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Abstract 

The purpose of the current study was to estimate efficiency of health systems in sub-Sahara 

Africa (SSA) and to compare efficiency estimates from various time-varying frontier models. 

The study used data for 45 countries in SSA from 2005 to 2011 sourced from the Word Bank 

World Development Indicators. Parametric time-varying stochastic frontier models were used in 

the analysis. Infant survival rate was used as the outcome variable, while per-capita health 

expenditure was used as main controllable input. The results show some variations in efficiency 

estimates among the various models. Estimates from the ‘true’ random effect model were 
however preferable after controlling for unobserved heterogeneity which was captured in the 

inefficiency terms of the other frontier models. The results also suggest a wide variation in the 

efficiency of health systems in sub-Sahara Africa. On average health system efficiency was 

estimated to be approximately 0.80 which implies resource wastage of about 0.20. Cape Verde, 

Mauritius and Tanzania were estimated to be relatively efficient while Angola, Equatorial 

Guinea and Sierra Leone were among the least performers in terms of health system efficiency. 

The findings suggest that the omission of unobserved heterogeneity may lead to bias in estimated 

inefficiency. The ‘true’ random effect model was identified to address the problem of 
unobserved heterogeneity. The findings also suggest a generally poor performance of health 

systems in terms of efficiency in the use of resources. While resource commitment to the health 

sector is critical, it is important to also ensure the efficient use of these resources. Improving the 

performance of institutions in the health sector may go a long way in improving the general 

health status of the African population 

Key words: Efficiency, Health systems, health expenditure, SSA, SFA, 'True' random effect    
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1.0 Introduction 

Sub-Sahara Africa (SSA) continues to face major health challenges including high disease 

burden and poor health care system infrastructure. For instance, life expectancy at birth in SSA 

was reported to be 55 years in 2011, relative to the world average of 70 years. This also 

significantly falls short of values for all other regions of the world. Maternal, infant and under 

five mortality remain high in the SSA region, relative to other regions of the world and the world 

average (World Bank, 2012).  

Further, it has been reported that the Africa region lags behind in achieving the health-related 

MDG targets with most countries in the region unlikely to achieve these targets. HIV/AIDS, 

malaria and tuberculosis remain the major causes of mortality and morbidity in the region with 

estimated incidence of 217; 21,537 and 276; per 100,000 population, respectively in 2009 

(WHO, 2012). The World Health Organization (WHO) in 2011 also showed that only eight 

countries were on track to achieve the health related MDGs. Majority of the countries in the 

region were achieving less than 50% of what is expected to reach the target in 2015, with 

progress on MDG 5 (maternal mortality) being particularly slow. 

The ramifications of these poor health performances on household welfare, productivity and 

economic growth cannot be over emphasised. The SSA region is estimated to have the smallest 

GDP per capita, relative to all other regions of the world. GDP per capita in purchasing power 

parity terms was about US$2362.90 in 2011 which was an increase from about US$1389.70 in 

2000. The region also remains one of the poorest regions in the world with high rates of poverty 

and relatively more impoverished households. For instance the percentage of population in SSA 

living below US$1.25 and US$2.00 a day was estimated to be 48.5% and 69.9% in 2010, 

respectively, higher than any other region of the world (World Bank, 2010). 

The health system is widely considered as an important institution in the health improvement 

agenda of any country (Hakkinen and Joumard, 2007). The world health report of 2000 considers 

health systems to be crucial in the development of individuals, families and societies everywhere 

with three intrinsic goals: improving health, increasing responsiveness to the legitimate demands 

of the population and ensuring that financial burdens are distributed fairly (WHO, 2000). 

Achieving these goals seems to be slow in SSA where population health remains poor and 
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financial burdens largely on individuals. Improving this situation requires a comprehensive 

analysis of health systems in the region including the relationship between health system inputs 

and outputs as well as efficiency of the health systems in the use of resources (Powell-Jackson et 

al., 2012). For instance the WHO (2012) noted that high or low levels of health funding might 

not translate into improved health outcomes but rather efficiency and equity in the use of these 

resources. This argument is truly justified in the case of SSA considering the enormous burden of 

diseases and other health challenges in the region. 

Achieving the objective of a well performing health system through improved efficiency also 

requires accurate and comprehensive measure of efficiency. Evidence from economic literature 

suggests that the measurement of efficiency has evolved over time with different researchers 

having different approaches. Danquah et al. (2013)  noted that improvements in technical 

efficiency results in great gains in productivity and economic growth. This implies that, 

measuring efficiency in an accurate way is critical not only for economic theory but also in 

providing useful policy information. In this regard, frontier models and particularly the stochastic 

frontier models have been widely used in the applied economics literature. 

