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Abstract

Empirical evidence from sequential auctions shows that prices of identical goods tend to

decline between rounds. In this paper, I show how expectations-based reference-dependent

preferences and loss aversion can rationalize this phenomenon. I analyze two-round sealed-

bid auctions with symmetric bidders having independent private values and unit demand.

Equilibrium bids in the second round are history-dependent and subject to a “discour-

agement effect”: the higher the winning bid in the first auction is, the less aggressive the

behavior of the remaining bidders in the second auction. When choosing his strategy in

the first round, however, a bidder conditions his bid on being pivotal and hence expects not

to be discouraged. Equilibrium behavior, therefore, leads the winner of the first round to

overestimate the bid of his highest opponent and hence the next-round price so that equilib-

rium prices decline. Moreover, sequential and simultaneous auctions are not bidder-payoff

equivalent nor revenue equivalent.
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1 Introduction

Sequential auctions are often used to sell multiple lots of the same or similar goods. How

should one expect prices to vary from one round to the next? Weber (1983) and Milgrom and

Weber (2000) showed that with symmetric, risk-neutral, unit-demand bidders having indepen-

dent private values, the law of one price should hold and on average prices should be the same

across different rounds. Intuitively, if they were not, then demand from the rounds with a higher

expected price would shift towards those rounds with a lower expected price, due to arbitrage

opportunities. To see why, consider a two-round second-price auction. In the last round, all

bidders still participating in the auction will bid their valuations since this is a weakly-dominant

strategy. In the first round, it is optimal for bidders to shade their bids to account for the option

value of participating in the second round. Bidders with a higher valuation also have a higher

option value and, therefore, they shade their bids by a greater amount than do bidders with a

lower valuation. In the second round, the number of bidders is lower, but the number of objects

is lower as well. The first fact has a negative effect on the competition for an object while the

second one has a positive effect. Remarkably, in equilibrium these two effects exactly offset each

other. As a result, all gains to waiting are arbitraged away and the expected prices in both

rounds are the same. The intuition for this result is very general, holds also for more than two

rounds and does not depend on the specific type of auction.1

However, this neat theoretical result does not seem to be supported by the data. Ashen-

felter (1989), McAfee and Vincent (1993) and Ginsburgh (1998) document a puzzling declining

price anomaly or afternoon effect (reflecting that later auctions often take place in the after-

noon whereas earlier ones are in the morning) in sequential auctions for identical bottles of

wine. Declining price patterns have been also found by Beggs and Graddy (1997) for artwork,

Ashenfelter and Genesove (1992) for condominiums, Van den Berg et al. (2001) for flowers and

Lambson and Thurston (2006) for fur. There is also experimental evidence of declining prices

in sequential auctions; see Keser and Olson (1996), Février et al. (2007) and Neugebauer and

Pezanis-Christou (2007). Moreover, while declining prices are more frequent, increasing prices

have also been documented; see, for example, Chanel et al. (1996), Gandal (1997) and Deltas

and Kosmopoulou (2004).2 It is quite an interesting result that, in a variety of different types

of auctions, price direction throughout an auction can be predicted. Declining prices have been

documented in more instances than rising prices have. Declining prices do not occur in every

auction, but they seem to be an empirically robust feature of sequential auctions.

1Technically, with independent private values, the price sequence of any standard auction is a martingale, so
that the expected price in round k + 1, conditional on pk, the price in round k, is equal to pk.

2Milgrom and Weber (2000) showed that if bidders’ signals are affiliated and values are interdependent, then
the equilibrium price sequence is a sub-martingale and the expected value of pk+1, conditional on pk, is higher
than pk. Mezzetti (2011) showed that affiliated signals are not necessary to explain increasing-price sequences:
interdependent values with informational externalities – that is, when a bidder’s value is increasing in all bidders’
private signals – even with independent signals, push prices to increase between rounds.
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In this paper, I study two-round sealed-bid auctions with symmetric bidders having indepen-

dent private values and unit demand and I argue that reference-dependent preferences and loss

aversion provide an explanation for the afternoon effect. More generally, I show that reference-

dependent preferences with expectations as the reference point induce an endogenous form of

interdependence in the bidders’ payoffs even though values are private and independent. Indeed,

the derivation of the equilibrium strategies resembles that of the standard reference-free model

with interdependent (common) values. The reason is that even though a bidder’s valuation does

not depend directly on his competitors’ types, these affect the likelihood of him winning the

auction and hence his reference point.

Section 2 introduces the model of bidders’ preferences and the solution concept. Following

Köszegi and Rabin (2006), I assume that in addition to classical consumption utility, a bidder

also derives gain-loss utility from the comparison of his consumption to a reference point equal to

his lagged expectations regarding the same outcomes, with losses being more painful than equal-

sized gains are pleasant. To account for the intrinsic dynamic nature of sequential auctions, I

develop a dynamic version of the Choice Acclimating Personal Equilibrium (CPE) introduced

in Köszegi and Rabin (2007) that I call Sequential Choice Acclimating Personal Equilibrium

(SCPE). In a SCPE, a decision maker correctly predicts his (possibly stochastic) strategy at

each point in the future, folds-back the game tree using backward induction, and then applies

the same (static) CPE as in Köszegi and Rabin (2007) at every stage of the game.3

Sections 3 and 4 analyze sequential first-price and second-price auctions, respectively. First,

I show that expectations-based reference-dependent preferences create an informational exter-

nality that renders equilibrium bids history-dependent, even if bidders have independent private

values. Intuitively, learning the outcome of the previous auction modifies a bidder’s expectations

about how likely he is to win in the current one. Since expectations are the reference point,

the optimal bid in the second auction depends also on what a bidder learns from the first one

as this modifies his reference point. More precisely, I identify what I call the discouragement

effect : the higher the winning bid in the first auction is, the less aggressive the bidding strategy

of the remaining bidders in the second auction. The intuition is that, from the point of view of

a bidder who lost the first auction, the higher the type of the winner is, the less likely he is to

win in the second one; this in turn lowers the bidder’s reference point who does not feel a strong

attachment to the item and therefore reduces his equilibrium bid.

Notice that the history dependence arising in my model has the opposite effect of the one

stemming from interdependent (common) values. With interdependent values, since in equilib-

rium he conditions his bid on himself having the highest signal, if a bidder loses the current

3The original notion of CPE in Köszegi and Rabin (2007) is related to the models of “disappointment aversion”
of Bell (1985), Loomes and Sugden (1986), and Gul (1991), where outcomes are also evaluated relative to a
reference lottery that is identical to the chosen lottery; likewise the notion of SCPE introduced in this paper is
related to the notion of dynamic disappointment aversion proposed in Artstein-Avidan and Dillenberger (2011).
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auction he learns that the winner had a higher signal than his; this in turn makes a losing bidder

revise his estimate of the value of the good upward and therefore he will bid more aggressively

in subsequent auctions. The discouragement effect instead goes in the opposite direction by

pushing bidders to bid less aggressively in later rounds.

When choosing his bid in the first round, however, a bidder conditions his bid on himself

having the highest type and hence expects not to be discouraged. Indeed, in the first round it

is optimal for a bidder to bid up to a point where he is indifferent between barely winning in

the current round (by being tied with his strongest opponent) and winning in the next round.

However, ex-post the winner never barely wins. Equilibrium behavior, therefore, leads the winner

of the first round to overestimate the bid of his highest opponent and hence the next-round price

so that equilibrium prices tend to decline.

With risk-neutral bidders having independent private values, sequential and simultaneous

auctions are revenue-equivalent for the seller and payoff-equivalent for the bidders. In Section 5

I show that these equivalences break down if bidders are expectations-based loss-averse. The key

difference between sequential and simultaneous auctions is the timing of information. Sequential

auctions provide bidders, in between rounds, with the opportunity to update their beliefs about

the intensity of competition. Such feedback, however, is absent in simultaneous auctions. In

the classical model this difference is irrelevant since bidding strategies in sequential auctions

are history-independent. Loss-averse bidders, instead, update their reference point based on the

outcome of the previous round. I show that bidders with high (resp. low) values prefer sequential

(simultaneous) auctions since they are more likely to receive good (bad) news between rounds.

Furthermore, sequential auctions generate a higher (resp. lower) revenue than simultaneous ones

when the number of bidders is large (small).

For most of the paper, when dealing with sequential sealed-bid auctions, I assume that the

winning bid in the first round is publicly announced by the seller prior to the second round. This

assumption is inconsequential in the classical reference-free model when bidders have indepen-

dent private values, but it is not when bidders have reference-dependent preferences. Therefore,

in Section 6 I analyze sequential auctions with no bid announcement and I show that the equi-

librium strategies are radically different. If the winning bid from the first round is not publicly

revealed, a losing bidder must use his own past bid to update his expectations about how likely

he is to win in the second one. As auctions without bid announcement provide them with a

noisier feedback mechanism, thus exposing them to greater risk, loss-averse bidders react by

bidding less aggressively so that the seller’s expected revenue decreases. Nevertheless, the af-

ternoon effect still arises in equilibrium. The reason, in this case, is that bidders are willing to

pay a premium in the first round in order to avoid having to go to the second round and being

discouraged.

Many different explanations for the afternoon effect have been proposed. Ashenfelter (1989)
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hypothesized risk aversion as a plausible explanation for the declining-price pattern. However,

McAfee and Vincent (1993) argue that risk aversion is not a convincing explanation. They

studied two-round first-price and second-price auctions with independent private values, and

showed that equilibrium prices decline only if bidders display increasing absolute risk aversion.

