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Abstract

A review of the general state-space modeling framework. The discussion focuses heavily

on the three prediction problems of forecasting, filtering, and smoothing within the state-

space context. Numerous examples are provided detailing special cases of the state-space

model and its use in solving a number of modeling issues. Independent sections are also de-

voted to both the topics of Factor models and Harvey’s Unobserved Components framework.
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1 Introduction

The dynamic state-space model was developed in the control systems literature, where physi-

cal systems are described mathematically as sets of inputs, outputs, and state variables, related

by difference equations. The following, Section 2, describes the various versions of the linear

state-space framework, discusses the relevant assumptions imposed, and provides examples en-

countered in economics and finance. Subsequently, Section 3 provides the analogous description

of the more general nonlinear state-space framework. Section 4 then discusses some of the com-

mon terminologies related to the state-space framework within the different contexts they are

encountered. Section 5 follows by discussing the general problems of state-space prediction,

including forecasting, filtering, and smoothing. Moreover, it provides a number of simple ap-

plications to chosen models from Section 2. Sections 6 and 7 then go into more detail: Section

∗I’d like to thank Christian Gourieroux for his helpful comments and suggestions.
†University of Toronto, Department of Economics, p.karapanagiotidis@utoronto.ca
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6 briefly discusses the problem of prediction in the frequency domain and Section 7 outlines in

detail the solutions to the forecasting, smoothing, and filtering problems, within the time domain.

In particular, we interpret the solutions in terms of an orthogonal basis, and provide the MA

and AR representations of the state-space model. Section 8 then details estimation of the state-

space model parameters in the time domain. Finally, Section 9 discusses the equivalent Factor

model representation, including the relationship between this representation, the VARMA, and

the VECM models. It also discusses in more detail the Unobserved Components framework

popularized by Harvey (1984,89).

2 Linear dynamic state-space model

2.1 The models

2.1.1 Weak linear state-space model

The weak form of the linear dynamic state-space model is as follows:

xt = F txt−1 + ǫt, (1a)

yt = H txt + ηt, (1b)

with the moment restrictions:

E[ǫt] = 0, Cov(ǫt, ǫt−s) = Σǫt✶s=0, (2a)

E[ηt] = 0, Cov(ηt,ηt−s) = Σηt✶s=0,

E[ǫt−jη
′
t−s] = 0, ∀j, s ∈ Z,

and Cov(x0, ǫt) = Cov(x0,ηt) = 0, ∀t > 0,

where:

◦ yt is a n× 1 vector of the observed values at time t.
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◦ xt is a p× 1 vector of state process values at time t.1

◦ ǫt and ηt are assumed uncorrelated with each other across all time lags, and their covariance

matrices, Σǫt and Σηt, depend on t.

◦ F t is called the “system matrix” and H t the “observation matrix.” These matrices are

assumed to be non-stochastic where F t is p × p, and if we allow for more state processes

than observed ones, H t is n× p where n ≥ p.

◦ Equation (1a) is called the “state transition” equation and (1b) is called the “observation”

or “measurement” equation.

◦ The state initial condition, x0, is assumed stochastic with second order moments denoted

E[x0] = µ and V ar(x0) = Σx0
. Finally, there exists zero correlation between the initial

state condition and the observation and state error terms, for all dates t > 0.

2.1.2 The Gaussian linear state-space model

In the weak version of the linear dynamic state-space model, the assumptions concern only the

first and second-order moments of the noise processes and initial state, or equivalently the first

and second-order moments of the joint process [(x′
t,y

′
t)

′]. We can also introduce a more restric-

tive version of the model by assuming, independent, and identically distributed, Gaussian white

noises (IIN) for the errors of the state and measurement equations. The Gaussian linear state

1Other terminology include the “signal” in the engineering context, “control variable” in the systems control

literature, “latent factor” in the factor models approach, or “stochastic parameter” in the Bayesian context. See

below for more details.

3



space model is therefore defined as:

xt = F txt−1 + ǫt, (1a)

yt = H txt + ηt, (1b)

where



ǫt

ηt




t≥1

∼ IIN






0

0


 ,



Σǫt 0

0 Σηt





 , x0 ∼ N(0,Σx0

), (3a)

and x0 and the joint process (ǫt,ηt) are independent.

The Gaussian version of the state-space model is often used as a convenient intermediary tool.

Indeed, under the assumption of Gaussian noise and initial state, we know that the joint process

[(x′
t,y

′
t)

′] is Gaussian. This implies that all marginal and conditional distributions concerning

the components of these processes are also Gaussian. If the distributions are easily derived, we

get as a by-product the expression of the associated linear regressions and residual variances.

Since these linear regressions and residual variances are functions of the first and second-order

moments only, their expressions are valid even if the noises are not Gaussian–that is, for the weak

linear state space model.

2.2 Examples

We will now discuss various examples of the state-space model. The first examples from 2.2.1-

2.2.3 are descriptive models used for predicting the future; the second set of examples, 2.2.4-

2.2.9 introduces some structure on the dynamics to capture measurement error, missing data,

or aggregation. Finally, the last examples, 2.2.10-2.2.12, come from economic and financial

applications.
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2.2.1 The Vector Autoregressive model of order 1, VAR(1)

The (weak) Vector AutoRegressive model of order 1, V AR(1), is defined as:

xt = Fxt−1 + ǫt, with ǫt ∼ WWN(0,Σǫ), (4a)

yt = xt, (4b)

with the condition of no correlation between initial state, x0, and the error terms, ǫt, satisfied.

Furthermore, WWN denotes “weak white noise” or a process with finite, constant, first and

second-order moments which exhibits no serial correlation.

In this case the observation process coincides with the state process. This implies that:

yt = Fyt−1 + ǫt, with ǫt ∼ WWN(0,Σǫ), (5)

which is the standard definition of the (weak) V AR(1) process.

2.2.2 The univariate Autoregressive model of order p, AR(p)

The (weak) univariate AutoRegressive model of order p, AR(p), is defined as:

xt + b1xt−1 + · · ·+ bpxt−p = ǫt, with ǫt ∼ WWN(0, σ2
ǫ ), (6)

The model can be written in state-space form as:

xt = Fxt−1 + ǫt, (7a)

yt = Hxt. (7b)

The state vector includes the current and first p− 1 lagged values of xt:

xt =

[
xt xt−1 . . . xt−p+1

]′

p×1

, (8)
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with system matrices are given as:

F =




−b1 −b2 . . . −bp−1 −bp

1 0 . . . 0 0

0 1 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1 0




p×p

, (9a)

H =

[
1 0 . . . 0

]

1×p

, (9b)

and ǫt =

[
ǫt 0 . . . 0

]′

p×1

. (9c)

Since the AR(p) process is completely observed, ηt = 0 and Σηt = 0 for all t. Moreover,

Σǫt is a singular matrix with zeroes in each element except the top diagonal element, which is

equal to σ2
ǫ for all t.

2.2.3 The univariate Autoregressive-Moving Average model of order (p, q), ARMA(p,q)

The (weak) univariate AutoRegressive-Moving Average model of order (p, q), ARMA(p, q), is

defined as:

xt + b1xt−1 + · · ·+ bpxt−p = ǫt + a1ǫt−1 + · · ·+ aqǫt−q, where ǫt ∼ WWN(0, σ2
ǫ ), (10)

There are a number of possible state-space representations of an ARMA process. In the language

of Akaike (1975), a “minimal” representation is a representation whose state vector elements

represent the minimum collection of variables which contain all the information needed to pro-

duce forecasts given some forecast origin t. For ease of exposition in what follows we provide

a non-minimal state-space representation, although the interested reader can consult Gourieroux

(1997, p. 607) for a minimal one.
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Let the dimension of the state xt be m = p+ q. We have:

xt = Fxt−1 +Gǫt, (11a)

yt = Hxt, (11b)

The state vector is given as:

xt =

[
xt xt−1 . . . xt−(p−2) xt−(p−1) ǫt ǫt−1 . . . ǫt−(q−2) ǫt−(q−1)

]′
. (12a)

The system matrices are given as:

F =




−b1 . . . . . . −bp−1 −bp a1 . . . . . . aq−1 aq

1 0 . . . 0 0 0 . . . . . . . . . 0

0 1 . . . 0 0 0 . . . . . . . . . 0

...
...

. . .
...

...
... . . . . . . . . .

...

0 0 . . . 1 0 0 . . . . . . . . . 0

0 0 . . . 0 0 0 . . . . . . . . . 0

0 . . . . . . 0 0 1 0 . . . 0 0

... . . . . . .
...

... 0 1 . . . 0 0

... . . . . . .
...

...
...

...
. . .

...
...

0 . . . . . . 0 0 0 0 . . . 1 0



m×m

, (13a)

G =

[
1 0 . . . 0 1 0 . . . 0

]′

m×1

, (13b)

H =

[
1 0 . . . 0

]

1×m

, (13c)

and ǫt ≡ ǫt ∼ WWN(0, σ2
ǫ ). (13d)

with the condition of no correlation between initial state, x0, and the error terms, ǫt, satisfied.
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2.2.4 Partially observed VARMA

In the discrete-time multivariate case, suppose that some linear, unobserved, state process xt is

composed of filtered weak white noise ǫt. However, what we actually observe is yt, which has

been corrupted by additive weak white noise ηt. This model can be written as:

xt =
∞∑

u=0

auǫt−u = A(L)ǫt, (14a)

and yt = xt + ηt, for t = 1, . . . , T, (14b)

where:

◦ xt is an unobserved P × 1 vector of state variables.

◦ the unobserved state xt (the “signal” in the engineering context) is corrupted with weak,

white, additive noise, ηt, with covariance matrix Ση.

◦ ǫt is an M × 1 vector of weak white noise input processes with covariance Σǫ.
2

◦ yt is a P × 1 vector of the observed “noisy” output process.

◦ Ση and Σǫ represent the covariance of the measurement noise and the state process noise,

respectively, and are assumed time-invariant.

Note that A(L) is a P × M matrix infinite series where L denotes the lag operator; that is,

A(L) = a0L
0 + a1L

1 + a2L
2 + . . . . , where the individual P × M matrices, au, collectively

represent the impulse response function f where f : Z → R
P×M .

Given (14a), the infinite lag distribution makes working with this model in the time domain

troublesome. However, the apparent multi-stage dependence can be reduced to first-order au-

toregressive dependence by means of a matrix representation if we assume that A(L) can be

well-approximated by a ratio of finite lag matrix polynomials – the so called “transfer function”

2Note there is no loss of generality here since for any (possibly non-white) second-order stationary stochastic

input process we might choose, zt, we can always represent it as zt =
∑∞

j=0 Θjǫt−j by Wold’s theorem.
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models of Box & Jenkins (1970). That is, suppose that we model instead:

C(L) = B(L)−1A(L)

=
(
I + b1 + b2L

2 + · · ·+ bnL
n)
)−1 (

a0 + a1 + a2L
2 + · · ·+ an−1L

n−1)
)

(15)

where the inverse of the matrix lag polynomial B(L) is assumed to exist.

The model in (14), with the ratio of finite order matrix lag polynomials C(L) now replacing

the infinite series A(L), becomes:

xt + b1xt−1, . . . ,+bnxt−n = a0ǫt+, . . . ,an−1ǫt−(n−1), ∀t = 1, . . . , T, (16a)

and yt = xt + ηt, (16b)

(16) can now be reduced to first-order dependence by means of a redefinition of the state

vector as:

x∗
t = T x̂t−1, (17a)

where T =




−bn 0 0 . . . 0

−bn−1 −bn 0 . . . 0

−bn−2 −bn−1 −bn . . . 0

...
. . . 0

−b1 −b2 −b3 . . . −bn




Pn×Pn

, (17b)

and x̂′
t−1 =

[
x′
t−1 x′

t−2 . . . x′
t−n

]

1×Pn

, (17c)

so that the new first-order autoregressive state-space model takes the form:

x∗
t = Fx∗

t−1 +Gǫ̂t, (18a)

and yt = Hx∗
t + ηt (18b)
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where we have that:

F =




0 0 . . . 0 −bn

I 0 . . . 0 −bn−1

...
...

...
...

0 0 . . . I −b1




Pn×Pn

, (19a)

G =




0 0 0 0

...
...

...
...

a0 a1 . . . an−1



Pn×Mn

, (19b)

H =

[
0 0 . . . I

]

P×Pn

, (19c)

and ǫ̂′t =

[
ǫ′t ǫ′t−1 . . . ǫ′t−(n−1)

]

1×Mn

(19d)

where again F is the “system matrix,” G the “input matrix,” and H the “observation ma-

trix.” Bear in mind that (18) and (19) represent only one possible state-space representation

– in fact while the transfer function C(e−iω) in hxx(ω) (see Section 2.2.4, (20a)) implies an

infinite number of possible state-space representations, any particular state-space representa-

tion has only one equivalent transfer function. Additionally, we can immediately see from

(18b) that the observed process yt is a linear function of the unobserved “factors” since yt =

−b1xt−1 − b2xt−2 − · · · − bnxt−n + ut + ηt, where ut is equal to the right-hand side of (16a).

See Akaike (1974) for a general treatment of finite order linear systems.

i) Spectral properties of the partially observed VARMA process

Note that from (14a), A(L) =
∑∞

u=0 auL
u, so A(L)ǫt =

∑∞
u=0 auǫt−u More generally,

A(z) =
∑∞

u=0 auz
u where z ∈ C is known as the z-transform. Therefore, while A(L) is

a polynomial function of an operator L, the z-transform, A(z), is a polynomial function of a

complex variable. However, since both polynomials admit the same coefficients, we can solve

for the transfer function of (14a) as A(z) where z = e−iω, since this represents the Fourier
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transform of the impulse response function.3 (Note that in continuous time this z-transform

analogy is unnecessary since there is no need for defining the model in terms of lag operators, L).

Therefore, the convolution observed in the time domain in (14a) is equivalent to a multiplication

within the frequency domain, so that the Fourier transform of the impulse response, A(e−iω),

disentangles the complicated interdepencies into a simple multiplicative relation between inputs

and outputs given any frequency ω. Therefore, working with (14) in the frequency domain is

often a useful approach. For clarity the frequency domain relationships are given diagramatically

in Figure 1.