The basic tenets of the stochastic frontier approach (SFA) lies in the estimation of a stochastic 

relationship between a set of inputs and outputs of decision making units (DMU). Greene (2004) 

provides three distinctive properties of the SFA that makes it an attractive alternative to the 

commonly used data envelopment analysis (DEA) approach. First, the stochastic aspect of the 

SFA allows it to handle appropriately measurement problems and other stochastic influences that 

would otherwise be captured as inefficiency. Secondly, the SFA is capable of accommodating 

unmeasured but substantial cross country heterogeneity. This is particularly important when 

cross country data is used in analysis. Finally, the SFA also provides a means of employing 

information on measured heterogeneity in the model.  

Further, unlike the cross-section data, the panel data specification of the SFA (which is the focus 

of the current study) also provides the flexibility of observing DMUs at several points over time 

hence making a more informative policy decisions. However, a critical concern in the panel data 

specifications is whether the observations made on the inefficiency term is assumed to be 

independent over time and across cross-section observations. In this case the panel nature of the 
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data is irrelevant and cross section frontier models can be applied. However, when further 

assumptions are made about the inefficiency term then, time varying models are used and several 

possibilities of these models arise. The purpose of the current study is to provide a comparative 

analysis of the various time varying frontier models with application to estimating health system 

efficiency in SSA.   

The rest of the paper is structured as follows. Section 2 provides brief review of literature with 

focus on the concept of efficiency and some empirical evidence. Section 3 presents the 

methodology including data and variables. Section 4 presents and discusses the results while 

section 5 concludes the paper.   

2.0 Literature review 

2.1 The concept of efficiency 

The primary motive of producers is to maximize their output levels subject to available inputs. 

However, this objective is not always achieved and in most cases, producers operate below their 

optimal capacity, given the technology at their disposal. In this regard the use of conventional 

production functions in solving the optimization problem may be less desirable to the frontier 

approach. While the production function approach seeks to intersect data of decision making 

units (DMU), the frontier based approach seeks to envelop data of DMUs. The basic idea of the 

frontier approach is to provide a numerical evaluation of the performance of a certain number of 

DMUs from the perspective of technical efficiency; which is their ability to operate close to or 

on the boundary of their production set (Daraio and Simar, 2007). 

Farrell (1957) is credited with the earliest attempt to provide a generally acceptable measure of 

efficiency. Efficiency of any decision making unit, as noted by Farrell (1957) basically means 

the success of the unit to produce the largest possible output from the inputs available. The 

overall efficiency of a DMU can be defined as the product of two distinctive measures of 

efficiency namely; technical and price efficiency. A DMU is considered to be technically 

efficient when it uses fewer inputs to achieve a given level of output or more outputs with a 

given amount of inputs. The price efficiency on the other hand measures the extent to which a 

DMU uses the various factors of production in the best proportions, in view of their prices. The 
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resulting inefficiency arising after controlling for input prices are also known as allocative 

inefficiency (Herrera and Pang, 2005). 

An illustration of the two types of efficiency mentioned above are presented in the figure below, 

following Farrell (1957) and Herrera and Pang (2005). The starting point is to define an isoquant 

curve YY' that depicts the set of minimum inputs required for a unit of output. Point P defines an 

input-output combination which uses input quantities X1 and X2 to produce a unit of output. 

However at point R, it is possible to produce one unit of output using less of both inputs. The 

level of inefficiency in the use of resources can therefore be described by the segment RP. This 

type of Technical efficiency (TE) can be defined as TE=OR/OP. There is also a possibility for 

the DMU to reduce cost by choosing another input combination. Point P provides such cost 

reduction option where one unit of output can be produced at the least cost combination of 

inputs. This is depicted by the equality of the marginal rate of technical substitution and the input 

price ratio. To achieve this cost level implicit in the optimal combination of inputs, there is the 

need to contract the input use to point S. The input allocative efficiency (AE) can therefore be 

defined as AE=OS/OR. 
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2.2 Empirical review 

Evans et al. (2001) is credited with the first attempt to estimate the efficiency of health systems 

using a non-parametric approach. Using data from 191 WHO countries (both developed and 

developing), they estimated the relation between levels of population health and the inputs used 

to produce health with data from 1993 to 1997. While population health output was measured by 

healthy life expectancy, health system input was measured by per capita health expenditure. The 

results showed Oman to be the most efficient with a score of 0.992 and Zimbabwe the least 

efficient with a score of 0.080. They argued that health system performance was likely to be 

influenced by civil unrest and the prevalence of HIV and AIDS. 

