx,

is the measure of the information lost when we use Q to approximate P. 14 Since the

Kullback-Leibler measure is “information monotonic”, as an ordinal measure of mak-

ing comparisons it is invariant to the choice of histogram bin size. Table 6 reports the

Kullback-Leibler measures of the sample histogram densities for both KL(P,Q) and

KL(Q,P ) where p(x) denotes the estimated p.d.f. of the sample data and the q(x)’s are

model based estimates from the simulated sample paths of the purely causal and mixed

causal/noncausal autoregressions.

Table 6 is broken into two sections: the two left columns report the Kullback-Leibler

measure where the estimated models are used to approximate the sample data. In this

14In employing estimated sample histograms I use the discretized version of the Kullback-Leibler

formula where areas of zero support are padded with 1−315.
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Table 6: Kullback-Leibler divergence measures

KL(Q,P)a KL(P,Q)

Series ARMA MIXED ARMA MIXED

Soybean meal n.s.b 00.329 n.s. 97.216

Soybean oil 01.965 00.316 495.751 55.752

Soybeans n.s. 00.310 n.s. 49.584

Orange juice 00.976 00.216 351.966 60.033

Sugar 01.768 00.500 326.343 168.821

Wheat 00.535 00.427 44.699 32.956

Cocoa 00.625 01.247 230.260 37.961

Coffee 04.519 00.216 703.097 81.218

Corn 01.526 00.549 185.980 144.244

Cotton 00.808 12.710 114.104 25.918

Rice 00.429 00.311 59.220 123.030

Lumber 00.149 00.136 07.610 08.477

Gold n.s. uns.c n.s. uns.

Silver n.s. uns. n.s. uns.

Platinum n.s. 00.662 n.s. 96.789

Palladium n.s. 01.368 n.s. 440.585

Copper n.s. 00.832 n.s. 173.295

Light crude oil n.s. 00.813 n.s. 202.916

Heating oil n.s. 01.043 n.s. 326.858

Brent crude oil n.s. 00.759 n.s. 118.503

Gas oil n.s. 00.709 n.s. 132.528

Natural gas 00.906 00.753 303.694 325.575

Gasoline RBOB 01.429 00.261 483.674 08.649

Live cattle 00.562 18.227 31.469 76.491

Lean hogs 02.649 00.032 640.295 03.308

average 01.346 01.858 284.154 121.335

selective averaged 01.206 00.650

a P represents the sample data.
b “n.s.” stands for non-stationary, i.e. the simulations from the causal linear

model were explosive.
c “uns.” within the context of the mixed causal/noncausal models implies

that the simulated sample paths were, for a lack of better words, “unsta-

ble”: highly erratic with extremely long tails and extremely irregular, al-

most “chaotic” type behaviour. In general, while stationary, models with

“uns.” listed represented poor candidates as having come from the data’s

DGP.
d The selective average omits the extreme outlying cases highlighted in bold.
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case if the sample path density has zero support for some region in its domain, it does

not punish the prospective model density for allocating too much (resp. too little) prob-

ability to this region since this component of the Kullback-Leibler sum is zero. The

two right columns report the opposite case where the sample path density is used to

approximate the estimated models; in this case, if the model density has zero support

in some region of its domain then the sample path density isn’t penalized for allocated

too much (resp. too little) probability to this region. Finally, smaller values indicate less

information lost by the approximation and are preferred.

The results of these comparisons suggest the following. First, the Kullback-Leibler

measures show that the unconditional distributions generated by the causal ARMA mod-

els represent a poor fit to the sample data. The ARMA model seems unable to produce

the sharp bubble like behaviour we see in most of the series and the shape of its uncon-

ditional density is often much too uniform. It does not exhibit long, positively skewed,

tails as are present in many of the estimated histograms of the commodity futures prices

as provided in Figures 11.i to 11.iv in Appendix 14. Moreover, we often find that the

sample paths from the causal ARMA models are explosive, due to the noncausal root in

their estimated causal lag polynomials.

The results from the left hand columns of Table 6 suggest a few distinct outlying

Kullback-Leibler measures. For example, cotton and live cattle are extremely large

compared to the other series’ measures in the case of the mixed causal/noncausal au-

toregressive model, and coffee represents an outlier in the case of the causal ARMA

models. Given the presence of these outliers, I calculate both the average Kullback-

Leibler measure across all series and the average omitting these outliers. Given this

selective average, we find that, in both the left and right columns (i.e. in the case of both

KL(Q,P ) and KL(P,Q), respectively), the mixed causal/noncausal model represents
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a better fit to the sample data than the purely causal ARMA model.

Finally, Figure 8 provides an example of the estimated unconditional densities for

cocoa and coffee, respectively.

Figure 8: Estimated unconditional densities, Cocoa and Coffee
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7 Forecasting the mixed causal/noncausal model

This section will first consider the problem of computing the predictive conditional

density of the mixed causal/noncausal model, when the information set includes only

the past values of the time series data up to some time t, say Ft = {xt, xt−1, . . . , x1}.

We then evaluate the ability of the mixed causal/noncausal model to not only fit the

training sample, but also its ability to forecast out of sample.

7.1 The predictive distribution

Let us consider the general stochastic process:

xt = h(. . . , ǫt−1, ǫt, ǫt+1, . . . ), where ǫt ∼ i.i.d. (32)

Moreover, let Ft = {xt, xt−1, . . . , x1} represent the information set generated by the

stochastic process up to and including time t.

The best nonlinear forecasts, at date t, for a given horizon h, can be deduced from

the conditional distribution of xt+h, given Ft. More precisely, if a(xt+h) is a square

integrable transformation of xt+h, then its best predictor is simply E[a(xt+h)|Ft] =
∫

a(xt+h)ft+h|t(xt+h|Ft)dxt+h.

In our framework, the standard moments may not exist and so we cannot choose to

predict a(xt+h) = xt+h for example. An alternative approach can be to compute the

prediction intervals by considering the quantiles of the predictive distribution. This is

the solution adopted here.

Lanne, Luoto, and Saikkonen (2012) suggest a means whereby we can simulate

these quantiles. Their numerical algorithm is discussed in Appendix 13. However,
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this method is computationally demanding and not necessarily the most straightforward

method. Therefore, we begin a discussion below that considers the problem from first

principles.

7.2 Equivalence of information sets

Consider the general mixed causal/noncausal model from (17), with causal order r and

noncausal order s. It is clear that given the information set Ft = {x1, . . . , xt}, this is

equivalent to knowing,

Ft ≡ {x1, . . . , xr, ur+1, . . . , ut}, (33)

since ut = φ(L)xt [see the Appendix 12]. Note that ut represents a shock to the process

xt, which is an autoregressive function of xt, since ut = φ(L)xt, but where the ut’s

are not i.i.d. Rather ut is noncausal autoregressive since we have that ϕ(L−1)ut =

ϕ(L−1)φ(L)xt = ǫt, where ǫt is i.i.d.

Knowing the latter information set in (33) is also equivalent to knowing,

Ft ≡ {x1, . . . , xr, ǫr+1, . . . , ǫt−s, ut−s+1, . . . , ut}, (34)

since ǫt = ϕ(L−1)ut = ϕ(L−1)φ(L)xt. Moreover, this information is also equivalent

to,

Ft ≡ {v1, . . . , vr, ǫr+1, . . . , ǫt−s, ut−s+1, . . . , ut}, (35)

where ϕ(L−1)xt = vt. Therefore, for the process ut that is noncausal of order s, pre-

dicting ut+1 based on the information set Ft, is equivalent to predicting it based on the

information subset {ut−s+1, . . . , ut}, since the {v1, . . . , vr, ǫr+1, . . . , ǫt−s} elements are
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independent of the future values {ut+1, . . . , ut+h}, for some forecast horizon h.