Figure 1: Frequency domain relationships of the model in (14)

Since ǫt and ηt are jointly stationary and uncorrelated we have that:

hyx(ω) = A(e−iω)hǫǫ(ω)A(e+iω)′ =
1

2π
A(e−iω)ΣǫA(e+iω)′ = hxx(ω), (20a)

and hyǫ(ω) = A(e−iω)hǫǫ(ω) =
1

2π
A(e−iω)Σǫ (20b)

represent the cross-spectral density matrices between yt and xt, yt and ǫt respectively. Therefore,

from (20a) it is clear that xt represents “filtered” weak white noise, where the flat spectrum of ǫt

(i.e. its variance) is given shape by A(e±iω).

Furthermore, the spectral-density matrix of yt is (from (16)):

hyy(ω) = hxx(ω) + hηη(ω) =
1

2π

(
A(e−iω)ΣǫA(e+iω)′ +Ση

)
. (21)

3The system in (14) is constrained to be “physically realizable” by assuming the impulse response matrices are

aj = 0, ∀j < 0. This form of impulse response exists, is unique, and is quadratically summable, with no zeros

inside the unit circle as long as the integral from −π to π of the log of ǫt’s spectral density is finite – see Doob

(1953), as cited in Priesley (1981, pg. 733). Note this condition is a very weak one and is satisfied here – in fact, the

mentioned integral can only diverge to −∞ if the spectral density vanishes in some interval in its domain.
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Note that for the discrete time process all spectral densities are continuous in the frequency ω

and periodic with period 2π.

Finally, a natural non-parametric estimator of the transfer function matrix is given by:

Â(e−iω) = ĥyǫ(ω)ĥ
−1
ǫǫ (ω) = 2πĥyǫ(ω)Σ̂ǫ

−1 (22)

where the spectral densities in (22) can be estimated within the frequency domain. See Priestley

(1981, Section 9.5) for more details.

Now, suppose we wish to establish the optimal manner of extracting the signal xt given

only the noisy observations yt. That is, we wish to establish the optimal frequency response, or

transfer function C(ω), in Figure 2. It was Wiener that original solved this frequency domain

problem where he established the optimal frequency response as the ratio: 4

C(ω) =
hxy(ω)

hyy(ω)
=

hxx(ω)

hxx(ω) + hηη(ω)
. (23)

Therefore, the Wiener filter attenuates those frequencies in which the signal to noise ratio is low

and passes through those where it is high.

Figure 2: Wiener filter - the optimal transfer function C(ω)

4Noting of course that since E[xtx
′
t−s] is symmetric in the time domain for all s, we have that hxx(ω) is real,

and so hxy(ω) = hxx(ω) = hyx(ω) without the need of taking complex conjugates.
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2.2.5 The VAR(1) with measurement error

A special case of the partially observed VARMA model in Section 2.2.4 arises as the (weak)

VAR(1) with measurement error is defined as:

xt = Fxt−1 + ǫt, (24a)

yt = xt + ηt, (24b)



ǫt

ηt




t≥1

∼ WWN






0

0


 ,



Σǫ 0

0 Ση





 , (24c)

with the condition of no correlation between initial state, x0, and the error terms process, (ǫt,ηt),

satisfied.

Therefore, the state-space process is a VAR(1) process, but measured with a multivariate error

given by ηt. The process (yt) is such that:

yt − Fyt−1 = xt + ηt − F
(
xt−1 + ηt−1

)

= ǫt + ηt − Fηt−1 ≡ vt (25a)

The process (vt) has serial covariances equal to zero for lags larger or equal to 2. Therefore, vt

admits a Vector Moving Average, VMA(1), representation of order 1. Let vt = ut−Θut−1.
5 We

can therefore deduce that the process yt has a Vector Autoregressive-Moving Average of order

(1,1), or VARMA(1,1), representation:

yt − Fyt−1 = ut −Θut−1, with ut ∼ WWN(0,Σu), (26)

Θ and Σu are functions of the intial parameters of the state-space representation: F ,Σǫ, and

5And so we have that there exists no correlation between initial state, x0, and the new error terms process, (ut).
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Ση. They are related by the matrix equations system:

−FΣη = ΘΣu (27a)

Ση + FΣηF
′ +Σǫ = Σu +ΘΣuΘ

′ (27b)

which can be solved numerically for values of Θ and Σu.

2.2.6 Static state-space model

The (weak) static state-space model is defined as:

xt = ǫt, (28a)

yt = Hxt + ηt, (28b)



ǫt

ηt




t≥1

∼ WWN






0

0


 ,



Σǫ 0

0 Ση





 , (28c)

with the condition of no correlation between initial state, x0, and the error terms, (ǫt,ηt), satis-

fied.

Therefore, from (28) the distribution of the state-space process is such that:



xt

yt



t≥1

= WWN






0

0


 ,




Σǫ ΣǫH
′

HΣǫ HΣǫH
′ +Ση





 . (29)

In general, the state-space form is equivalent to the factor model representation, where we

assume that some p factors, xt, influence the n observed processes yt, where n > p. Indeed,

the goal of the factor model representation is to model the observed processes in terms of a

smaller number of factor processes. Therefore, the particular form of the state-space model in

(28) is equivalent to the static factor model representation, although it is clear that the factor may

14



instead be formulated in a dynamic manner as in (1a).

We can distinguish two cases in practice:

◦ Case 1: the factor xt is unobserved.

In this case, the unrestricted theoretical model above is unidentifiable. This is because the

number of parameters exceeds the number of population moment conditions when xt is

unobserved. Indeed, from (29), we have:

V ar(yt)n×n = Hn×pΣǫp×pH
′
p×n +Σηn×n, (30)

and so the n(n+1)/2 population second moment conditions are outnumbered by the np+

p(p+ 1)/2 + n(n+ 1)/2 parameters.

Therefore, moment contraints on the parameters of the factor model are usually introduced

to ensure identification. For example, we can assume without loss of generality that the

factor covariance matrix, Σǫ, is an identity matrix. Indeed, xt is unobserved and defined

up to an invertible linear transform. That is, for any invertible matrix L equation (28b)

with x∗
t = Lxt and H∗ = HL−1 is observationally equivalent. Therefore, for any Σǫ

we can always introduce the transformation x∗
t = D−1/2P ′xt, where the matrix P has an

orthonormal basis of eigenvectors of Σǫ as its columns and D is a diagonal matrix of the

respective eigenvalues, so as to make V ar(x∗
t ) = I . Moreover, it is often assumed in the

literature that the observation error covariance matrix, Ση, is diagonal (or even scalar) so

that Ση = σ2
ηI . This additional constraint is considered a “real” constraint since it reduces

the model’s flexibility in favour of identification.

◦ Case 2: the factor xt is observed.

In this, case the unrestricted theoretical model becomes identifiable. Given the moment

condition V ar(xt), Σǫ is identified. We can then formulate the theoretical linear regression

in (28b) to identify both H and Ση.
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The static factor model is popular in Finance, where the observed variable yt represents the

returns of a set of assets. Under a (weak) efficients market hypothesis the returns are WWN.

The observation equation (28b) thus decomposes the returns into a market component, Hxt, and

a firm specific component, ηt. Assuming an uncorrelated market component, the unobserved

factors, xt, represent the returns on the market and ηt represent the firm specific returns, whose

variability (or “indiosyncratic” risk) can be reduced through its addition to a well diversied port-

folio. Of course, the assumption of uncorrelated market component can be generalized within

the dynamic model. For more on the factor model representation, see Section 9.

2.2.7 The state-space model for “data aggregation”

Suppose that we assume the state vector xt represents some individual level components which

we desire to aggregate in some way. In a model for aggregation you have to distinguish be-

tween both the behavioural equation which generally includes an error term, and the accounting

relationship with no error term.

Therefore, let yt represent the observed aggregate variable, and let xt represent some possibly

unobserved individual level variables. The state-space formulation defines both the behavioural

equation for xt and the accounting equation for yt as:

xt = Fxt−1 + ǫt, where ǫt ∼ WWN(0,Σǫ), (31a)

yt = α′xt, (31b)

where α =

[
α1 α2 . . . αp

]′
is a p vector of size adjustment parameters (which may possibly

sum to 1) and so we can model the observed values yt as the weighted aggregate of individual

factors, the elements of xt.

Note that in an accounting relationship you can only add variables with the same unit. There-

fore, we have first to transform the elements of xt into a common unit, which is usually done by

considering some measure of value in common units, e.g. dollars.

16



The aggregation model can also be employed in the Finance context. In this case, as opposed

to Section 2.2.6, the observation equation represents an accounting relationship between asset

returns and the aggregate portfolio return, not a behavioural relationship. The returns may be

weighted according to their contribution to the overall portfolio, where again the returns are

written in the same domination, e.g. dollars.

2.2.8 The VAR(1) with “series selection” or “missing series”

The Vector AutoRegressive process of order 1, or VAR(1), with “series selection” or “missing

series” is defined as:

xt = Fxt−1 + ǫt, where ǫt ∼ WWN(0,Σǫ), (32a)

and yt = xi,t, (32b)

where xi,t denotes the i’th element of xt. Therefore the model can be interpreted in two ways,

depending on whether or not xt is observed:

◦ Case 1: xt is observed.

The model is then interpreted as a method of selecting only that series from the state vector

xt that is of interest. Notice that (31b) above is a special case of series selection, when xt

is observed.

◦ Case 2: xt is not observed.

The model is interpreted as the case of “missing series.” That is, some of the elements of

the series (xt) are missing.

2.2.9 The VAR(1) with “missing data”

The model in Section 2.2.8, with unobserved xt, can of course be generalized to the cases where

not only are series missing, but perhaps individual data elements of some series are missing as
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well. We call this the vector autoregressive process of order 1, or VAR(1), for “missing data”.

The state equation is the same for all cases below:

xt = Fxt−1 + ǫt, where ǫt ∼ WWN(0,Σǫ). (32a)

◦ Case 1: the i’th series is missing and some elements of the j’th series are missing:

yt =





[
x1,t . . . xi−1,t xi+1,t . . . xj,t . . . xp,t

]′
if t 6= m

[
x1,t . . . xi−1,t xi+1,t . . . xj−1,t xj+1,t . . . xp,t

]′
if t = m

. (33)

◦ Case 2: the i’th and j’th series both have missing data but the missing points occur at the

same time:

yt =





xt if t 6= m
[
x1,t . . . xi−1,t xi+1,t . . . xj−1,t xj+1,t . . . xp,t

]′
if t = m

. (34)

◦ Case 3: the i’th and j’th series both have missing data with no inherent pattern.

Where in each case, m ∈ 0, . . . , T , denotes a time period upon which some elements of the

vector xt are missing.

2.2.10 The Unobserved Components model

Consider the special case of the state-space model for aggregation in Section 2.2.7, where the

elements of α are all equal to one, and we assume that the p elements of xt are independent of

each other with specified marginal distributions or we at least specify their first two moments:

xt = Fxt−1 + ǫt, (35a)

yt =

[
1 . . . 1

]
xt, (35b)
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the observed series yt is therefore the sum of various components, generally unobserved.

2.2.10.1 The General Stochastic Trend

P.C. Young (2011, p.67) defines the generalized random walk or general stochastic trend as:

xt =




x1,t

∆x1,t


 , (36a)

xt = Fxt−1 +Gǫt, where F =



α β

0 γ


 , and



δ 0

0 ǫ


 . (36b)

Also ǫt ∼ WWN(0,Σǫ) where Σǫ is diagonal. (36c)

That is, we have defined the state process in such a manner as to allow us to modify the

behaviour of the typical random walk in different ways. For example, if β = γ = ǫ = 0 and

α = δ = 1 the model represents the standard random walk. However, if α = β = γ = ǫ = 1 and

δ = 0 we have the integrated random walk which is smoother than the standard random walk.

Moreover, if 0 < α < 1 and β = γ = ǫ = 1 and δ = 0 we have the case of the smoothed

random walk. Also the case of β = γ = ǫ = 0 and 0 < α < 1 and δ = 1 is equivalent to the

AR(1) model. Finally, both the Local Linear Trend (see Section 2.2.10.2) and Damped Trend

from Harvey (1984,89) are both given by α = β = γ = ǫ = δ = 1 (except in the latter case

0 < γ < 1).

2.2.10.2 Harvey’s Unobserved Components models: the “basic structural model”

Harvey (1984,89) attempts to decompose the series (yt) into a number of unobserved, orthogonal,

components representing trends, seasonals, other cycles, and irregular patterns, all of which are
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informed by the spectral properties of the observed series. For example, consider the model:

yt = Tt + St + Ct + It (37)

where yt is the observed series, Tt is some trend component, St is a seasonal component, Ct is

some other cyclical component, and It represents the irregular pattern.

Typically the trend component Tt is associated with the slowly changing, low frequency com-

ponent of yt (i.e. a spectral frequency close to zero, or equivalently a period close to ∞). It can

be modeled by the stochastic counterpart of the linear time trend µt = µ0 + βt, called the Local

Linear Trend model:

Tt ≡ µt = µt−1 + βt−1 + vt, where vt ∼ WWN(0, σ2
v), (38a)

and βt = βt−1 + zt, where zt ∼ WWN(0, σ2
z). (38b)

Of course, the Local Linear Trend formulation is a special case of the general stochastic trend in

Section 2.2.10.1.

Furthermore, the seasonal component St can be modeled as dummy intercepts which are

constrained to sum to zero (with some small stochastic residual difference, ω). For example,

suppose s is the number of “seasons” (say 12 for monthly data) and zj,t for j = 1, 2, . . . , s is

some set of dummy variables that take on the values:

zj,t =





1, if t = j, j + s, j + 2s, . . .

0, if t 6= j, j + s, j + 2s, . . .

−1, if t = s, 2s, 3s, . . .

(39)
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then, if γj is the dummy intercept for time j, we have that at t = xs for all x ∈ N
+:

s−1∑

j=1

zj,tγj = −

s−1∑

j=1

γj ≡ γs (40a)

⇔

s∑

j=1

γj = 0 (40b)

and given a change in the notation, (40b) can be rewritten as
∑s−1

j=0 γt−j = 0. Adding a dis-

turbance term with zero expectation to the right hand side allows the seasonal effect to vary

stochastically:

s−1∑

j=0

γt−j = ωt where ωt ∼ WWN(0, σ2
ω), (41a)

⇔
(
1 + L+ L2 + · · ·+ Ls−1

)
γt = ωt. (41b)

Finally, the cyclical component Ct can be written as a sum of stochastic harmonics, where

each component in the sum reflects some particular chosen frequency, λj = 2π j
s
, where j ≤ s

2
.

For example, given monthly data, let s be such that s (mod 12) = 0, and let j ∈ N
+ be chosen

so that s/j represents the desired periodicity of the harmonic function. Therefore, we could

choose that s = 12 and j = 1 so that the period is 12; that is, the cycle repeats every 12 months.