Under the more plausible assumption of decreasing absolute risk aversion, a monotone symmetric

pure-strategy equilibrium fails to exist and prices need not decline. Black and De Meza (1992)

and Février et al. (2005) argue that declining prices are no anomaly if the winning bidder in one

auction is allowed to purchase all subsequent lots at the same price.4 Bernhardt and Scoones

(1994), Engelbrecht-Wiggans (1994) and Gale and Hausch (1994) consider sequential auctions

of “stochastically equivalent” objects – that is, when each bidders’ valuations are identically

distributed across the objects, but are not perfectly correlated – and show that in this case

equilibrium bidding implies declining prices. Eyster (2002) models the behavior of an agent who

has a taste for rationalizing past actions by taking current actions for which those past actions

were optimal. He shows that this taste for consistency gives rise to an “unsunk-cost fallacy” that

can rationalize declining prices in sequential English auctions. Other studies have emphasized

demand complementarity (Menezes and Monteiro, 2003), supply uncertainty (Jeitschko, 1999),

order-of-sale effects (Chakraborty et al., 2006) and budget constraints (Pitchick and Schotter,

1988) in accounting for the declining price anomaly.

More recently, Mezzetti (2011) introduced a special case of risk aversion, called aversion

to price risk, according to which a bidder prefers to win an object at a certain price rather

than at a random price with the same expected value.5 Under this different notion of risk

aversion, in sequential auctions with independent private values a monotone equilibrium in pure

strategies always exists and in equilibrium prices decline. Although aversion to price risk and

loss aversion are both able to explain the afternoon effect, the intuition behind the result is quite

different. In Mezzetti (2011), the afternoon effect is due to the bidders’ dislike of uncertainty over

money; in my model, instead, the afternoon effect arises because bidders dislike uncertainty over

consumption. The different intuition translates also into different testable predictions. When

bidders are averse to price risk, the equilibrium strategies do not depend on the history of the

game and therefore the seller’s information revelation policy does not affect revenue; with loss

aversion, instead, bidders’ strategies are history-dependent and the seller is always better off by

committing to publicly reveal the history of the winning bids.

Section 7 concludes the paper by recapping the results of the model and pointing out some

of its limitations as well as possible avenues for future research. All proofs are relegated to

Appendix A.

4However, Ashenfelter (1989) finds declining prices also for the case of bidders with unit demand.
5Similarly to the model of reference-dependent preferences of Köszegi and Rabin (2006), Mezzetti’s notion of

aversion to price risk assumes separability of a bidder’s payoff between the utility from winning the object and
the disutility from paying the price.
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2 Model

2.1 Environment

Suppose 2 identical items are sold to N > 2 bidders via a series of sealed-bid auctions. More

specifically, one item is sold using a sealed-bid auction and the winning bid is publicly announced;

then, the remaining item is sold using a sealed-bid auction. Announcing the winning bid from

former auctions prior to the current one is in accord with government procurement statutes and

with actual practice in some auctions.

I assume bidders want at most one unit and have independent private values. Each bidder’s

valuation (type) θi is drawn independently from the same distribution F with continuous positive

density f everywhere on the support
[
0, θ

]
. I will consider two types of games. In the first one,

the goods are sold sequentially via a series of first-price auctions. In the second one, the goods

are sold sequentially via a series of second-price auctions. Both auctions have a zero reserve

price. Throughout the paper, I restrict attention to symmetric equilibria in pure and (strictly)

monotone strategies.6 It is convenient to think of the auctions as being held in different periods

of the day, the first one in the morning and the second one in the afternoon; however I assume

the auctions are held in a short enough time so that bidders do not discount payoffs from the

second auction.

2.2 Bidders’ Preferences

Bidders have expectations-based reference-dependent preferences as formulated by Köszegi

and Rabin (2006). In this formulation, a bidder’s utility function has two components. First, if he

wins the auction at price p, a type-θ bidder experiences consumption utility θ−p. Consumption

utility can be thought of as the classical notion of outcome-based utility. Second, the bidder also

derives utility from the comparison of his actual consumption to a reference point given by his

recent expectations (probabilistic beliefs).7 Slightly departing from the original model of Köszegi

and Rabin (2006), I assume that bidders have reference-dependent preferences only with respect

to their valuation for the item, but not with respect to the price they might pay; in other words,

bidders are risk neutral over money. Although restrictive, this assumption is reasonable when

bidders’ income is already subject to large background risk as argued by Köszegi and Rabin

(2009). Relatedly, Novemsky and Kahneman (2005) propose that money given up in purchases

6In a symmetric equilibrium, the final allocation is efficient: the first good will go to the bidder with the
highest value and the second one to the bidder with the second-highest value.

7Recent experimental evidence lends support to Köszegi and Rabin’s (2006) expectations-based model of
reference-dependent preferences and loss aversion; see, for instance, Abeler et al. (2011), Ericson and Fuster
(2011), Gill and Prowse (2012), Karle et al. (forthcoming) and Sprenger (2011). More pertinently, Banerji and
Gupta (2014), Eisenhuth and Ewers (2012) and Ratan (2013) provide experimental evidence supporting the
model of Köszegi and Rabin (2006) in the context of sealed-bid auctions.
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is not generally subject to loss aversion. Hence, for a riskless consumption outcome (θ, p) and

riskless reference point rθ, a bidder’s total utility is given by

U
[
(θ, p) |

(
rθ
)]
= θ − p+ µ

(
θ − rθ

)
(1)

where

µ (x) =




ηx if x ≥ 0

ηλx if x < 0

is gain-loss utility, with η > 0 and λ > 1. The parameter η captures the relative weight a

consumer attaches to gain-loss utility while λ is the coefficient of loss aversion.

Because in many situations expectations are stochastic, Köszegi and Rabin (2006) extend

the utility function in (1) to allow for the reference point to be a probability distribution H. In

this case a consumer’s overall utility from the outcome (θ, p) can be written as

U [(θ, p) |H] = θ − p+
∫

rθ
µ
(
θ − rθ

)
dH (2)

In words, a bidder compares the realized consumption outcome with each possible outcome

in the reference lottery. For example, if he expected to win the auction with probability q, then

winning the auction feels like a gain of θ (1− q) while losing the auction results in a loss of θq.

Thus, the weight on the loss (gain) in the overall experience is equal to the probability with

which he was expecting to win (lose) the auction.

2.3 Solution Concept

Each bidder learns his valuation before submitting his bids and, therefore, maximizes his

interim expected utility. If the distribution of the reference point is H and the distribution of

consumption outcomes is G, a type-θ bidder’s interim expected utility is given by

EU [G|H] =
∫

{θ,p}

∫

{rθ}
U
[
(θ, p) |rθ

]
dHdG.

For each auction in which he participates, after placing a bid, a bidder basically faces a

lottery between winning or losing the auction and the probabilities and potential payoffs depend

on his own as well as other players’ bids. The final outcome is then evaluated with respect

to any possible outcome from this lottery as a reference point. As laid out in Köszegi and

Rabin (2007), Choice Acclimating Personal Equilibrium (CPE) is the most appropriate solution

concept for such decisions under risk when uncertainty is resolved after the decision is made so

that the decision maker’s strategy determines the distribution of the reference point as well as

the distribution of final consumption outcomes; that is, H = G.

A strategy for bidder i is a pair of bidding functions βi = (β1, β2), one for each auction.
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Fixing all other bidders’ strategies, β−i, bidder i’s strategy βi induces a distribution over the

set of final consumption outcomes. For k = 1, 2, let Γk
(
βi,β−i

)
denote the distribution over

final consumption outcomes from auction k point of view. Similarly, let EUk denote a bidder

expected utility from auction k point of view if he plans to bid according to βi and expects

his rivals to bid according to β−i. To account for the intrinsic dynamic nature of sequential

auctions, I introduce a slightly modified version of CPE.

Definition 1. A strategy profile β∗ constitutes a Sequential Choice Acclimating Personal Equi-

librium (SCPE) if for all i, and for k = 1, 2:

EUk
[
β∗i , β

∗
−i|Γk

(
β∗i , β

∗
−i

)]
≥ EUk

[
β̃i, β

∗
−i|Γk

(
β̃i, β

∗
−i

)]

for any β̃i 6= β
∗
i .

In words, in a SCPE a bidder correctly predicts his (possibly stochastic) strategy at each

point in the future, then folds-back the game tree using backward induction and applies the same

(static) CPE as in Köszegi and Rabin (2007) at every stage of the game. Notice that, at stage

k, a bidder’s reference point is given by his stage-k expectations, Γk
(
β∗i , β

∗
−i

)
, about his final

consumption at the end of all auctions. Furthermore, in the second round bidders update their

reference point based on the outcome of the first round.8 The following assumption, maintained

for the remainder of the paper, guarantees that all bidders participate in the auction for any

realization of their own type, and that the equilibrium bidding functions derived in the next

sections are strictly increasing:

Assumption 1 (No dominance of gain-loss utility) Λ ≡ η (λ− 1) ≤ 1.

This assumption places, for a given η (λ), an upper bound on λ (η) and ensures that an

agent’s equilibrium expected utility is increasing in his type.9 What it requires is that the

weight a bidder places on expected gain-loss utility does not (strictly) exceed the weight he puts

on consumption utility. Finally, notice that risk neutrality is embedded in the model as a special

case (for either η = 0 or λ = 1).

8The concept of SCPE introduced in this paper coincides with a special case of the dynamic version of
Preferred Personal Equilibrium (PPE ) introduced by Köszegi and Rabin (2009). In their dynamic model, people
have a reference point for every period in which they expects to consume – so that consumption levels in different
periods are treated like different dimensions – and are loss-averse over changes in beliefs about present as well
future consumption. If consumption takes place only in the last period and the weight on prospective gain-loss
utility (or “news” utility) is equal to 1, my solution concept is equivalent to theirs.

9Herweg et al. (2010) first introduced Assumption 1 and referred to it as “no dominance of gain-loss utility”.
Assumption 1 has been used also by Lange and Ratan (2010), Eisenhuth (2012) and Eisenhuth and Ewers (2012).
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3 First-price Auctions

Consider a situation in which two identical items are sold sequentially via first-price auctions.