In a similar study, Hernandez de Cos and Moral-Benito (2011) used panel data for 29 OECD 

countries with annual observation from 1997 to 2009. The authors employed a stochastic frontier 

analysis (SFA) which showed that Japan was the most efficient country in terms of health system 

performance. The authors also showed that both health system efficiency and health care 

expenditure positively influence life expectancy with elasticity of 0.71 and 0.06, respectively.  

Further, Jayasuriya and Wodon (2003) estimated public sector efficiency in the health and 

education sectors using SFA. A panel sample of 79 countries over the period 1990-1998 was 

used in the analysis. While health outcome was proxied by life expectancy, GDP per capita, adult 

literacy and health expenditure per capita (private and public) were used as input variables. In the 

second stage analysis the authors conclude that urbanization and bureaucratic quality were 

significant determinants of efficiency. No conclusive evidence was established for corruption. 

In a critique of panel studies that estimated efficiency using the SFA, Greene (2004) provided 

evidence to show that unobserved heterogeneity can influence efficiency estimates, especially, in 

cross-country studies and should be accounted for. Failure to treat this may limit the reliability of 

the efficiency estimates and render them biased. This motivated the objective of the current study 

to compare estimates from various models including those that treat unobserved cross-country 

heterogeneity as proposed by Greene (2004).   
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3.0 Methodology 

3.1 The stochastic frontier model 

The stochastic frontier model is believed to be originally proposed by the works of Aigner, 

Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977). The model is basically 

motivated by the idea that deviations from the production 'frontier' might not be entirely under 

the control of the DMU being studied. For instance, in the case of health systems (which is the 

focus of the current study) several other factors, such as macroeconomic performance, education 

etc, may influence efficiency even though they are not under the control of the health system. 

Also, any error or imperfection in the specification of the model or measurement of its 

component variables, including the output, could likely translate into increased inefficiency 

measures. This makes deterministic frontier models unattractive. 

While both cross section data and panel data have been used in estimating stochastic frontier 

models, Belotti et al. (2012) argued that availability of a richer set of information in panel data 

relaxes some of the assumptions and considers a more realistic characterization of the 

inefficiencies.   

The first empirical model using longitudinal data under the SFA is attributed to Pitt and Lee 

(1981). Their work was based on Maximum Likelihood (ML) estimation of the following 

Normal-half Normal stochastic frontier model 

'

it it it
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where y is the output variable and x represents a vector of inputs. Ԑ is the error term decomposed 

into the normal error term (v) and inefficiency term (u). 

In generalizing the above specification, Battese and Coelli (1988) proposed a Normal-Truncated  

Normal model. In a similar way, Schmidt and Sickles (1984) proposed that fixed effect 

estimation techniques can be employed to SF models with time invariant inefficiency. This 
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approach enables one to avoid distributional assumptions about ui. A major limitation of the time 

invariant models is that the efficiency estimates may be biased in the case of long panel data sets.  

To resolve this problem, Cornwell et al. (1990) proposed the following SF model with 

individual-specific slope parameters 

'

2

1 2

,

,

it it it it

it i i i

y x v u

u t t

 

  

   
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  i = 1,...,N t = 1,...,T 

The parameters of this model can be estimated using the conventional fixed and random effects 

panel data estimators. This specification is limited by its requirement of a large number of 

parameters. Lee and Schmidt (1993) proposed an alternative specification in which uit is 

specified as ( ).it iu g t u , where g(t) is represented by a set of dummy variables. While this 

specification is considered to be more parsimonious, it restricts the temporal form of uit to be the 

same for all DMUs. 

Kumbhakar (1990) is considered to be the first to propose the maximum likelihood estimation of 

a time-varying SF model where 2 1( ) [1 exp( )]g t t t     ; γ and δ are parameters to be 

estimated. Battese and Coelli (1992) also proposed a similar model in which 

( ) exp[( ( )]
i

g t t T   . This model is commonly known as the "time decay" model.  

A common feature of the time-varying models is that the intercept (α) is the same across DMUs, 

thus generating a misspecification bias in the case where time-invariant unobservable factors 

(which may be unrelated with the production process but affecting the output) are available. 

Such unobservable factors may be captured by the inefficiency term and may lead to biased 

estimates. 

Greene (2004) showed that these restrictions can be relaxed by placing country specific constant 

terms in the stochastic frontier model. This approach is called the 'True' fixed effect model. The 

specification is given as follows; 

'

it i it it it
y x v u    
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The model is estimated using ML and simply involves the inclusion of a full set of country 

dummy variables in the stochastic frontier model. The model also treats country specific time-

invariant fixed effects (αi) and time varying inefficiency (uit) separately and is therefore able to 

distinguish between the unobserved heterogeneity and inefficiency (Danqua et al., 2013). The 

shortcomings of the TFE model include the possibility of incidental parameters problem and 

over specification of the model with the inclusion of the country specific dummies. 