Therefore, in establishing the predictive density of the mixed causal/noncausal pro-

cess xt, we can focus our attention on the problem of predicting the noncausal compo-

nent ut+1 conditional on the past information set Ft = {ut−s+1, . . . , ut}, since there is

a direct relationship between the predictive distributions of ut+1 and xt+1 in the sense

that,

fxt+1|t
(xt+1 − μt|xt, . . . , x1) = fxt+1|t

(φ(L)xt+1|xt, . . . , x1) (36a)

= fut+1|t
(ut+1|xt, . . . , x1) (36b)

= fut+1|t
(ut+1|ut, . . . , ut−s+1, ǫt−s, . . . , ǫr+1, xr, . . . , x1)

(36c)

= fut+1|t
(ut+1|ut, . . . , ut−s+1), (36d)

where μt = φ1xt + φ2xt−1 + · · ·+ φrxt−(r−1). (36e)

Since the change of variables implies a Jacobian determinant of 1, the conditional den-

sity of xt+1 is just a relocation of the conditional density of ut+1. Here, μt represents a

location parameter and so ut+1 = xt+1 − μt = φ(L)xt+1. Therefore, by simulating the

quantiles of fut+h|t
(ut+h|Ft), we are able to generate prediction intervals for xt+h.

The prediction problem of the noncausal process ϕ(L−1)ut+1 = ǫt+1, based on past

information set Ft, must be considered with some care. In this way we first consider

some simple examples. Note that while ut is a noncausal autoregressive process, we de-

sire the causal predictor which is based on the past information set Ft, and this predictor

is generally nonlinear for non-Gaussian ǫt.
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7.3 Examples: the causal prediction problem of the noncausal pro-

cess

Example 1: AR(0, 1) case

Let us consider the prediction problem for the purely noncausal model of order s =

1. We get, xt+1 = ut+1 = ϕ1ut+2 + ǫt+1, and ǫt+1 ∼ i.i.d. In this case we desire

the predictive density fxt+1|t
(xt+1|Ft), based on the past values of the process Ft =

{xt, . . . , x1}, but where the process (xt) is noncausal.

Since xt = ut and s = 1, the predictive density fxt+1|t
(xt+1|xt) depends only on the

past information set {xt = ut}, and by Bayes Theorem we get

fxt+1|t
(xt+1|xt) = fxt|t+1

(xt|xt+1)fx(xt+1)/fx(xt), (37)

where fx(·) denotes the stationary distribution of the process (xt). We already know

the noncausal transition density fxt|t+1
(xt|xt+1), since it is defined by our linear model

and our assumption on the shocks ǫt, since ut = xt, and ϕ(L−1)ut = ǫt, the conditional

density of ut given ut+1 is the same as the density of ǫt, up to a location parameter.

However, what is not clear is how to deal with the stationary distribution fx(·) since its

analytical expression is unknown in the general case [although it has been derived where

ǫt ∼ Cauchy(0, σ2) in Gourieroux and Zakoian (2012)]. Lanne, Luoto, and Saikkonen

(2012) suggest a means whereby we can circumvent this problem by “enlarging the

space” of random variables (see the Appendix 13). This very computationally intensive

approach is not the most direct, as we shall show below.

One alternative that works quite well when the order of the noncausal polynomial

is low, is to simply approximate the stationary distribution fx(xt+1) in (37) by means

of a kernel smoother. For example, given the stationary nature of the data, xt = ut, a
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consistent estimator of fx(·) is given by the kernel density estimator:

fx(xt) ≈
1

Th

T
∑

τ=1

K

(

xt − xτ

h

)

, (38)

where h > 0 is an appropriately chosen smoothing parameter defining the bandwidth

and K(·) is a kernel function, for instance a symmetric function that integrates to one.

The Epanechnikov Kernel K(x) = 3
4
(1− x2)1|x|≤1, can be shown to be efficient in the

mean squared error sense [see e.g. Epanechnikov (1969)].

Example 2: AR(0, s) with s > 1

Let us now consider a larger noncausal autoregressive order, where we still face the

purely noncausal prediction problem ut+1 = xt+1. Let the noncausal lag polynomial be

of order s: ϕ(L−1) = 1− ϕ1L
−1 − · · · − ϕsL

−s.

Again, let us express the predictive density in terms of Bayes theorem, where, since

ut = xt is a noncausal autoregressive process of arbitrary order s, the prediction depends

only on the subset of information given by Ft = {xt, . . . , xt−s+1},

fxt+1|t,...,t−s+1
(xt+1|xt, . . . , xt−s+1)

=
fxt|t+1,...,t+s

(xt−s+1|xt−s+2, . . . , xt, xt+1)fx̄(xt+1, xt, . . . , xt−s+2)

fx̄(xt, xt−1, . . . , xt−s+1)
(39)

Again, fx̄(xt−s+1|xt−s+2, . . . , xt, xt+1) is known from our linear noncausal autoregres-

sive model of order s. However, it remains unclear how to deal with the joint stationary

density, fx̄(·), of a sequence of s successive values of the process, especially for a larger

dimension of s.

Indeed, the kernel estimator will prove problematic for large noncausal orders, s,

since we now face a multidimensional smoothing problem. Indeed, as the dimension of
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the smoothing problem increases, much more data is required in order to get a reliable

estimate of this joint density.

7.4 A Look-Ahead estimator of the predictive distribution

Gourieroux and Jasiak (2013) suggest a direct solution to the problem of computing the

predictive density fxt+1|t
(·) of the noncausal process when the dimension s is relatively

large. The method relies on the “Look-Ahead” estimator of the stationary density fx̄(·)

[see Glynn and Henderson (1998) for the introduction of this estimator and Garibotti

(2004) for an application]. First we describe the estimator in the univariate framework

where the order of the noncausal polynomial is s = 1, and then provide an analog for

the case where s > 1.

7.4.1 Markov process

The Look-Ahead estimator, introduced by Glynn and Henderson (1998), is a relatively

simple method which allows us to estimate the stationary distribution of a Markov pro-

cess, if it exists. Take for example, the Markov process, (xt), discussed in Example 1

above, with unique invariant density fx(·), and transition density fxt|t+1
(·) as expressed

in (37). This Markov transition density satisfies the Kolmolgorov equation,

fx(x
∗
t ) =

∫

fxt|t+1
(x∗

t |xt+1)fx(xt+1)dxt+1, ∀x∗
t , (40)

where x∗
t denotes the generic argument of the stationary density. Therefore, given a

finite sample from the stationary process, (xτ )
t
τ=1, we can approximate the stationary
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density by

f̂x(x
∗
t ) =

t−1
∑

τ=0

fxt|t+1
(x∗

t |xτ+1), ∀x∗
t , (41)

where fxt|t+1
(x∗

t |xt+1) is known explicitly from our linear noncausal autoregressive

model.

7.4.2 Markov process of order s

For larger noncausal order s > 1, the result is analogous. The two stationary distri-

butions in the numerator and denominator, fx̄(·), can be estimated by the Look-Ahead

estimator as

f̂x̄(x
∗
t ) =

t−s
∑

τ=0

lxt|t+1
(x∗

t |xτ+s), (42)

where xt = {xt, xt−1, . . . , xt−s+1}. The density above is more easily understood as the

factorization of the joint noncausal transition density,

lxt|t+1
(xt, . . . , xt−s+1|xt+1, . . . , xt+s) =

s−1
∏

j=0

fxt|t+1,...,t+s
(xt−j|xt+1−j, . . . , xt+s−j),

(43)

whose terms are known for all j, given the linear noncausal autoregressive model (they

are equal to the density of ǫt, up to a location parameter).