In this case, a symmetric equilibrium consists of two bidding functions (β1, β2), one for each

auction. I assume that both functions are strictly increasing and differentiable. The first-round

bidding strategy is a function β1 :
[
0, θ

]
→ R+ that depends only on the bidder’s type. The bid

in the second auction, instead, might depend also on the price paid in the first auction. Since

we are focusing on a symmetric equilibrium, it is useful to take the point of view of one of the

bidders, say bidder i with type θi and to consider the order statistics associated with the types

of the other bidders. Let Y (N−1)1 ≡ Y1 be the highest of N − 1 values, Y (N−1)2 ≡ Y2 be the

second-highest and so on. Also, let F1 and F2 be the distributions of Y1 and Y2 respectively,

with corresponding densities f1 and f2. Since the first-period bidding function β1 is assumed to

be invertible, after the first auction is over and its winning bid is revealed the valuation of the

winning bidder is commonly known to be y1 = β
−1
1 (p1). Thus, the second-period strategy can

be described as a function β2 :
[
0, θ

]
×
[
0, θ

]
→ R+ so that a bidder with value θ bids β2 (θ, y1)

if Y1 = y1. To find an equilibrium that is sequentially rational, I start by looking at the bidder’s

problem in the second auction.

3.1 Second-period strategy

Consider a bidder with type θ who plans to bid as if his type were θ̃ 6= θ when all other N−2

remaining bidders follow the equilibrium strategy β2 (·, y1). His expected payoff is

EU2
(
θ̃, θ; y1

)
= F2

(
θ̃|y1

) [
θ − β2

(
θ̃, y1

)]
(3)

+F2
(
θ̃|y1

)
η
{
(θ − 0)

[
1− F2

(
θ̃|y1

)]}

+
[
1− F2

(
θ̃|y1

)]
ηλ

{
(0− θ)F2

(
θ̃|y1

)}

where F2
(
θ̃|y1

)
is the probability that Y2, the second highest valuation among N − 1, is less

than θ̃ conditional on Y1 = y1 being the highest. The first term on the right-hand-side of (3),

F2
(
θ̃|y1

) [
θ − β2

(
θ̃, y1

)]
, is standard expected consumption utility. The other terms capture

expected gain-loss utility and are derived as follows. A bidder of type θ who bids as if his type

were θ̃ expects to win the auction with probability F2
(
θ̃|y1

)
and if he wins he gets consumption

utility θ; thus, winning the auction feels like a gain of η (θ − 0) compared to the outcome of losing

the auction and getting 0, which the bidder expected to happen with probability
[
1− F2

(
θ̃|y1

)]
.

Similarly, with probability
[
1− F2

(
θ̃|y1

)]
the bidder loses the auction and gets 0; thus, losing

the auction feels like as loss of ηλ (0− θ) compared to the outcome of winning the auction and

getting θ, which the bidder expected to happen with probability F2
(
θ̃|y1

)
. Collapsing terms we

can re-write (3) as
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EU2
(
θ̃, θ; y1

)
= F2

(
θ̃|y1

) [
θ − β2

(
θ̃, y1

)]
− ΛθF2

(
θ̃|y1

) [
1− F2

(
θ̃|y1

)]

where Λ ≡ η (λ− 1) is the weight on expected gain-loss utility. Notice that expected gain-loss

utility is always negative as, since λ > 1, losses are felt more heavily than equal-size gains.

Differentiating EU2
(
θ̃, θ; y1

)
with respect to θ̃ yields the first-order condition:

f2
(
θ̃|y1

) [
1− 2F2

(
θ̃|y1

)]
θΛ = f2

(
θ̃|y1

) (
θ − β2

(
θ̃, y1

))
− β′2

(
θ̃, y1

)
F2
(
θ̃|y1

)

where β′2 is the derivative of β2 with respect to its first argument.

Substituting θ = θ̃ into the first-order condition and re-arranging results in the following

differential equation

∂

∂θ
{β2 (θ, y1)F2 (θ|y1)}=f2 (θ|y1) θ {1− Λ [1− 2F2 (θ|y1)]} (4)

together with the boundary condition that β2 (0, y1) = 0.

Because the different values are drawn independently, we have that

F2 (θ|y1) =
F (θ)N−2

F (y1)
N−2

and substituting into (4) yields

β∗2 (θ, y1) =

∫ θ

0
x

{
1− Λ

[
1− 2 F (x)

N−2

F (y1)
N−2

]}
dF (x)N−2

F (θ)N−2
. (5)

The complete bidding strategy is to bid β∗2 (θ, y1) if θ < y1 and to bid β
∗
2 (y1, y1) if θ ≥ y1.

The latter might occur if a bidder of type θ ≥ y1 underbid in the first period causing a lower

type to win (of course this is an off-equilibrium event).

The expression in (5) can be re-written as:

(1− Λ)

∫ θ

0
xdF (x)N−2

F (θ)N−2
+ Λ

∫ θ

0
2x F (x)

N−2

F (y1)
N−2dF (x)

N−2

F (θ)N−2
.

Therefore, the bid under loss aversion is a convex combination of the risk-neutral bid and

a term that depends on the bidder’s expectations about how likely he is to win the auction

(reference point).

The first thing worth noticing is that, even if bidders have independent private values, the

equilibrium bidding strategy in the second period is history-dependent, as it is a function of y1;

9



with risk-neutral preferences (Λ = 0), instead, this is not the case:

βRN2 (θ) =

∫ θ

0
xdF (x)N−2

F (θ)N−2
.

Under risk neutrality, a bidder submits a bid equal to his estimation of the highest valuation of

his opponents, conditional on his own valuation being the highest. Because of this conditioning,

bids are independent of the prior history of the game. With reference-dependent preferences,

instead, the second-round equilibrium bid is decreasing in the first-round price, as shown in the

following lemma.

Lemma 1. (Discouragement Effect) If Λ > 0, then ∂β∗
2
(θ,y1)

∂y
1

< 0 ∀θ.

According to the result in Lemma 1, the higher is the type of the winner in the first round,

the less aggressively the remaining bidders will bid in the second round. The rationale for this

negative effect, which I call the discouragement effect, is as follows. From the perspective of

a bidder who lost the first auction, the higher is the type of the winner, the less likely this

bidder is to win in the second auction; with expectations-based reference-dependent preferences

a bidder who thinks that most likely he is not going to win does not feel a strong attachment

to the item and this pushes him to bid more conservatively. Thus, revealing the first-period

winner’s bid (and hence his type) creates an informational externality. However, notice that the

effect of this informational externality on the second-period bids is exactly the opposite of the

one that arises with interdependent (common) values. Indeed, with interdependent values the

higher is the type of the first-round winner, the higher is the value of the object to all remaining

bidders who in turn bid more aggressively in the second auction. Therefore, by analyzing the

distribution of bids in the second auction, one can use the discouragement effect to empirically

test the implications of loss aversion against the implications of the classical risk-neutral model

with either private values (where there is no history dependence) or with common values (where

the higher is the winning price in the first auction, the more aggressively the remaining bidders

behave in the second auction).

Figure 1 displays the bidding strategy β∗2 (θ, y1) for two different values of y1 assuming θ
U
∼

[0, 1], Λ = 1
2
and N = 4: the dashed curve is for the case y1 = 1

2
while the solid one is for the

case y1 = 3
4
. As we would expect from Lemma 1, for θ ≤ 1

2
β∗2

(
θ, 3

4

)
is always below β∗2

(
θ, 1

2

)
.

Furthermore, we have that

∂β∗2 (θ, y1)

∂Λ
=

∫ θ

0
x

[
2 F (x)

N−2

F (y1)
N−2 − 1

]
dF (x)N−2

F (θ)N−2

implying that there exists 0 < θ̂ (y1) < θ such that
∂β∗

2
(θ,y1)

∂Λ
> 0 ⇔ θ > θ̂ (y1). In other words,
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Figure 1: The effect of y1 on β
∗
2 (θ, y1) for N = 4 and Λ = 1

2
with θ distributed uniformly on [0, 1].

under loss aversion bidders with relatively high types overbid compared to the risk-neutral

benchmark whereas bidders with relatively low types underbid.

I end this section with an example where I compute the second-round bidding strategy

explicitly for the case of uniformly-distributed types.

Example 1. Suppose that θ
U
∼ [0, 1] and let y1 be the type of the winner in the first round. Then,

in the second round the remaining bidders will play the following strategy:

β∗2 (θ, y1) =





(1− Λ)
(
N−2
N−1

)
θ + Λ

(
2N−4
2N−3

)
θN−1

yN−2
1

if θ < y1

(1− Λ)
(
N−2
N−1

)
y1 + Λ

(
2N−4
2N−3

)
y1 if θ ≥ y1

.

It is easy to see that, for θ < y1, β
∗
2 (θ, y1) is (i) increasing in θ, (ii) decreasing in y1 and

(iii) increasing in Λ if and only if θ >
(
N−2
N−1

2N−3
2N−4

) 1

N−2

y1.

3.2 First-period strategy

Consider a bidder with type θ who plans to bid as if his type were θ̃ > θ when all other N−1

bidders follow the strategy β1 (·).
10 Furthermore, suppose that all bidders expect to follow the

equilibrium strategy β∗2 (θ, y1) in the second auction, regardless of what happens in the first one

(sequential rationality). The bidder’s expected total utility at the beginning of the first round is

10The analysis is virtually identical for the case θ̃ < θ.
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EU1
(
θ̃, θ

)
= F1

(
θ̃
) [
θ − β1

(
θ̃
)]
+
∫ θ

θ̃
F2 (θ|y1) [θ − β

∗
2 (θ, y1)] f1 (y1) dy1 (6)

−Λθ

[
F1
(
θ̃
)
+
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

] [
1− F1

(
θ̃
)
−
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

]

where F1
(
θ̃
)
is the probability that Y1, the highest valuation among N − 1, is less than θ̃, and

F2 (θ|y1) and Λ are defined as before.