Alternatively, if j = 6 then the period is 2 and the cycle repeats every 2 months, etc.

The cyclical component Ct can therefore be written as:

Ct ≡
∑

k∈J

ck,t (42a)

where ck,t = ρk{ck,t−1 cosλk + c∗k,t−1 sinλk}+ ξk,t, (42b)

and c∗k,t = ρk{−ck,t−1 sinλk + c∗k,t−1 cosλk}+ ξ∗k,t, (42c)

where J is the set of chosen frequencies, ρk is a discount parameter, and ξk and ξ∗k are zero mean

WWN processes which are uncorrelated with each other, with common variance σ2
ξ,k. For more
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details on the stochastic harmonic cycles approach, see Hannan, Terrell and Tuckwell (1970).

Finally, the irregular component takes the form of a WWN innovation, It ≡ ηt. Putting all the

components together into the state-space form with WWN innovations, we have the observation

equation

yt = Tt + St + Ct + It

⇔ yt = µt + γt +
∑

k∈J

ck,t + ηt

=

[
1 0 1 0 0 . . . 1 0 1 . . .

]
xt + ηt

≡ H txt + ηt, (43a)

and the state transition equation

xt =




µt

βt

γt

γt−1

...

c1,t

c∗1,t

c2,t

c∗2,t
...




=




T 0 0 0

0 S 0 0

0 0 C1 0 . . .

0 0 0 C2

...
. . .







µt−1

βt−1

γt−1

γt−2

...

c1,t−1

c∗1,t−1

c2,t−1

c∗2,t−1

...




+




vt

zt

ωt

0

...

ξ1,t

ξ∗1,t

ξ2,t

ξ∗2,t
...




(44a)

≡ Fxt−1 + ǫt, (44b)
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such that

T =



1 1

0 1


 ,

S =




−1 −1 −1 −1 . . .

1 0 0 0 . . .

0 1 0 0 . . .

0 0 1 0 . . .

...
...

...
. . .




,

and Ci =




cosλi sinλi

− sinλi cosλi


 .

This state-space representation is known in Harvey (1989, pg.172) as the Basic Structural Model.

2.2.11 The CAPM

Another example of the state-space modeling framework is the capital asset pricing model (CAPM)

with time-varying coefficients.

Recall that the assumptions of the CAPM model imply that all investments should offer the

same reward-to-risk ratio. If the ratio were better for one investment than another, investors

would rearrange their portfolios towards the alternative featuring a better tradeoff. Such activity

would put pressure on security prices until the ratios were equalized. Within the context of the

CAPM, this ratio is known as the “Sharpe ratio” in honor of his pioneering work (Sharpe, 1966)

and is defined in terms of excess returns over covariance:

E[R]−Rf

Cov(R,Rm)
=

E[Rm]−Rf

σ2
m

. (46)

Of course, the Sharpe ratio directly implies a linear relationship between a) the covariance of
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an asset’s return with the market return; and b) the expected value of the asset’s return itself:

E[R]−Rf =
Cov(R,Rm)

σ2
m

(E[Rm]−Rf ) = β (E[Rm]−Rf ) . (47)

However, since it is clear that in the real world the assumptions of the CAPM may hold only

approximately, some assets may deviate systematically from the Sharpe ratio relationship, by

some amount α:

E[R]−Rf = α + β (E[Rm]−Rf ) . (48)

Moreover, each individual asset will be exposed to some form of indiosyncratic “micro” level

risk, v, independent of what happens in the market as a whole. It is in fact this indiosyncratic risk

that is minimized through the process of diversification. Therefore, we write:

E[r] = α + βE[rm] + v (49)

where r ≡ R − Rf is the observed excess return on some asset beyond the risk free rate, and

rm ≡ Rm−Rf is the excess return on some market index (assumed to be completely diversified,

so that it is orthogonal to the innovation or “indiosyncratic,” firm specific risk, v).

Therefore, we can treat the state transition equation as driving the dynamics of the stochastic

parameters of the model, αt and βt. For example, consider the following model, given observa-

tions on rt and rm,t for some t = 1, . . . , T (which represents a linear regression with unobserved

stochastic coefficients):

rt = αt + βtrm,t + vt, where vt ∼ N(0, σ2
v), (50a)

αt = γαt−1 + ut, where ut ∼ N(0, σ2
u), (50b)

and βt = µ+ δβt−1 + zt, where zt ∼ N(0, σ2
z). (50c)

Note that the nature of the equilibrium in the CAPM model suggests some reasonable restric-

tions on the dynamics of the stochastic parameters, αt and βt. First, it is safe to assume that µ
1−δ

24



will likely take on some value relatively close to, but not equal to, 1 and will depend directly

on the long-run historical covariance between the asset and market returns. Moreover, δ and γ

should take on values in the range 0 < x < 1. That is, they should exhibit mean reverting be-

haviour since in the case of αt, it is clear that arbitrage opportunities should eventually push α

towards zero; and with βt the relation between r and rm in (47) should certainly be a bounded

one.

Finally, the model in (50) can easily be put into state-space form:

xt ≡



αt

βt


 =



0

µ


+



γ 0

0 δ






αt−1

βt−1


+



ut

zt


 ≡ c+ Fxt−1 + ǫt, (51a)

and yt ≡ rt =

[
1 rm,t

]


αt

βt


+ vt ≡ Hxt + ηt, (51b)

where the covariance of the state transition equation is Σǫ ≡



σ2
u 0

0 σ2
z


 and Ση ≡ σ2

v is scalar.

Given such a state-space representation, and observed values for both rt and rm,t for all t =

1, . . . , T , we can now employ the techniques outlined in Section 7 to predict the values of the

unobserved coefficients, αt and βt, across time.

Finally, the dynamic CAPM can also be interpreted as a dynamic factor model. Given this

interpretation, the stochastic slope coefficients βi now represent trending, unobserved, factors

that follow their own stochastic factor dynamics. See Section 9 on “Factor models and common

trends” for more details.

Of course, in the special case where xt is observed (through proxy) the above factor model

representation is subject to Roll’s critique in that any empirical test of (51b) is really a test of the

mean-variance efficiency of the proxy chosen for xt.
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2.2.12 Stochastic Volatility

A popular method of modeling persistence in the second-moment of financial asset series is

the ARCH model of Engle (1982):

yt = µ+ σtut, where ut ∼ N(0, 1), (52a)

and σ2
t = E[σ2

t u
2
t |Yt−1] = α + βσ2

t−1u
2
t−1. (52b)

However, in the ARCH framework, the conditional volatility dynamics are driven in a com-

pletely deterministic fashion given past observations (that is, they are path dependent given in-

formation set Yt = {yt, yt−1, . . . , y1}, and the constraint imposed by (52b)). However, these

second-moment dynamics may in fact be better modeled by imposing a specification that implies

a strictly larger information set than Yt. That is, we make the conditional volatility dynamics, σ2
t ,

stochastic by introducing the exogenous innovations vt into (52b):

ln(σ2
t ) = ln(E[σ2

t u
2
t |Φt−1]) = α + β ln(σ2

t−1) + vt, where vt ∼ N(0, σ2
v), (53)

and where we have taken logs to ensure positivity of the conditional volatility process.

Note that by enlarging the information set from Yt in (52b) to Φt = {Yt, σ
2
t } in (53), we are

in an intuitive sense “increasing the types of questions” we can ask of our probability measure.

That is, we are being more detailed about how outcomes in our probability space map to random

variables in our model. However, note that the random variable σ2
t is latent or unobserved, and

therefore, the information set we actually make inferences from will be an approximate one.

In fact, it is this latent variable that makes this model amenable to state-space signal extraction

methods.

Note that we can also impose a probability law on the conditional mean process, if we aug-

ment Φt again, to Φt = {Yt, σ
2
t , µt}:

µt = E[yt|Φt−1] = γ + δµt−1 + zt, where zt ∼ N(0, σ2
z). (54)
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Therefore, the entire stochastic volatility and levels model can be written in state-space form,

similar to (1), as:

yt ≡ ln(y2t ) =

[
1 1

]
xt + ln(u2

t )

≡ Hxt + ηt, (55a)

and xt ≡




µt

ln(σ2
t )


 =



γ

α


+



δ 0

0 β







µt−1

ln(σ2
t−1)


+



zt

vt




≡ c+ Fxt−1 + ǫt, (55b)

where the observation equation in (52a) has been rewritten as yt = eµt/2σtut so that it is linear

in logs. However, note that in this case we now have that ηt ≡ ln(u2
t ) and so the observation

equation innovations are not Gaussian. Therefore while the Kalman filter will represent the best

unbiased linear predictor, it will not be as efficient as a nonlinear filtering method.

i) Factor GARCH

As a second example, we will consider augmenting the information set of the multivariate

Factor GARCH model (Engle,1987). Note that this model has much in common with the ma-

terial discussed in Section 9 which covers latent dynamic factor models and the use of principle

components analysis to generate orthogonal factors.

First, consider the factor representation:

yt = Bf t + δt, (56a)

where f t|F t−1 ∼ WWN(0,Ωt),

δt ∼ WWN(0,Λδ),

and F t−1 = {yt−1,yt−2, . . . ,f t−1,f t−2, . . . },

where B is n× k, and f t is k × 1 where k < n.

From (56a) we have that the conditional covariance of yt is Σyt = BΩtB
′ +Λδ. Of course,
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assuming that Ωt is diagonal we can write Σyt =
∑k

i=1 biωi,tb
′
i+Λδ, where bi is the i’th column

of B, and ωi,t is the i’th diagonal element of Ωt.

In order to capture dynamic persistence in the second moment of the factors, Ωt, we impose

the following parsimonious GARCH(1,1) structure on each of the k diagonal elements:

ωi,t = αif
2
i,t−1 + βiωi,t−1, ∀i = 1, . . . , k, (57)

where f̂i,t can be estimated by the i’th element of L∗Tyt, and L∗, n × k, contains the first k

columns of L from the spectral decomposition of the unconditional variance of yt. That is,

LDL′ = Σy, so L′ΣyL is diagonal and the k elements of L′yt represent an orthogonal set of

random factors that account for all the variance of yt. These are the principle components (see

Section 9).

Now, subbing (57) into Σyt =
∑k

i=1 biωi,tb
′
i +Λδ above yields:

Σyt =
k∑

i=1

αibif
2
i,t−1b

′
i +

k∑

i=1

βibiωi,t−1b
′
i +Λδ (58a)

=
k∑

i=1

αibi

(
l∗

′

i yt−1

)2
b′i +

k∑

i=1

βibi

(
l∗

′

i Σyt−1l
∗
i

)
b′i +Λδ, (58b)

where l∗i is the i’th column of L∗. Note that (58b) represents a first-order difference equation for

Σyt and is deterministic given the yt’s. Therefore, signal extraction methods are unnecessary as

nothing is unobserved.

However, since the Factor GARCH model implies that the conditional heteroskedasticity is

affecting the factors, f t, and not the innovations, δt, this is analogous to imposing a GARCH

structure on (54) above, but where µt = zt and zt ∼ N(0, σ2
z,t) is now path dependent. Of

course, we could always allow for unobserved autoregressive dynamics on f t, implementing

state-space framework prediction of this latent “state” variable and avoiding the need for principal

components estimation. Another alternative would be to impose a “Factor Stochastic Volatility”

specification, with unobserved stochastic processes driving the diagonal elements ωi,t.
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3 Nonlinear dynamic state-space models

3.1 The nonlinear state-space model

Generally, the state-space representation requires two assumptions, namely that the process xt

is Markov so that f(xt|Xt−1, Yt−1) = f(xt|xt−1) and that the conditional distribution of yt

only depends on the current value of the state, xt, or g(yt|Yt−1, Xt) = g(yt|xt), where Yt =

{yt, . . . ,y0} and Xt = {xt, . . . ,x0}.

Therefore, the general state-space model considers the joint distribution of the process [(x′
t,y

′
t)

′],

l(·):

l(yt,xt|Xt−1, Yt−1) = f(yt|Yt−1, Xt)g(xt|Xt−1, Yt−1) (59a)

= f(yt|xt)g(xt|xt−1). (59b)

where the initial conditions of the process are defined by the marginal distribution of x0.

3.1.1 Weak nonlinear state-space model

The weak form of the nonlinear dynamic state-space model is as follows:

xt = a(xt−1, ǫt), (60a)

yt = c(xt,ηt), (60b)

with the moment restrictions:

E[ǫt] = 0, Cov(ǫt, ǫt−s) = Σǫt✶s=0, (2a)

E[ηt] = 0, Cov(ηt,ηt−s) = Σηt✶s=0,

E[ǫt−jη
′
t−s] = 0, ∀j, s ∈ Z,

and Cov(x0, ǫt) = Cov(x0,ηt) = 0, ∀t > 0,
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where:

◦ yt is a n× 1 vector of the observed values at time t.

◦ xt is a p× 1 vector of state process values at time t.6

◦ ǫt and ηt are assumed uncorrelated with each other across all time lags, and their covariance

matrices, Σǫt and Σηt, depend on t.

◦ a(·) and c(·) are some nonlinear functions. These functions are assumed to be non-stochastic.

◦ Equation (1a) is called the “state transition” equation and (1b) is called the “observation”

or “measurement” equation.

◦ The state initial condition, x0, is assumed stochastic with second order moments denoted

E[x0] = µ and V ar(x0) = Σx0
. Finally, there exists zero correlation between the initial

state condition and the observation and state error terms, for all dates t > 0.

3.1.2 The Gaussian nonlinear state-space model

In the weak version of the nonlinear dynamic state-space model, the assumptions concern only

the first and second-order moments of the noise processes, or equivalently the first and second-

order moments of the joint process [(x′
t,y

′
t)

′]. As in the case of the linear state-space model, we

can introduce the restriction of, independent, and identically distributed, Gaussian white noises

(IIN) for the errors of the state and measurement equations. The Gaussian nonlinear state space

model is therefore defined as:

6Other terminology include the “signal” in the engineering context, “control variable” in the systems control

literature, “latent factor” in the factor models approach, or “stochastic parameter” in the Bayesian context. See

Section 4 for more details.
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xt = a(xt−1, ǫt), (60a)

yt = c(xt,ηt), (60b)



ǫt

ηt


 ∼ IIN






0

0


 ,



Σǫt 0

0 Σηt





 (62a)

E[ǫt−jη
′
t−s] = 0, ∀j, s ∈ Z,

with x0 ∼ N(0,Σǫ0), (62b)

where x0 and (ǫt,ηt) are independent. (62c)

However, when the functions a(·) and c(·) are nonlinear, under the assumption of Gaussian

noise, it is no longer the case that the joint process [(x′
t,y

′
t)

′] is Gaussian. This implies that all

marginal and conditional distributions concerning the components of these processes are also not

necessarily Gaussian.