An alternative to resolving the unobserved heterogeneity problem is to estimate a time invariant 

random term meant to capture country specific heterogeneity. This process is termed the 'true' 

random effect (TRE). The TRE model can be specified as follows; 

'

it it i it it
y x v u      

 

Where ωi is a time-invariant and country specific random term meant to capture unobserved 

country specific heterogeneity. The model is estimated using the simulated maximum likelihood 

(SML). As noted by Greene (2004), this form of the model overcomes both of the drawbacks in 

the TFE specification.  

The current study estimates an application of the time-varying stochastic frontier models to 

health system efficiency across SSA countries. The time-varying frontier models employed in 

the comparative analysis include the Battese and Coelli (BC) model, Kumbhakar (Kumb) model, 

"true" fixed effect (TFE) and "true" random effect (TRE) models.  

An important component of SFA models is the specification of the functional forms of the 

production function. The Cobb-Douglas specification is the commonly used type in the literature 

due to its simplicity. However, this specification is restricted in the sense that the return to scale 

takes the same value across all DMUs in the sample and elasticities of substitution are assumed 

to be equal to one. In view of this limitation, several alternative specifications of the functional 

form has been suggested in the literature. The most notable include the translog specification 

(Greene, 1980b) and the Zellner-Revanker generalised production function (Forsund and 

Hjalmarsson, 1979, Kumbhakar et al., 1991). While the later specification removes the returns to 

scale restriction, the former imposes no restrictions on returns to scale or substitution 
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possibilities. The Cobb-Douglas functional type has, however, been confirmed to be a sufficient 

functional form specification of stochastic frontier production functions. 

3.2 Data and variables 

Data for the study was obtained from the World Bank world development indicators. The data 

covered the period 1995 to 2010 across 45 countries in SSA2. This suggests that a total panel 

sample of 315 was used in the analysis. The use of 45 countries grants added advantage to the 

study as relatively better efficiency estimates are obtained from larger observations with the 

frontier methodology.  

The dependent variable or health system outputs used in the efficiency analysis was infant 

mortality rate. However, as noted by Afonso and Aubyn (2005), efficiency measurement 

techniques suggest that outputs are measured in such a way that "more is better". Therefore 

consistent with practice in the literature, the following transformation was performed on the 

mortality variable so that it is measured in survival rate. Thus, infant mortality rate (IMR) was 

measured as  

[(number of children who died before 12 months)/(number of children born)] X 1000 

This implies that an infant survival rate (ISR) can be computed as follows; 

1000 IMR
ISR

IMR


            

This shows the ratio of children that survived the first year to the number of children that died 

and this increases with better health status.  

                                                 

2
 The following countries were included in the study: Angola, Benin, Burkina Faso, Botswana, Burundi, Cameroon, 

Cape Verde, Central African Republic, Chad, Comoros, Congo Demographic Republic, Congo, Cote d’Ivoire, 

Equatorial Guinea, Eritrea, Ethiopia, Gabon, Ghana, Guinea, Guinea Bissau, Kenya, Lesotho, Liberia, Madagascar, 

Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia, Niger, Nigeria, Rwanda, South Africa, Sao Tome, 

Senegal, Seychelles, Sierra Leone, Sudan, Swaziland, Tanzania, The Gambia, Togo, Uganda and Zambia. 
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In the case of the independent variables (health system inputs), monetary input was used instead 

of physical input as this is considered as a broader measure of health system input. Per capita 

health expenditure was used as the main input variable that directly influences the health system. 

Other indirect inputs used in the study that influence the performance of the health system but 

lies beyond its control include HIV/AIDS, education, per capita gross domestic product (GDP). 