The first line on the right-hand-side of (6) is the sum of expected consumption utilities

in periods 1 and 2. The second line captures expected gain-loss utility. Indeed, F1
(
θ̃
)
+

∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1 is the sum of the probability with which a bidder of type θ expects to win

the first auction given that he pretends to be of type θ̃ and of his expectation, in the first round,

of the probability of winning in the second round given that he pretends to be of type θ̃ in the

first auction but expects to behave as his real type in the second one. Hence, in accordance with

the definition of SCPE in Section 2, a bidder’s reference point in the first round is given by his

overall probability of consumption.

Differentiating EU1
(
θ̃, θ; y1

)
with respect to θ̃ yields the following first-order condition:

0 = f1
(
θ̃
) [
θ − β1

(
θ̃
)]
− β′1

(
θ̃
)
F1
(
θ̃
)
− F2

(
θ|θ̃
) [
θ − β∗2

(
θ, θ̃

)]
f1
(
θ̃
)

−Λθ
[
f1
(
θ̃
)
− F2

(
θ|θ̃
)
f1
(
θ̃
)] [

1− F1
(
θ̃
)
−
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

]

−Λθ

[
F1
(
θ̃
)
+
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

] [
−f1

(
θ̃
)
+ F2

(
θ|θ̃
)
f1
(
θ̃
)]
.

Substituting θ = θ̃ and re-arranging results in the following differential equation

d

dθ
{β1 (θ)F1 (θ)} = f1 (θ) β

∗
2 (θ, θ)

together with the boundary condition that β1 (0) = 0. Solving the differential equation yields

β∗1 (θ) =

∫ θ

0
β∗2 (s, s) f1 (s) ds

F1 (θ)
. (7)

The first thing worth noticing is that the bidding function in (7) resembles the bidding

function in the classical reference-free model with interdependent values (see Milgrom andWeber,

2000 and Mezzetti, 2011). Furthermore, β∗1 (θ) depends on Λ only indirectly, through β
∗
2 (s, s).

Indeed, just like in the standard model with reference-free preferences, in the first round a bidder

chooses his optimal bid by conditioning on himself having the highest type. This is because a
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small change in his bid only matters when the bidder wins or is close to winning.11 When

conditioning on having the highest type, however, a bidder expects that if he were to lose the

current auction, he would win the next one for sure and this is why expected gain-loss utility

does not directly appear into the first-period bidding function. Finally, it is easy to check that

for Λ = 0 we get back to the risk-neutral benchmark:

βRN1 (θ) =

∫ θ

0
βRN2 (s) f1 (s) ds

F1 (θ)

where βRN2 (s) does not depend of the type of the winner of the first auction.

Let y1 = β−11 (p1). Then, the expected equilibrium price in the second auction conditional

on the price of the first auction is

E [p2|p1] = E [p2|β1 (y1)] = E
[
β∗2

(
Y
(N−1)
1 , y1

)
|Y

(N−1)
1 ≤ y1

]
=

∫ y1

0
β∗2 (θ, y1) f1 (θ) dθ

F1 (y1)
.

The following proposition delivers the first main result of the paper.

Proposition 1. (Afternoon Effect) If Λ > 0, then the price sequence in a two-round sequential

first-price auction is a supermartingale and the afternoon effect arises in equilibrium. That is,

p1 = β
∗
1 (y1) > E [p2|β

∗
1 (y1)] = E [p2|p1] .

The intuition behind Proposition 1 is that, just like in the reference-independent case, in

equilibrium bidders must be indifferent between winning in the first auction or in the second one.

Hence, in the first auction a bidder bids the expectation of the second-round price conditional

on himself having the highest type and being the price-setter. However, by conditioning his

first-period bid on him having the highest type, a bidder expects not to feel discouraged in the

second auction. And because the discouragement effect depresses bids in the second auction, the

expectation of the second-round price conditional on being the price-setter is higher than the

second-round expected price conditional on the first-round price. In essence, optimal equilibrium

behavior leads the current price setter to overestimate the bid of his highest opponent and hence

the next-round price. Example 2 illustrates the afternoon effect for the case of uniformly-

distributed types.

11If a bidder deviates from the symmetric equilibrium strategy by slightly overbidding, there are only two
possible consequences. First, if he was already going to win then he still wins, but pays a slightly higher price.
Second, his deviation might make him win the current round when he was otherwise going to lose. In the latter
case, however, it must be that the highest opposing type is so close that the bidder was almost certain to win in
the second round.
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Figure 2: E [p2|p1] − p1 as a function of y1 for three different values of Λ (0, 12 , 1) when N = 4
and θ is distributed uniformly on [0, 1]

Example 2. Suppose that θ
U
∼ [0, 1]. The first-round equilibrium bid and price are

β∗1 (θ) = (1− Λ)
(
N − 2

N

)
θ + Λ

(
2N − 4

2N − 3

)(
N − 1

N

)
θ

and

p1 = β
∗
1 (y1) = (1− Λ)

(
N − 2

N

)
y1 + Λ

(
2N − 4

2N − 3

)(
N − 1

N

)
y1.

The conditional second-round expected price is

E [p2|p1] = E [p2|β
∗
1 (y1)] = (1− Λ)

(
N − 2

N

)
y1 + Λ2

(
N − 2

2N − 3

)2
y1.

Hence,

E [p2|p1]− p1 = Λ

[
2
(
N − 2

2N − 3

)2
−
(
2N − 4

2N − 3

)(
N − 1

N

)]
y1

and

E [p2|p1] < p1 ⇔ 2
(
N − 2

2N − 3

)2
<

(
2N − 4

2N − 3

)(
N − 1

N

)
⇔ N2 − 3N + 3 > 0.

In Figure 2 I plot the difference E [p2|p1]− p1 as a function of y1 for three different values of

Λ when N = 4 and θ is distributed uniformly on [0, 1]: i) Λ = 0 (solid), ii) Λ = 1
2
(dashed) and

iii) Λ = 1 (dotted). Two effects are evident from the plot: 1) for a given value of y1, the higher

is Λ the stronger is the afternoon effect and 2) for a fixed strictly positive Λ, the higher is y1 the

stronger is the afternoon effect.

It is useful to compare the logic behind the afternoon effect in my model with the learning

effect that arises in common value-auctions with informational externalities. In the symmetric
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equilibrium of a common-value auction, a bidder conditions his estimate of the value of the

item (and hence his bid) on his strongest rival having a (weakly) lower signal than his. In

this case, since a bidder revise his estimate of the value of the good upward when losing the

first auction, the equilibrium price sequence drifts upward. Conversely, with the informational

externalities that arise in a private-value auction with expectations-based loss aversion, when

losing the first auction a bidder becomes more pessimistic about how likely he is to win the second

one (compared to his first-round expectations); this creates a discouragement effect that pushes

bidders to behave less aggressively and, in turn, generates a declining price path in equilibrium.

4 Second-Price Auctions

In this section I assume that two identical items are sold using a sequence of second-price

sealed-bid auctions. I continue to focus on symmetric strategies (b1, b2) that are strictly increas-

ing and to assume that the winning bid of the first round is publicly disclosed by the seller prior

to the second one.12 I begin by analyzing the bidder’s problem in the second round.

4.1 Second-period strategy

Fixing the bidding strategies of the other players, let Φ (b2|y1) denote the probability with

which a bidder of type θ expects to win with a bid equal to b2 conditional on y1 being the type

of the first-round winner. The payment he has to make if he wins the auction is given by the

second largest bid and follows the distribution Φ (·|y1). Then, the bidder’s expected utility is

EU2 (b2, θ; y1) =
∫ b2

0
(θ − p) dΦ (p|y1)− θΛΦ (b2|y1) [1− Φ (b2|y1)] (8)

Differentiating (8) with respect to b2 yields the first-order condition:

θ − b2 − θΛ [1− 2Φ (b2|y1)] = 0.

In a symmetric equilibrium, Φ (b2|y1) = F2 (θ|y1) and hence we obtain:

b∗2 (θ, y1) = θ

{
1− Λ

[
1− 2

F (θ)N−2

F (y1)
N−2

]}
.

While it is well known that without loss aversion (Λ = 0) in a symmetric equilibrium a bidder

submits a bid equal to his own valuation, the above expression shows that this is not the case

12Notice that in a second-price auction the winning bid is not the price the winner actually ends up paying.
This an important point because if the seller were to reveal the winning price of the first auction, then the bidders
would infer the type of the highest remaining bidder and a symmetric equilibrium in monotone strategies would
fail to exist.
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with reference-dependent preferences. Indeed, we have

∂b∗2 (θ, y1)

∂Λ
=

[
2
F (θ)N−2

F (y1)
N−2 − 1

]
θ > 0⇔

F (θ)

F (y1)
>

(
1

2

) 1

N−2

.

Therefore, higher (lower) types bid higher (lower) than their valuation. Furthermore, as for

first-price auctions, we have the following result.

Lemma 2. (Discouragement Effect II) If Λ > 0, then
∂b∗
2
(θ,y1)

∂y
1

< 0 ∀θ.

The intuition is like in Lemma 1: the higher the type of the winner in the first auction, the

less likely a remaining bidder is to win in the second one and, therefore, he bids less aggressively.

4.2 First-period strategy

As shown by Lange and Ratan (2010) for the case of single-unit auctions, if bidders are not

loss-averse over money, first-price and second-price auctions are revenue equivalent. The reason

is that, when bidders are risk-neutral over money expected gain-loss utility depends only on the

probability with which a bidder expects to win the auction and this is the same in both formats.

It is easy to see that the same intuition applies also to multi-unit auctions. Hence, we can use

the revenue equivalence theorem to derive the first-round equilibrium bidding function.

In the first auction a type-θ bidder wins with probability F1 (θ) and, if he wins, the price he

pays is b∗1 (y1), the highest among his rivals’ bids. Thus, his expected first-round payment is

F1 (θ)
∫ θ

0
b∗1 (y1) f1 (y1|θ) dy1.