7.5 Drawing from the predictive distribution by SIR method

Given the approximate expression for the stationary density functions, fx̄(·), of both

the numerator and denominator in (39), provided by the Look-Ahead estimator, we are

now free to draw samples from the entire predictive density fxt+1|t
(·) directly. One way

this can be accomplished is by means of the (SIR) Sampling Importance Resampling
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technique [see Rubin (1988), and Smith and Gelfand (1992)].

The SIR method is essentially a reweighted bootstrap simulation. Suppose we have

access to some drawings from the continuous probability density f(x), say {x1, . . . , xN},

but we are unable to draw samples ourselves. The bootstrap procedure directs us to re-

sample from the set {x1, . . . , xN}, each draw having probability 1/N . The resulting

resampled set is then an approximation to draws from f(x), with the approximation

error approaching zero as N → ∞. Indeed, for any resampled draw x̂ we have,

Pr(x̂ ≤ a) =
1

N

N
∑

i=1

1xi≤a →n→∞ Ef [1x≤a] =

∫ a

−∞

f(x)dx. (44)

Of course the bootstrap is limited in that if our initial sample from f(x) is small,

repeatedly resampling from this limited sample will provide a poor approximation. The

SIR allows us to circumvent this problem by allowing us to draw our initial sample

from some instrumental density g(x). Then by resampling from this sample, according

to the weights f(x)/g(x), we are able to approximate a sample from f(x), rather than a

sample from g(x). To show this note that

Pr(x̂ ≤ a) =
N
∑

i=1

(

f(xi)

g(xi)

)

1xi≤a →n→∞ Eg[

(

f(x)

g(x)

)

1x≤a] =

∫ a

−∞

f(x)dx. (45)

The closer is the target f(x) to the instrumental density g(x), the faster the rate of

convergence.

Within the context of generating draws from the predictive density of the noncausal

process, fxt+1|t
(·), we should therefore generate draws from some proposal g(·) which

closely approximates the target. Indeed, we have an analytic approximate expression
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for fxt+1|t
(·) in terms of the product of the noncausal conditional density and the Look-

Ahead estimators of the stationary densities (see equation (39)), but we are unable to

draw from this density directly.

The SIR method is especially appealing since it can be easily parallelized with re-

duced computational costs. That is, we can draw N samples from the predictive density

in parallel as opposed to say a Metropolis Hastings algorithm, which is inherently se-

quential in nature.

Moreover, the Basel III voluntary regulation standard on bank capital levels, stress

testing, and market liquidity risk, was agreed upon by the members of the Basel Com-

mittee on Banking Supervision between 2010 to 2011 and is scheduled to be introduced

in 2018. Part of this regulation is the requirement that econometric models employed

by financial institutions must include the possibility to simulate future sample paths for

asset prices. Of course, this is a prerequisite for performing stress tests. In this respect,

the proposed methodology of Lanne, Luoto, and Saikkonen (2012) would be rejected

by regulators.

Forecasts up to some horizon ’h’

Given the joint predictive density, conditional on Ft, but out to some horizon h > 1, we

can use the same SIR method to draw samples as in the case where h = 1, since we can

factorize the joint density as the product of the expressions given in equation (39) as,

g(xt+h, . . . , xt+1|Ft) =
h
∏

j=1

fxt|t,...,t−s+1
(xt+j|xt+j−1, . . . , xt+j−s+1) (46a)

=
h
∏

j=1

(

fxt|t+1,...,t+s
(xt−s+j|xt+j−s+1, . . . , xt+j)

)

(46b)

· fx̄(xt+h, xt+h−1, . . . , xt+h−s+1)

fx̄(xt, xt−1, . . . , xt−s+1)
.
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Therefore, since terms in the product cancel, as h gets large we need only estimate one

term in both the numerator and denominator by the Look-Ahead method. Of course, for

the SIR simulation with horizon h, we require an h-dimension proposal density g(·).

7.6 Application to commodity futures data

While the method described above is computationally intensive, it is clear that it is ripe

for parallelization since we can potentially draw each of the N samples from the h-

dimensional predictive density, g(xt+h, . . . , xt+1|Ft), at the same time. In this sense,

I have implemented the algorithm in parallel using the CUDA development libraries

designed and freely available from Nvidia at http://www.nvidia.ca/object/

cuda\_home\_new.html. All that is required is a Nvidia GPU (graphics process-

ing unit) and knowledge of the C programming language.

In order to evaluate forecasts, I have set aside an additional 107 sample data points

beyond the most recent date available within-sample, which is February 8th, 2013.

Therefore, this out of sample period extends between February 11th to July 15th, 2013.

15

As an example I now employ the Look-Ahead estimator of the stationary den-

sity, and the SIR method, to generate draws from the predictive density of the mixed

causal/noncausal model for the coffee futures series. The parameters of the model are

those estimated in section 5.3, where the shock is skew t-distributed.

In the implementation of the SIR approach, the instrumental distribution, that is the

importance function has to be chosen close to the conditional distribution used to sim-

ulate the future asset price paths, that is, the predictive distribution outlined above. We

select as the instrumental distribution a multivariate Gaussian distribution. Such a Gaus-

15Feburary 9th and 10th fall on a weekend.
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sian distribution is parametrized by the vector of means and by the variance-covariance

matrix. However the first and second order moments of the conditional distribution do

not necessarily exist.

Therefore, the matching of the two distributions has to be based on other existing

moments. Among the possible alternatives are calibrations based on the joint character-

istic function, or calibration based on the first and second order moments of the square

root of the absolute values of future prices, which exist. We have followed the sec-

ond calibration, which has the advantage of leading to a number of moment restrictions

equal to the number of parameters to be matched. Finally note that both the square root

marginal and cross moments of the conditional distribution of interest, and of the Gaus-

sian approximation, have no closed form expression and have to be computed numeri-

cally; for instance by reapplying the modified Look-ahead estimator for the conditional

distribution.

The following plot in Figure 9 provides the forecasted conditional median, and 95%

prediction intervals.

79



Figure 9: Forecast predictive density for Coffee futures price series

8 Conclusion

The mixed causal/noncausal autoregressive model is able to capture asymmetries and

bubble features present in the data on commodity futures prices. It improves model fit

over the causal ARMA model with Gaussian innovations, according to the AIC crite-

rion, since the mixed causal/noncausal autoregressive specification takes into account

possible noncausality. This noncausality is unidentified in the traditional time series

model, that is the purely causal ARMA model with Gaussian innovations. Estimation
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of the purely causal ARMA models with fat tailed, t-distributed, innovations empha-

sizes the noncausal nature of most series, where often the causal lag polynomial roots

lie inside the complex unit circle.

Moreover, inspection of the causal and noncausal lag polynomial roots of the mixed

causal/noncausal autoregressive models suggest that longitudinal asymmetries can be

accounted for by varying the causal and noncausal coefficient weights. Moreover, al-

lowing for a low degree of freedom in the fat tailed t-distribution of the error term can

account for bubble like phenomenon and these bubbles can induce transversal asymme-

tries if the model’s shock, ǫt, admits a skewed distribution. In this way the model can

account for both the longitudinal and transversal asymmetries described in Ramsey and

Rothman (1996).