4 Terminologies

It is also interesting to note that given the widespread use of the state-space framework across

different disciplines, a wide variety of interpretations have arisen regarding its implementation.

For example, the examples illustrated in the previous section employ a number of different ter-

minologies depending on the context:

◦ yt is equivalently referred to as the:

⋄ measure

⋄ endogenous variable
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⋄ output variable

◦ Likewise, xt is equivalently the:

⋄ state variable

⋄ signal

⋄ control variate

⋄ factor

⋄ latent variable

⋄ input variable

◦ And while, (1b) is typicalled called the “measurement equation,” we have that (1a) is equiv-

alently called the:

⋄ state equation

⋄ factor dynamics

Consequently, the state-space formulation is often also referred to equivalently as the “dy-

namic factor model” representation, where (1a) defines the “factor dynamics” and the matrix H t

is called the “factor loadings” matrix. See Section 9 for further discussion.

Moreover, the model also has the alternative Bayesian interpretation where xt represents

instead a stochastic parameter and where the (1a) defines the dynamics of the prior distribution

of the stochastic parameter. See, for example, Section 5.2.3 for more details.

Finally, with regards to the predictive problems from Section 5, we have equivalent terminolo-

gies describing the case where the state xt is unobserved. That is, L
[
xt|yt,yt−1, . . .

]
, where L

is some optimal linear predictor, is equivalently referred to as:

◦ linear filtering

◦ linear signal extraction
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◦ linear prediction of the latent factor

◦ the best linear predictor of xt given Yt = {yt,yt−1, . . . }

5 The prediction problem

The problem of statistical inference can be broken into two equally important exercises. First,

there is the problem of estimation of the theoretical model parameters, given observed random

samples. Second, there is the problem of prediction, where we attempt to predict values of

stochastic processes conditional on observed random samples, which we refer to as the informa-

tion set. Therefore, in the first case what we are doing is drawing inferences on fixed parameters

of the model, where in the latter case we are in fact infering values of random variables. This

section is exclusively concerned with the latter.

Of course, it is not always the case that we have access to random samples of the stochastic

processes we have defined in our theoretical model. In this case we say that the stochastic process

is latent or unobserved. Of course, this does not stop us from infering the value of these stochastic

processes any more than we are able to do so with those which we partially observe. In both cases,

these inferences fall under the category of prediction, whether we are predicting the future value

of a partially observed stochastic process, or we are predicting the value of one we never observed

at all.

Therefore, given the state-space representations in Section 2, there are a number of particular

prediction problems that can be formulated, which differ only in the choice of process we wish

to predict (yt or xt) and the information set we have available.

The state-space models with xt unobservable imply the information set Yτ ≡ {yτ ,yτ−1, . . . ,y0}.

Therefore, we say that the optimal forecast at time T , with horizon h, of either yT+h or xT+h

employs the information set YT ; the optimal filtering of xt employs the set Yt; and finally the

optimal smoothing of xt employs the set YT , such that T > t. Therefore, we have the problems:

1. Prediction of yT+h|YT or xT+h|YT . These are the forecasting problems.
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2. Prediction of xt|Yt for any t = 1, . . . , T . This is the filtering problem.

3. Prediction of xt|YT . This is the smoothing problem.

Notice that since the forecasting problem involves a choice of horizon, h, it implies an entire term

structure of predictions as h → ∞.

Moreover, so far we have only concerned ourselves with the levels of the processes. There-

fore, we may also be interested in predicting how a process may behave, say in how much it

varies or whether or not it tends to exhibit positive or negative outliers. Therefore, we may be

interested in predicting:

1. Prediction of (yT+h−yT+h|YT )
k|YT or (xT+h−xT+h|YT )

k|YT . These are the forecasting

problems.

2. Prediction of (xt − xt|Yt)
k|Yt for any t = 1, . . . , T . This is the filtering problem.

3. Prediction of (xt − xt|YT )
k|YT . This is the smoothing problem.

for any k > 1 ∈ N . Therefore, any prediction itself can be evaluated both on its “point” accuracy

and its “interval” accuracy – thus we have the notions of both point and interval predictions.

5.1 Types of predictors

Of course, prediction itself can be divided into different types of predictors. Given a particular a

problem we may approach the modeling exercise as an approximation, where this approximation

may be some linear function, say xβ + ǫ, or some nonlinear function f(x, ǫ).

Let us now be more specific about how the prediction problem is formulated, given the gen-

eral, mean zero, stochastic process yt = f(Yt−1, ǫt), where again Yt−1 represents the information

set generated by the stochastic process at time t− 1.

It can be shown that in the general case, the optimal predictor ŷt|t−1 = f(Yt−1) under the min-

imum mean squared error (MMSE) criterion is the conditional expectation, E[yt|Yt−1]. That is,

the argmin of the quadratic loss function, the expected mean squared error E
[
(yt − f(Yt−1))

2]
,
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Figure 3: Types of model approximations

can be shown to be f(Yt−1) = E[yt|Yt−1]. See see Priestley (1981, pg. 76) or Hamilton (1994,

pg. 72) for proof.

However, suppose instead that we wish to restrict our choice to the class of linear predictors.

That is, ŷt|t−1 = f(Yt−1) = a′y∗
t−1 where y∗

t−1
=

[
yt−1 yt−2 yt−3 . . . y0

]′
. Interestingly,

the value of a′ that satisfies E
[(
yt − a′y∗

t−1

)
y∗′

t−1

]
= 0′, that is exhibits zero covariance between

forecast error and the independent variable, also minimizes the quadratic loss function above,

given the constraint of having to choose amongst linear predictors.

We call this value of a the linear projection:

a′ = E[yty
∗′

t−1]E[y∗
t−1y

∗′

t−1]
−1, (63)

and the definition becomes clear when we note that:

f(Yt−1) = a′y∗
t−1 = E[yty

∗′

t−1]E[y∗
t−1y

∗′

t−1]
−1y∗

t−1 ≡ P [yt|Yt−1] (64)

and so P [yt|Yt−1] represents the scalar projection of yt onto the Hilbert space spanned by the

column y∗
t−1, with the covariance norm imposed.
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Interestingly, if we consider the special case of the linear, Gaussian, stochastic process with

uncorrelated innovations, it turns out that the linear projection is equal to the conditional expec-

tation since we know that for Gaussian random variables:

E[yt|Yt−1] = Cov(yt, Yt−1)Cov(Yt−1, Yt−1)
−1Yt−1

≡ P [yt|Yt−1], (65a)

which is a standard result involving partitioning the set Yt into yt and Yt−1, and without loss of

generality we assume all the elements of Yt are mean zero.

However, if the model is not linear in the stochastic variables, or if the stochastic processes

are neither weak white nor Gaussian, then there is no reason to believe that the linear projection

will prove the best predictor, although it is best amongst the class of linear predictors so that

MSE(P [yt|Yt−1]) ≥ MSE(E[yt|Yt−1]). This is because the linear projection is a function only

of the second moment properties of the stochastic processes.

Therefore, to summarize, we have three types of predictors (where one is a special case of the

other):

◦ The linear projection, P [yt|Yτ ] τ ∈ {1, . . . , T}, which is some linear function of the

information set.

◦ The expectation, E[yt|Yτ ], which may possibly be a nonlinear function of the information

set.

◦ The expectation under the assumption of a linear model and Gaussianity co-incides with

the linear projection.
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5.2 Examples

5.2.1 Prediction of VAR(1) process (weak form)

As a simple example, consider the case where xt, the state process in (1), is observed and that

the system matrices, including F , are time-invariant. That is, we assume that H = I and we

know the covariance matrices Σǫ >> 0 and Ση = 0. Therefore, the model is a VAR(1) and is a

special case of the state-space model in (1) – see equation (4a).

If the eigenvalues of F have modulus strictly less than 1, the VAR(1) can be inverted and

written as an VMA(∞):

xt = Fxt−1 + ǫt (66a)

= [I − FL]−1
ǫt

= ǫt + Fǫt−1 + F 2ǫt−2 + . . . (66b)

Therefore, we can consider the stochastic process as being a linear function of weak white

noise, ǫt. That is, the information set is equivalently written as Yt ≡ {ǫt, ǫt−1, . . . }.

Now, we would like to try and predict xt conditional on information set Yt−1 under the

MMSE (minimum mean squared error) criterion. Let f(Yt−1) represent our predictor func-

tion. We would like to minimize a quadratic loss function, the expected mean squared error

E
[
(xt − f(Yt−1)) (xt − f(Yt−1))

′]
, where f(Yt−1) is now a linear function of the information

set at time t−1. The “best” (in the sense of using the information embodied in the information set

efficiently, according to the MMSE criterion), linear, predictor of the VAR(1) process xt, given

information set Yt, is the linear projection, defined as P [xt|Yt−1] ≡ x̂t|t−1.

However, it is clear that the linear projection must be:

x̂t|t−1 = Fǫt−1 + F 2ǫt−2 + . . . (67)
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since we have that:

E[(yt − x̂t|t−1)x
∗′

t−1] = 0 (68)

and from the discussion of the previous section we know that this value of x̂t−1 = f(Yt−1) must

be the argmin of the expected mean squared forecast error.

Note that we can also explicity solve for the value of a just as was done before, and this

provides a moment condition that can be used to also estimate the system matrix F given sample

data by employing the sample moment counterpart, â.

Rewrite the model in (66b) as:

xt = ǫt +

[
F F 2 . . .FQ

]




ǫt−1

ǫt−2

...

ǫt−Q




(69a)

= ǫt +A′ǫ∗t−1, (69b)

where we have truncated the lags at Q.

We can therefore solve for A′ as:

xt = ǫt +A′ǫ∗t−1

⇔ xtǫ
∗′

t−1 = ǫtǫ
∗′

t−1 +A′ǫ∗t−1ǫ
∗′

t−1

⇔ E[xtǫ
∗′

t−1] = E[ǫtǫ
∗′

t−1] +A′E[ǫ∗t−1ǫ
∗′

t−1]

⇔ A′ = E[xtǫ
∗′

t−1]E[ǫ∗t−1ǫ
∗′

t−1]
−1. (70a)

Therefore, since the stochastic process is stationary and ergotic by assumption, we can esti-
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mate the population moment condition above via the sample averages:

1

T

′∑

τ=1

xτǫ
∗′

τ−1 →
P E[xtǫ

∗′

t−1], (71a)

and
1

T

′∑

τ=1

ǫ∗τ−1ǫ
∗′

τ−1 →
P E[ǫ∗t−1ǫ

∗′

t−1]. (71b)

Finally, consider the case where the state process xt in (1) is in fact unobserved. 7 Now

we must also predict xt conditional on the information set Yτ (given different possible values

for τ ). This is where the concepts of smoothing and filtering become important – we leave the

discussion of prediction given unobserved state processes to Section 7 and the estimation of the

system matrices under these circumstances to Section 8 on estimation.

5.2.2 Prediction of static state-space model (strong form)

As another example, consider the case where xt, the state process in the strong form state-

space model (3), is unobserved and that the system matrices, F and H , and covariance matrices,

Σǫ and Ση are all time invariant. Moreover, in this case, the state process, xt, is i.i.d. Gaussian

and does not exhibit serial correlation. We call this model the static state-space model and it is a

special case of the strong form model in (3) – see formula (28) above.

From the model in (28) we know that:



xt

yt


 = MVN






0

0


 ,




Σǫ ΣǫH
′

HΣǫ HΣǫH
′ +Ση





 . (72)

Moreover, from the discussion above, we know that given the linear Gaussian setting, the

linear projection is equivalent to conditional expectation. Therefore, the best linear predictors of

7For example if Ση >> 0.
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both observed and unobserved processes are given as:

E[yt|Yt−1] = HE[xt|Yt−1] + 0 = 0, (73a)

and E[xt|Yt−1] = 0. (73b)

However consider that the expectation of the state variable, conditional on current time t infor-

mation, is not trivial:

E[xt|Yt] = E[xty
′
t]E[yty

′
t]
−1yt (74a)

= E[xt (Hxt + ηt)
′] [HΣǫH

′ +Ση]
−1

yt (74b)

= ΣǫH
′ [HΣǫH

′ +Ση]
−1

yt. (74c)

Note the difference between this example and that given in Section 5.2.1. In the previous case

the state process xt was observable, and so our prediction formula was really a prediction of the

observation process. However, in this case it is not.

Therefore we are confronted with two problems: a) predict future values of the observed pro-

cess yt given information set Yt−1 and also b) predict the state process xt given the information

set Yτ where τ can range across different values. If τ = t, we call this the filtering problem and

if τ > t we call this the smoothing problem. Under the static model framework, the solution

is simple. It is simply the linear projection P [xt|Yτ ] above. However, when the state process

is not static, the problem becomes much more involved and involves updating the linear projec-

tion given new information. This is the essence of the Kalman filter and fixed point smoother

algorithms discussed in Section 7. In fact, the Kalman filter solutions below collapse to the

expressions above when the state process is static. For another example of a static state-space

model, see the static Factor model of Section 9.
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5.2.3 Bayesian interpretation of the state-space model

Within the Bayesian context we can always interpret the state transition equation (1a) as defining

the dynamics of a prior distribution on the stochastic parameter xt. For example, from the linear

state-space model in Section 2.1.2, if we view the “signal” xt to be a stochastic parameter, then

the model is more akin to a linear regression of H t regressed on yt but where the slope coefficient

xt is allowed to follow an unobserved stochastic process.

Given this interpretation we can work with the probability density functions implied by the

respective model, to derive the posterior density p(xt|Yt), where Yt = {yt,yt−1, . . . ,y1} (the

posterior density is therefore the filtered density of the latent state, xt). This will be done by

appealing to Bayes theorem, and in the process we will make use of the prior density p(xt|Yt−1)

and the likelihood p(yt|xt), given observed values yt and stochastic parameter xt.

