
MPRA
Munich Personal RePEc Archive

Robustness and Stability of Limit Cycles
in a Class of Planar Dynamical Systems

Datta, Soumya

Faculty of Economics, South Asian University

June 2014

Online at https://mpra.ub.uni-muenchen.de/56970/
MPRA Paper No. 56970, posted 29 Jun 2014 05:42 UTC

http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/56970/


Robustness and Stability of Limit Cycles in a Class

of Planar Dynamical Systems

Soumya Datta
∗

Faculty of Economics, South Asian University, New Delhi, INDIA.

Email:soumya@econ.sau.ac.in

October 20, 2013

Abstract

Using a macroeconomic example, the paper proposes an algorithm to sym-

bolically construct the topological normal form of Andronov-Hopf bifurcation.
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1 Introduction

The Andronov-Hopf bifurcation theorem is widely used to establish existence of

limit cycles in economic systems.1 However, in addition to the existence conditions,

the Andronov-Hopf bifurcation must satisfy the non-degeneracy condition in order

to prevent the degeneration of these limit cycles.2 Further, the Andronov-Hopf

bifurcation might either be supercritical or subcritical. As pointed out by (Benhabib

& Miyao 1981, Kind 1999), these two possibilities might have different economic

interpretations. The supercritical case corresponds to stable limit cycles surrounding

an unstable fixed point, and hence might be interpreted as stylized business or

growth cycles. The subcritical case, on the other hand, correspond to repelling closed

orbit surrounding a fixed point which is still stable, and might be interpreted to be

corresponding to the concept of corridor stability as developed by (Leijonhufvud

1973). A meaningful economic analysis of these limit cycles, therefore, requires a

test for both non-degeneracy and stability.

We should point out here that numerically testing an Andronov-Hopf bifurca-

tion point for non-degeneracy and stability is quite widespread in the literature in

natural sciences. In fact, software packages like XPPAUT or MATCONT already in-

corporate some of the standard algorithms for these tests. A substantial literature in

economics, however, relies on symbolic computation. This is one of the reasons why

the literature in economics often stops short of testing Andronov-Hopf bifurcation

for non-degeneracy and stability. This is one of the concerns we attempt to address

in this paper. With this objective, we use a method outlined by (Kuznetsov 1997)

and (Edneral 2007) to symbolically compute the topological normal form for an

Andronov-Hopf bifurcation in plane and test for non-degeneracy and stability of its

limit cycles. A related issue which we also address in this paper is to explore whether,

under certain conditions, there is a possibility of alternate stable limit cycles emerg-

ing when the test for stability of the limit cycle from Andronov-Hopf bifurcation

fails.

We use a macroeconomic model developed in Datta (2012) to illustrate our

method. We contend that the choice of our model is without any loss of general-

ity. The method developed here can easily be applied in similar economic models

represented by a large class of planar dynamical systems.

1See, for instance, (Asada & Yoshida 2003), (Asada, Chen, Chiarella & Flaschel 2006), (Barnett

& He 1998), (Barnett & He 2006), (Benhabib & Nishimura 1979), (Benhabib & Miyao

1981), (Chiarella & Flaschel 2000), (Chiarella, Flaschel & Franke 2005), (Franke 1992), (Velupillai

2006) and (Minagawa 2007).
2See, for instance, (Kuznetsov 1997).
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2 The Model

In the following sections, we use the planar dynamical system given below, repre-

senting the macroeconomic model developed in (Datta 2012):

ġ (t) =
[

a1g (t)− a2 {g (t)}2 − a3d (t) + a4
]

hg (t)

ḋ (t) = [b1g (t)− b2d (t) + b3] d (t)
(1)

where g ∈ [0, gmax] is the rate of investment (or the ratio of investment to capital

stock), gmax is the maximum possible rate of investment3 d is the debt-capital ratio

and a1, a2, a3, a4, b1, b2, b3 ∈ ]0,∞[ are composite parameters consisting of various

combination of various behavioral parameters. h is a control parameter. In the model

in Datta (2012), h represented the speed of adjustment of actual to the desired rate

of investment; more generally, this might be interpreted as a parameter representing

the speed of adjustment of the variable g.4

We note that the dynamical system represented by (1) has six steady states,

which we refer to as Ei

(

ḡi, d̄i
)

, i ∈ [0, 1]. A full list of these steady states is provided

in appendix A. We further note that at most two of these steady states, E5

(

ḡ5, d̄5
)

and E6

(

ḡ6, d̄6
)

, are economically meaningful, i.e. lies within real positive orthant.

We further note the following:

Lemma 1. For the dynamical system represented by (1), the real positive orthant is

invariant.

Proof. Provided in appendix B.

It follows from lemma 1 that since only dynamics strictly within the real positive

orthant is economically meaningful, we focus our attention on only such trajectories

and ignore other trajectories in the rest of our discussion. In other words, we only

consider E5 and E6 for discussion, and do not discuss the other steady states in the

rest of this study.

Next we turn our attention to the trajectories starting from an initial point

inside the real positive orthant. Depending on the configuration of parameters, we

can list four different possibilities exhibiting qualitatively different dynamics. These

four cases are illustrated in figure 1. Details of parametric conditions giving rise to

these four cases are discussed in appendix C.

3In other words, gmax represents resource constraint commonplace in economic models.
4We refer interested readers to Datta (2012) for details and derivation of this model. These

details, however, are not relevant for the purpose of illustration of our method in this paper.
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Figure 1: Phase diagram of (1): Four cases

Further, performing the Routh-Hurwitz condition for local stability on the

two economically meaningful steady states, E5 and E6, we note that (a) whenever

the non-trivial steady state solution, E5 exists and is distinct from E6 and lies in

the interior of real positive orthant, it is a saddle-point; and, (b) depending on the

configuration of the parameters, the non-trivial steady state solution, E6, whenever it

exists and is distinct from E5 and lies within the interior of the real positive orthant,

is either a source or a sink.