Furthermore, a comparison of the unconditional distributions, by sample histogram

and Kullback-Leibler measure, suggest that the mixed causal/noncausal model with t-

distributed shocks is a much closer approximation to the data than the equivalent purely

causal ARMA model.

Finally, taking into account noncausal components is especially important when pro-

ducing forecasts. Indeed, the standard Gaussian causal model will provide smooth term

structure of linear forecasts with some long run equilibria. These forecasts are mis-

leading in the presence of a noncausal component. Moreover, in many cases, including

the energy and metals sectors, the causal polynomial admits explosive roots and so the

forecasts do not exist. Employing a mixed causal/noncausal model therefore permits us

to forecast the occurrence of future bubbles, including when they begin their build-up,

when they crash, and what will be their magnitude.
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10 Appendix: Rolling over the futures contract

Consider first, the “fair price” of the futures contract implied by the spot-futures parity

theorem. The theorem implies that, given the assumption of well functioning com-

petitive markets, a constant, annual, risk-free rate of interest rf and a cost of carry c,

no arbitrage should ensure that the following relationship between the futures and spot

price of the underlying commodity holds at time t:

Ft,t+k = St(1 +
k

365
(rf + c)), (47)

where c ∈ [0, 1]. That is, given the exploitation of arbitrage opportunities, we should

have that the cost of purchasing the underlying good at price St today and holding it

until t + k (given opportunity cost of capital and cost of carry) should be equal to the

current futures price Ft,t+k. Of course, this relationship implies that as the maturity date

approaches (i.e. as k → 0) we have that Ft,t = St.

This relationship is an approximate one and will not hold exactly in reality: indeed,

the risk-free rate and the cost of carry vary in time and are uncertain, and some goods are

perishable and cannot be stored indefinitely. Nevertheless this relationship is useful for

considering the rolling over of futures contracts, since if we keep a given futures contract

in a portfolio, its residual maturity will decrease. The formula in (47) demonstrates this

effect and the need to adjust the futures price series level if we want it to maintain the

same residual maturity.

Upon the approach of the futures’ maturity, we also wish to extend the price series

and obtain price data for each date. In order to do so we would have to close out our

current position and then open a new position in the futures contract of the next maturity.

For example, suppose we are holding a futures contract that expires at time t+ k and k

is approaching 0. We could sell this futures contract and purchase a new contract on the

same underlying good but that expires at time t+ k+ j. However in doing so we would

clearly incur a loss since we have that:

1 +
k

365
(rf + c) < 1 +

k + j

365
(rf + c) (48)

by the spot-futures parity theorem. This is known as rollover risk and the difference in
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the two prices is called the calendar spread.

However, this loss for the trader should not be considered as part of the overall price

series historical data we use for forecasting since it represents a predictable discontinuity

in the series. Therefore typically futures price series are also adjusted for this calendar

spread by the data provider. There are a few ways to go about doing this, each with their

pros and cons: 16

1. Just append together prices without any adjustment. This will distort the series,

by including spurious autocorrelation.

2. Directly adjust the prices up or down according to either the new or old contract

at the rollover time period. This can be done by simply subtracting the difference

between the two price series, or multiplying one of the price series by ratio of

the two (i.e. absolute difference or relative difference, respectively). This method

works, but it causes either the newer or older contract prices to diverge further and

further from their original values as we append additional contracts. Moreover, it

leaves the choice of adjustment a rather arbitrary one.

3. Continuously adjust the price series over time. This method melds together the fu-

tures contract prices of both the “front month” contract (i.e. the contract with the

shortest time-to-maturity) with the contracts of longer times-to-maturity (called

the “back month” contracts) in a continuous manner. This allows us the potential

to create a continuous contract price which reflects an “unobserved” futures con-

tract which maintains a fixed time-to-maturity as time progresses. Ultimately, we

are free to choose a model whereby we can reconstitute the unobserved futures

contract price by employing information in the prices of observed contracts of

different maturities.

Example: Smooth transition model

Consider two futures contracts on the same underlying commodity, one with time-

to-maturity k, the other with time-to-maturity k + j, where we assume that their

prices, Ft,t+k and Ft,t+k+j , approximately satisfy the no arbitrage condition of

the spot-futures parity theorem. Moreover, let ǫi,t for i = 1, 2 be error terms

16See Fulks (2000), a widely disseminated PDF document available on the world wide web. Alterna-

tively, Masteika et al. (2012) provides a more recent treatment of the relevant issues.
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satisfying the standard assumptions of a regression model. The price variables

Ft,t+k, Ft,t+k+j , and St are observable, as is the current risk free rate rf,t. The cost

of carry ct, is unobservable since it includes a convenience yield, and so we must

estimate it. Either way, we can then write down the model:

Ft,t+k = St(1 +
k

365
(rf,t + ct)) + ǫ1,t (49a)

Ft,t+k+j = St(1 +
k + j

365
(rf,t + ct)) + ǫ2,t (49b)

Pt = αFt,t+k + (1− α)Ft,t+k+j (49c)

where ǫi,t represents a residual deviation away from the spot-futures parity fair

value, α = k
K

, where K is an upper bound on k + j (that is it represents the

time to maturity when the future is first issued) and j is sufficiently large so that

the difference in futures prices aren’t negligible (typically j ≥ 30 since futures

contracts of different maturities are indexed by month).

Pt, therefore, represents our estimate of the unobserved contract which incorpo-

rates the information in the front and back month contracts. Since the spot-futures

parity doesn’t hold exactly, Pt reflects not just the spot price St, the risk free rate

rf,t, and the cost of carry ct; but also some residual error factors ǫi,t for i = 1, 2.

The Bloomberg console allows the user to specify various criteria which modify

how the continuous contract price series is constructed from the front and back month

contracts. Any of the 3 methods above are available for use. In constructing the price

series data employed in this paper I use a method similar to (3) above but simpler in its

weighting. The continuous contract futures price Pt is equal to the front month contract

price Ft,t+k until the contract has 30 days left to maturity, so that k = 30. At that

point, the continuous contract reflects the weighted average between the front month

and the next back month contract, with the weights reflecting the number of days left

until maturity of the front month contract. That is,

Pt =

(

k

d

)

Ft,t+k +

(

k − x

d

)

Ft,t+k+j (50)

where d = 30 represents the total number of days in the month and k is the number of

days remaining in the month. Once k = 0, the price is then Pt = Ft,t+j , until this new
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front month contract again has 30 days left until maturity, or j = 30. If the difference

in time-to-maturity for all contracts is fixed at 30 days (i.e. a different contract matures

every month), then this scheme represents the reconstitution of an unobserved futures

contract with a fixed time to maturity of 30 days, as time progresses forward indefinitely.

11 Appendix: Mixed causal/noncausal process

In this appendix we provide the definitions of mixed causal/noncausal processes and

review several of their properties employed in the main part of the text.

11.1 Strong moving average

The infinite moving average Yt =
∑∞

i=−∞ aiǫt−i, where (ǫt) is a sequence of i.i.d. vari-

ables, that is a strong white noise, can be defined for a white noise without first and/or

second order moments.

Let us consider the Banach space Lp of the real random variables such that ‖Y ‖p =
√

E[|Y |p] exists, for a given p. For expository purposes we consider the Banach space

which requires p ≥ 1. However, the existence of the process can also be proved for

0 < p ≤ 1. If ‖ǫt‖p =
√

E[|ǫt|p] exists and if the set of moving average coefficients

is absolutely convergent,
∑∞

i=−∞|ai| < ∞, then the series with elements aiǫt−i is such

that
∑∞

i=−∞‖aiǫt−i‖p =
∑∞

i=−∞|ai|‖ǫt−i‖p =
(
∑∞

i=−∞|ai|
)

‖ǫt−i‖p < ∞, since ‖ǫt‖p
is independent of date t. Thus the series with elements aiǫt−i is normally convergent.