First, using Bayes theorem it can be shown that the posterior distribution p(xt|Yt) is derived

as:

p(xt|Yt) =
p(xt, Yt)

p(Yt)
=

p(xt,yt, Yt−1)

p(yt, Yt−1)

where p(xt,yt, Yt−1) = p(yt|xt, Yt−1)p(xt|Yt−1)p(Yt−1)

= p(yt|xt)p(xt|Yt−1)p(Yt−1)

⇔ p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)

∝ p(yt|xt)p(xt|Yt−1) (75a)

Therefore, given the assumption of a linear model, from Section 2.1.2, with Gaussian inno-
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vations, ǫt and ηt, we have that the prior density is defined as:

p(xt|Yt−1) ∼ MVN(x̂t|t−1,P t|t−1) (76a)

where x̂t|t−1 = F x̂t−1|t−1 (76b)

and P t|t−1 = FP t−1|t−1F
′ +Σǫ, (76c)

which follows directly from the linear projection of Fxt−1 + ǫt into the space spanned by Yt−1

[see (89a) and (100a) below]. Therefore, x̂t|t−1 is the forecast of the state variable xt, given

information at time t− 1, which is a linear function of x̂t−1|t−1, the filtered state variable.

Moreover, the likelihood given observed values yt is given as:

p(yt|xt) ∼ MVN(Hxt,Ση) (77)

which follows immediately from the definition of the state-space model in (1). Therefore, given

the linear model, we have that the forecast of yt conditional on time t−1 information is therefore

Hx̂t|t−1, which again follows from the linear projection.

Furthermore, by standard results on the moments of the product of two normal densities, we

have that the posterior distribution is proportional to:

p(xt|Yt) ∼ MVN(x̂t|t,P t|t) (78a)

where x̂t|t = P t|t

(
P−1

t|t−1x̂t|t−1 +H ′Ση
−1yt

)
(78b)

and P t|t =
[
H ′Ση

−1H + P−1
t|t−1

]−1

(78c)

where it can be shown that (78b) and (78c) are equal to (98b) and (100b), respectively. Therefore,

the above expressions provide a recursive system of equations that together generate the filtered

prediction of the state variable x̂t|t [to see this sub (76b) into (78b) and (76c) into (78c)]. This

set of recursions is effectively the Kalman filter (1960) and so we can see that from the Bayesian

framework the Kalman filter arises under the special case of the linear state-space model with
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Gaussian innovations.

However, if the model is nonlinear we cannot expect the conditional expectation to be of a

linear form. Generally, we must approximate the set of filter recursions by numerical methods

such as Monte-Carlo. Essentially, we are able to generate the expectation of the filtered state

density in (75a) by drawing from it and appealing to a law of large numbers.

Harrison and Stevens (1976) presents the general discussion of the Bayesian approach to

state-space modeling.

6 Prediction in the frequency domain

Consider the engineering context, where the classical approach to linear time invariant sys-

tem analysis involved spectral representations and “frequency response” to unit shocks passed

through appropriate physical filters, the state, xt, has kept its interpretation as the “signal” cor-

rupted by noise. Since the signal is latent, we often wish to “extract” the signal from the noise

and this defines the “signal extraction” problem:

argmin{aj}∞j=0

E[(xt − x̂t)
2] (79a)

where x̂t =
∞∑

j=0

ajyt−j, (79b)

and yt = xt + ηt, (79c)

and where ηt is a weak white noise, and we only observe the noisey signal yt. Moreover, xt is

uncorrelated with the noise ηt, and both processes are stationary. That is, we wish to “filter” out

the noise, ηt, to recover the signal, xt, when we only observe, yt. Under the MMSE criterion, the

optimal solution will minimize (79a), by choosing the sequence of filter coefficients {aj}
∞
j=0.

That is, given observations of the output Yt = {yt, yt−1, yt−2, . . . }, we wish to find the most

efficient predictor of the latent variable xt in the sense of the discussion provided above in Section

5. The most famous solution, in the frequency domain, is the Wiener filter developed during the
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mid-part of the last century. This solution is interpreted in terms of an optimal transfer function,

A(e−iω), which is the Fourier transform of the impulse response function, {aj}
∞
j=0:

A(e−iω) =
hxy(ω)

hyy(ω)
=

hxx(ω)

hxx(ω) + hηη(ω)
(80a)

where A(z) =
∞∑

j=−∞

ajz
j, (80b)

and where hxy(ω) is the cross-spectral density between xt and yt, and hxx(ω) is the spectral

density of xt. Therefore, we can see that the Wiener filter solution allows frequencies to pass

through when the signal-to-noise ratio is high, and vice versa when low:

hx̂x̂ = |A(e−iω)|2hyy(ω). (81)

See Priestley (1981), Chapter 10, for more details.

However, given the advent of digital computers, the more useful time domain counterpart is

found in the work of Kalman (1960) and is discussed in more detail within Section 7.

Subsequently, the application of signal extraction methods to modern economics, and empir-

ical time-series analysis more generally, was developed by Nerlove et al. (1979) and popularized

by Harvey (1984,89) and the “Unobserved Components” framework which is discussed in Sec-

tion 9.4 (see also example 2.2.10).

7 Prediction in the time domain

Let us turn now to the general solutions of the following prediction problems in the time domain,

when the state-space representation is constrained to be linear:

1. Forecasting future values of yT+h for some horizon h given observed values from t =

1, . . . , T , or forecasting xT+h given predictions of the state x̂t|t, t = 1, . . . , T .

2. Filtering xτ given observed values, yt, t = 1, . . . , τ ≤ T .
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3. Smoothing xτ given observed values, yt, t = 1, . . . , T , where τ < T .

The model in (1) implies the information set Yt ≡ {yt,yt−1, . . . ,y1}. Therefore, the optimal

forecast of either yt or xt employs the information set Yt−1; the optimal filtering of xt employs

the set Yt; and finally the optimal smoothing of xt employs the set YT .

It is of historical interest that the first of the three problems was solved almost simultane-

ously by both Wiener and Kolmogorov around the middle of the 20th century. However, while

Kolmogorov worked in the time domain, Wiener solved the equivalent problem in the frequency

domain [see Chapter 10 in Priestley (1981)]. Interestingly, the filtering problem is a special case

of the smoother which was solved by Wiener in terms of an optimal transfer function (and fre-

quency response) but where we have access to a doubly infinite set of observations on yt (i.e. our

information set is Y∞ ≡ {. . . ,yt+1,yt,yt−1, . . .}) [see Section 6 above]. It was Kalman’s cele-

brated work in (1960) that rephrased the three problems in terms of the state-space formulation in

(1), allowing one to process the filtered state values through a recursive algorithm ideally suited

to implementation on digital computers (as opposed to in an analog fashion using physically

constructed electrical filters).

It can be shown that as T → ∞ the steady-state solution to the Kalman state-space smoother

is equivalent to the Wiener solution. However, the Kalman filter is superior in a number of ways:

first, we need not work in the frequency domain; second, the Kalman optimal filter weights are

easily updated at each time t, while the Wiener weights must be completely recomputed for each

new time period; and finally, the Kalman filter allows us to easily extend the solution to the

multivariate case, or to the linear time-variant system case.

The notions of forecasting, filtering, and smoothing are not as different as they first seem.

All three involve determining the optimal prediction of some random variable, say Zt, given a

particular information set Fτ . Therefore, despite the misleading nomenclature, forecasting, fil-

tering and smoothing are really just methods to predict stochastic processes (whether observable

or not). In fact, it is only the information set available to us that determines which of the three

problems we face. Therefore, all three are examples of the problem of statistical inference of
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random variables.

7.1 Linear projections

Recall from Section 5 that if we adopt a quadratic loss function (e.g. minimum mean squared

error (MMSE)) criterion, then in general, the argmin function f(Yt) is the conditional expecta-

tion, given the relevant information set [see Section 5.1 and Priestley (1981, pg. 76) for a formal

proof]. However, within the linear context, where we adopt a Hilbert space framework, with inner

product defined as the covariance between random variables, the best linear unbiased estimator

is the linear projection (also called the “orthogonal projector”).

Formally, for the first problem, given some HT ⊂ HT+h where H is a Hilbert space, let

yT+h ∈ HT+h. It can be shown that there exists a unique ŷT+h ∈ HT where ‖yT+h − ŷT+h‖
2 is

minimized, and where ŷT+h is uniquely determined by the property (yT+h − ŷT+h) ⊥ ∀ y ∈

HT . Therefore, ŷT+h represents the orthogonal projector.

For the second problem, given some Lt ⊆ LT where L is another Hilbert space (orthogonal

to H), let xt ∈ Lt. It can be shown that there exists a unique x̂t ∈ Ht where ‖xt − x̂t‖
2 is

minimized, and where x̂t is uniquely determined by the property (xt − x̂t) ⊥ ∀ y ∈ Ht.

Finally, the third problem suggests that given some Lt ⊆ LT , let xt ∈ Lt. It can be shown

that there exists a unique x̂t ∈ HT where ‖xt − x̂t‖
2 is minimized, and where x̂t is uniquely

determined by the property (xt − x̂t) ⊥ ∀ y ∈ HT .

7.2 The lag representation

The time-invariant version of the linear dynamic state-space model in (1) is obtained when the

system matrices, F and H , and the noise covariance matrices, Σǫ and Ση, do not depend on

time. Therefore, we get:

xt = Fxt−1 + ǫt, (82a)

and yt = Hxt + ηt, (82b)
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where



ǫt

ηt


 ∼ WWN






0

0


 ,



Σǫ 0

0 Ση





 . (83a)

This time-invariant system can be written in terms of the lag operator (L). The operator is

defined on the set of second-order processes.8 It transforms a given process (xt) into the process

(Lxt), where (Lxt) = (xt−1); thus its components are deduced by drifting time by one lag. The

operator is especially important in characterizing the second-order stationary process. Indeed,

the process (xt) is second-order stationary if and only if the first and second-order moments of

(xt) and (Lxt) are the same for all t.

The system in (82) can be written as:

xt = FLxt+ǫt and yt = Hxt + ηt, (84a)

⇔ (I − FL)xt =ǫt and yt = Hxt + ηt. (84b)

If the operator I − FL is invertible (i.e. the eigenvalues of F are strictly less than 1 in

absolute value), then we can write (84b) as:

xt = (I − FL)−1
ǫt. (85)

Therefore, from both (84b) and (82b) the model can be written purely in terms of the observable

variable yt and the error terms as:

yt = H (I − FL)−1
ǫt + ηt. (86)

That is, if the model is stationary, we can always rewrite the state-space representation in terms

of an orthogonal basis.

8That is, the lag operator, L, represents a mapping L : RPt → R
P (t−1) or L−1 : RPt → R

P (t+1) where t ∈ Z.

Moreover, the composition of lag operators implies that LL−1 = 1, since L ◦ L−1 ≡ LL−1 : RPt → R
P (t+1) →

R
Pt. More generally of course, Lk : RPt → R

P (t−k).
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7.3 Forecasting

Let us consider the model in (1), but with time invariant system and noise covariance matrices.

That is, we write the system and observation matrices, F and H , without their time subscripts

and the covariance matrices, Ση and Σǫ, also do not depend on time – see (82). From (1b) we

have that the optimal linear forecast of future values of yT+h for some horizon h given observed

values from t = 1, . . . , T is derived as:

ŷT+h = P [yT+h|YT ] = HP [xT+h|YT ] + 0 (87a)

= H
(
FP [xT+(h−1)|YT ] + 0

)

...

= HF hP [xT |YT ] (87b)

where P [·] denotes linear projection, and where P [yT+h|YT ] represents the optimal orthogonal

projector since we have that for any yT = HxT +ηT , (yT+h − ŷT+h) ⊥ yT , according to the

covariance norm.

Moreover, suppose we have already solved for the filtered values P [xT |yT ,yT−1] ≡ x̂T |T ,

we have that the optimal forecast of xT+h given estimates of the state xt, t = 1, . . . , T , is derived

as:

x̂T+h = P [xT+h|YT ] = FP [xT+(h−1)|YT ] + 0 (88a)

= F
(
FP [xT+(h−2)|YT ] + 0

)

...

= F hP [xT |YT ]

= F hP [xT |yT ,yT−1] ≡ F hx̂T |T . (88b)
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7.4 Filtering

The second prediction problem above is solved by establishing an expression for P [xt|Yt], for

any t ∈ {1, . . . , T}. That is, we wish to filter xτ given observed values, yt, t = 1, . . . , τ ≤ T . For

simplicity of notation, let P [xt|Yt] ≡ x̂t|t. The Kalman filter provides a direct way to compute

x̂t|t recursively given any starting values assumed for x̂1|0 and P 1|0 and given values for the

system and noise covariance matrices, Σǫ and Ση.

First note that from (1a):

x̂t+1|t = P [Fxt + ǫt+1|Yt] = F x̂t|t, (89a)

and ŷt+1|t = P [Hxt+1|Yt] = Hx̂t+1|t. (89b)

Let:

f t+1 = xt+1 − x̂t+1|t, (90a)

and et+1 = yt+1 − ŷt+1|t, (90b)

be the one-step ahead state and observation forecast errors, respectively. We can now define

V ar[xt|yt−1] = E[f tf
′
t] ≡ P t|t−1.

Our goal then is to update the linear projection P [xt|Yt−1] with new information, as it arises

at time t. It is shown in Section 7.4.1 below, that an expression for updating a linear projection

P [xt|Yt−1] with time t information is given as:

P [xt|yt,yt−1] = P [xt|yt−1] + E[f te
′
t]E[ete

′
t]
−1et (98a)

≡ x̂t|t = x̂t|t−1 +Ktet (98b)

where Kt is given from (99b), below, as:

Kt = P t|t−1H
′
[
HP t|t−1H

′ +Ση

]−1
(99b)
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and where from (99c), below, we have that:

V ar[yt|yt−1] = E[ete
′
t] = Σet = HP t|t−1H

′ +Ση. (99c)

Finally from plugging (100b) into (100a) we get an expression for the conditional variance

of xt in terms of a matrix difference equation. Equations (100b) and (100a), are introduced later

but repeated here as

V ar[xt|yt−1] = E[f tf
′
t] = P t|t−1

= FV ar[xt−1|yt−1]F
′ +Σǫ = FP t−1|t−1F

′ +Σǫ, (100a)

and P t|t = P t|t−1 −KtΣetK
′
t. (100b)

Together they imply that:

P t|t−1 = FP t−1|t−1F
′ +Σǫ

= F
[
P t−1|t−2 −Kt−1Σet−1K

′
t−1

]
F ′ +Σǫ

= F
[
P t−1|t−2 −Kt−1

(
HP t−1|t−2H

′ +Ση

)
K ′

t−1

]
F ′ +Σǫ

= F
[
P t−1|t−2 − P t−1|t−2H

′K ′
t−1

]
F ′ +Σǫ

= FP t−1|t−2 (F (I −Kt−1H))′ +Σǫ

= FP t−1|t−2L
′
t−1 +Σǫ (93a)

which is known as the discrete time algebraic Ricatti equation (ARE). Given sufficient conditions

the ARE can be solved for a steady-state value which is often useful in embedded systems where

computational memory is limited [see Simon (2006, pg.194-199)]. Note that a steady-state value

for P∞ implies a steady-state value for K∞.