3 Andronov-Hopf Bifurcation

Lemma 2. For an appropriate value of the speed of adjustment, h, of the actual rate

of investment to its desired rate, the characteristic equation to (1) evaluated at the

non-trivial steady state, E6, has purely imaginary roots.

Proof. Consider the trace of the jacobian of the right hand side of (1), evaluated at
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E6, and recall that for case 1 of figure 1, ḡ6 > 0, d̄6 > 0 and a1 − 2a2ḡ6 > 0, so that

∂ (Trace)

∂h
= (a1 − 2a2ḡ6) ḡ6 > 0 (2)

i.e. the trace is smooth, differentiable and monotonically increasing in the speed of

adjustment, h, of the actual to the desired rate of investment. We further note that

the trace disappears at h = ĥ, when

(a1 − 2a2ḡ6) ĥḡ6 − b2d̄6 = 0

⇒ ĥ =
b2d̄6

(a1 − 2a2ḡ6) ḡ6
> 0 (3)

which, by substituting the values of ḡ6 and d̄6 from (6), might be expanded as

ĥ =
b1 b2

√
4 a2 b2

2
a4−4 a2 b2 a3 b3+b2

1
a2
3
−2 a1 b1 b2 a3+a2

1
b2
2
+2 a2 b

2
2 b3−b

2
1 b2 a3+a1 b1 b

2
2

(2 b1 a3−a1 b2)
√

4 a2 b
2
2 a4−4 a2 b2 a3 b3+b

2
1 a

2
3−2 a1 b1 b2 a3+a

2
1 b

2
2−4 a2 b

2
2 a4+4a2 b2 a3 b3−2 b

2
1 a

2
3+3 a1 b1 b2 a3−a

2
1 b

2
2

(4)

We define ĥ as the critical value of the parameter, h, and investigate the

properties of a solution trajectory to (1) around ĥ. Next, we apply the Andronov-

Hopf Bifurcation Theorem to note the following:

Corollary 2.1. For the dynamical system represented by (1), h = ĥ provides a point

of Andronov-Hopf bifurcation.

Proof. From lemma 2, the characteristic equation to (1) has purely imaginary roots

at h = ĥ. Further, the transversality condition is satisfied from (2). Hence, h = ĥ

provides a point of Andronov-Hopf bifurcation.

Lemma 3. For the dynamical system represented by (1), we can identify specific

combination of parameter values for which the Andronov-Hopf bifurcation at h = ĥ

is non-degenerate and supercritical (or subcritical), leading to emergence of unique

and stable (or unique and unstable) limit cycles.

Proof. Provided in appendix D.

4 Global Stability Properties

We recall that for any (g◦, d◦) ∈ int ℜ2
++ as the initial point, the solution to (1)

is represented by Θ (t) = (g (t) , d (t) ; g◦, d◦). We attempt in this section to find out

the behavior of this trajectory as t → ∞. Since cyclical possibilities exist only in

case 1 among various cases shown in figure 1, we restrict our attention to this case

for rest of this analysis.
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We define a set Q ⊆ int ℜ2
++ consisting of the rectangular area as follows:

Q = {(g, d) : g ∈ [0, ḡ3] , d ∈ [0, dmax]} (5)

where dmax = (b1/b2) ḡ3 + (b3/b2) =
(

b1
√

4 a2 a4 + a21 + 2 a2 b3 + a1 b1

)

/ (2 a2 b2). It

would be evident that dmax is the point of intersection of ḋ/d = 0 with the vertical

straight line g = ḡ3 (See figure 2).

Figure 2: Invariant set Q

We further define QB ⊆ Q comprising the boundary of Q, such that QB =

{(g, d) : g = 0, d ∈ [0, dmax]} ∪ {(g, d) : g = ḡ3, d ∈ [0, dmax]} ∪ {(g, d) : g ∈ [0, ḡ3] , d = 0} ∪
{(g, d) : g ∈ [0, ḡ3] , d = dmax}. Next, we note the following:

Lemma 4. For the trajectory Θ (t) = (g (t) , d (t) ; g◦, d◦), the set Q as defined in (5)

is invariant.

Proof. Provided in appendix E.

Theorem 1. For any (g◦, d◦) ∈ int ℜ2
++, the trajectory, Θ (t) either approaches the

non-trivial steady state, E6, or is a limit cycle surrounding it.

Proof. First, suppose (g◦, d◦) ∈ int Q. We recall that for case 1 of figure 1, E6 is the

unique steady state in the interior of the positive orthant, and is either a source or a

sink. Equations (3) and (4) provide us with a condition to distinguish between the

two. In other words, h < ĥ will imply that E6 is a sink; on the other hand, if h > ĥ,

then the steady state E6 is a source, so that by Poincaré-Bendixson Theorem there

must be a limit cycle surrounding E6. Next, consider (g◦, d◦) ∈ int
[

ℜ2
++ \Q

]

. By

construction, Θ (t) will eventually enter Q. Subsequently, it will either converge to

E6 or will approach a limit cycle around E6. This completes the proof.
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One should note that the result contained in theorem 1 is robust. It is valid

for all set of configuration of parameters where h > ĥ, i.e. the speed of adjustment

of the actual to desired rate of investment, h, exceeds certain threshold level ĥ. It

also pertains to any solution with an economically feasible set of initial points.