In particular the variable Yt =
∑∞

i=−∞ aiǫt−i has a meaning for the ‖·‖p convergence in

the sense that

Yt = lim
n→∞,m→∞

n
∑

i=−m

aiǫt−i, (51)

where the limit is with respect to the Lp-norm. Moreover, the limit Yt has a finite Lp-

norm, such that ‖Yt‖p ≤
(
∑∞

i=−∞|ai|
)

‖ǫt−i‖p < ∞.

The Lp convergence implies the convergence in distribution. The distribution of the

process (ǫt) is invariant with respect to the lag of time, that is to the operator L which

transforms the process (ǫt) into L(ǫt) = (ǫt−1). Since the process (Yt) is derived from

the white noise (ǫt) by a time invariant function, we deduce that the distribution of (Yt)

is the same as the distribution of L(Yt) = (Yt−1), that is (Yt) is a strong stationary
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process.

Similar arguments apply to any moving average transformation of a strongly station-

ary process existing in Lp, that is to:

Xt =
∞
∑

i=−∞

bjYt−j, (52)

whenever
∑∞

j=−∞|bj| < ∞, since ‖Yt‖p is finite and time independent. In particular,

we can as usual compound moving averages. From the equations:

Yt =
∞
∑

i=−∞

aiǫt−i = a(L)ǫt, with a(L) =
∞
∑

i=−∞

aiL
i, (53a)

Xt =
∞
∑

j=−∞

bjYt−j = b(L)Yt, with b(L) =
∞
∑

j=−∞

bjL
j, (53b)

we can deduce

Xt = b(L)a(L)ǫt, (54)

that is, the moving average representation of process (Xt) in terms of the underlying

strong white noise (ǫt). The new moving average operator

c(L) = b(L)a(L) =
∞
∑

k=−∞

ckL
k (55)

admits moving average coefficients given by

ck =
∞
∑

i=−∞

aibk−i =
∞
∑

j=−∞

ak−jbj, ∀k. (56)

11.2 Identification of a strong moving average representation

The question of the identification of a strong moving average representation is as fol-

lows. Let us consider a strong moving average process in Lp, Yt =
∑∞

i=−∞ aiǫt−i.

Is it possible to also write this process as Yt =
∑∞

i=−∞ a∗i ǫ
∗
t−i, that is, with different

noise and moving average coefficients? Of course the white noise is defined up to a
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multiplicative positive scalar c, since

Yt =
∞
∑

i=−∞

a∗i ǫ
∗
t−i, with a∗i = ai/c, ǫ

∗
t = cǫt. (57)

The identification conditions below have been derived previously in Findley (1986),

Hallin, Lefevre, and Puri (1988), and Cheng (1992).

Identification condition

i) The moving average representation is identifiable up to a multiplicative positive

scalar and to a drift of the time index for the noise process, if and only if the

distribution of the white noise is not Gaussian.

ii) If the white noise is Gaussian, the process always admits a causal Gaussian repre-

sentation,

Yt =
∞
∑

i=0

a∗i ǫ
∗
t−i, with ǫ∗t ∼ IIN(0, 1). (58)

As a consequence the general linear process which is not purely causal, that is which

depends on at least one future shock (i.e. ai �= 0 for at least one negative time index i)

cannot admit a linear causal representation. Equivalently, its causal representation will

automatically feature nonlinear dynamic features.

11.3 Probability distribution functions of the stationary strong form

noncausal representation

It can be shown that the unconditional distribution of the process in equation (4) is given

as

ft(xt) =
1− |ρ|
σǫπ

σ2
ǫ

σ2
ǫ + (1− |ρ|)2x2

t

. (59)

[Gourieroux and Zakoian (2012), Proposition 1] This unconditional distribution is inde-

pendent of date t by the strong stationary property.

Moreover, the Markov transition distribution (conditional density) of the forward-
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looking process is given as

ft|t+1(xt|xt+1) =
1

σǫπ

σ2
ǫ

σ2
ǫ + z2t

, where zt =
xt − ρxt+1

σǫ

, (60)

which follows from the definition of the standard Cauchy distribution.

Therefore, from Bayes theorem along with equations (59) and (60), we have that

ft+1|t(xt+1|xt) = ft|t+1(xt|xt+1)ft+1(xt+1)/ft(xt) (61a)

=
1

σǫπ

σ2
ǫ

σ2
ǫ + z2t

1−|ρ|
σǫπ

σ2
ǫ

σ2
ǫ+(1−|ρ|)2x2

t+1

1−|ρ|
σǫπ

σ2
ǫ

σ2
ǫ+(1−|ρ|)2x2

t

(61b)

=
1

σǫπ

σ2
ǫ

σ2
ǫ + z2t

σ2
ǫ + (1− |ρ|)2x2

t

σ2
ǫ + (1− |ρ|)2x2

t+1

, (61c)

which provides the causal transition density of the process [Gourieroux and Zakoian

(2012), Proposition 2].

11.4 The causal strong autoregressive representation

A nonlinear causal innovation, (ηt), of the process (xt) is a strong white noise such that

we can write the current value of the process xt as a nonlinear function of its own past

value xt−1 and ηt: xt = G(xt−1, ηt), say, where xt and ηt are in a continuous one-to-one

relationship given any xt−1 [Rosenblatt (2000)].

Moreover, since the conditional cumulative distribution function of xt|xt−1 is strictly

monotone increasing and continuous, it has an inverse. We can write

xt = F−1(Φ(ηt)|xt−1) where ηt ∼ IIN(0, 1) (62a)

⇔ ηt = Φ−1[F (xt|xt−1)], (62b)

and F (·|xt−1) is the c.c.d.f. of xt while Φ(·) is the c.d.f. of the standard Normal distribu-

tion. Therefore, by choosing G(xt−1, ηt) = F−1(Φ(ηt)|xt−1), we can select a Gaussian

causal innovation. The choice of a Gaussian causal innovation is purely conventional.
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11.5 Distributions with fat tails

Different distributions with fat tails can be used as the distribution of the baseline shocks

(ǫt) to construct mixed causal/noncausal linear processes. Below we provide three ex-

amples of fat tailed distributions that are employed in this paper, that are the student

t-distribution, the skewed student t-distribution [see Jones (2001)], and the “stable” dis-

tributions [see Nolan (2009)], respectively.

i) Student t-distribution:

This is a distribution on (−∞,+∞) with probability density function given as:

f(x) =
1√
νπ

Γ(ν+1
2
)

Γ(ν
2
)

(

1 +
x2

ν

)− ν+1

2

, (63)

where ν > 0 is the real degree of freedom parameter and Γ(·) is the Gamma func-

tion defined as Γ(z) =
∫∞

0
tz−1e−tdt, if z > 0.

The p.d.f. is symmetric; it bears the same “bell” shape as the Normal distribution

except that the t-distribution exhibits fat tails. As the number of degrees of freedom,

ν goes to 1 the t-distribution approaches the Cauchy distribution and as the degree

of freedom approaches ∞, the t-distribution approaches the Normal distribution.