Therefore, to summarize we have the following expressions that together suggest a recursive

algorithm for computing the linear filtered solution P [xt|Yt] ≡ x̂t|t for each t = 1, . . . , T :
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x̂t+1|t = F x̂t|t, (89a)

x̂t|t = x̂t|t−1 +Ktet, (98a)

ŷt+1|t = Hx̂t+1|t, (89b)

f t+1 = xt+1 − x̂t+1|t, (90a)

et+1 = yt+1 − ŷt+1|t, (90b)

Kt = P t|t−1H
′Σe

−1
t , (99b)

Σet = HP t|t−1H
′ +Ση, (99c)

P t|t−1 = FP t−1|t−2L
′
t−1 +Σǫ, (93a)

and Lt−1 = F (I −Kt−1H) . (94a)

Kalman filter recursive algorithm:

1. Starting with P 1|0, compute equation (99c) and (99b) to get K1.

2. Plug K1 into (93a) to obtain P 2|1.

3. Plug x̂1|0 into (89b) to obtain ŷ1|0.

4. Plug ŷ1|0 into (90b) to obtain e1.

5. Finally, plug K1 and e1 into (98a) to obtain the filtered value x̂1|1.

6. Plugging x̂1|1 into (89a) then yields x̂2|1. Since we already have P 2|1 from step (2) above,

we can now continue from step (1), ultimately repeating all the steps until we solve for x̂t|t

for some desired t ≤ T .

7.4.1 Kalman filter in terms of orthogonal basis

Note that an intuitive way to approach the solution to x̂t|t is to write it in terms of an orthog-

onal basis, where the basis vectors are the forecast errors eτ = yτ − ŷτ |τ−1, τ = 1, . . . , t. This
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allows us to appreciate how the Kalman filter is really the time domain analog to the frequency

domain solution which attenuates frequencies where the signal-to-noise ratio is low.

In order to construct the appropriate orthogonal basis, we start with the requirement that the

innovations ut = xt − P [xt|yt,yt−1], et = yt − P [yt|yt−1], and finally yt−1 itself should all

be uncorrelated with each other. Since their joint covariance matrix is therefore diagonal this

implies that:

E[bb′] = D, where b′ =

[
y′
t−1 e′

t u′
t

]
. (95a)

Let b∗ ≡ Ab, where A =




I 0 0

A21 I 0

A31 A32 I




(95b)

⇔ E[b∗b∗
′

] = ADA′ = Ω =




Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33



. (95c)

It can be shown that:

Ω′ = Ω, (96a)

Ai1 = Ωi1Ω
−1
11 , ∀i = {2, 3}, (96b)

and A32 =
(
Ω32 −Ω31Ω

−1
11 Ω12

) (
Ω22 −Ω21Ω

−1
11 Ω12

)−1
. (96c)

The first row of Ab is yt−1 = yt−1; however, the second row is Ω21Ω
−1
11 yt−1 + et = yt,

since Ω21Ω
−1
11 yt−1 = P [yt|yt−1] and E[ety

′
t−1] = 0 from (95a) implies it (alternatively, note

that it must be true by the definition of et given in (90b)). However, it is the third row of Ab that

is of the most interest since it provides us with a way to “update” a linear projection given new
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information. The third row is given as:

Ω31Ω
−1
11 yt−1 +

(
Ω32 −Ω31Ω

−1
11 Ω12

) (
Ω22 −Ω21Ω

−1
11 Ω12

)−1
et + ut = xt (97a)

⇔ Ω31Ω
−1
11 yt−1 +

(
Ω32 −Ω31Ω

−1
11 Ω12

) (
Ω22 −Ω21Ω

−1
11 Ω12

)−1
et = P [xt|yt,yt−1], (97b)

which follows from the definition of ut.

Notice, however, that E[ete
′
t] = Ω22 − Ω21Ω

−1
11 Ω12 = D22 is simply the variance of the

observed prediction error et.
9 Similarly, E[f te

′
t] = Ω32 − Ω31Ω

−1
11 Ω12 where f t = xt −

P [xt|yt−1] = xt − x̂t|t−1 represents the state forecast error. Furthermore, E[f t|tf
′
t|t] = Υ33 −

Υ32Υ
−1
22 Υ23 = D33, given Υij = Ωij −Ωi1Ω

−1
11 Ω1j , represents the variance of the state filtered

error f t|t = xt − P [xt|yt,yt−1] = xt − x̂t|t. Therefore, what we have done in essence, is to

derive the Kalman filter by means of orthogonal projectors and this is what (97) represents:

P [xt|yt,yt−1] = P [xt|yt−1] + E[f te
′
t]E[ete

′
t]
−1et (98a)

≡ x̂t|t = x̂t|t−1 +Ktet (98b)

To derive Kt in terms of the system matrices, we have:

Kt = E[f te
′
t]E[ete

′
t]
−1 (99a)

= E[f t (Hf t + ηt)
′]E[(Hf t + ηt) (Hf t + ηt)

′]−1

= E[f tf
′
tH

′ + f tη
′
t]E[Hf tf

′
tH

′ +Hf tη
′
t + ηtf

′
tH

′ + ηtη
′
t]
−1

≡ P t|t−1H
′
[
HP t|t−1H

′ +Ση

]−1
(99b)

= P t|t−1H
′Σe

−1
,t (99c)

so P t|t−1 is the state forecast error covariance and Σe,t = E[ete
′
t].

Note that the difference equation (98) represents the filtered value of the first-moment of the

9Or equivalently, the MSE of the projection.
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state given information up to time t. Similarly, the filtered second-moment can be derived as:

V ar[xt|yt−1] = P t|t−1 = FV ar[xt−1|yt−1]F
′ +Σǫ = FP t−1|t−1F

′ +Σǫ, (100a)

and P t|t = P t|t−1 −KtΣetK
′
t = D33, (100b)

which when combined together represent a matrix difference equation (the ARE or algebraic

Riccati equation) [see equation (93a)) which can be solved for a “steady-state” value of P∞

given sufficient stability conditions; see also Simon (2006, pg.194-199)].

Note that (100b) follows from (98b):

xt − x̂t|t = xt −
(
x̂t|t−1 +Ktet

)
(101a)

⇔ MSE[x̂t|t] = P t|t

= E[f tf
′
t]− E[Ktete

′
tK

′
t]

= P t|t−1 −KtΣetK
′
t.

The usefulness of the orthogonal projections type of approach to deriving the Kalman filter

is that we can immediately decompose the optimal filtered state x̂t|t according to its orthogonal

basis vectors, eτ , ∀τ = t, t − 1, t − 2, . . . . First, consider starting from time t and recursively

substituting x̂t|t−1 = F x̂t−1|t−1 into (98):

x̂t|t = x̂t|t−1 +Ktet (102a)

= F
(
x̂t−1|t−2 +Kt−1et−1

)
+Ktet

= FF
(
x̂t−2|t−3 +Kt−2et−2

)
+ FKt−1et−1 +Ktet

...

= F j
(
x̂t−j|t−j−1 +Kt−jet−j

)
+

j−1∑

u=0

F uKt−uet−u (102b)
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so as j → ∞ in (102b), if the eigenvalues of F are less than 1 in modulus, we have that:

x̂t|t =
∞∑

u=0

F uKt−uet−u. (103)

But this is nothing more than a exponentially weighted moving average (EWMA)! In other words,

the Kalman filtered state is simply weak white noise, et, passed through a low-pass filter (see

Section 7.4.2 below for further discussion on this point).

Moreover, we can also represent x̂t|t in terms of the basis Yt, which is useful for interpreting

the observed values as the “input” of the filter. From (98b) we have:

x̂t|t = x̂t|t−1 +Kt

(
yt −Hx̂t|t−1

)

= (I −KtH) x̂t|t−1 +Ktyt, so let L̂t = I −KtH . (104a)

⇔ x̂t|t = L̂tF x̂t−1|t−1 +Ktyt

= L̂tF
(
L̂t−1x̂t−1|t−2 +Kt−1yt−1

)
+Ktyt

= L̂tLt−1F
(
L̂t−2x̂t−2|t−3 +Kt−2yt−2

)
+ L̂tFKt−1yt−1 +Ktyt

= L̂tLt−1Lt−2x̂t−2|t−3 + L̂tLt−1FKt−2yt−2 + L̂tFKt−1yt−1 +Ktyt

...

= L̂t

(
j∏

k=1

Lt−k

)
x̂t−j|t−(j+1)

+ L̂t

j∑

u=2

(
u−1∏

k=1

Lt−k

)
FKt−uyt−u + L̂tFKt−1yt−1 +Ktyt. (104b)

where the third equality after the implication holds since Lt−1 = F (I −Kt−1H) = F L̂t−1.

So, if as j → ∞ we have that P t|t−1 → P∞, and the eigenvalues of L∞ are less than 1 in

modulus, then we can write:

x̂t|t = L̂

∞∑

u=0

LuFKyt−1−u +Kyt (105)
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which implies directly from (89a) that:

x̂t+1|t =
∞∑

u=0

LuFKyt−u. (106)

And so we can see that the steady-state Kalman solution represents a linear time-invariant filter,

with the observations {yt,yt−1, . . . } as the filter input.

Similarly, we can solve for the response to a shock to the input process vector, ǫt, by deriving

the impulse response matrices:

yt = Hxt + ηt (107a)

= H (Fxt−1 + ǫt) + ηt

= H (F (Fxt−2 + ǫt−1) + ǫt) + ηt

...

= HF j
(
Fxt−(j+1) + ǫt−j

)
+

j−1∑

u=0

HF uǫt−u + ηt (107b)

so as j → ∞ in (107b), if the eigenvalues of F are less than 1 in modulus, we have that:

yt =
∞∑

u=0

HF uǫt−u + ηt (108)

therefore, HF u represents the impulse response to a unit shock at time t, u periods later. Note

that this result is equivalent to (86) above, and so we can see that yt can be interpreted as the

result of filtering the weak white noise, ǫt, which drives the state, plus a current observation

noise ηt.

7.4.2 Spectral properties of Kalman filter

Equation (108) provides an expression for the coefficient matrices making up the impulse re-

sponse, A(L). The spectral density hyy(ω) and power spectrum |A(e−iω)|2 are given respectively
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from the associated z-transform with the same coefficients, at z = e−iω, as: 10

yt = A(L)ǫt + ηt

=
(
H [I − FL]−1)

ǫt + ηt (109a)

⇔ hyy(ω) =
1

2π

(
A(e−iω)ΣǫA(e+iω)′ +Ση

)
(109b)

⇔ |A(e−iω)|2 =
[
H
[
I − F e−iω

]−1
] [

H
[
I − F e+iω

]−1
]′

(109c)

Furthermore, to be more specific about the nature of the Kalman filter’s frequency response

let us consider taking the Fourier transform of a z-transform with the same coefficients as the

impulse response function from (103):

x̂t|t = At(L)et

= [I − FL]−1
Ktet (110a)

⇔ |At(e
−iω)|2 =

[
I − F e−iω

]−1
KtK

′
t

[
I − F e+iω

]−1′
(110b)

The Kalman filter attenuates the high frequencies and passes through the lower ones in predicting

the state from the observation errors, given information Yt. The shape of the power spectrum will

depend on both the eigenvalues of Kt and F . Interestingly, the optimal filter weights (and thus

frequency response) are computed easily for each t, since they depend only on Kt in the linear

time invariant case. This contrasts to the Wiener solution where the transfer function needs to be

recomputed independently for every change in t.

In terms of the Yt basis we can interpret the yt’s as “inputs” passing through the filter. From

10As in the example given in Section 2.2.4, we have that since the z-transform A(z) =
∑∞

u=0 auz
u, where z ∈ C,

admits the same coefficients as A(L), we can solve for the transfer function as A(z) where z = e−iω.
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(105), and assuming the steady-state filter, we have:

x̂t|t = A(L)yt

=
(
L̂ [I −LL]−1

FKL+K
)
yt (111a)

⇔ |A(e−iω)|2 =
(
L̂
[
I −Le−iω

]−1
FKe−iω +K

)

(
L̂
[
I −Le+iω

]−1
FKe+iω +K

)′
. (111b)

All the transfer functions and power spectrums above are periodic matrix functions, with period

2π in their argument ω.

7.5 The MA and AR representations of the state-space model

Another useful representation of (1) can be obtained by rewriting the observation and state

transition equations in terms of the observed forecast errors, et. First, add yt+1 to both sides of

(89b) to get:

yt+1 = Hx̂t+1|t + et+1. (112)

From (104a) we have that:

x̂t+1|t = Ltx̂t|t−1 + FKtyt

= F x̂t|t−1 − FKtHx̂t|t−1 + FKtyt

= F x̂t|t−1 + FKtet. (113a)

Therefore, together, (112) and (113a) represent the state-space model in (1) where both the ob-

servation and state transition noise have been replaced by the one-step ahead observation forecast

errors.

The form of the state-space model in (112) and (113a) suggests both an MA and AR rep-

resentation, where the et’s represent weak white noise innovations. The MA representation is
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derived by substituting (103) into (89a) and then plugging this into (112):

yt = Hx̂t|t−1 + et (112)

= H

(
∞∑

u=0

F u+1Kt−1−uet−1−u

)
+ et

and again assuming that P t|t−1 → P∞ exists, we can write:

yt = H (I − FL)−1
FKLet + et

⇔ yt = Φ(L)et (115a)

where Φ(L) = I +H (I − FL)−1
FKL.

Furthermore, the AR representation is derived from subbing (106) into (112):

yt = Hx̂t|t−1 + et (112)

= H

(
∞∑

u=0

LuFKyt−1−u

)
+ et

so we can write

yt = H (I −LL)−1
FKLyt + et

⇔ Θ(L)yt = et (117a)

where Θ(L) = I −H (I −LL)−1
FKL.