5 Multiple Limit Cycles

In section 3, we noted the emergence of limit cycle from Andronov-Hopf bi-

furcation. We further noted that this limit cycle could be either attracting or re-

pelling, depending on the configuration of the parameters. In case of a subcritical

Andronov-Hopf bifurcation leading to repelling or unstable limit cycle, if the limit

cycle is located within an invariant set, then, from Poincaré-Bendixson Theorem we

have possibilities of another limit cycle which is attracting.5

Consider, for instance, the non-trivial steady state, E6, located within an in-

variant set, Q, in figure 2. We recall that the steady state E6 is either a source

or a sink, depending on whether the value of the parameter, h, is greater than

or less than the critical value, ĥ. We further note from corollary 2.1 that E6 un-

dergoes a Andronov-Hopf bifurcation leading to emergence of a small amplitude

limit cycle when the bifurcation parameter, h passes through its critical value,

ĥ. Let Γh be this limit cycle. Since Γh ∈ Q, it follows from the Jordan curve

theorem6 that Q is separated into two sets – a compact set, A (Γh), comprising

the area enclosed by Γh such that A (Γh) ⊆ Q, and, the half-open bounded set

Q \ A (Γh) ≡ {(g, d) : (g, d) ∈ Q & (g, d) /∈ A (Γh)}. A (Γh) is bounded by Γh, the

limit cycle resulting due to Poincaré-Andronov-Hopf bifurcation. Suppose further

that the configuration of parameters is such that the Andronov-Hopf bifurcation is

subcritical, so that Γh is repelling. Now we note the following:

Lemma 5. Q \ A (Γh) is non-empty.

Proof. We recall that Q is a compact invariant set, bounded by QB, and that all

trajectories with an initial point on QB such that g, d 6= 0 gets pushed towards

interior of Q. In other words, QB cannot be the ω-limit set of any trajectory. Since

Γh is a limit cycle, A (Γh) must be a proper subset of Q, so that Q \ A (Γh) is

non-empty.

5See Hofbauer & So (1990), Hsu & Hwang (1999) and Yuquan, Zhujun & Chan (1999) for

practical examples of emergence of multiple limit cycles by this method.
6
The Jordan Curve Theorem. Let C be a simple closed curve in S2. Then C separates

S2 precisely into two components W1 and W2. Each of the sets W1 and W2 has C as its bound-

ary. (Munkres 2000, Chapter 10)
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Lemma 6. For Θ (t) = (g (t) , d (t) ; g◦, d◦), Q \ A (Γh) is invariant.

Proof. Consider a trajectory, Θ (t) starting from an initial point, (g◦, d◦) ∈ Q\A (Γh).

We have already established, from lemma 4 that for all (g◦, d◦) ∈ Q the solution

trajectory, Θ (t) cannot cross QB. We further note that, since Γh is repelling, for

all (g◦, d◦) ∈ Q \ A (Γh), Θ (t) cannot cross Γh. Since Q \ A (Γh) is constructed on

a plane, the solution needs to cross either QB or Γh in order to leave Q \ A (Γh).

Hence, Q \ A (Γh) is invariant.

Theorem 2. If the steady state E6 undergoes a subcritical Poincaré-Andronov-Hopf

bifurcation at the critical value of the bifurcation parameter, ĥ, then as the bifurcation

parameter h passes through ĥ, in addition to the small amplitude unstable limit cycle,

Γh, there exists at least one large amplitude limit cycle which is attracting.

Proof. We note that, by construction, Q \ A (Γh) contains no locally stable fixed

point. Hence, from Poincaré-Bendixson Theorem, for any (g◦, d◦) ∈ Q \ A (Γh), ω-

limit set of the solution trajectory, Θ (t) will be a closed orbit. Further, the limit

cycle, Γh, emerging from Andronov-Hopf bifurcation as the bifurcation parameter

passes through its critical value is not contained in Q \A (Γh), i.e. Γh /∈ Q \A (Γh).

Hence, the ω-limit set of Θ (t) must be a large amplitude limit cycle which is distinct

from Γh. We further note that this large amplitude limit cycle is attracting. (See

figure 3)

Figure 3: A small amplitude unstable limit cycle surrounded by a large amplitude

stable limit cycle
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It is clear from theorem 2 that in case of a subcritical Andronov-Hopf bifurca-

tion, the following two kinds of trajectories would emerge:

1. For any (g◦, d◦) ∈ intA (Γh) the ω-limit set of the solution trajectories would be

the steady state, E6. This behavior would be similar to Leijonhufvud’s (1973)

notion of corridor stability.

2. For any (g◦, d◦) ∈ Q \A (Γh), the ω-limit set of the solution trajectories would

be a large amplitude limit cycle.

In other words, a subcritical Andronov-Hopf bifurcation leads to possibilities of

emergence of multiple limit cycles.

6 Conclusions

The above discussion leads us to the following conclusions:

1. For the dynamical system represented by (1), we define a critical value of

the parameter h given by ĥ where we have a non-degenerate Andronov-Hopf

bifurcation, leading to emergence of limit cycles.

2. The limit cycle emerging from Andronov-Hopf bifurcation is either stable or

unstable; in case it is unstable, from theorem 2, we have another stable limit

cycle enclosing the unstable limit cycle.

3. For h > ĥ, from theorem 1, we have a stable limit cycle from an application of

Poincaré-Bendixson theorem.

In other words, given ĥ, we have established the existence of a unique stable limit

cycle for all h ≥ ĥ. We should note that this result for existence of stable limit cycles

in planar dynamical systems is more robust than much of the current literature.

Finally, we also point out that these results can be more generally applied to

the broader class of economic applications of planar dynamical systems where both

Andronov-Hopf bifurcation theorem and Poincaré-Bendixson theorem are applicable.