Table 1: Summary of variable description and data source 

Variables Description Data source 

Infant mortality 
rate (IMR) 

The probability of a child born in a specific year or period 
dying before reaching the age of one 

World 
Development 
Indicators 
(WDI) 

Per capita 
health 
care 
expenditure 
(HCEpc) 

Per capita total expenditure on health expressed in 
purchasing power parity (ppp)  international dollar 

WDI 

Public health 
care 
expenditure 
(PuHE) 

Level of public spending on health as percent of total 
government spending. Includes spending from government 
budgets, external borrowing, grants and social health 
insurance funds 

WDI 

Real GDP per 
capita (GDPpc) 

Real GDP per capita measured in constant 2005 
international dollars 

WDI 

Education 
(Educ) 

Secondary school enrolment as percentage of gross school 
enrolment 

WDI 

HIV prevalence 
rate (HIV) 

Estimated number of adults aged 15-49 years with HIV 
infection expressed as percent of total population in that 
age group 

WDI 

Source: Author's compilation 
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4.0 Results 

4.1 Descriptive statistics 

Table 2 shows summary statistics for the variables included in the analysis. As mentioned earlier, 

the rate of under five survival was used as the outcome variable instead of the usual under five 

mortality rate. The summary statistics show that on average, the ratio of children that survived 

the first year to the number of children that died was about 12.40 with minimum and maximum 

values of about 3.66 and 71.46, respectively. Average health care expenditure per capita 

(HCEpc) was about US$186.38. On average, secondary school enrolment as percentage of gross 

school enrolment was about 32.38% with a minimum of 1% and a maximum of 72%. Average 

HIV prevalence rate among adults was 5.26% with a minimum of 0.1% and maximum of 26%.     

Table 2: Descriptive Statistics 

Variable 
Obs. Mean Std Dev. Minimum Maximum 

USR 315 12.3954 13.5249 3.6642 71.4638 

HCEpc 315 186.3835 257.8733 14.5853 1806.481 

Educ 315 32.3835 19.8794 1 72 

HCEpub 315 3.7995 0.4158 2.4505 4.5376 

GDPpc 315 3387.555 5248.812 294.3864 27346.4 

HIV 301 5.2558 6.5791 0.1 26 

Source: Author's compilation   

Average gross domestic product per capita (GDPpc) over the sample period was US$3387.56. 

The minimum GDPpc over the sample period was US$294.39 while a maximum of about 

US$27346.4 was recorded. In terms of government commitment to the health sector, the 

statistics show that public health care expenditure as percentage of total government spending 

recorded an average of about 3.80% over the sample period, with a minimum of about 2.45% 

and a maximum of about 4.54%.  
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4.2 Estimated Stochastic Frontier 

The estimated production frontier functions for the SFA efficiency and inefficiency estimates are 

presented in Table 3 below. The table shows estimates for all the time varying specifications 

discussed earlier. The results show that the necessary estimated parameters that give indications 

about the reliability of the efficiency estimates are acceptable for all the specifications.  

For instance, the estimate of λ was statistically significant for all the specifications and this 

confirms that there is the existence of technical inefficiency in the dataset. The value of λ is also 

smallest for the TRE model specification relative to all the other model specifications. On the 

other hand, the TFE model specification recorded the highest value of λ. The important 

indication, however, lies in the statistical significance of the parameter.  

As expected, the variance decomposition was dominated by u (δu). The TFE and the TRE had the 

lowest values of the δu relative to the Battese and Coelli as well as Kumbhakar specifications 

while δv is almost similar for all the specification except for the TFE models which is relatively 

smaller. The component of the variance (δw) introduced in the TRE model to control for 

unobserved heterogeneity among cross section units was statistically significant. This suggests 

that the TRE model specification actually purges ui of time invariant heterogeneity.      
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Table 3: Estimated stochastic frontier models 

Variable BC Kumb TFE TRE 

lnHCEpc -0.81842 0.33078* 0.15073*** 0.16522*** 

 
(0.83520) (0.17744) (0.00008) (0.06194) 

lnHCEpc2 0.11058 -0.03208** 
 

-0.00275 

 
(0.09272) (0.01475) 

 
(0.00541) 

lnEduc -0.04459 -0.01716*** -0.02889*** -0.02672*** 

 
(0.10318) (0.00656) (0.00002) (0.00367) 

lnHCEpub 0.42274*** 0.01796 
 

0.03718 

 
(0.16069) (0.03931) 

 
(0.02598) 

lnGDPpc 0.12299 0.48267*** 0.33889*** 0.25879*** 

 
(0.16940) (0.15423) (0.00005) (0.01784) 

lnHIV 
  

-0.12909*** -0.23468*** 

   
(0.00003) (0.00713) 

Constant 1.48291 -1.08345 na -0.13801 

 
(2.17289) (1.45488) 

 
(0.14071) 

λ 9.81331*** 37.24355*** 20905*** 3.76068*** 

δu 3.70134 2.59807*** 0.08907*** 0.09024*** 

δv 0.37718*** 0.06976*** 4.26E+08 0.0240*** 

δw na na na 0.58418*** 

Source: Author's computation 
Note:  1. Robust standard errors are reported in parenthesis. 
 2. ***significant at 1%; **significant at 5%; *significant at 10%. 
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4.3 Estimated Mean Efficiency Scores in SSA 

Table 4 below provides summary statistics of the estimated efficiency scores from the various 

model specifications employed in the study. The table shows summary statistics on the mean, 

standard deviation as well as minimum and maximum values over the period 2005-2011. 