Interestingly, if we assume that the MA representation is invertible, then we must have that:

Φ−1(L) = Θ(L) (118a)

⇔
(
I +H (I − FL)−1

FKL
)−1

= I −H (I −LL)−1
FKL. (118b)
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7.6 Smoothing

The Kalman smoother is a generalization of the Kalman filter, where instead of computing

P [xt|Yt], the best linear predictor given information up to time t, we wish rather to use all the

more recent information available to us up to some time T > t. Therefore, we wish to compute

the best linear predictor of xτ given observed values, yt, t = 1, . . . , T , where τ < T ; that is,

we wish to compute P [xt|YT ]. Again, for simplicity of notation, let P [xt|YT ] ≡ x̂t|T . The

smoother is derived by a simple extension of (98a):

P [xt|Yt] = P [xt|yt−1] + E[f te
′
t]E[ete

′
t]
−1et (98a)

≡ x̂t|t = x̂t|t−1 +Ktet (98b)

which becomes:

P [xt|YT ] = P [xt|yT , . . . ,yt, Yt−1] = P [xt|yt−1] +
T∑

k=t

E[f te
′
k]E[eke

′
k]

−1ek (120a)

≡ x̂t|T = x̂t|t−1 +Ktet +
T∑

k=t+1

{P t|t−1

(
k−1∏

j=t

L′
j

)
H ′}Σe

−1
k ek. (120b)

Equation (120a) is therefore a generalization of (98a), where we wish to update the best linear

forecast of the state variable with not just information from the current time period t, but also with

all future information, τ = t + 1, . . . , T . Alternatively, we can see that we have replaced et in

(95a) with the stacked vector e∗T
t =

[
e′
t e′

t+1 . . . e′
T−1 e′

T

]′
, which suggests a generalized
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form of (97b). Moreover, (120b) follows from:

E[f te
′
t+1] = E[f t

(
Hf t+1 + ηt+1

)′
]

= E[f tf
′
t+1H

′ + f tη
′
t+1]

= E[f tf
′
t+1]H

′

= P t|t−1L
′
tH

′ (121a)

⇔ E[f te
′
t+2] = P t|t−1L

′
tL

′
t+1H

′

...

E[f te
′
T ] = P t|t−1L

′
tL

′
t+1 . . .L

′
T−2L

′
T−1H

′, (121b)

where equation (121a) follows from:

f t+1 = xt+1 − x̂t+1|t

= xt+1 − F x̂t|t

= xt+1 − F
(
x̂t|t−1 +Ktet

)
+ Fxt − Fxt

= F
(
xt − x̂t|t−1

)
+ ǫt+1 − FKtet

= Ff t + ǫt+1 − FKt (Hf t + ηt)

= (F (I −KtH))f t + ǫt+1 − FKtηt

= Ltf t + ǫt+1 − FKtηt. (122a)

Note that from De Jong (1989) we can re-express (120b) in terms of the following recursion:

qt−1 = L′
tqt +H ′Σe

−1
t et, where t = T, . . . , 1. (123)
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That is, we can write (120b) as:

x̂t|T = x̂t|t−1 + P t|t−1qt−1. (124)

Moreover, from (124) (or alternatively from the same method employed in (101a)) we have

that:

P t|T = P t|t−1 − P t|t−1V ar[qt−1]P t|t−1 (125a)

where V ar[qt−1] ≡ M t−1 = H ′Σe
−1
t H +L′

tM tLt (125b)

noting that P t|T = P ′
t|T .

Therefore, (125) implies that:

P t|T = P t|t−1 − P t|t−1

(
H ′Σe

−1
t H +L′

tM tLt

)
P t|t−1

= P t|t−1 − P t|t−1H
′Σe

−1
t HP t|t−1 − P t|t−1L

′
tM tLtP t|t−1

= P t|t−1 −KtΣetK
′
t − P t|t−1L

′
tM tLtP t|t−1

= P t|t − P t|t−1L
′
tM tLtP t|t−1. (126a)

So P t|t−1L
′
tM tLtP t|t−1 represents the reduction in MSE the smoother represents over the filter,

since it uses the extra information embodied in {yT ,yT−1, . . . ,yt+1}.

What follows is known as the “fixed interval smoother” algorithm. This algorithm covers the

case where T is fixed, and we desire the smoothed x̂t|T for any t ≤ T . This is different from

the “fixed-point smoother,” where t remains fixed and T increases, or the “fixed-lag smoother”

where both t and T vary but their difference T − t remains fixed.

Fixed Interval Smoother algorithm

1. Run the “Kalman filter algorithm” described in Section 7.4 to obtain x̂t|t = x̂t|t−1 +Ktet.
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2. Since we already have P t+1|t from step (1), use equation (99c) to compute Σe
−1
t+1 and (99b)

to get Kt+1.

3. Plug Kt+1 into (93a) to obtain P t+2|t+1. Kt+1 can then be used to compute Lt+1.

4. Plug x̂t+1|t [which we already have from step (1) and (89a)] into (89b) to obtain ŷt+1|t.

5. Plug ŷt+1|t into (90b) to obtain et+1.

6. Since we have P t+2|t+1 from step (3) above, we can now start again from step (2), ulti-

mately repeating all the steps until we solve for P T |T−1. Once we’ve computed all the

values of eτ , Lτ−1, and Σe
−1
τ for all τ = t+ 1, t+ 2, . . . , T we can then directly compute

the sum in (120b).

7.6.1 Smoother in terms of orthogonal basis

Just as was done in Section 7.4.1, the fixed interval smoother can be represented in terms of an

orthogonal basis. In fact, we have already done so–all that remains is to represent it here again

in its entirety. This is useful since it allows us to appreciate the connection between the Kalman

state-space approach to the prediction problem and that of the Wiener solution in the frequency

domain.

The representation in terms of orthogonal basis is given from (89a) combined with (102b),

and (120b):

x̂t|T = F j+1
(
x̂t−1−j|t−2−j +Kt−1−jet−1−j

)
+

j−1∑

u=0

F u+1Kt−1−uet−1−u

+Ktet +
T∑

k=t+1

P t|t−1

(
k−1∏

j=t

L′
j

)
H ′Σe

−1
k ek (127)

so the first and second components in the sum represent past information, the third represents

current information (at time t), and the last component represents future information.

Therefore, provided the eigenvalues of F are less than 1 in modulus and P t|t−1 → P∞,
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allowing both j and T to approach ∞ results in the following expression of the impulse response

function:

x̂t|∞ =
∞∑

u=0

F uFKet−1−u +Ket +
∞∑

k=0

P (L′)
k+1

H ′Σe
−1et+1+k

=
∞∑

u=0

F uFKet−1−u +
∞∑

k=0

P (L′)
k
H ′Σe

−1et+k

= [I − FL]−1
FKLet + P

[
I −L′L−1

]−1
H ′Σe

−1et

=
(
[I − FL]−1

FKL+ P
[
I −L′L−1

]−1
H ′Σe

−1
)
et (128a)

= C(L)et.

7.6.2 Spectral properties of the fixed interval smoother

The spectral properties of the filter C(L) in (128a) are available using the same methods as in

7.4.2 [see for example in equation (110a)] so they do not bear repeating.

However, what is of interest is the equivalence between the Wiener solution to the problem

of signal extraction and that of the Kalman state-space smoother, as T → ∞. I will not repro-

duce the entire equivalence proof here: interested readers can refer to Harvey & Proietti (2005).

However, what can be said briefly is as follows.

First, take (128a) and replace et with its AR representation Θ(L)yt:

x̂t|∞ = C(L)Θ(L)yt

Now, using the Woodbury matrix inversion lemma, the fact that the autocovariance generating

matrix of yt is Γyy(L) = Φ(L)ΣeΦ(L−1)′ (from Section 7.5), the assumption of P t|t−1 → P∞
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and the solution to the discrete Riccatti ARE, (93a), we have that:

x̂t|∞ = C(L)Θ(L)yt

= Γxx(L)H
′Γyy

−1(L)yt

= Γxy(L)Γyy
−1(L)yt (130a)

where Γxx(L) =
1

2π
[I − FL]−1 Σǫ

([
I − FL−1

]−1
)′

(130b)

and Γyy(L) =
1

2π
HΓxx(L)H

′ +Ση (130c)

and where (130a) represents the Wiener solution in the time domain.

7.7 Conclusion

If we impose the stronger condition that the noise in (1), ηt and ǫt, is Gaussian (and not simply

weak white noise), then we can replace all of the linear projections discussed above, P [·], with

expectations, since in the linear Gaussian case they coincide. Moreover, if the noise is Gaussian

and uncorrelated, then it is also independent, and so these models are strong form.

In contrast, consider the case where the noise in (1) is weak white but the higher order mo-

ments rule out independence (e.g. E[ǫkηj] 6= 0 for some k, j > 1). Even in this case, the Kalman

filter is still the best unbiased predictor amongst the class of linear predictions – see Simon (2006)

pg.130. However, it is clear that in this case a nonlinear predictor will be more efficient.

Finally, if the noise has finite variance, but is coloured (and we are correct in assuming that

all the relevant higher order moments are zero), then we can always modify the model in (1) to

take account of this – see Simon (2006) sections 7.1 and 7.2 for more details.
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8 Estimation in the time domain

The most straightforward way to estimate the parameters of the model in (1) is to employ Maxi-

mum Likelihood in the time domain. Given that the model is linear, and assuming the observation

forecast errors, et, are Gaussian, their joint density can be factorized as:

p(eT , eT−1, . . . , e1|Θ) = p(yT ,yT−1, . . . ,y1|Θ) (131a)

= p(yT |yT−1,Θ)p(yT−1|yT−2,Θ) . . . p(y2|y1,Θ)p(y1|Θ) (131b)

where Θ is the parameter set. The first equality holds since et = yt − ŷt|t−1 implies that the

change of variables has unit Jacobian determinant (this can be proved by simply writing out ŷt|t−1

recursively all the way back to x̂1|0 – any et only depends on present and past values of yt and

thus the Jacobian matrix will be block lower triangular with identity matrices on the diagonal).

Therefore, (131) implies that the log-likelihood of the model can be derived as:

p(eT , eT−1, . . . , e1|Θ) =
T∏

t=1

f(et|Θ) (132a)

∝

T∏

t=1

1

det
(
P t|t−1

)1/2 exp{−
1

2
e′
tP

−1
t|t−1et} (132b)

⇔ L(Θ) =
T∑

t=1

−
1

2
ln
(
det
(
P t|t−1

))
−

1

2
e′
tP

−1
t|t−1et (132c)

where the first equality holds since the predicted observation errors are Gaussian and thus their

uncorrelatedness implies independence.

Therefore, given (132) and some initial starting value for x1|0, we can optimize the log-

likelihood with respect to Θ given the recursive state estimates x̂t|t−1, t = 1, . . . , T , the Kalman

gain Kt and the estimated predicted state MSE, P t|t−1, for each choice of Θ.

If the predicted observation errors are not truly Gaussian, then this reduces to a Quasi-

Maximum likelihood estimator which is still consistent asymptotically.
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9 Factor models and common trends

Historically, the use of Factor models in Economics has largely involved their application to

financial data. However, what may not be obvious to most practitioners, is that the Factor model

is really just a special case of the general state-space model. This Section will briefly touch on

the role of Factor models in finance and discuss both the traditional static Factor model and the

newer dynamic Factor model representations. Moreover, we will show that the dynamic Factor

model representation is intimately connected to the notion of co-integrated processes. In fact, the

dynamic Factor model is equivalent to the co-integrated Vector Autoregressive Moving Average

process (VARMA) or its equivalent Vector Error Correction (VECM) process representation.

9.1 Factor models in finance

The impetus for the popularity of Factor models in finance can probably be attributed to the sem-

inal paper on Arbitrage Pricing Theory by Ross (1976). The CAPM model of Sharpe (1970)

generated a linear security market line representation for excess returns, based on Markowitz

mean-variance optimization and the implication of an efficient “market” portfolio. The “Sharpe

ratio” implied that under equilibrium the beta of an asset, β, entirely determined its price propor-

tional to the hypothetical market excess return. Concerned over the plausibility of the assump-

tions imposed by the CAPM and Markowitz portfolio theory, Ross (1976) aimed to reproduce

the same linear representation for excess returns but where the model made no assumption of

equilibrium behaviour. Since the model assumed only arbitrage as the force driving prices, the

linear relationship could exist even under disequilibrium in the asset markets. In fact, it required

no assumption of a “market” portfolio at all.

In order to formulate this linear model, Ross (1976) chose the Factor representation, where

excess returns are explained as a linear function of some common factor and where an appro-

priately chosen arbitrage portfolio could still induce full diversification and elimination of the

idiosyncratic risk component. This not only freed us from the need to model excess returns as

a function of the hypothetical market return, but it allowed us to test for the predictive power of
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other potential factors. Moreover, it presented us with a tractible way to explain excess returns

using a limited number of factors, as opposed to calculating the direct covariance matrix between

a multitude of assets as under Markowitz theory.

For example, Chen, Roll, and Ross (1986) introduced a multifactor model for stock returns,

where the factors consist of unexpected, yet observable, changes in macroeconomic variables.

Another famous example is the so-called 3-Factor model by Fama and French (1992), where

they showed that beta only explained part of excess returns, and that book-to-market price ratios

and market capitalization were also important explanatory factors.

In the previous examples, the factors chosen were observed (either as proxies or directly).

However, factors can either be observed or unobserved (sometimes referred to as latent). If

the factors chosen are unobserved then we must employ statistical methods to reconstitute the

factors from the observable data. For the simple i.i.d. factor model, the traditional method of

Principle Component Analysis can be used. For a dynamic factor model, the methods of state-

space prediction discussed above in Section 7 are available.

9.2 The static Factor model

Traditionally, Factor models had treated the factors as static i.i.d. processes. The static Factor

model for the observed variables yt is given as:

yt = Bf t + ηt (133a)

and f t = ǫt, (133b)

where ηt ∼ IIN(0,Ση),

ǫt ∼ IIN(0,Σǫ),

and 0 = E[ηt−jǫ
′
t−s], ∀j, s ∈ Z,
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which is the same as the (strong form) model in (28) but where H ≡ B and xt ≡ f t and where

we assume that:

1. The observed data has E[yt] = 0 and yt is n × 1 and weakly stationary with no serial

correlation.

2. E[f t] = 0 and E[f tf
′
t] = Ω, such that Ω is diagonal and f t is a k × 1 vector of common

factors and k < n.

3. B is n× k and represents the factor loadings.

4. ηt is such that E[ηt] = 0 and E[ηtη
′
t] = Λη which is a diagonal matrix, Λη = diag{σ2

1, . . . , σ
2
n}.

Moreover, ηt is also n × 1 and represents the specific error (often call the “idiosyncratic

error”).