Applicability of this method is not limited by other details of the model chosen in

this study.
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Appendix A Steady states

The steady states of the dynamical system represented by (1) are as follows:

E1 :
(

ḡ1, d̄1
)

= (0, 0) (6a)

E2 :
(

ḡ2, d̄2
)

=

(

−
√

4 a2 a4+a21−a1

2 a2
, 0

)

(6b)

E3 :
(

ḡ3, d̄3
)

=

(√
4 a2 a4+a21+a1

2 a2
, 0

)

(6c)

E4 :
(

ḡ4, d̄4
)

=
(

0, b3
b2

)

(6d)

E5 :
(

ḡ5, d̄5
)

=

(

−
√

4 a2 b
2
2 a4−4 a2 b2 a3 b3+b21 a

2
3−2 a1 b1 b2 a3+a21 b

2
2+b1 a3−a1 b2

2 a2 b2
,

− b1

√
4 a2 b

2
2 a4−4 a2 b2 a3 b3+b21 a

2
3−2 a1 b1 b2 a3+a21 b

2
2−2 a2 b2 b3+b21 a3−a1 b1 b2

2 a2 b
2
2

)

(6e)

E6 :
(

ḡ6, d̄6
)

=

(√
4 a2 b

2
2 a4−4 a2 b2 a3 b3+b21 a

2
3−2 a1 b1 b2 a3+a21 b

2
2−b1 a3+a1 b2

2 a2 b2
,

b1

√
4 a2 b

2
2 a4−4 a2 b2 a3 b3+b21 a

2
3−2 a1 b1 b2 a3+a21 b

2
2+2 a2 b2 b3−b21 a3+a1 b1 b2

2 a2 b
2
2

)

(6f)

It would be evident that E2 /∈ ℜ2
++ since ḡ2 < 0. Hence we do not discuss E2 any

further in the following sections. Further, E3 and E4 are non-negative and lie on the

g and d axis respectively. Regarding E5 and E6, we note the following:

1. Whenever E5 and E6 are real and distinct, ḋ/d = 0 must intersect ġ/g = 0

from above at E5 and from below at E6. If E5 and E6 are not distinct, then

ḋ/d = 0 is a tangent to ġ/g = 0 at the point representing the unique non-trivial

steady state.

2. a3b3 < a4b2 is a sufficient (though not necessary) condition for the non-trivial

steady state E6 to be inside the real positive orthant, ℜ2
++.

3. For g (t) ≥ ḡ3, we have ġ (t) ≤ 0 for all d (t) ∈ ℜ+; in other words, if ḡ3 ≤ gmax,

then the feasibility condition 0 ≤ g (t) ≤ gmax is always satisfied.

Appendix B Proof of Lemma 1

For any (g◦, d◦) ∈ int ℜ2
++ as the initial point, let the solution to (1) be

represented by Θ (t) = (g (t) , d (t) ; g◦, d◦). From (1), we can conclude the following

10



about the behavior of trajectories in case the initial point is on one of the axes:

(a) ġ > 0, ḋ = 0 ∀ {(g◦, d◦) : g◦ ∈ ]0, ḡ3[ , d◦ = 0} as the initial point.

(b) ġ < 0, ḋ = 0 ∀ {(g◦, d◦) : g◦ ∈ ]ḡ3,∞[ , d◦ = 0} as the initial point.

(c) ġ = 0, ḋ > 0 ∀
{

(g◦, d◦) : g◦ = 0, d◦ ∈
]

0, d̄4
[}

as the initial point.

(d) ġ = 0, ḋ < 0 ∀
{

(g◦, d◦) : g◦ = 0, d◦ ∈
]

d̄4,∞
[}

as the initial point.

(7)

i.e. both the g-axis and the d-axis are trajectories. Since trajectories cannot cross

each other, this would make the real positive orthant invariant, i.e. trajectories

starting from an initial point in the real positive orthant will always remain within

it.

Appendix C Parametric conditions for four cases

of Figure 1

For g, d 6= 0, from (1) we have

ġ (t) ⋚ 0 ⇔ d (t) R
a1
a3

g (t)− a2
a3

{g (t)}2 + a4
a3

ḋ (t) ⋚ 0 ⇔ d (t) R
b1
b2
g (t) + b3

(8)

Depending on the configuration of parameters, we can list four different possibilities

exhibiting qualitatively different dynamics:

1. Case 1: Here, a4b2 − a3b3 > 0, i.e. intercept of ġ/g = 0 is greater than that

of ḋ/d = 0, and b1/b2 > (a1 − 2a2ḡ6) /a3 > 0, i.e. ḋ/d = 0 intersects ġ/g = 0

from below in the positively sloped section of the latter curve. E6 ∈ intℜ2
++ is

the only steady state in this case inside the real positive orthant.

2. Case 2: Here, a4b2 − a3b3 > 0, i.e. intercept of ġ/g = 0 is greater than that

of ḋ/d = 0, but unlike case 1, (a1 − 2a2ḡ6) /a3 < 0 < b1/b2, i.e. ḋ/d = 0

intersects ġ/g = 0 from below in the negatively sloped section of the latter

curve. E6 ∈ intℜ2
++ is the unique steady state inside the real positive orthant.

3. Case 3: Here, a4b2 − a3b3 < 0, i.e. intercept of ġ/g = 0 is less than that

of ḋ/d = 0, and (a1 − 2a2ḡ5) /a3 > b1/b2 > 0 > (a1 − 2a2ḡ6) /a3, i.e. ḋ/d = 0

intersects ġ/g = 0 from below at E5 when the latter is sloping upward, and from

above at E6 when the latter is sloping downward. In this case, E5, E6 ∈ intℜ2
++,

i.e. ḋ/d = 0 intersects ġ/g = 0 twice in the interior of the real positive orthant.