In a first-price auction, instead, the winning bidder pays his own bid and therefore his

expected payment in the first round is:

F1 (θ) β
∗
1 (θ) = F1 (θ)




∫ θ

0
β∗2 (s, s) f1 (s) ds

F1 (θ)




where the equality follows from (7). From revenue equivalence it follows that

∫ θ

0
b∗1 (y1) f1 (y1|θ) dy1 =

∫ θ

0
β∗2 (s, s) f1 (s) ds

F1 (θ)

and differentiating both sides of the equality with respect to θ yields

b∗1 (θ) = β
∗
2 (θ, θ) .
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Therefore, the equilibrium bid in the first of two sequential second-price auctions is equal

to the second round’s bid of two sequential first-price auction where, in the latter, the bidder

conditions his bid on himself having the highest type. Finally, notice that the afternoon effect

arises in equilibrium since, by revenue equivalence, in each round the seller’s expected revenue

from a second-price auction is equal to the expected revenue from a first-price auction.

5 Sequential vs. Simultaneous Auctions

In this section I focus on simultaneous auctions; that is, auctions in which all the items are

allocated after only one round of bidding. I derive the equilibrium bidding strategy in a two-unit

discriminatory (pay-your-bid) auction. In a discriminatory auction, bidders submit sealed bids

and the highest bidders each receive one object and each pays his own bid. This procedure

generalizes the single-object first-price auction, and is the procedure most commonly used for

the sale of U.S. Treasury bills.13 As before, I continue to look for an equilibrium in symmetric

monotone strategies.

Consider a bidder with type θ who plans to bid as if his type were θ̃ 6= θ when all other N−1

bidders follow the strategy β (·). His expected utility is

EU
(
θ, θ̃

)
= F2

(
θ̃
) [
θ − β

(
θ̃
)]
− ΛθF2

(
θ̃
) [
1− F2

(
θ̃
)]

(9)

where F2
(
θ̃
)
≡ F1

(
θ̃
)
+ (N − 1)

[
1− F

(
θ̃
)]
F
(
θ̃
)N−2

is the probability that Y2, the second

highest valuation among N − 1, is less than θ̃ and Λ is defined as before. Notice that it is not

necessary for a bidder to outbid all his competitors in order to be awarded an object; it is enough

to outbid N − 2 of them.

Differentiating (9) with respect to θ̃ yields the first-order condition:

0 = f2
(
θ̃
) [
θ − β

(
θ̃
)]
− β′

(
θ̃
)
F2
(
θ̃
)
− Λθf2

(
θ̃
) [
1− 2F2

(
θ̃
)]
.

Then, substituting θ = θ̃ into the FOC and re-arranging results in the following differential

equation
d

dθ
{β (θ)F2 (θ)} = f2 (θ) θ {1− Λ [1− 2F2 (θ)]}

13An alternative procedure is the uniform-price auction. In a uniform-price auction, the bidders submit sealed
bids and the winning bidders all pay the same price, equal to the highest rejected bid. This procedure generalizes
the single-object second-price auction. The analysis for the uniform-price auction is virtually identical and hence
omitted.
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together with the boundary condition that β (0) = 0. Solving the differential equation yields

β∗ (θ) =

∫ θ

0
s {1− Λ [1− 2F2 (s)]} f2 (s) ds

F2 (θ)
.

Again, the equilibrium bidding function can be re-written as a convex combination of the

risk-neutral bid and a term that depends on the bidder’s expectations (reference point):

β∗ (θ) = (1− Λ)

∫ θ

0
sf2 (s) ds

F2 (θ)
+ Λ

∫ θ

0
2sF2 (s) f2 (s) ds

F2 (θ)
.

Now I compare the bidders’ equilibrium utility and the seller’s expected revenue under simul-

taneous and sequential auctions. I do the comparison for first-price (sequential) auctions and

discriminatory (simultaneous) auctions, but the same results apply for second-price (sequential)

and uniform-price (simultaneous) auctions by revenue equivalence.

Let V sim (θ) and V seq (θ) denote a bidder’s expected utility in equilibrium in a simultaneous

and sequential auction, respectively. With independent private values and under risk neutrality

(Λ = 0), it is well known that a bidder’s equilibrium expected utility in a simultaneous auction

is the same as in a sequential auction. Under loss aversion, instead, we have:

Proposition 2. (Bidder-payoff Equivalence) If Λ > 0, then V seq (θ) ≥ V sim (θ) if and only if

∫ θ

0
F2 (s) sf2 (s) ds ≥

∫ θ

0

∫ x

0
F2 (s|x) sf2 (s|x) dsf1 (x) dx+

∫ θ

θ

∫ θ

0
F2 (s|x) sf2 (s|x) dsf1 (x) dx.

It is easy to see that the inequality in Proposition 2 cannot bind for every type unless

F2 (s) = F2 (s|x) implying that, generically, sequential auctions and simultaneous ones are not

bidder-payoff equivalent. Notice also that a bidder’s ex-ante probability of obtaining an item

is the same under both formats and this implies, trivially, that a bidder’s expected gain-loss

utility is also the same under both formats. Hence, the difference between V seq (θ) and V sim (θ)

is simply given by the difference in the expected payments. Indeed, recall that with risk-neutral

bidders the condition in Proposition 2 is

F2 (θ)

[∫ θ
0 sf2 (s) ds

F2 (θ)

]
≥ F1 (θ)

[∫ θ
0

∫ x
0 sf2 (s|x) dsf1 (x) dx

F1 (θ)

]
+
∫ θ

θ

∫ θ

0

sf2 (s|x) ds

F2 (θ|x)
F2 (θ|x) f1 (x) dx

which always binds since both sides are simply equal to Pr [Y2 ≤ θ] × E [Y2|Y2 ≤ θ]. With

reference-dependent preferences, however, the expected payments in the two formats depend

also on the bidder’s beliefs about how likely he is to win (represented by the additional cdf term

under the integral) since these determine his reference point.

Figure 3 shows how V seq (θ)− V sim (θ) varies with θ for five different values of N (3, 4, 5, 10
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Figure 3: V seq (θ)− V sim (θ) for N = 3, 4, 5, 10 and 20 with θ distributed uniformly on [0, 1].

and 20) when the bidders’ types are uniformly distributed on [0, 1] (a darker color corresponds

to a higher value for N). For a given N there exists a cutoff type θ∗ who is indifferent between

the two formats. Furthermore, the value of the cutoff θ∗ is increasing in N .

According to Figure 3, low-type bidders prefer simultaneous auctions whereas high-type

ones prefer sequential ones. The intuition for these opposing preferences is reminiscent of the

result in Köszegi and Rabin (2009) about a loss-averse decision maker’s dislike of interim partial

information because it exposes her to possibly unnecessary bad news due to fluctuations in

beliefs. More precisely, Köszegi and Rabin (2009) consider an example with two equiprobable

possible consumption levels, c ∈ {0, 1} and an expectations-based loss-averse agent who has

access to a signal ς ∈ {0, 1}, where the signal is accurate (ς = c) with probability w > 1
2
. They

show that unless w = 1, the agent prefers not to receive the signal. In an auction, however,

a bidder’s expected consumption depends on his type and higher types are more likely to win.

Hence, during the course of a sequential auction higher types are more likely to receive good

news (and be less discouraged) whereas lower types are more likely to receive bad news (and be

more discouraged). Therefore, bidders with higher types prefer sequential auctions while bidders

with lower types prefer simultaneous ones.

Next I compare the seller’s expected revenue between the two formats. It is now convenient

to take the point of view of the seller and consider the order statistics of the values of all N

bidders. Let Z(N)1 ≡ Z1 be the highest of N values, Z(N)2 ≡ Z2 be the second-highest and so on.

Also, letM1 andM2 be the distributions of Z1 and Z2 respectively, with corresponding densities

m1 and m2. Under risk neutrality (Λ = 0), the two auction formats are revenue-equivalent, both

yielding an expected revenue equal to 2E [Z3] (Milgrom and Weber, 2000). Under loss aversion,

instead, we have:
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Proposition 3. (Revenue Equivalence) If Λ > 0, then E [Rsim] ≥ E [Rseq] if and only if

∫ θ

0

∫ θ

0

F2 (s) sf2 (s)

F2 (θ)
ds [m1 (θ) +m2 (θ)] dθ ≥

∫ θ

0

∫ θ

0

∫ x

0

F2 (s|x) sf2 (s|x)

F1 (θ)
dsf1 (x) dxm1 (θ) dθ +

∫ θ

0

∫ x

0

∫ θ

0

F2 (s|x) sf2 (s|x)

F2 (θ|x)
ds
f1 (θ)

F1 (x)
dθm1 (x) dx.

As for the previous result about bidder-payoff equivalence, it is easy to see that the condition

in Proposition 3 cannot bind for every N unless F2 (s) = F2 (s|x), in which case both sides reduce

to 2E [Z3]. Therefore, which format yields a higher revenue depends on the number of bidders.

Sequential auctions yield a higher revenue when the number of bidders is relatively high. For

example, straightforward calculations show that with two objects if θ U
∼ [0, 1], simultaneous

auctions yield a higher expected revenue than sequential ones for N = 3 whereas for N = 4

the two formats yield the same expected revenue. For N ≥ 5 sequential auctions yield a higher

expected revenue than simultaneous ones.

Gathering together the results from this section and the previous ones, we obtain the following

corollary:

Corollary 1. (Comparison of Different Auction Formats) If Λ > 0, revenue equivalence holds

within formats but not between. That is, sequential first-price auctions are revenue-equivalent to

sequential second-price auctions and discriminatory auctions are revenue-equivalent to uniform-

price auctions. However, sequential first-price auctions are not revenue-equivalent to discrimi-

natory auctions and sequential-second price auctions are not revenue-equivalent to uniform-price

auctions.