Its tail behaviour is such that E[|x|p] < ∞, if ν > p.

ii) Skewed t-distribution: [Jones (2001), Section 17.2]

This is a distribution on (−∞,+∞) with probability density function given as:

f(x) =
1

2ν−1β(a, b)
√
ν

(

1 +
x√

ν + x2

)a+1/2(

1− x√
ν + x2

)b+1/2

, (64)

where ν = a+b, a and b are two positive real valued degrees of freedom parameters

and β(a, b) represents the Beta function defined as β(a, b) = Γ(a)Γ(b)/Γ(a + b).

If a > b the distribution is positively skewed, negatively skewed if a < b, and

identical to the t-distribution above if a = b. This distribution allows for different

magnitudes for the left and right fat tails, respectively.

Another skewed t-distribution has been proposed in the literature as a generaliza-

tion of the skewed Normal distribution. This alternative skewed t-distribution is
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parameterized by only one skewness parameter instead of two as in Jones (2001)

[see Azzalini and Capitanio (2003), Section 4, for more details].

iii) Stable distribution:

A random variable, x, is said to be “stable,” or to have a “stable distribution,” if a

linear combination of two independent copies of x has the same distribution as x,

up to location and scale parameters. That is, if x1 and x2 are independently drawn

from the distribution of x, then x is stable if if for any constants a > 0 and b > 0

the random variable z = ax1 + bx2 has the same distribution as cx + d for some

constants c > 0 and d. The distribution is said to be strictly stable if d = 0.

Generally, we cannot express the p.d.f. of the stable random variable x in an

analytical form. However, the p.d.f is always expressable as the Fourier trans-

form of the characteristic function, ϕ(t), which always exists, that is, f(x) =
1
2π

∫∞

−∞
ϕ(t)e−ixtdt. The characteristic function is given as:

ϕ(t) = exp [itμ− |ct|α (1− iβsign(t) tan (πα/2))] (65)

Therefore the distribution is parameterized by {α, β, c, μ} where α ∈ (0, 2] is the

stability parameter, β ∈ [−1, 1] is a skewness parameter, c ∈ (0,∞) is the scale

parameter, and μ ∈ (−∞,∞) is the location parameter.

The Normal, Cauchy, and Levy distributions are all stable continuous distributions.

If α = 2 the stable distribution reduces to the Normal distribution. If α = 1/2 and

β = 1, it corresponds to the Levy distribution. Finally, if α = 1 and β = 0 the

distribution is Cauchy and the p.d.f. is given analytically as:

f(x) =
1

π (1 + x2)
. (66)

Even if the p.d.f. of a stable distribution has no explicit expression, its asymptotic

behaviour is known. We have [see Nolan (2009), Th 1.12]:

f(x) ∼ cα
(1 + sign(x)β)sin(πα/2)Γ(α + 1)/π

|x|1+α
, for large x. (67)

Therefore, E[|x|p] < ∞, if α > p. In particular the mean does not exist if α ≤ 1.
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12 Appendix: Approximation of the mixed causal/noncausal

AR(r, s) likelihood

This section describes the nature of the matrix transformations which ensure that the

MLE estimator is consistent, by regressing both forward (noncausal) and backward

(causal) lags on xt.

It will first be useful to define the following processes ut and vt. From (17a), let ut

be defined as

ut = φ(L)xt = ϕ(L−1)−1ǫt =
∞
∑

j=0

ϕ∗
jǫt+j, (68)

where ϕ∗
0 = 1 and the right hand side series of moving average coefficients are abso-

lutely summable. We call (68) the forward looking moving average representation of

xt.

Moreover, also from (17a) let vt be defined as

vt = ϕ(L−1)xt = φ(L)−1ǫt =
∞
∑

j=0

φ∗
jǫt−j, (69)

where φ∗
0 = 1 and the right hand side series of moving average coefficients are abso-

lutely summable. We call (69) the backward looking moving average representation of

xt.

The changes of variables above can also be written in matrix form. Consider the

time series xt for t = 1, . . . , T . From (68) and (69), we have ut = φ(L)xt and vt =

ϕ(L−1)xt. Therefore, let us introduce the following matrices, Φc and Φnc:

Φc =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Ir×r 0r×(T−r)

−φr −φr−1 . . . −φ1 1 0 . . . . . . . . . . . .

0 −φr −φr−1 . . . −φ1 1 0 . . . . . . . . .

. . .

. . . . . . 0 −φr −φr−1 . . . −φ1 1 0 . . .

0s×(T−s) Is×s

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(70)
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and

Φnc =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −ϕ1 . . . −ϕs−1 −ϕs 0 . . . . . . . . . . . .

0 1 −ϕ1 . . . −ϕs−1 −ϕs 0 . . . . . . . . .

. . .
. . .

. . .

. . . . . . . . . . . . 0 1 −ϕ1 . . . −ϕs−1 −ϕs

. . . 0 −φr −φr−1 . . . −φ1 1 0 . . . 0

. . .

. . . . . . . . . 0 −φr −φr−1 . . . −φ1 1 0

. . . . . . . . . . . . 0 −φr −φr−1 . . . −φ1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(71)

where the lower partition of Φnc has s rows. Therefore, Φc will represent the causal

transformation and Φnc the noncausal transformation, respectively. Both matrices are

of size T × T .

Applying the noncausal transformation to the vector of data, x, we have:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

v1
...
...

vT−s

uT−s+1

...

uT

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1 − ϕ1x2 − · · · − ϕsx1+s

...

...

xT−s − ϕ1xT−s+1 − · · · − ϕsxT

xT−s+1 − φ1xT−s − · · · − φrxT−s+1−r

...

xT − φ1xT−1 − · · · − φrxT−r

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= Φnc

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1

...

...

xT−s

xT−s+1

...

xT

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(72)

Moreover, from ǫt = φ(L)ϕ(L−1)xt = φ(L)vt, we have:
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e =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

v1
...

vr

ǫr+1

...

ǫT−s

uT−s+1

...

uT

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

v1
...

vr

vr+1 − φ1vr − · · · − φrv1
...

vT−s − φ1vT−s−1 − · · · − φrvT−s−r

uT−s+1

...

uT

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= Φc

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

v1
...

vT−s

uT−s+1

...

uT

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(73)

So we have the transformation e = ΦcΦncx.

Thus the elements of e are mutually independent and the joint density of e is given

as:

fe(e|θ) = fv(v1, . . . , vr)

(

T−s
∏

t=r+1

fǫ(ǫt;λ, σ)

)

fu(uT−s+1, . . . , uT ), (74)

where θ = {φ,ϕ, λ, σ} represents the parameters of the model.

The Φc matrix is lower triangular and its determinant is equal to 1. Therefore, using

the change of variables Jacobian formula, we can express the joint density in terms of x

as:

fx(x|θ) = fv(ϕ(L
−1)x1, . . . , ϕ(L

−1)xr)

(

T−s
∏

t=r+1

fǫ(ϕ(L
−1)φ(L)xt;λ, σ)

)

fu(φ(L)xT−s+1, . . . , φ(L)xT )|det(Φnc)|. (75)

Since the determinant of Φnc is independent of sample size,17 we can approximate

17To show this we can employ the partitioned matrix determinant formula: det

([

A11 A12

A21 A22

])

=

det (A11) det
(

A22 −A21A11

−1A12

)

, where it can be shown that A11 is (T − s) × (T − s) with

determinant 1, and so the second term in the factorization represents the determinant of an s× s matrix,

for all T .
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asymptotically the likelihood by using the second factor in the above expression, that is,

T−s
∏

t=r+1

fǫ(ϕ(L
−1)φ(L)xt;λ, σ). (76)

For large samples, T will dwarf r + s = p and so the approximation will be consistent.