4. Case 4: Here, a4b2 − a3b3 < 0, i.e. intercept of ġ/g = 0 is less than that of

ḋ/d = 0, and, unlike case 3, E5, E6 /∈ intℜ2
++ so that there does not exist any

11



steady state in the interior of the real positive orthant. Since we are interested

in only the real positive orthant, we do not discuss case 4 any further in the

rest of our discussion.

Appendix D Proof of Lemma 3

In order to establish that this Andronov-Hopf bifurcation point is non-degenerate,

and to determine the stability of the limit cycles emerging from this bifurcation, we

reduce our dynamical system represented by (1) to its topological normal form, us-

ing a method outlined by (Edneral 2007), (Wiggins 1990) and (Kuznetsov 1997,

Kuznetsov 2006). We implement this method by writing a program, using com-

puter algebra system Maxima (see program 1 in appendix F). The actual algorithm

consists of the steps given below:

1. We perform a linear transformation of coordinates from (g (t) , d (t)) to the

new plane, (x1 (t) , x2 (t)) such that g (t) = x1 (t) + ḡ6, and d (t) = x2 (t) + d̄6.

With this shift, the steady state, E6 :
(

ḡ6, d̄6
)

is placed at the origin, and the

dynamical system (1) can be represented as

ẋ1 (t) = h
[

−a2 {x1 (t)}3 + a6 {x1 (t)}2 + a5x1 (t)− a3x1 (t) x2 (t)− a7x2 (t)
]

ẋ2 (t) = b4x1 (t) + b1x1 (t) x2 (t)− b5x2 (t)− b3 {x2 (t)}2
(9)

where

a5 =
2 b1 a3 s1 − a1 b2 s1 − 4 a2 b

2
2 a4 + 4 a2 b2 a3 b3 − 2 b21 a

2
3 + 3 a1 b1 b2 a3 − a21 b

2
2

2 a2 b22

a6 = −3 s1 − 3 b1 a3 + a1 b2
2 b2

a7 =
a3 (s1 − b1 a3 + a1 b2)

2 a2 b2

b4 =
b1 (b1 s1 + 2 a2 b2 b3 − b21 a3 + a1 b1 b2)

2 a2 b22

b5 =
b1 s1 + 2 a2 b2 b3 − b21 a3 + a1 b1 b2

2 a2 b2

s1 =
√

4 a2 b22 a4 − 4 a2 b2 a3 b3 + b21 a
2
3 − 2 a1 b1 b2 a3 + a21 b

2
2

2. For the transformed dynamical system represented by (9), we take a Taylor se-

ries expansion around the steady state represented by the origin. The resulting

expression can be represented in matrix notation as

Ẋ = A (h)X + F (X, h) (10)
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where X =

(

x1

x2

)

is a column vector of the two variables, and A (h) is the

jacobian matrix so that A (h)X represents the linear part of the Taylor series

expansion, i.e.

A (h) =

(

a5h −a7h

b4 −b5

)

(11)

and F (X, h) represents the non-linear terms of the Taylor series expansion,

starting with at least quadratic terms, such that F (X, h) = O (||x| |2) +
O (||x| |3) + . . .

3. Next, we calculate the eigenvalues, ϑ (h) and ϑ (h) of the jacobian matrix,

A (h) from (11):

ϑ (h) , ϑ (h) =
1

2

{

(a5h− b5)±
√

a25h
2 + (2a5b5 − 4a7b4) + b25

}

so that real part of the eigenvalues is expressed as Re ϑ (h) = a5h−b5. Further,

d (Re ϑ (h))

dh

∣

∣

∣

∣

h=0

= a5 > 0

i.e. transversality condition is satisfied.

4. We now recalculate the critical value, ĥ, of the bifurcation parameter, h. This

would correspond to the right hand side of (4), expressed in terms of the new

parameters defined above. Thus, we have

ĥ =
b5
a5

(12)

Substituting the value of ĥ from (12) into (11), we have the jacobian at the

critical value of bifurcation parameter:

A
(

ĥ
)

=





b5 −a7b5
a5

b4 −b5



 (13)

Further, we have Determinant
(

A
(

ĥ
))

= (b4b5a7) /a5 − b25. We define ω such

that ω2 = Determinant
(

A
(

ĥ
))

. We now express A
(

ĥ
)

from (13) in terms

of ω.

A
(

ĥ
)

=







b5 −a7b5
a5

a5 (b
2
5 + ω2)

a7b5
−b5






(14)

13



The eigenvalues of A
(

ĥ
)

evaluated at the critical value of the bifurcation

parameter can now be expressed as ϑ
(

ĥ
)

, ϑ
(

ĥ
)

= ±ıω.

5. We now calculate the eigenvector of A
(

ĥ
)

with respect to ϑ
(

ĥ
)

and call it

q, where

q =

(

ıa7b5ω + a7b
2
5

a5ω
2 + a5b

2
5

)

i.e. A
(

ĥ
)

q = ϑ
(

ĥ
)

q. It would be evident that eigenvector of A
(

ĥ
)

with

respect to ϑ
(

ĥ
)

would be q, where q is the complex conjugate of q, so that

A
(

ĥ
)

q = ϑ
(

ĥ
)

q.

6. We next calculate AT

(

ĥ
)

, the transpose of A
(

ĥ
)

:

AT
(

ĥ
)

=







b5
a5 (b

2
5 + ω2)

a7b5

−a7b5
a5

−b5






(15)

We note that the eigenvalues of AT

(

ĥ
)

would be the same as those of A
(

ĥ
)

and might be represented as ϑ
(

ĥ
)

and ϑ
(

ĥ
)

.