Recall that in equilibrium a bidder’s expected probability of consumption and expected gain-

loss utility are the same under all four types of auctions considered in this paper. Thus, the

non-equivalence result in Corollary 1 is due to the effect that sequential (partial) information

revelation has on the expected payments of a loss-averse bidder.

6 Sequential Auctions without Announcements of the

Winning Bid

In the classical reference-free model with independent private values, the optimal bidding

strategy does not depend on the (public) history of the winning bids.14 However, this is no

longer the case with expectations-based reference-dependent preferences. Hence, some questions

naturally arise: Is equilibrium bidding different if the seller commits to not revealing the history

14This also implies, trivially, that the equilibrium is exactly the same with and without price announcement.
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of winning bids? Does the rationale for the afternoon effect with expectations-based reference-

dependent preferences rely on the history of winning bids being publicly available? And, finally,

would the seller be better off by not disclosing the history of winning bids? I answer these

questions in the context of sequential first-price auctions.

6.1 Second-period strategy

Consider a bidder of type θ who plans to bid as if his type were θ̃ 6= θ when all other N − 2

remaining bidders follow the strategy β2. Let σ be the type that the bidder pretended to be

in the first auction. If he lost the first auction, he knows that y1 > σ. Then his expected

second-round payoff is

EU2
(
θ̃, θ;σ

)
= ϕ (σ)F

(
θ̃
)N−2 [

θ − β2
(
θ̃, σ

)]
− Λθϕ (σ)F

(
θ̃
)N−2 [

1− ϕ (σ)F
(
θ̃
)N−2]

(10)

where ϕ (σ) = (N−1)[1−F (σ)]

1−F (σ)N−1
. Thus, ϕ (σ)F

(
θ̃
)N−2

denotes the probability that the second

highest of N − 1 draws is below θ̃ given that the highest is above σ; or, in other words, the

probability that a bidder who pretends to be of type θ̃ in the second auction wins this auction

given that he pretended to be of type σ in the first auction and lost it.15 Notice that, crucially,

the second-round bid might, in principle, depend also on σ.

As first conjectured by Milgrom and Weber (2000) and later shown by Mezzetti et al. (2008),

with no bid announcement and affiliated values it is optimal for a bidder of type θ to behave

according to his type in the second auction if and only if he behaved as type σ ≤ θ in the first

auction. By contrast, if a bidder of type θ behaves as if his type were higher than θ in the first

auction, he might want to over-bid in the second auction as well. This happens because, as

Milgrom and Weber (2000) pointed out, “a bidder might choose a bid a bit higher in the first

round in order to have a better estimate of the winning bid, should he lose”. Recall that, with

interdependent values, a better estimate of the winning bid is also a better estimate of the value

of the object for sale. In our case, however, values are private and independent; therefore, it is

optimal for a bidder in the second auction to bid according to his true type, no matter what he

did in the first one.
15Technically, we have that

(N − 1) [1− F (σ)]F
(
θ̃
)N−2

1− F (σ)
N−1

=

∫ θ
σ

∫ θ̃
0
h (y1, y2) dy2dy1

∫ θ
σ

∫ ỹ1
0
h (ỹ1, ỹ2) dỹ2dỹ1

where h (y1, y2) = (N − 1) (N − 2) f (y1) f (y2)F (y2)
N−3 is the joint density of Y1 and Y2.
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Differentiating EU2
(
θ̃, θ;σ

)
with respect to θ̃ yields the first-order condition:

0 = θ (N − 2)F
(
θ̃
)N−3

f
(
θ̃
)
− θ (N − 2)F

(
θ̃
)N−3

f
(
θ̃
)
Λ
[
1− 2ϕ (σ)F

(
θ̃
)N−2]

−
∂β2

(
θ̃, σ

)

∂θ̃
F
(
θ̃
)N−2

− β2
(
θ̃, σ

)
(N − 2)F

(
θ̃
)N−3

f
(
θ̃
)
.

Hence, ϕ (σ) enters the FOC only through the reference point, but it does not affect the

“direct” part of a bidder’s payoff and since Λ ≤ 1 the “direct” part carries a higher weight than

the reference-dependent part. Substituting θ = θ̃ into the FOC and re-arranging results in the

following differential equation

∂

∂θ

{
β2 (θ, σ)F (θ)

N−2
}
= θ

{
1− Λ

[
1− 2ϕ (σ)F (θ)N−2

]}
(N − 2)F (θ)N−3 f (θ)

together with the boundary condition that β2 (0, σ) = 0. Thus, the equilibrium bidding function

is

β̂2 (θ, σ) =

∫ θ

0
x

{
1− Λ

[
1− 2(N−1)(1−F (σ))F (x)N−2

1−F (σ)N−1

]}
dF (x)N−2

F (θ)N−2
.

The equilibrium bidding strategy is a function of the type that the bidder mimicked in the

previous auction since, if the seller does not publicly reveal the first-round winning bid, a bidder

who lost the first auction must use his own bid from the previous round in order to infer where he

stands in the ranking of the remaining bidders’ values. Hence, the equilibrium strategy depends

on the (private) history of the game and, as the following lemma shows, a slightly different form

of discouragement effect arises in equilibrium.

Lemma 3. (Discouragement Effect III) If Λ > 0, then ∂β̂
2
(θ,σ)
∂σ

< 0 ∀θ.

The intuition for this result slightly differs from the one behind Lemmas 1 and 2. When

the winning bid from the first auction is not publicly revealed, a bidder can only use his own

first-round bid to formulate an expectation about how likely he is to win in the second one.

The higher the type he pretended to be in the first auction, the less likely he feels to win in

the current one since not winning the first auction, given that he pretended to have a high

type, is bad news about how fierce competition is. This, in turn, implies that the higher is the

type a bidder pretended to be in the first auction, the less aggressive his bidding will be in the

second auction. Recall that when the seller announces the winning bid after the first auction,

the equilibrium bid in the second auction is:

β∗2 (θ, y1) =

∫ θ

0
x

{
1− Λ

[
1− 2

(
F (x)
F (y1)

)N−2]}
dF (x)N−2

F (θ)N−2
.
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Comparing the second-round equilibrium strategies with and without bid announcement yield

the following result.

Lemma 4. (Effect of information I) Equilibrium bidding in the second auction is more aggressive

when the seller does not reveal the winning bid of the first auction if and only if

(N − 1) [1− F (σ)]

1− F (σ)N−1
>

1

F (y1)
N−2 . (11)

First, notice that condition (11) can hold only if y1 > σ. The term on the left-hand-side of

(11) represents what a bidder learns from losing in the first round about how fierce competition

is in the second round: he knows that the first-round winner’s type is above σ. Similarly, the

term on the right-hand-side of (11) represents what a bidder learns from losing in the first round

about how fierce competition is in the second round: he knows that all remaining bidders’ types

are below y1. Hence, with no bid announcement, bidders are asymmetrically informed about the

intensity of competition in the second round whereas with bid announcement they all have the

same information. It is easy to see that the right-hand-side of condition (11) is decreasing in y1
implying that, for a fixed σ, the higher is the type of the winner in the first auction, the more

aggressive second-round bidding behavior is when the winning bid is not revealed. Similarly,

the left-hand-side of condition (11) is decreasing in σ implying that, for a fixed y1 a bidder who

pretended to be a low type in the first auction behaves more aggressively in the second one when

the winning bid is not revealed. Of course, as I am about to show next, in equilibrium a bidder

will behave according to his type in both auctions so that σ = θ.

6.2 First-period strategy

Consider a bidder of type θ who plans to bid as if his type were θ̃ > θ when all other

N −1 bidders follow the strategy β1.
16 Suppose that all bidders expect to follow the equilibrium

strategy β̂2 in the second auction. Then, the bidder will solve the following problem:

EU1
(
θ̃, θ

)
= F1

(
θ̃
) [
θ − β1

(
θ̃
)]
+
∫ θ

θ̃
F2 (θ|y1)

[
θ − β̂2

(
θ, θ̃

)]
f1 (y1) dy1

−Λθ

[
F1
(
θ̃
)
+
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

] [
1− F1

(
θ̃
)
−
∫ θ

θ̃
F2 (θ|y1) f1 (y1) dy1

]

16The analysis is virtually identical for the case θ̃ < θ.
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Differentiating EU1
(
θ̃, θ

)
with respect to θ̃ yields the following first-order-condition:

0 = f1
(
θ̃
) [
θ − β1

(
θ̃
)]
− β

′

1

(
θ̃
)
F1
(
θ̃
)

− (N − 1) f
(
θ̃
)
F (θ)N−2

[
θ − β2

(
θ, θ̃

)]
−
∂β2

(
θ, θ̃

)

∂θ̃
(N − 1)

[
1− F

(
θ̃
)]
F (θ)N−2 .

Substituting θ = θ̃ and re-arranging results in the following differential equation

f1 (θ) β2 (θ, θ)− (N − 1) [1− F (θ)]F (θ)
N−2

∂β2

(
θ, θ̃

)

∂θ̃

∣∣∣∣∣∣̃
θ=θ

=
d

dθ
{β1 (θ)F1 (θ)} (12)

together with the boundary condition that β1 (0) = 0. Notice that, crucially,
∂β

2(θ,̃θ)
∂θ̃

6= 0. That

is, by mimicking another type in the first auction, a bidder is not just affecting the probability of

getting to the second auction– like in the classical reference-free model – but he is also affecting

his own future bid in the second auction. This occurs because, with no bid announcement

between auctions, a player’s bid in the current round affects his reference point in the next one.