Asymptotic properties of the approximated maximum likelihood estimators are dis-

cussed in section 3.2 and consistent estimation of the standard errors is detailed in sec-

tion 3.3, both of Lanne et al. (2008).

13 Appendix: Numerical algorithm for mixed causal/noncausal

AR(r, s) forecasts

Solution proposed by Lanne, Luoto, and Saikkonen (2012)

Lanne, Luoto, and Saikkonen (2012) propose to circumvent the problem presented by

our ignorance of the stationary distribution fx(·) by enlarging the space of random vari-

ables. They first rewrite (37) as:

fxt+1|t
(xt+1|xt) = fxt,xt+1

(xt, xt+1)/fx(xt). (77)

Then by using the fact that xt = ut = ϕ(L−1)ǫt =
∑∞

j=0 ϕ
j
1ǫt+j , they choose to employ

the mapping (xt, xt+1, xt+2, . . . ) → (ǫt, ǫt+1, ǫt+2, . . . ). This suggests a linear rela-

tionship which, by approximating xt = ut ≈ ∑M
j=0 ϕ

j
1ǫt+j given a sufficiently large

truncation lag M , we are able to invert, providing an approximate expression for ǫt as

a linear function of both xt and future ǫt+1, ǫt+2, . . . , ǫt+M . For example in this case

where the noncausal polynomial is of order 1, we have that ǫ̂t ≈ xt −
∑M

j=1 ϕ
j
1ǫt+j .

Since, by assumption, the distribution of the shocks ǫt is known, the authors are

able to compute the probability of these approximated ǫ̂t’s, and relying upon Monte-

Carlo simulation methods, are able to approximate the conditional C.D.F. function of

xt+1 = ut+1. The conditional C.D.F. function at a given value α ∈ R can be computed

from (77) above by means of approximating the following integral by Monte-Carlo

simulation, where we average across draws of sufficiently long future paths of ǫ+t+1 =
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{ǫt+1, . . . , ǫt+M}:

Fxt+1|t
(α|xt) =

∫

1α>xt+1
fxt+1|t

(xt+1|xt)dxt+1 (78a)

≈
∫

1

fǫ(ǫ̂t)
1α>xt+1

(

M−1
∑

j=0

ϕj
1ǫt+1+j

)

fǫ(ǫ̂t)
M
∏

j=1

fǫ(ǫt+j)dǫ
+
t+1 (78b)

This method has two drawbacks: first, we approximate the above integral by Monte-

Carlo simulation of the long future paths of ǫ+t+1. Second, M has to be sufficiently large

so that the approximation does not miss the effect of far future shocks. The value of

M required to obtain an accurate approximation will grow as the roots of the noncausal

polynomial approach 1, and so will the computational requirements of the algorithm.

The numerical method proposed by Lanne, Luoto, and Saikkonen (2012) also works

in the more general case where s > 1. However, now that the noncausal order is greater

than 1 enlarging the space from

(xt−s+1, . . . , xt, xt+1, . . . ) → (ǫt−s+1, . . . , ǫt, ǫt+1, ǫt+2, . . . ) requires us to invert a sys-

tem of equations. Therefore, we may employ a matrix transformation between the two

spaces and this matrix is inverted to provide an approximation to ǫt, . . . , ǫt−s+1 in terms

of both xt, . . . , xt−s+1 and future ǫt+1, . . . , ǫt+M . It is noted in their paper (and in the

Appendix here) that the Jacobian determinant of this transformation is always 1. How-

ever, while this matrix is sparse, for large s and M it is computationally costly.

Below, we describe their method for the approximate simulation of the conditional

c.d.f.,

Fut+h|t
(α|Ft) =

∫ α

−∞

fut+h|t
(ut+h|Ft)dut+h (79)

for h = 1, when s > 1 (which they also generalized to the case where h > 1 in their

paper). The method is broken down into a number of discussion points as follows:

1. We require the density of ǫ+t+1 = {ǫt+1, ǫt+2, . . . }, conditional on the data

xt = {xt, xt−1, . . . x1}.

2. Since from (68), we have that ut+1 =
∑∞

j=0 ϕ
∗
jǫt+1+j , from equation (75) it can

be shown that:

fx,ǫ+(xt, ǫ
+
t+1|θ)

fx(xt|θ)
= p(ǫ+t+1|xt; θ) =

fu−,ǫ+(u
−
t (φ), ǫ

+
t+1)

fu−(u−
t (φ))

, (80)
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where θ represents the parameters of the mixed causal/noncausal AR(r, s) model

and

u−
t (φ) = {φ(L)xt−s+1, . . . , φ(L)xt} = {ut−s+1, . . . , ut}.

3. Then, we can use Monte-Carlo simulations to approximate both the numerator

and denominator of (80) in order to approximate the desired conditional c.d.f. as:

Fut+1|t
(α|Ft) ≈

1

fu(u
−
t (φ))

∫

1α>ut+1

(

M−1
∑

j=0

ϕ∗
jǫt+1+j

)

fu,ǫ+(u
−
t (φ), ǫ

+
t+1)dǫ

+
t+1,

(81)

where under the assumption of some finite M (such that as M → ∞, (ϕ∗
j) → 0),

we can approximate ut+1 as ut+1 ≈
∑M−1

j=0 ϕ∗
jǫt+1+j .

4. In order to do this, however, we need to accomplish a change of variables between

(u−
t (φ), ǫ

+
t+1) and ({ǫt−s+1, . . . , ǫt}, ǫ+t+1). Given (68), the approximate mapping

between these two sets of variables is given as:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 ϕ∗
1 . . . . . . . . . . . . ϕ∗

M+s−1

0
. . .

. . .
...

...
. . . 1 ϕ∗

1 . . . . . . ϕ∗
M

...
. . . 1 0 . . . 0

...
. . .

. . .
. . .

...
...

. . .
. . . 0

0 . . . . . . . . . . . . 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ǫt−s+1

...

ǫt

ǫt+1

...

ǫt+M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≈

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ut−s+1

...

ut

ǫt+1

...

ǫt+M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(82)

which can be written as Ce ≈ w. Therefore, by inverting C and noting that its

determinant is 1, we can write the numerator in (80) as:

fu−,ǫ+(u
−
t (φ), ǫ

+
t+1) ≈

s
∏

j=1

fǫ(ǫt−s+j(u
−
t (φ), ǫ

+
t+1))

t+M
∏

τ=t+1

fǫ(ǫτ ), (83)

where I have written the elements ǫt−s+j(u
−
t (φ), ǫ

+
t+1) as such to indicate that

they are functions of both u−
t (φ) and ǫ+t+1.

5. Therefore, if we simulate N i.i.d. draws of the M length vector ǫ+t+1,i (i.e. for
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i = 1, . . . , N ) according to fǫ(·), an approximation to the desired conditional

c.d.f. in (81) is given as:

Fut+1|t
(α|Ft) ≈

N−1
∑N

i=1 1α>ut+1

(

∑M−1
j=0 ϕ∗

jǫt+1+j,i

)

∏s
j=1 fǫ(ǫt−s+j(u

−
t (φ), ǫ

+
t+1,i))

N−1
∑N

i=1

∏s
j=1 fǫ(ǫt−s+j(u

−
t (φ), ǫ

+
t+1,i))

.

(84)

Then, given an appropriately chosen grid of αi’s, we can generate an approxima-

tion to the shape of the c.d.f. across its support.

