Robustness and Stability of Limit Cycles in a Class of Planar Dynamical Systems

Datta, Soumya

Faculty of Economics, South Asian University

June 2014

Online at https://mpra.ub.uni-muenchen.de/56970/
MPRA Paper No. 56970, posted 29 Jun 2014 05:42 UTC
Robustness and Stability of Limit Cycles in a Class of Planar Dynamical Systems

SOUMYA DATTA*
Faculty of Economics, South Asian University, New Delhi, INDIA.
Email:soumya@econ.sau.ac.in

June 29, 2014

Abstract

Using the Andronov-Hopf bifurcation theorem and the Poincaré-Bendixson Theorem, this paper explores robust cyclical possibilities in a generalized Kolmogorov-Lotka-Volterra class of models with positive intraspecific cooperation in the prey population. This additional feedback effect introduces nonlinearities which modify the cyclical outcomes of the model. Using an economic example, the paper proposes an algorithm to symbolically construct the topological normal form of Andronov-Hopf bifurcation. In case the limit cycle turns out to be unstable, the possibilities of the dynamics converging to another limit cycle is explored.

Keywords: Kolmogorov-Lotka-Volterra Model, predator-prey, Andronov-Hopf bifurcation, Limit cycles

JEL classification: C62; C69

*Parts of this paper are drawn from the author’s Ph.D. thesis, titled Macrodynamics of Financing Investment: Applications of Lotka-Volterra Class of Models, completed at CESP, JNU, New Delhi under the supervision of Prof. Anjan Mukherji in 2011. An early version of this paper was presented at the 2014 Economic Theory and Policy Conference, jointly organized by National Institute of Public Finance and Policy (New Delhi), Jawaharlal Nehru University and Kagawa University. The author is grateful to the participants of this conference for their useful comments. The usual disclaimer applies.
1. Introduction

Economic theory has long been engaged in attempts to explain persistent cyclical behavior of variables like income and investment, resulting in business and growth cycles. At least one line of investigation in this literature has been to look for endogenous deterministic explanations for such cycles. In this paper, we look at the possibilities of robust cyclical behavior in a class of planar dynamical systems which might be useful in this line of literature.

The specific class of planar dynamical systems which we are going to examine in this study consists of two variables with a two-way causality running between them. The Lotka-Volterra or the predator-prey class of models, originally formulated by Lotka (1925) and Volterra (1927) in a biochemical and ecological application respectively, and later on generalized by Kolmogorov (1936), Freedman (1980, chapter 5), Huang & Zhu (2005) and Mukherji (2005), is an example of this class of models. The possibility of this class of models lending itself to model economic phenomena was noticed by Goodwin (1967), Samuelson (1967), Samuelson (1971) and many others. In fact, Flaschel (2010) demonstrated that this class of models might be utilized in a very diverse set of macroeconomic problems to yield endogenously bounded and cyclical outcomes. However, as pointed out, among others, by Flaschel (1984), Mukherji (2005) and Datta & Mukherji (2010), robustness of the cyclical outcomes in these models might be a matter of concern. In this study, we place a slightly modified set of restrictions to the generalized Kolmogorov-Lotka-Volterra class of models than the ones discussed in the abovementioned studies. We demonstrate that the modifications we make to the restrictions are economically meaningful in a wide class of models, and can lead us to a much more robust cyclical outcomes than the ones found in the literature.

A related subject of our study is the Andronov-Hopf bifurcation theorem, which has been widely used to establish existence of limit cycles in this line of literature. However, in addition to the existence conditions, the Andronov-Hopf bifurcation must satisfy the non-degeneracy condition in order to prevent the degeneration of these limit cycles. Further, the Andronov-Hopf bifurcation might either be supercritical or subcritical. As pointed out by Benhabib & Miyao (1981) and Kind (1999), these two possibilities might have different economic interpretations. The supercritical case corresponds to stable limit cycles surrounding an unstable fixed point, and hence might be interpreted as stylized business or growth cycles. The subcritical case, on the other hand, correspond to repelling closed orbit surrounding a fixed point which is still stable, and might be interpreted to be corresponding to the concept of corridor stability as developed by Leijonhufvud (1973). A meaningful economic analysis of these limit cycles, therefore, requires a test for both non-degeneracy and stability. While numerically testing an Andronov-Hopf bifurcation point for non-degeneracy and stability is quite widespread in the literature in natural sciences, a substantial literature in economics relies on symbolic computation. This is one of the reasons why the literature in economics often stops short of testing

2See, for instance, Kuznetsov (1997).

3In fact, software packages like XPPAUT or MATCONT already incorporate some of the standard algorithms for these tests.
Andronov-Hopf bifurcation for non-degeneracy and stability. We attempt to address this concern in this paper. We use a method outlined by Kuznetsov (1997) and Edneral (2007) to symbolically compute the topological normal form for an Andronov-Hopf bifurcation in plane and test for non-degeneracy and stability of its limit cycles. We also explore whether, under certain conditions, there is a possibility of alternate stable limit cycles emerging when the test for stability of the limit cycle from Andronov-Hopf bifurcation fails. It would be obvious that a positive answer to the above question will widen the scope for cyclical possibilities to emerge in this class of models.