5. Finally, f t and ηt are independent.

Therefore, given the discussion in Section 5 we know that the optimal predictor of the un-

known factor f t is given as:

E[f t|yt] = E[f ty
′
t]E[yty

′
t]
−1yt (134a)

= E[f t (Bf t + ηt)
′] [BΩB′ +Λη]

−1
yt (134b)

= ΩB′ [BΩB′ +Λη]
−1

yt (134c)

which is equivalent to the static state-space model prediction, (74c), provided in the Section 5 ex-

amples, or analogously, the steady-state Kalman gain solution in (99b) where the state covariance

matrix is time invariant, Ω ≡ P∞.

9.2.1 Estimation in the time domain: the static Factor model and PCA

Unobserved static factors can be statistically reconstituted by employing the method of principle

components analysis (PCA). The aim of PCA is to identify, from the observed data, statistically
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orthogonal factors that can account for most of the variation in the covariance matrix of yt. To

do so, first let us write the covariance matrix of yt:

E[yty
′
t] ≡ Σy = BΩB′ +Λη. (135)

Since Σy is symmetric, real, and positive-definite, it admits a spectral decomposition LDL′

where L has as its columns the orthonormal eigenvectors of Σy and D is diagonal with D =

diag{λ1, . . . , λn}, the eigenvalues of Σy, arranged in decreasing order from largest to smallest.

This implies that E[L′yty
′
tL] = D is diagonal since L′L = I .

Thus, L′yt makes a perfect candidate for the unobserved factor f t since it satisfies points

(2) and (5) above in Section 9.2, and the i’th row of L′yt represents a linear combination of the

observed data which accounts for some proportion λi∑n
j=1

λj
of the variance in yt, since tr(Σy) =

∑n
j=1 λj .

Now, suppose that we choose to only employ some k factors, such that k < n. What is

the optimal choice of B (i.e. what value of B satisfies the optimal predictor of yt in the sense

of Section 5) given that f t = L∗′yt (where L∗ denotes the matrix composed of only the first

k eigenvectors of Σ̂y, the estimated unconditional covariance of yt) included as its columns?

Under the constraint that L∗′L∗ = I and the MMSE criterion, we have that the optimal value of

B is the linear projection of yt onto the space spanned by the columns of f t = L∗′yt:

E[yt(y
′

tL
∗)]E[(L∗′yt)(y

′

tL
∗)]−1 = B, (136a)

which can be estimated by sample moment counterpart. Moreover, since we have that ηt must

lie in the space orthogonal to B, we have that ηt = yt − E[ytf
′

t]E[f tf
′

t]
−1f t. Therefore the

estimate for the residual error is Λ̂η = Σ̂y −BΩ̂B
′

.

However, since simple PCA relies on the assumption that the dependent variable process yt

is weakly stationary with no serial correlation, the method’s popularity amongst cross-sectional

researchers has not been matched within the time series community.
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Attempts at reconciling PCA with dynamic factor models can be made by employing a two-

step procedure where first some static factors are estimated by PCA as above, and, in the second

step, a VAR model is specified as the factor process – see Breitung & Eickmeier (2006). Another

method involves estimating the dynamic principal components within the frequency domain by

eigenvalue decomposition of the spectral density of yt, then an estimate of the common compo-

nents is obtained through its inversion – see Brillinger (1981, ch.9).

The nice feature of the state-space approach is that it allows us to easily predict latent, dy-

namic, factors, by means of the Kalman filter. Moreover, the dynamic Factor model for “common

trends,” implied by the Engle-Granger representation theorem (1987) discussed below, manifests

in a state-space representation. This makes the state-space framework useful for modeling unob-

served stochastic trends that may drive the dynamics of co-integrated multivariate series.

9.3 The dynamic Factor model for common trends

The modern dynamic Factor model fits naturally within the state-space framework since it explic-

ity defines a parametric model for the dynamics of the unobserved factors. Moreover, within the

multivariate context, the existence of co-integrating relationships amongst dependent variables

leads directly to the “common trends” representation.

The dynamic Factor model for common trends is given in (137). Pre-multiplying the stochas-

tic trend component µt, is the N ×K matrix Θ of factor loadings, where µt is now K × 1 and

represents the unobserved common factors where 0 ≤ K ≤ N and:

yt = Θµt + µ0 + ηt, for t = 1, . . . , T (137a)

and µt = µt−1 + β + ǫt. (137b)

Additionally, µ0 is included as a constant on the last N −K series. That is, the first N elements

of µ0 are zero, and the last N −K are µ̃.

As it stands the model in (137) is unidentifiable since for any singular N ×N matrix H , we
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could redefine Θ∗ = ΘH−1 and µ∗
t = Hµt so that yt = Θ∗µ∗

t+µ0+ηt and µ∗
t = µ∗

t−1+β∗+ǫ∗t

are observationally equivalent to (137), given ǫ∗t = Hǫt and β∗
t = Hβt.

Therefore, restrictions must be placed on the covariance matrix Σǫ and the factor loadings

Θ. One way to solve the problem is to set Θij = 0 for j > i and Θii = 1 where i = 1, . . . , K,

while Σǫ is set as a diagonal matrix. Interestingly, if K = N , then the model is equivalent

to (142) below, the simplest form of the so-called “structural” models popularized by Harvey

(1984). Rewriting µ∗
t = Θµt, we have that the variance of ǫt is the positive semi-definite matrix

ΘΣǫΘ
′.

As it stands the identification restriction placed above on Θ is a rather arbitrary one and does

not suggest any reasonable economic intuition. However, this problem is not insurmountable

since once the model in (137) is estimated under the suggested restriction, we can then subse-

quently introduce a factor rotation by including an orthogonal matrix H , as above, in between

Θ and µt. The new common trends are then µ∗
t . This approach may yield useful interpretations

since we would be able to associate certain subsets of the elements our vector of observed vari-

ables, yt, with certain subsets of the common factors. Moreover, it may be possible to assign the

observed series into various clusters, allowing the factor loadings matrix Θ to be block-diagonal.

9.3.1 Co-integration of levels process yt

The model in (137) also has the interesting feature that N −K linear combinations of yt are sta-

tionary, despite the fact that all the elements of yt individually are nonstationary, I(1), processes.

Consider a matrix C which is (N − K) × N and which has the property that CΘ = 0. We

have from (137) that Cyt = Cµ0 +Cηt, and thus the elements of Cyt now represent (N −K)

stationary series, where C has as its rows the (N −K) co-integrating relations.

It turns out that this result is one implication of the Engle-Granger representation theorem

(1987) which states that for any multivariate series which are co-integrated, there exist three

equivalent representations: the VARMA, the VECM (vector error correction model), and the

“common trends” Factor model representation.
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To illustrate the connection suppose that:

yt = Ayt−1 + ηt (138)

so that yt, N × 1, follows a V AR(1) process (and so A is not generally symmetric).

Now, suppose that A has a spectral decomposition A = PDP−1, where P contains the

eigenvectors of A as its columns at that P has full column rank (i.e. there exists N distinct

linearly independent eigenvectors). Moreover, D is diagonal and contains the eigenvalues of A.

The conditional forecast for yt+h, given some horizon h ∈ N
+ is from (138):

E[yT+h|yT ] = AhyT

= [PDP−1]hyT

= [PDhP−1]yT (139a)

Without any loss of generality, let the first K eigenvalues in D be equal to 1 and the other

N − K eigenvalues have modulus strictly less than 1. Furthermore, let P−1yt = zt. Equation

(139a) implies that in the limit, as h → ∞, the first K elements of E[zt+h|zT ] will approach

∞ while the last N − K elements will approach 0. That is, the last N − K elements of zt are

mean reverting 11 while for the first K elements no unconditional mean exists. Therefore, there

exist linear combinations of yt which are I(0) (i.e. the last N − K elements of zt) despite the

fact that all the elements yt are I(1) (by virtue of the K unit eigenvalues of A). We say that

there exist N −K co-integrating relations, or equivalently, that there exist K common stochastic

trends driving yt.

Given that the last N − K diagonal elements of Dh approach 0 in the limit, we can always

11That is, the conditional mean reverts back to the unconditional mean of 0 as h → ∞. Or in other words,

E[zt+h|zT ] → E[zt] = 0 as h → ∞ for those last N −K stable elements of zt.
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rewrite (139a) as:

lim
h→∞

E[yT+h|yT ] = A∞yT

= P



z̄T

0




= P̄ z̄T (140a)

where z̄T is is the first K rows of zT , and P̄ , N ×K, is the first K columns of P .

Therefore, we have that the “common trends” representation of the co-integrated system yt

is given as:

yt = lim
h→∞

E[yt|yt−h] + ηt

= P̄ z̄t + ηt (141a)

so if we allow C ≡ P
−1

to be the (N − K) × N matrix with the co-integrating relations (i.e.

the last N −K rows of P−1) as its rows, then we have the result that Cyt = Cηt is I(0), since

P
−1
P̄ = 0. Note the similarity to (137) where z̄t ≡ µt, Θ ≡ P̄ , and of course, z̄t is I(1).

9.4 Unobserved Components

The dynamic Factor model for common trends in (137) also represents the simplest form of

the structural (or “Unobserved Components”) framework popularized by Harvey (1984), wherein

it is referred to as the Local level random walk plus noise model:12

yt = µt + ηt, for t = 1, . . . , T, (142a)

and µt = µt−1 + ǫt, (142b)

12See Harvey (1989) pg. 429 and Nerlove et al. (1979) for a review of the unobserved components models more

generally.
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where µt is an N×1 vector of local level components, ηt and ǫt are N×1 vectors of multivariate

white noise with zero mean and covariance matrices Ση and Σǫ respectively, and yt represents

an N × 1 vector of series which may be contemporaneously related (e.g. cross-sectional data).

The common trends framework, with I(1) trends, models the local level component, µt, as a

random walk (i.e. stochastic trend), although it is free to take on any number of different structural

representations [see (148a) below or example 2.2.10 for the general representation]. Not only

do the ηt’s exhibit contemporaneous correlation, but the innovations of the trend components

themselves, ǫt, do as well. The N series, yt, are thus linked via the off-diagonals of the two

innovation covariance matrices, each of which include N(N + 1)/2 parameters to be estimated.

It is worth mentioning that (142) is similar to the time-varying SUR model of Zellner (1962),

with the exception that we replace the regressors X tβ with the time-varying intercept vector µt.

9.4.1 Alternative representations

The model in (142) can also be rewritten in stationary single equation form as:

(I − IL)yt = ǫt + (I − IL)ηt, where t = 1, . . . , T, (143)

so that E[△yt] = 0, V ar[△yt] = Σǫ + 2Ση, and Covar[△yt,△yt−1] = −Ση.13 Therefore,

the reduced form stationary model of (143) is of the VARIMA(0,1,1) type since it matches its

autocorrelation representation. That is, if xt = ut +Φut−1 we have that Γx(0) = E[xtx
′
t−1] =

Σu + ΦΣuΦ
′ and Γx(1) = E[xtx

′
t−1] = ΦΣu which is of the same form if Σǫ = 0 and

Φ = −I .

The structural form of the model in (142) implies restrictions on the parameter space of the

reduced form VARIMA(0,1,1) representation of (143).14 Take for simplicity the example of the

13All other autocovariances are zero.
14Note, this is similar to translating between the state-space form and the transfer-function form of a system

within the engineering context. While the state-space form implies a unique transfer function form, the transfer

function form has any number of respective state-space representions. So in this context, the specified state-space

form implies restrictions on the transfer function form of the model. By transfer function form, we mean the model

written purely in terms of impulse reponse to exogenous shocks. In this sense, we can think of the multiplicity of

state-space forms within the context of Akaike (1975) and the “minimal” representation.
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univariate analog to (143), the ARIMA(0,1,1) model:

xt = ut + φut−1, where ut ∼ N(0, σ2
u). (144)

Matching autocorrelations of (144) with the univariate counterpart to (143) results in:

ρ(1) =
−σ2

η

σ2
ǫ + 2σ2

η

=
φσ2

u

(1 + φ2)σ2
u

(145a)

⇔ 0 = φ2σ2
η + φ(σ2

ǫ + 2σ2
η) + σ2

η (145b)

which is a second-order polynominal in φ. One of the roots is dropped since it implies non-

invertibility. Solving (145b) we find that:

φ = −(q + 2)/2 +
√
q2/4 + q, where q =

σ2
ǫ

σ2
η

(146a)

⇒ if 0 ≤ q ≤ ∞ we have that − 1 ≤ φ ≤ 0. (146b)

And thus the standard stationary region of the parameter space is cut in half. Note that the order

of the polynominal is equal to one plus the order of the MA process. Therefore solving for the

restrictions of an MA(q) process would generally require solving a Yule-Walker type system of

equations, which include, at most, a q + 1 order polynomial. Given this, Nerlove et al. (1979,

pp. 70-78) provides a more general algorithm applicable to complicated univariate structural

forms. As for the multivariate case, the problem is even more complex. In the univariate case,

the structural form implies restrictions on the parameter space of the reduced form, but in the

multivariate case it also implies a reduction in the dimension of the model. See Harvey (1989,

pp. 432) for more details.

Interestingly, the model in (142) can also be viewed as the multivariate UCARIMA type (En-

gle,1978). The UCARIMA representation decomposes the process yt = Tt + St + Ct + It into

individual ARIMA processes (where Tt is the trend component, St is some seasonal component,

Ct a non-seasonal cyclical component, and It is some residual irregular component.) For example
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in (142) we have only defined the trend component, Tt = µt and the irregular It = ηt, so that the

second and third components are effectively zero. However, this need not be the case–we could

choose to define other components for St and Ct. For example, we could have chosen stochastic

harmonic processes.

Either way, the first trend component can manifest as an ARIMA process by representing

(142) as an ARIMA(0,1,1) process, with its parameter, Φ, characterized in the discussion above

in determining the reduced form of (143):

yt = △−1ǫt + ηt (147a)

≡ △−1(I +ΦL)ut, (147b)

where △ = (I − IL). Therefore, yt is composed of a singular ARIMA(0,1,1) process (where

we have subsumed the irregular component into the trend for clarity).

More generally, we can write the multivariate UCARIMA form under any particular set of

components {Tt, St, Ct, . . . , It} as:

yt =
M∑

m=0

△−1
m (L)Θ−1

m (L)Φm(L), (148a)

where △ (L) =
M∏

m=0

△m(L), (148b)

so that pre-multiplying (148a) by (148b) makes the process stationary. For reference, consider

the example in 2.2.10 where we presented the Basic Structural Model; it also has a UCARIMA

representation – see Harvey (1989, pg.74).
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