14 Appendix: Tables and Figures
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Figure 7: Plots of simulated bubble processes
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Table 7.i: Lag polynomial roots of the mixed and benchmark models

Model p/r,q/s Sig.p/r Sig.q/s cR cMC ncR ncMC #CC

Soybean meal skew-t arma 10,0 1,8,9 1.010 1.571 4

1.581

1.582

1.583

t-dist mixed 10,10 1,3,5,7,9,10 1,2,3,4,6,9 1.385 1.354 -1.716 1.091 4/4

-2.532 1.414 1.530

1.474 1.530

1.500 1.561

Soybean oil skew-t arma 10,0 1,10 1.033 1.478 4

1.306 1.558

1.600

1.619

t-dist mixed 10,10 1,2,4,9,10 1,2,3,4,8 1.373 1.341 1.009 1.666 4/3

-1.797 1.359 1.285 1.669

1.390 1.474

1.510

Soybeans skew-t arma 10,0 1,2,5,8,9 1.028 1.514 4

1.551

1.556

1.582

skew-t mixed 10,10 1,2,5,8,10 1 -1.559 1.358 0.944 4/0

1.749 1.464

1.477

1.558

Orange juice skew-t arma 10,0 1,2,3,10 1.033 1.505 4

1.572

1.623

1.660

skew-t mixed 10,10 1,2,5,9 1,2,5 1.556 1.518 1.060 2.460 4/1

1.542 1.843

1.555 -2.750

1.608

Sugar skew-t arma 1,2 1 1,2 1.000 4.590 3

4.756

5.010

5.487

t-dist mixed 2,2 1,2 1,2 4.373 1.002 1/0

14.637

Wheat skew-t arma 5,0 1,5 0.992 2.350 2

2.655

skew-t mixed 5,5 1,2,3,5 1,3,4 1.006 1.814 1.789 2.046 2/1

2.071 -2.434

Cocoa skew-t arma 10,0 1 1.022 0

skew-t mixed 10,10 1,6,9 1,2,4,9,10 1.436 1.417 -1.435 1.202 4/4

1.486 1.740 1.408

1.499 1.414

1.508 1.426



Table 7.ii: Lag polynomial roots of the mixed and benchmark models

Model p/r,q/sa Sig.p/rb Sig.q/sb cRc cMCc ncRd ncMCd #CCe

Coffee t-dist arma 10,0 1,3 0.995 4.740 1

skew-t mixed 10,10 1,2,5,6,10 1,2,5,6,7 1.375 1.027 1.684 5/2

1.403 1.571 1.762

1.428 -1.645

1.430

1.446

Corn skew-t arma 2,0 1,2 1.000 0

51.190

t-dist mixed 2,3 1 1,2,3 -32.542 1.002 5.484 0/1

Cotton skew-t arma 10,0 1,2,6,7 1.007 1.738 3

1.707

1.615

t-dist mixed 1,3 0 1,2,3 1.003 5.317 0/1

Rice skew-t arma 2,2 1,2 1,2 0.997 3.099 3

2.917 3.332

-3.552 3.493

t-dist mixed 1,3 1 1,2,3 -15.328 1.001 5.003 0/1

Lumber skew-t arma 1,1 1 1 1.005 13.181 4

13.237

13.314

13.375

skew-t mixed 10,10 1,2,4-10 1,5 1.015 1.235 -1.862 1.218 4/2

-1.454 1.247 1.752

1.336

1.900

Gold t-dist arma 3,0 1,2,3 0.999 5.618 1

t-dist mixed 10,10 1,2,6,10 1 -1.450 1.395 0.974 4/0

1.489 1.416

1.431

1.434

Silver skew-t arma 10,0 1,2,4,8 1.003 1.606 3

-1.874 1.715

1.751

skew-t mixed 10,10 1,3-6,9,10 1,4,5,7 1.479 1.424 0.996 4

-1.533 1.424 1.600 1.721 4/2

1.451 -2.070 1.643

1.327

Platinum skew-t arma 10,0 1,4,7,8,9 0.957 1.493 4

1.528

1.572

1.582

skew-t mixed 10,10 1,2,3,5-9 1,2,6-8,10 -1.786 1.355 0.974 1.304 4/4

1.376 1.257 1.328

1.385 1.401

1.860 1.594

a (p,q) or (r,s) pairs for ARMA(p,q) and mixed causal/noncausal AR(r, s) models respectively.
b Significant lags at the 5% level assuming Normal distributed parameters.
c Causal lag polynomial; real roots and modulus of complex roots respectively.
d Noncausal lag polynomial; real roots and modulus of complex roots respectively.
e Number of complex conjugate roots with the same modulus (causal/noncausal).



Table 7.iii: Lag polynomial roots of the mixed and benchmark models

Model p/r,q/s Sig.p/r Sig.q/s cR cMC ncR ncMC #CC

Palladium skew-t arma 5,0 1,2,4,5 1.006 2.431 1

-2.434

3.525

t-dist mixed 8,8 1,2-7 1,2,3,7,8 -1.618 1.621 0.989 1.547 3/3

1.632 1.536 1.574

1.884 1.619

Copper skew-t arma 10,0 1,2,6 1.055 2.020 2

1.696 2.101

skew-t mixed 10,10 1,2,3,6 1,6,7,8 1.728 0.952 1.352 3/3

1.737 -1.323 1.482

1.831 1.751

Light crude oil t-dist arma 2,0 1,2 0.999 0

-23.729

skew-t mixed 1,3 1 1,2,3 -14.222 1.002 6.144 0/1

Heating oil t-dist arma 2,0 1,2 0.999 0

-27.213

t-dist mixed 10,10 1-4,7,9,10 1-6,9,10 1.245 1.279 1.032 1.259 4/4

-2.553 1.307 -1.505 1.303

1.349 1.315

1.368 1.372

Brent crude oil t-dist arma 2,2 1,2 1,2 0.989 2.466 3

2.255 2.621

-2.716 2.695

skew-t mixed 10,10 1,4,9,10 1,2,5,6,9 1.261 1.292 1.068 1.276 4/3

-1.527 1.331 1.101 1.388

1.336 -1.723 1.540

1.500

Gas oil skew-t arma 1,0 1 0.998 0

skew-t mixed 10,10 3,7,9,10 1,4,7-10 1.230 1.324 0.925 1.346 4/4

-2.140 1.328 -1.264 1.483

1.341 1.542

1.508 1.563

Natural gas t-dist arma 1,2 1 1 1.001 34.697 4

34.765

34.839

34.886

t-dist mixed 1,1 1 1 -31.650 1.001 0/0

Gasoline RBOB skew-t arma 3,0 1,3 0.972 4.452 1

skew-t mixed 2,1 2 1 4.390 1.005 1/0

Live cattle skew-t arma 10,0 1,5 1.019 2.408 1

1.973

-2.543

t-dist mixed 10,10 1 3,4,6 0.994 1.896 0/3

1.728

1.891

Lean hogs skew-t arma 5,0 1,4,5 0.984 2.555 1

-2.525

2.744

skew-t mixed 0,2 1.004 0/0

55.339



Figure 10.i: Plots of daily continuous contract futures price level series
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Figure 10.ii: Plots of daily continuous contract futures price level series
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Figure 10.iii: Plots of daily continuous contract futures price level series
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Figure 10.iv: Plots of daily continuous contract futures price level series
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Figure 11.i: Histograms of daily continuous contract futures price level series
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Figure 11.ii: Histograms of daily continuous contract futures price level series
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Figure 11.iii: Histograms of daily continuous contract futures price level series
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Figure 11.iv: Histograms of daily continuous contract futures price level series
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