7. We next calculate the eigenvector of AT

(

ĥ
)

with respect to ϑ
(

ĥ
)

and call it

p, i.e.

p =





1
a7b5

ıa5ω − a5b5





i.e. AT

(

ĥ
)

p = ϑ
(

ĥ
)

p. It would be clear that the eigenvector of AT

(

ĥ
)

with

respect to ϑ
(

ĥ
)

would be p, i.e. AT

(

ĥ
)

p = ϑ
(

ĥ
)

p.

8. We note that the scalar product of p and q is given by

〈p, q〉 = 2ıa7b
2
5ω − 2a7b5ω

2

b5 + ıω

We next normalize p with respect to q by suitably transforming from p to p̂, so

that the scalar product of p̂ and q is one, i.e. 〈p̂, q〉 = 1. This can be achieved
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by multiplying the column vector p with the reciprocal of the conjugate of the

scalar product of p and q, i.e.

p̂ ≡ p.
1

〈p, q〉

This leaves us with the following:

p̂ =







ıω − b5
2a7b5ω2 + 2ıa7b

2
5ω

1

2a5ω2 + 2ıa5b5ω






(16)

We now note that 〈p̂, q〉 = 1.

9. Next, we perform a complex linear transformation, z = 〈p̂, x〉 so that x =

zq + zq. We should note that x = zq + zq ⇔ 〈p̂, x〉 = z〈p̂, q〉 + z〈p̂, q〉 ⇔
〈p̂, x〉 = z [∵ 〈p̂, q〉 = 1, 〈p̂, q〉 = 0]. The transformation from (x1, x2) to z

might be viewed as a combination of two transformations, y = T (h) x and

z = y1+ ıy2. It would be clear that the components (y1, y2) are the coordinates

of (x1, x2) in the real eigenbasis of A (h) composed by (2Re q,−2Im q). In this

basis, the matrix A (h) has its canonical real (Jordan) form

J (h) = T (h)A (h) T−1 (h) =

(

Re ϑ (h) −ω (h)

ω (h) Re ϑ (h)

)

This complex linear transformation imposes a linear relationship between (x1, x2)

and the real and imaginary parts of z. With this transformation, the dynamical

system represented by (9) is now reduced to a single differential equation:

ż = ϑ (h) z + g (z, z, h) (17)

where g (z, z, h) = 〈p (h) , F (zq (h) + zq (h) , α)〉.

To perform this transformation, we first represent the right hand side of (9)

by F1 (x1, x2) and F2 (x1, x2) respectively. Next, we make the following substi-

tution:

x1 = zq1 + wq1 = (a7b
2
5 + a7b5ıω) z + (a7b

2
5 − a7b5ıω)w

x2 = zq2 + wq2 = (a5b
2
5 + a5ω

2) (z + w)
(18)

It might be noted that in the substitution made above in (18), we introduce

an additional variable, w instead of z in order to simplify the implementation

of the algorithm in a symbolic manipulation software like Maxima. (See, for
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instance, Kuznetsov 1997, page 103, footnote 5). Substituting from (18), we

have

F1 (zq1 + wq1, zq2 + wq2)

=
b5
a5

[

−a3
{(

ıa7b5ω + a7b
2

5

)

z +
(

a7b
2

5 − ıa7b5ω
)

w
} (

a5ω
2 + a5b

2

5

)

(z + w)

−a7
(

a5ω
2 + a5b

2

5

)

(z + w)− a2
{(

ıa7b5ω + a7b
2

5

)

z +
(

a7b
2

5 − ıa7b5ω
)

w
}3

+a6
{(

ıa7b5ω + a7b
2

5

)

z +
(

a7b
2

5 − ıa7b5ω
)

w
}2

+ a5
{(

ıa7b5ω + a7b
2

5

)

z

+
(

a7b
2

5 − ıa7b5ω
)

w
}]

(19)

and

F2 (zq1 + wq1, zq2 + wq2)

= − b2
{(

a5ω
2 + a5b

2

5

)

(z + w)
}2

+ b1
{(

ıa7b5ω + a7b
2

5

)

z +
(

a7b
2

5 − ıa7b5ω
)

w
}

{(

a5ω
2 + a5b

2

5

)

(z + w)
}

− b5
(

a5ω
2 + a5b

2

5

)

(z + w) + b4
{(

ıa7b5ω + a7b
2

5

)

z

+
(

a7b
2

5 − ıa7b5ω
)

w
}

(20)

We define a matrix F such that

F =

(

F1 (zq1 + wq1, zq2 + wq2)

F2 (zq1 + wq1, zq2 + wq2)

)

(21)

and a new complex-valued function G (z, w) such that

G (z, w) = 〈p̂, F 〉 (22)

where G can be calculated by a scalar multiplication of p̂ from (16) with F

from (21).7

10. Next, we calculate the First Lyapunov Exponent, ℓ1

(

ĥ
)

as follows:

ℓ1

(

ĥ
)

=
1

2ω2
Re

(

ı
∂2G

∂z2

∣

∣

∣

∣

z=0,w=0

∂2G

∂z∂w

∣

∣

∣

∣

z=0,w=0

+ ω
∂3G

∂z∂z∂w

∣

∣

∣

∣

z=0,w=0

)

(23)

The computer algebra system, Maxima, calculates the value of first Lyapunov

exponent of our system as:

ℓ1

(

ĥ
)