Solving the differential equation in (12) yields

β̂1 (θ) =

∫ θ

0
β̂2 (s, s) f1 (s) ds

F1 (θ)
−

∫ θ

0

{
∂β̂

2(s,̃θ)
∂θ̃

∣∣∣∣̃
θ=s

1−F (s)
f(s)

}
f1 (s) ds

F1 (θ)
. (13)

Notice that

∂β̂2

(
θ, θ̃

)

∂θ̃
= −

2 (N − 1) Λf
(
θ̃
) [
1− F2

(
θ̃
)] ∫ θ

0
xF (x)N−2 dF (x)N−2

[
1− F

(
θ̃
)N−1]2

F (θ)N−2
< 0

where F2
(
θ̃
)
= F

(
θ̃
)N−1

+ (N − 1)
[
1− F

(
θ̃
)]
F
(
θ̃
)N−2

.

The following lemma shows that, compared to the case analyzed in Section 3, bidders behave

less aggressively in the first auction when the seller commits to not revealing the winning bid.

Lemma 5. (Effect of information II) Equilibrium bidding in the first round is more aggressive

when the seller commits to publicly reveal the winning bid prior to the second round; that is,

β∗1 (θ)− β̂1 (θ) ≥ 0 ∀θ and the inequality is strict if θ < θ.

The intuition behind Lemma 5 is the following. When anticipating that the seller will not

reveal the winning bid of the first auction prior to the second one, a bidder knows that his bid

in the first auction – in case he does not win– will determine his reference point in the second

one. A high bid in the first auction, hence, implies also a high reference point in the second

auction. Having a high reference point in the second auction, however, exposes the bidder to
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a greater disappointment in case he were to lose the second auction as well. Therefore, if the

seller commits to not revealing the first-round winning price, bidders bid less aggressively in the

first auction. Furthermore, the seller’s total expected revenue is higher when she commits to

revealing the first round’s winning bid.

Proposition 4. (Revenue) The seller’s expected revenue is higher when she commits to disclose

the winning bid from the first auction prior to the second one.

From an ex-ante perspective, bidders going into the second round without knowing the type of

the winner in the first round are exposed to much more uncertainty about competition compared

to bidders who know the type of the first-round winner. Indeed, in the latter case every bidder

going into the second auction knows that all of his competitors’ types are below a certain cutoff

type while in the former a bidder only knows that the winner has a higher type than his. An

expectations-based loss-averse bidder dislikes uncertainty in his consumption outcomes because

he dislikes the possibility of a resulting loss more than he likes the possibility of a resulting

gain (so he is “first-order” risk averse; see Köszegi and Rabin, 2007). As auctions without bid

announcements expose bidders to greater risk, they react by bidding less aggressively. Therefore,

compared to the analysis in Section 3, if the seller does not reveal the winning bid of the first

auction prior to the second one, her expected revenue decreases.17

Mezzetti et al. (2008) show that, under the assumption of affiliated private values, the seller’s

expected revenue in a sequential auction with winning-bid announcement is the same as in a

sequential auction with no bid announcement, and is lower than in a simultaneous auction. By

contrast, if bidders have independent private values and expectations-based reference-dependent

preferences, sequential auctions with winning-bid announcement always yield a higher revenue

than sequential auctions with no bid announcement (Proposition 4) and might yield a higher

revenue than simultaneous auctions (Proposition 3).

The following proposition shows that even with no bid announcement, however, the afternoon

effect still arises in equilibrium.

Proposition 5. (Afternoon Effect II) If Λ > 0, then the price sequence in a two-round first-

price auction without bid announcement is a supermartingale and the afternoon effect arises in

equilibrium. That is,

p1 = β̂1 (y1) > E
[
p2|β̂1 (y1)

]
= E [p2|p1] .

Like in Section 3 in equilibrium prices decline because of the discouragement effect, but the

intuition is slightly different. When the seller commits to not disclosing the winning bid, in

the first round bidders are willing to pay a positive premium – equal to the second term on

17This result is akin to the famous “Linkage Principle” of Milgrom and Weber (1982): auctioneers have an
incentive to pre-commit to revealing all available information.

25



the right-hand-side of (13) – in order to avoid having to go to the second round and being

discouraged.

Summing up, with expectations-based reference-dependent preferences the equilibrium bid-

ding strategy changes depending on whether the seller commits to publicly reveal the winning

bids from the previous rounds. With winning-bid announcement first-round bids are always

higher whereas bids in the second round can be higher or lower than without bid announcement.

Furthermore, the seller’s expected revenue is higher when she commits to disclose the previous

round’s winning bid. In either case, however, equilibrium prices follow a declining path.

7 Conclusions

In this paper I have proposed a novel, preference-based explanation for the afternoon ef-

fect observed in sequential auctions by positing that bidders are expectations-based loss-averse.

My explanation based on loss aversion has the advantage of applying very generally, without

requiring any additional modification of the auction environment. This is important since, as

the evidence suggests, declining prices have been found in many different settings, even with no

option to buy additional units and with identical objects.

Expectations-based reference-dependent preferences create an informational externality, the

discouragement effect, that renders the equilibrium strategy history-dependent: the higher is

the type of the winner in the first auction, the less aggressively the remaining bidders will bid

in the second one. The effect of this informational externality on the second-round bids is the

opposite of the one that arises in models with common values where the higher is the signal of

the first-round winner, the higher is the estimated value of the object for all remaining bidders

who in turn bid more aggressively. Therefore, by looking at the distribution of bids in the

second auction, one can use the discouragement effect to empirically test the implications of loss

aversion against the implications of the classical model with either private values (no history

dependence) or common values (the higher the winning price in the first auction, the more

aggressively bidders behave in the second auction).

In equilibrium a bidder must be indifferent between winning in the first auction or in the

second one. Hence, in the first auction he chooses the optimal bid conditional on having the

highest type and being the price-setter. By conditioning his bid in the first auction on having

the highest type, however, a bidder expects not to feel discouraged in the second auction. Thus,

in equilibrium bidders bid more aggressively in the first auction and prices decline.

In addition to rationalizing the afternoon effect, loss aversion delivers new testable impli-

cations that are of independent interest. For example, when bidders are expectations-based

loss-averse simultaneous and sequential auctions are not revenue-equivalent nor bidder-payoff

equivalent. Furthermore, in sequential auctions the seller always achieves a higher expected
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revenue by committing to reveal the previous round’s winning bid.

Despite being able to explain the afternoon effect and to generate new testable predictions,

there are several dimensions along which the model could be improved. First, I have departed

from the original model of expectations-based reference-dependent preferences of Köszegi and

Rabin (2006) by assuming that bidders are loss-averse only over consumption, but not over

money. Admittedly restrictive, however, this assumption considerably simplifies the analysis.

For example, with loss aversion over money first-price and second-price auctions are not revenue-

equivalent anymore and the analysis of the second-price auction becomes much more intricate.

Furthermore, in some of the auctions discussed in the Introduction the goods up for sale are

not sought after by the bidders for their consumption value, but rather for commercial purposes

(i.e., a production or a resale motive). In this case what bidders care about is the monetary

value of the goods and a model of reference-dependent preferences where gains and losses are

evaluated with respect to the overall gains from trade (θ − p) might be more appropriate.

There are several interesting directions for future research. One would be to study sequential

dynamic (open) auctions, like English and Dutch auctions. If bidders are risk-neutral and have

independent private values, it is well-known that the English (resp. Dutch) auction is strate-

gically equivalent to the second-price (resp. first-price) sealed-bid auction. This equivalence,

however, is unlikely to hold when bidders are expectations-based loss-averse.18

Another interesting extension would be to analyze a model where loss-averse bidders have

interdependent values. Mezzetti (2011) showed that the informational externality arising from

the interdependence between the bidders’ values generates an increasing price sequence. The

current paper argues that expectations-based loss aversion also creates an informational exter-

nality which, however, pushes prices to decline. Which effect will dominate would likely depend

on the strength of loss aversion as well as on how sensitive a bidder’s value is to his rivals’ signals.

18See Ehrhart and Ott (2014) for a first analysis of single-object dynamic auctions with expectations-based
loss-averse bidders.
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A Proofs

Proof of Lemma 1: We have

∂β∗2 (θ, y1)

∂y1
= −

2Λ (N − 2)2 F (y1)
N−3

f (y1)
∫ θ

0
xF (x)2N−5 f (x) dx

[F (y1)F (θ)]
2(N−2)

< 0. �

Proof of Proposition 1: We have

β∗1 (y1) =

∫ y1

0
β∗2 (θ, θ) f1 (θ) dθ

F1 (y1)

>

∫ y1

0
β∗2 (θ, y1) f1 (θ) dθ

F1 (y1)

= E [p2|p1]

where the inequality follows from Lemma 1. �

Proof of Lemma 2: We have

∂b∗2 (θ, y1)

∂y1
= −

2Λ (N − 2) θF (θ)N−2

F (y1)
N−1

< 0. �

Proof of Proposition 2: We have that

V sim (θ) = F2 (θ) [θ − β
∗ (θ)]− ΛθF2 (θ) [1− F2 (θ)]

and

V seq (θ) = F1 (θ) [θ − β
∗
1 (θ)] +

∫ θ

θ
F2 (θ|y1) [θ − β

∗
2 (θ, y1)] f1 (y1) dy1

−Λθ

[
F1 (θ) +

∫ θ

θ
F2 (θ|y1) f1 (y1) dy1

] [
1− F1 (θ)−

∫ θ

θ
F2 (θ|y1) f1 (y1) dy1

]
.