The lowest average health system efficiency score was recorded for the Kumbhakar SFA model 

specification. While the other three model specification showed similar mean estimates of health 

system efficiency, the highest estimate was recorded for the TFE specification. In sum, the 

Battese and Coelli specification recorded an average efficiency score of about 0.76 for health 

systems in SSA over the period 2005-2011, with minimum and maximum values of about 0.15 

and 0.91, respectively. In a significant deviation from the BC model, the Kumbhakar model 

recorded average efficiency score of about 0.38 with minimum and maximum values of 0.06 and 

0.94, respectively. The TFE model recorded the highest mean efficiency score of about 0.92 

while the TRE model recorded an average efficiency score of about 0.80.  

 

Table 4: Summary of mean efficiency scores (2005-2011) 

Model Mean 
Standard. 
Deviation 

Minimum Maximum 

Battese and Coelli 0.76304 0.12192 0.14608 0.91489 

Kumbhakar 0.38315 0.20522 0.06203 0.9447 

'True' Fixed Effects 0.91966 0.08928 0.58254 0.99999 

'True' Random Effects 0.80255 0.21443 0.26464 0.99936 

Source: Author's computation 
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In Table 5, the average efficiency scores for the individual countries included in the analysis are 

presented. The results show that the rankings of countries and mean health system efficiency 

score varied significantly across countries. There was however significantly high variation 

between the ranks produced by the TFE model specifications and the other three specifications. 

For instance Mauritius was estimated to be, on average, the most efficient health system in the 

regions from the Battese and Coelli as well as the TRE models. However, in the TFE model, 

Mauritius was ranked 21. Similarly, health system efficiency in Cape Verde was estimated and 

ranked to be 1 in the Kumbhakar model and 2 in the BC and TRE models. Cape Verde was 

however ranked 22 in the TFE model. 

A sharp contrast is also observed between the models in terms of the worst performing countries' 

health systems. While such countries as Angola was unanimously estimated to be relatively less 

efficient in the Battese and Coelli, Kumbhakar and TRE models, the rank of South Africa was 

different between the models. While South Africa was ranked to be 41, 33 and 42 in the Battese 

and Coelli, Kumbhakar and TFE models, respectively, the country's health system was ranked 17 

based on the TRE model. Also, a country like Malawi was ranked 21 and 36 based on the Battese 

and Coelli and TFE models, respectively, while it ranked 4 based on the TRE model. 

The distinction between the different model specifications may be attributed to the time invariant 

unobserved heterogeneity present in the panel data. This justification supports the TRE as the 

preferred model due to its ability to accommodate this limitation and produce efficiency 

estimates based on pure technical efficiency. In this regard the empirical evidence based on the 

TRE model specifications suggest that Mauritius, Cape Verde, Botswana, Malawi and Tanzania 

have the best five performing health systems in SSA while countries like Angola, Sierra Leone, 

Equatorial Guinea and Mali have the relatively worst performing health systems. 
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Table 5: Ranks and Estimated Mean Efficiency Scores (2005-2011)  

DMU Rank BC Rank Kumb Rank TFE Rank TRE 

Angola 44 0.457033 44 0.106905 29 0.916133 42 0.3128233 

Benin 26 0.778363 27 0.30857 18 0.940387 31 0.6860212 

Botswana 25 0.779231 15 0.411364 40 0.824088 3 0.999087 

Burkina Faso 40 0.642914 35 0.223825 6 0.981737 39 0.5285583 

Burundi 24 0.785182 18 0.389762 4 0.986021 24 0.8232362 

Cameroon 23 0.788912 37 0.21889 1 0.995963 26 0.7737165 

Cape Verde 2 0.904113 1 0.941164 22 0.929331 2 0.9992674 

Central African Rep. 39 0.691309 30 0.289741 5 0.982737 20 0.906207 

Chad 37 0.712582 40 0.192761 15 0.963657 38 0.5715332 

Comoros 11 0.840136 9 0.477892 19 0.938188 35 0.6129595 

Congo, Dem. Rep. 32 0.74398 14 0.42144 44 
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Congo, Rep. 28 0.76612 36 0.219852 13 0.967862 28 0.7359002 