=− 1

2a25ω
3

{

b5
(

b25 + ω2
) (

3a2a5a
2

7b
2

5ω
2 + a3a5a6a7b

2

5ω
2 − a35a7b1b2ω

2

−a23a
2

5b
2

5ω
2 − a3a

3

5b2b5ω
2 + 2a45b

2

2ω
2 − 2a26a

2

7b
4

5 + a5a6a
2

7b1b
3

5 + a25a
2

7b
2

1b
2

5

+3a3a5a6a7b
4

5 − 3a35a7b1b2b
2

5 − a23a
2

5b
4

5 − a3a
3

5b2b
3

5 + 2a45b
2

2b
2

5

)}

(24)

7The actual output of G is too long to be displayed here. Those interested might obtain this as

part of the output by running program 1 on GNU computer algebra system, Maxima.
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11. Once we have calculated the value of the First Lyapunov Exponent from (24)

and established that it is non-zero (i.e. non-degeneracy conditions are sat-

isfied), we can reduce (17) to its topological normal form using a series of

transformations, including an invertible parameter-dependent shift of complex

coordinates, a linear time rescaling and a non-linear time reparametrization,

and elimination of terms of degree greater than four from the Taylor series (cf.

Kuznetsov 1997, page 94-100). In this case, (17) can be represented in the

topological normal form as:
(

ẏ1
ẏ2

)

=

(

α −1

1 α

)(

y1
y2

)

+̟
(

y21 + y22
)

(

y1
y2

)

(25)

where ̟ = sign
(

ℓ1

(

ĥ
))

= ±1, α =
Re ϑ (h)

ω (h)
∈ ℜ and y = (y1, y2)

T ∈ ℜ2.

The normal form represented by (25) is locally topologically equivalent to the

original dynamical system represented by (1) near the steady state, E6. For ̟ = +1,

the normal form has a steady state at the origin, which is asymptotically stable for

α ≤ 0 and unstable for α > 0; in the latter case, a unique and stable limit cycle with

radius
√
α will emerge. This is the case of a supercritical Andronov-Hopf bifurcation.

Similarly, for ̟ = −1, the normal form has a steady state at the origin, which is

asymptotically stable for α < 0 and unstable for α ≥ 0; in the former case, a unique

and unstable limit cycle will emerge. This is the case of a subcritical Andronov-Hopf

bifurcation.

Appendix E Proof of Lemma 4

Consider a trajectory Θ (t) starting from an initial point located on the bound-

ary, QB of Q, i.e. (g◦, d◦) ∈ QB. We recall from (7) that the g-axis and the d-axis

are both trajectories. In particular, since E1 (0, 0) is a steady state,

(g◦, d◦) = E1 (0, 0) ⇒ Θ (t) = E1 (0, 0) ∀ t ∈ ℜ (26)

Since E3 (ḡ3, 0) and E4

(

0, d̄4
)

are also steady states, by same logic,

(g◦, d◦) = E3 (ḡ3, 0) ⇒ Θ (t) = E3 (ḡ3, 0) ∀ t ∈ ℜ (27)

(g◦, d◦) = E4

(

0, d̄4
)

⇒ Θ (t) = E4

(

0, d̄4
)

∀ t ∈ ℜ (28)

In other words, if the initial point is either on E1, E2 or E3 then the trajectory will

remain at the initial point. Further, from (7), if the initial point is on either g-axis or

d-axis, but not on one of the steady states, it will approach E3 and E4 respectively.
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On the other hand, for (g◦, d◦) ∈ {(g, d) : g = ḡ3, d ∈ ]0, dmax[}, we have ġ < 0 and

ḋ > 0 ; whereas for (g◦, d◦) ∈ {(g, d) : g ∈ ]0, ḡ3[} we have ġ < 0 and ḋ < 0; i.e. in

both cases the trajectories would be pushed towards interior of Q. To summarize,

for any (g◦, d◦) ∈ QB, the trajectories either remain on QB or are pushed towards

the interior of Q; in no case do the trajectories leave Q. [See figure 2] In addition,

since Q is constructed on a plane, i.e. Q ⊆ ℜ2
++, no trajectory with an initial point

in the interior of Q can leave Q without crossing QB. This completes the proof of

invariance of Q.

Appendix F Program Code

The following program code is written for Maxima version 5.21.1, using Lisp

SBCL 1.0.29.11.debian, distributed under the GNU Public License.

http://maxima.sourceforge.net

Program 1: To find first lyapunov exponent of Andronov-Hopf bifurcation

F1 : ( a [ 1 ] ∗ g − a [ 2 ] ∗ gˆ2 − a [ 3 ] ∗ d + a [ 4 ] ) ∗ h∗g ;

F2 : (b [ 1 ] ∗ g − b [ 2 ] ∗ d + b [ 3 ] ) ∗ d ;

assume ( a [1 ]>0 , a [2 ]>0 , a [3 ]>0 , a [4 ]>0 , b [1 ]>0 , b [2 ]>0 ,

b [3 ]>0 , h>0, g>0, d>0)$

assume ( a [ 1 ] ∗ b [ 2 ] > a [ 3 ] ∗ b [ 1 ] ) $

assume ( a [ 4 ] ∗ b [ 2 ] > a [ 3 ] ∗ b [ 3 ] ) $

s o l : a l g sy s ( [ F1=0, F2=0] , [ g , d ] ) $

u : rhs ( s o l [ 6 ] [ 1 ] ) $

v : rhs ( s o l [ 6 ] [ 2 ] ) $

F3 : f u l l r a t s imp ( subst ( x [1 ]+u , g , F1 ) ) $

F4 : f u l l r a t s imp ( subst ( x [1 ]+u , g , F2 ) ) $

F5 : f u l l r a t s imp ( subst ( x [2 ]+v , d , F3 ) ) $

F6 : f u l l r a t s imp ( subst ( x [2 ]+v , d , F4 ) ) $

F7 : expand (F5 ) ;