Hence,

V seq (θ)− V sim (θ) = F2 (θ) β
∗ (θ)− F1 (θ) β

∗
1 (θ)−

∫ θ

θ
F2 (θ|y1) β

∗
2 (θ, y1) f1 (y1) dy1

= (1− Λ)
∫ θ

0
sf2 (s) ds+ Λ

∫ θ

0
2F2 (s) sf2 (s) ds

− (1− Λ)
∫ θ

0

∫ x

0
sf2 (s|x) dsf1 (x) dx− Λ

∫ θ

0

∫ x

0
2F2 (s|x) sf2 (s|x) dsf1 (x) dx

− (1− Λ)
∫ θ

θ

∫ θ

0
sf2 (s|x) dsf1 (x) dx− Λ

∫ θ

θ

∫ θ

0
2F2 (s|x) sf2 (s|x) dsf1 (x) dx.
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Notice that

∫ θ

0
sf2 (s) ds =

∫ θ

0

∫ x

0
sf2 (s|x) dsf1 (x) dx+

∫ θ

θ

∫ θ

0
sf2 (s|x) dsf1 (x) dx

implying that
V seq (θ)− V sim (θ) ≥ 0 ⇔

∫ θ

0
F2 (s) sf 2 (s) ds ≥

∫ θ

0

∫ x

0
F2 (s|x) sf 2 (s|x) dsf 1 (x) dx+

∫ θ

θ

∫ θ

0
F2 (s|x) sf2 (s|x) dsf1 (x) dx

and this concludes the proof. �

Proof of Proposition 3: We have that

E [Rseq] =
∫ θ

0
β∗1 (θ)m1 (θ) dθ +

∫ θ

0

∫ x

0

β∗2 (θ, x) f1 (θ)

F1 (x)
dθm1 (x) dx

and

E

[
Rsim

]
=
∫ θ

0
β∗ (θ) [m1 (θ) +m2 (θ)] dθ.

Hence,

E [Rsim]− E [Rseq] =

∫ θ

0




(1− Λ)
∫ θ

0
sf2 (s) ds+ Λ

∫ θ

0
2F2 (s) sf2 (s) ds

F2 (θ)


 [m1 (θ) +m2 (θ)] dθ

−
∫ θ

0




(1− Λ)
∫ θ

0

∫ x

0
sf 2 (s|x) dsf 1 (x) dx+ Λ

∫ θ

0

∫ x

0
2F 2 (s|x) sf 2 (s|x) dxf 1 (x) dx

F1 (θ)


m1 (θ) dθ

−
∫ θ

0




(1− Λ)
∫ x

0

∫ θ

0

sf2(s|x)
F2(θ|x)

dsf 1 (θ) dθ + Λ
∫ x

0

∫ θ

0
2F 2 (s|x)

sf2(s|x)
F2(θ|x)

dsf 1 (θ) dθ

F1 (x)


m1 (x) dx.

Notice that

∫ θ

0

∫ θ

0

sf2 (s)

F2 (θ)
ds [m1 (θ) +m2 (θ)] dθ =

∫ θ

0

∫ θ

0

∫ x

0

sf2 (s|x)

F1 (θ)
dsf1 (x) dxm1 (θ) dθ

+
∫ θ

0

∫ x

0

∫ θ

0

sf2 (s|x)

F2 (θ|x)
ds
f1 (θ)

F1 (x)
dθm1 (x) dx

implying that
E

[
Rsim

]
− E [Rseq] ≥ 0 ⇔
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∫ θ

0

∫ θ

0

F2 (s) sf2 (s)

F2 (θ)
ds [m1 (θ) +m2 (θ)] dθ ≥

∫ θ

0

∫ θ

0

∫ x

0

F2 (s|x) sf2 (s|x)

F1 (θ)
dsf1 (x) dxm1 (θ) dθ

+
∫ θ

0

∫ x

0

∫ θ

0

F2 (s|x) sf2 (s|x)

F2 (θ|x)
ds
f1 (θ)

F1 (x)
dθm1 (x) dx

and this concludes the proof. �

Proof of Lemma 3: We have

∂β̂2 (θ, σ)

∂σ
= −

2 (N − 1) Λf (σ) [1− F2 (σ)]
∫ θ

0
xF (x)N−2 dF (x)N−2

[
1− F (σ)N−1

]2
F (θ)N−2

< 0

where F2 (σ) = F (σ)
N−1 + (N − 1) [1− F (σ)]F (σ)N−2 . �

Proof of Lemma 4: Immediate by inspection. �

Proof of Lemma 5: We have

β∗1 (θ)− β̂1 (θ) =

∫ θ

0

[
β∗2 (s, s)− β̂2 (s, s) +

∂β̂
2(s,̃θ)
∂θ̃

∣∣∣∣̃
θ=s

1−F (s)
f(s)

]
f1 (s) ds

F1 (θ)
.

A sufficient condition for the above expression to be non-negative is

β∗2 (s, s)− β̂2 (s, s) ≥ −
∂β̂2

(
s, θ̃

)

∂θ̃

∣∣∣∣∣∣̃
θ=s

1− F (s)

f (s)

⇔
2Λ

{
1

F (s)N−2
− (N−1)[1−F (s)]

1−F (s)N−1

} ∫ s

0
xF (x)N−2 dF (x)N−2

F (s)N−2
≥

2Λ (N − 1) [1− F (s)] [1− F2 (s)]
∫ s

0
xF (x)N−2 dF (x)N−2

[
1− F (s)N−1

]2
F (s)N−2

⇔
1

F (s)N−2
−
(N − 1) [1− F (s)]

1− F (s)N−1
≥
(N − 1) [1− F (s)] [1− F2 (s)][

1− F (s)N−1
]2 .

⇔
1− F2 (s)

(N − 1) [1− F (s)]F (s)N−2
≥

1− F2 (s)

1− F (s)N−1

⇔ 1 ≥ F2 (s)

and this concludes the proof. �

Proof of Proposition 4: We know from Lemma 5 that first-round bidding is more aggressive
with price announcement and this implies, trivially, that the first-round expected revenue is
higher with price announcement. Hence, it suffices to show that the second-round expected
revenue is also higher with price announcement; that is:
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∫ θ

0

∫ y1

0

β∗2 (θ, y1) f1 (θ) dθ

F1 (y1)
m1 (y1) dy1 ≥

∫ θ

0
β̂2 (θ, θ)m2 (θ) dθ.

Substituting and re-arranging yields:

(1− Λ)
∫ θ

0

∫ y1

0

X (θ) f1 (θ) dθ

F1 (y1)
m1 (y1) dy1 + Λ

∫ θ

0

∫ y1

0

2X̂ (θ) f1 (θ) dθ

F (y1)
N−2

F1 (y1)
m1 (y1) dy1 ≥

(1− Λ)
∫ θ

0
X (θ)m2 (θ) dθ + Λ

∫ θ

0

2 (N − 1) [1− F (θ)]

1− F (θ)N−1
X̂ (θ)m2 (θ) dθ

where X (θ) =

∫ θ

0
xdF (x)N−2

F (θ)N−2
and X̂ (θ) =

∫ θ

0
xF (x)N−2dF (x)N−2

F (θ)N−2
.

Notice that ∫ θ

0

∫ y1

0

X (θ) f1 (θ) dθ

F1 (y1)
m1 (y1) dy1 =

∫ θ

0
X (θ)m2 (θ) dθ

which further implies that

∫ θ

0

∫ y1

0

X̂ (θ) f1 (θ) dθ

F1 (y1)︸ ︷︷ ︸
Ω(y1)

m1 (y1) dy1 =
∫ θ

0
X̂ (θ)m2 (θ) dθ.

The result then follows since

∫ θ

0

2Ω (y1)

F (y1)
N−2m1 (y1) dy1 ≥

∫ θ

0

2 (N − 1) [1− F (θ)]

1− F (θ)N−1
X̂ (θ)m2 (θ) dθ

as
1

F (s)N−2
≥
(N − 1) [1− F (s)]

1− F (s)N−1
⇔ 1 ≥ F2 (s)

which holds ∀s ∈
[
0, θ

]
. �

Proof of Proposition 5: We have

β̂1 (y1) =

∫ y1

0
β̂2 (θ, θ) f1 (θ) dθ

F1 (y1)
−

∫ y1

0

{
∂β̂

2(θ,̃θ)
∂θ̃

∣∣∣∣̃
θ=θ

1−F (θ)
f(θ)

}
f1 (θ) dθ

F1 (y1)

>

∫ y1

0
β̂2 (θ, θ) f1 (θ) dθ

F1 (y1)

= E [p2|p1]

where the inequality follows from Lemma 3. �
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[40] Mezzetti, C., A. PekeČ and I. Tsetlin (2008), “Sequential vs. Single-round Uniform-
price Auctions” Games and Economic Behavior, 62(2), 591-609.

[41] Milgrom, P. and R. Weber (1982): “A Theory of Auctions and Competitive Bidding”
Econometrica, 50(5), 1089-1112.

[42] Milgrom, P. and R. Weber (2000), “A Theory of Auctions and Competitive Bidding,
II” in: Klemperer, P.D. (Ed.), The Economic Theory of Auctions, 179-194, Vol. 1, Edward
Edgar, Cambridge, UK.

[43] Neugebauer, T. and P. Pezanis-Christou (2007), “Bidding Behavior at Sequential
First-price Auctions with(out) Supply Uncertainty: A Laboratory Analysis” Journal of
Economic Behavior & Organization, 63(1), 55—72.

[44] Novemsky, N. and D. Kahneman (2005), “The Boundaries of Loss Aversion” Journal
of Marketing Research, 42(2), 119-128.

[45] Pitchik, C. and A. Schotter (1988), “Perfect Equilibria in Budget-constrained Sequen-
tial Auctions: An Experimental Study” Rand Journal of Economics, 19(3), 363—388.

[46] Ratan, A. (2013), “Reference-Dependent Preferences in Auctions: Theory and Experi-
ment” Mimeo.

[47] Sprenger, C. (2011), “An Endowment Effect for Risk: Experimental Tests of Stochastic
Reference Points” Mimeo.

[48] Van den Berg, G., J.C. Van Ours and M. Pradhan (2001) “The Declining Price
Anomaly in Dutch Dutch Rose Auctions” American Economic Review, 91(4), 1055—1062.

[49] Weber, R. (1983), “Multi-Object Auctions” in (R. Engelbrecht-Wiggans, M. Shubik and
R.M. Stark, eds.), Auctions, Bidding and Contracting: Uses and Theory, 165-194, New
York: New York University Press.

34