Cote d'Ivoire 17 0.816553 31 0.254572 7 0.976998 25 0.7851072 

Equatorial Guinea 45 0.255202 45 0.071679 32 0.901384 43 0.2828663 

Eritrea 6 0.857402 3 0.876949 23 0.925097 7 0.9986047 

Ethiopia 16 0.828099 8 0.532453 12 0.969542 15 0.9972692 

Gabon 38 0.710676 42 0.176608 17 0.959882 27 0.7547606 

Gambia, The 27 0.773385 29 0.289779 20 0.937681 30 0.7069977 

Ghana 13 0.833844 13 0.43151 8 0.976177 16 0.9952689 

Guinea 19 0.806623 28 0.298199 28 0.917325 29 0.7202048 

Guinea-Bissau 31 0.753172 34 0.227852 9 0.971514 36 0.6107064 

Kenya 7 0.85605 12 0.431746 31 0.905901 6 0.9986509 

Lesotho 29 0.760638 26 0.327941 24 0.923763 9 0.9983131 

Liberia 4 0.873906 6 0.670431 3 0.986374 12 0.9978673 

Madagascar 5 0.862967 5 0.672711 35 0.866919 19 0.9835736 

Malawi 21 0.789592 11 0.465731 36 0.849654 4 0.998837 

Mali 42 0.617029 39 0.19332 11 0.970026 40 0.4312364 

Mauritania 33 0.73448 32 0.245103 10 0.970882 37 0.5776037 

Mauritius 1 0.908957 2 0.933838 21 0.932324 1 0.9993186 

Mozambique 30 0.759222 21 0.377901 25 0.920953 13 0.9978106 

Namibia 20 0.799704 25 0.341099 41 0.782302 8 0.9985626 

Niger 35 0.722628 22 0.351006 38 0.8273 34 0.6246859 

Nigeria 34 0.732946 38 0.202217 26 0.920564 32 0.6446696 

Rwanda 9 0.844799 7 0.546375 42 0.780251 10 0.9982338 

Sao Tome 14 0.832635 20 0.378134 16 0.960458 23 0.8370534 

Senegal 15 0.829727 16 0.408174 39 0.824521 21 0.8707598 

Seychelles 3 0.882656 4 0.799165 45 
 

45 
 

Sierra Leone 36 0.71439 41 0.187952 14 0.967419 41 0.3776862 

South Africa 41 0.639944 33 0.243969 43 0.755632 17 0.9894383 

Sudan 12 0.834039 23 0.34665 30 0.915588 33 0.6318157 

Swaziland 43 0.514951 43 0.164005 34 0.889071 22 0.854706 
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Tanzania 10 0.841992 10 0.469514 33 0.895339 5 0.9988337 

Togo 18 0.816171 19 0.385826 2 0.987012 18 0.9877306 

Uganda 8 0.853092 17 0.392145 27 0.92022 14 0.9973324 

Zambia 22 0.789507 24 0.34503 37 0.831325 11 0.9978735 

Mean 

 

0.76304 

 

0.38315 

 

0.91966 

 

0.8045 

Source: Author's computation  

 

4.4 Correlation between time varying frontier models 

In Table 6 below a further comparison of the various model specifications was performed to 

ascertain the correlation between the models. The simple correlation coefficients reported in the 

table suggest that there is some similarity between the Battese and Coelli and the Kumbhakar 

model specifications while a weak relationship was established between these models and 'True' 

fixed and random effect models. For instance, while the correlation coefficient between the 

Battese and Coelli model and the Kumbhakar model was about 76%, the coefficients between 

these two and the TRE model was about -4% and -2%, respectively. The correlation coefficient 

also showed above average (about 68%) relationship between the TFE and TRE models. In sum 

the simple correlation matrix suggest stronger similarity between the models3 that do not 

accommodate any time invariant unobserved heterogeneity and the models that accommodate 

this limitation of panel data analysis, as in the present study4.  

Table 6: Correlation between inefficiency estimates 

Models 
Battese and 

Coelli 
Kumbhakar 

'True' Fixed 

Effect 

'True' Random 

Effect 

Battese and Coelli 1.0000 
   

Kumbhakar 0.7645 1.0000 
  

'True' Fixed Effect (TFE) 0.1061 -0.0649 1.0000 
 

'True' Random Effect (TRE) -0.0437 -0.1861 0.6785 1.0000 

Source: Author's computation 

                                                 

3
 In this case the models are the Battese and Coelli and the Kumbhakar models 

4
Such models in the case of the current study are the 'True' fixed and random effect models 
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The scatter plots in Figure 1 provide further evidence on the correlation between the various 

model specifications. From the first plot, the figure shows correlation between the time varying 

Kumbhakar model and the time invariant Battese and Coelli model. There was evidence of 

strong correlation between the two models and this implies some similarity between the 

Kumbhakar model5 and the time invariant model. The next plot on the right shows some 

correlation between the two time varying models that accommodate unobserved heterogeneity, in 

this case, the 'true' fixed and random effect models.  