F8 : expand (F6 ) ;

s1 : s q r t (4∗a [ 2 ] ∗ b [ 2 ] ˆ 2 ∗ a [4]−4∗a [ 2 ] ∗ b [ 2 ] ∗ a [ 3 ] ∗ b [3 ]+b [ 1 ] ˆ 2 ∗ a [ 3 ] ˆ 2

−2∗a [ 1 ] ∗ b [ 1 ] ∗ b [ 2 ] ∗ a [3 ]+ a [ 1 ] ˆ 2 ∗b [ 2 ] ˆ 2 ) $

F9 : subst ( s , s1 , F7 ) ;

F10 : subst ( s , s1 , F8 ) ;

cx1 : ( f a c t o r ( c o e f f (F9 , x [ 1 ] ) + a [ 3 ] ∗ h∗x [ 2 ] ) ) / h $

cx12 : ( f a c t o r ( c o e f f (F9 , x [ 1 ] ˆ 2 ) ) ) / h $

cx2 : ( f a c t o r ( c o e f f (F9 , x [ 2 ] ) + a [ 3 ] ∗ h∗x [ 1 ] ) ) /h $

F11 : f u l l r a t s imp ( ( a [ 5 ] ∗ x [ 1 ] + a [ 6 ] ∗ x [ 1 ] ˆ 2 − a [ 2 ] ∗ x [ 1 ] ˆ 3

18



− a [ 7 ] ∗ x [ 2 ] − a [ 3 ] ∗ x [ 1 ] ∗ x [ 2 ] ) ∗ h ) ;

rats imp (F9 − subst ( [ a [5 ]= cx1 , a [6 ]= cx12 , a [7 ]= −cx2 ] , F11 ) ) ;

dx1 : f a c t o r ( c o e f f (F10 , x [ 1 ] ) − b [ 1 ] ∗ x [ 2 ] ) $

dx2 : f a c t o r ( c o e f f (F10 , x [ 2 ] ) − b [ 1 ] ∗ x [ 1 ] ) $

F12 : f u l l r a t s imp (b [ 4 ] ∗ x [ 1 ] − b [ 5 ] ∗ x [ 2 ] − b [ 2 ] ∗ x [ 2 ] ˆ 2

+ b [ 1 ] ∗ x [ 1 ] ∗ x [ 2 ] ) ;

rats imp (F10 − subst ( [ b [4 ]=dx1 , b[5]=−dx2 ] , F12 ) ) ;

J : j a cob ian ( [ F11 , F12 ] , [ x [ 1 ] , x [ 2 ] ] ) $

J1 : subst ( [ x [1 ]=0 , x [ 2 ]=0 ] , J ) $

t r : mat trace ( J1 ) $

h1 : s o l v e ( [ t r =0] , [ h ] ) $

J2 : subst ( [ h=rhs ( h1 [ 1 ] ) ] , J1 ) $

%Delta : determinant ( J2 ) $

r u l e 1 : %omegaˆ2 = %Delta $

m1: so l v e ( ru le1 , b [ 4 ] ) $

m: rhs (m1 [ 1 ] ) $

J3 : rats imp ( subst ( [ b [4 ]=m] , J2 ) ) ;

Q: e i g enve c t o r s ( J3 ) ;

q : f u l l r a t s imp (denom(Q[ 3 ] [ 2 ] ) ∗ t ranspose (Q[ 3 ] ) ) ;

J4 : t ranspose ( J3 ) $

P: e i g enve c t o r s ( J4 ) ;

p1 : t ranspose (P [ 2 ] ) $

innerproduct (p1 , q ) $

i nne r : con jugate ( innerproduct (p1 , q ) ) $

p : f u l l r a t s imp ( p1∗(1/ inne r ) ) ;

innerproduct (p , q ) ;

F13 : subst ( [ h=rhs ( h1 [ 1 ] ) ] , F11) $

F14 : subst ( [ h=rhs ( h1 [ 1 ] ) ] , F12) $

CLT1: x [ 1 ] = ( z∗q [ 1 ] + w∗( con jugate ( q [ 1 ] ) ) ) [ 1 ] ;

CLT2: x [ 2 ] = ( z∗q [ 2 ] + w∗( con jugate ( q [ 2 ] ) ) ) [ 1 ] ;

F15 : subst ( [CLT1,CLT2] , F13 ) ;

F16 : subst ( [CLT1,CLT2] , F14 ) ;

FF: matrix ( [ F15 ] , [ F16 ] ) ;

G: innerproduct (p ,FF) ;

g1 : f u l l r a t s imp ( d i f f (G, z , 2 ) ) $

g [ 2 0 ] : f u l l r a t s imp ( subst ( [ z=0, w=0] , g1 ) ) ;

g3 : f u l l r a t s imp ( d i f f (G, z , 1 ) ) $

g4 : f u l l r a t s imp ( d i f f ( g3 ,w, 1 ) ) $

g [ 1 1 ] : f u l l r a t s imp ( subst ( [ z=0,w=0] , g4 ) ) ;
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g6 : f u l l r a t s imp ( d i f f ( g1 ,w, 1 ) ) $

g [ 2 1 ] : f u l l r a t s imp ( subst ( [ z=0,w=0] , g6 ) ) ;

c [ 1 ] : %i ∗g [ 2 0 ] ∗ g [ 1 1 ] + %omega ∗ g [ 2 1 ] ;

l [ 1 ] : f a c t o r ( ( 1/ (2∗ %omegaˆ2)) ∗ r e a l p a r t ( c [ 1 ] ) ) ;
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