Evidence from the two plots at the bottom of Figure 1 also suggests that there is very weak 

correlation between the time varying Battese and Coelli, Kumbhakar models and the 'true' 

random effects model. This implies that the TRE model specification which attempts to sluice 

unobserved heterogeneity from the inefficiency term (uit) produces unique estimates of 

inefficiency and is unrelated to other time varying models that do not account for unobserved 

heterogeneity. This makes the TRE a more preferred model specification in stochastic frontier 

analysis using panel data.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 

5
 It must be recalled that the Kumbhakar model is a time varying model as discussed earlier in the study. 
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Figure 1: Scatter plot of inefficiency scores form time varying frontier models 
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In Figure 2 below the mean and variation of the distributions of the estimated inefficiencies from 

the various model specifications are analysed using the kernel density estimates. The results from 

the kernel density estimates show that the 'true' random effects model has the lowest mean 

relative to all the other time varying model specifications. Also the variance of the 'true random 

effect model is significantly lower compared to the other models.  

Similarly, the 'true' fixed effect model has lower mean compared to the Battese and Coelli and 

the Kumbhakar models, even though the variance of the Battese and Coelli seems to be 

marginally lower than the 'true' fixed effect model. The Kumbhakar model specification had the 

largest mean and variance from the kernel density estimators. This implies that the Kumbharkar 

model was the most dispersed in terms of the distribution of the means and variance.   

Again this confirms the suitability of the 'true' random effect model specification, compared to 

the other time varying models. The distribution of the mean and variance of the inefficiency term 

(uit) of the 'true' random effect model was much lower and tighter than the other models. This is 

an addendum to the earlier evidence that the 'true' random effects model effectively deals with 

the time invariant heterogeneity present in panel data modelling of SFA.  
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Figure 2: Kernel Density Estimates of inefficiency scores from time varying frontier models 
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5.0 Conclusion 

The study set out to estimate health system efficiency across countries in SSA using various time 

varying stochastic frontier models. The study employed panel data between the period from 1995 

to 2011 over 45 countries. Four main time varying stochastic frontier models were analysed in 

the study. These models include the Battese and Coelli model, the Kumbhakar model, the 'True' 

fixed effect model and the 'True' random effect model. 

The 'true' random and fixed effects models were estimated using the Simulated Maximum 

Likelihood (SML) while the Battese and Coelli and the Kumbhakar models were estimated using 

the Maximum Likelihood (ML) technique. The 'true' random and fixed effects models were also 

based on the 'Exponential' distributional assumption while the Battese and Coelli model was 

based on the 'Truncated Normal' and the Kumbhakar model based on the 'Half Normal' 

distributional assumption.      

Based on the various empirical analysis in the study, the 'true' random effect model appeared to 

be the most preferred considering its ability to control for time invariant unobserved 

heterogeneity across decision making units. The inability of the Battese and Coelli model and the 

Kumbhakar models to treat unobserved heterogeneity translated into the estimated inefficiency 

scores from these models. Strong correlation was established between these two models and also 

with some time invariant stochastic frontier models. 

Based on the 'true' random effect model, the study showed that average health system efficiency 

over the period 2005-2011 was about 80%. This implies that health systems in the SSA region 

were less efficient in the use of health system resources. The statistics implies that on average, 

SSA countries have the potential to improve health system efficiency by about 20%. The 

findings also showed that on average, given the level of health system resources in SSA, health 

outcomes6 can be improved by about 20% if these resources are used efficiently.   

With regards to the individual country efficiency analysis, the results showed that countries like 

Mauritius, Cape Verde, Malawi, Botswana and Tanzania were estimated to be, relatively, the 

                                                 

6
 It should be recalled that infant mortality rate was transformed into infant survival rate for the current study 
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most efficient countries. On the other hand, Equatorial Guinea, Sierra Leone, Mali and Angola 

were among the poor performers in terms of health system efficiency.  

The findings of the study call for critical policy efforts to improve the performance of health 

systems in developing countries, especially SSA countries. This implies that while higher levels 

of health care spending is important for mitigating the huge burden of health care in SSA, the 

efficiency in the use of these resources is equally important. That is to say that, increasing health 

system spending is a necessary condition but a sufficient condition will be to spend these 

resources in an efficient way. In shifting policy focus to the post 2015 agenda, improving health 

system efficiency should be an important component.   
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