We begin by providing an outline of the generalized Kolmogorov-Lotka-Volterra class of models and point out the specific restrictions which we modify. We then illustrate this with a simple example of such a dynamical system and examine the robustness of limit cycles emerging from such a system.

We begin with a generalized formulation of the predator-prey or Kolmogorov-Lotka-Volterra class of models, in line with the ones found in Kolmogorov (1936), Freedman (1980, chapter 5), Huang & Zhu (2005) and Mukherji (2005). Consider an ecological environment consisting of two species, one of which (predator) preys on the other (prey). The population of the prey depends inversely on the population of the predator, while the population of the predator depends directly on the population of prey. This simple story, which formed the basis of the original Lotka-Volterra formulation is often augmented with additional features, like the problem of resource constraint or ‘overcrowding’, when the prey population feeds on a natural resource like grass. Growth of prey population leads to a shortage of this natural resource, which acts as a self-limiting factor. Similar problem of overcrowding also exists for the predator species.

We model the above story using two variables, \(x \) and \(y \), and two continuously differentiable functions \(M, N : \mathbb{R}_+ \times \mathbb{R}_+ \rightarrow \mathbb{R} \) with the following set of properties:

\[\begin{align*}
 &P1. \quad M(0,0) > 0, \quad M_x(x,y) < 0, \quad N_y(x,y) > 0 \quad \forall (x,y) \in \mathbb{R}_+ \times \mathbb{R}_+ \\
 &P2. \quad N_y(x,y) < 0 \quad \forall (x,y) \in \mathbb{R}_+ \times \mathbb{R}_+ \\
 &P3. \quad N(0,0) > 0, \quad M_x(x,y) \geq 0 \quad \forall x \in [0,\hat{x}], \quad M_x(x,y) < 0 \quad \text{otherwise,} \quad M_{xx}(x,y) < 0 \quad \forall (x,y) \in \mathbb{R}_+ \times \mathbb{R}_+
\end{align*} \]

In the terminology of the predator-prey class of models, \(x \) might be interpreted to represent the prey population, whereas \(y \) might be interpreted to represent the predator population. The dynamical system might be described by the following system of differential equations:

\[\begin{align*}
 \dot{x}(t) &= x(t) M(x(t), y(t)) \\
 \dot{y}(t) &= y(t) N(x(t), y(t))
\end{align*} \]

\(^4\)Benhabib & Nishimura (1979), however, is an early notable exception.
Out of the restrictions imposed on the functions M and N, namely $P1$, $P2$ and $P3$, Mukherji (2005) contains a discussion of $P1$ and $P2$. Briefly, $P1$ comes from the basic Lotka-Volterra relationship between the predator and the prey species explained above, while $P2$ comes from the existence of ‘overcrowding’ in the predator species. $P3$, however, represents a modification to the model outlined in the existing literature on this class of models, and hence merits a more detailed discussion.

It might be noted that the restrictions included in $P3$ makes the function M nonlinear, unlike the conventional literature in this area where both M and N are linear. Such nonlinearity might arise, for instance, due to two opposite forces simultaneously at work – one leading to a positive impact of x and other leading to a negative impact on itself. The latter might occur, as we already discussed above, due to the existence of a resource constraint (‘overcrowding’ or ‘social phenomenon’), or more generally, intraspecific competition. The former might occur due to a variety of reasons, for instance, in the context of predator-prey model, this might represent gains from intraspecific (i.e. among the members of the prey species) cooperation and social networks. Examples of such an intraspecific cooperation could be the members of the prey species signalling each other regarding the impending danger of an approaching predator, or using various forms of social networks to defend themselves against the predator. We assume that at low population size of the prey species, the intraspecific cooperation dominates, resulting in a positive value of $M_x(x, y)$. However, $M_{xx}(x, y) < 0$, i.e. the intraspecific competition progressively gets stronger vis-a-vis intraspecific cooperation with an increase in the prey population, so that eventually, after a critical point \hat{x}, it starts dominating. $M_x(x, y) < 0$ beyond \hat{x}. The nonlinearities arising from introduction of intraspecific cooperation represent our main departure from the existing literature on generalized Kolmogorov-Lotka-Volterra class of models.

We should point out here that introduction of such nonlinearities due to intraspecific cooperation might widen the scope of possible economic applications of such models. Consider, for instance, a traditional Keynesian multiplier-accelerator model\(^7\) with financial dampeners. The basic real-financial interaction might be thought of as a predator-prey relationship – a real variable like, say, the rate of investment, might be thought of as the prey, while a suitably defined financial variable like the rate of interest\(^8\) or the level of indebtedness in the economy\(^9\) might be thought of as a predator. An increase in the rate of investment typically results in a deterioration of financial variables, captured by either an increase in the rate of investment or an increase in the level of indebtedness, which in turn has a negative feedback effect on the rate of investment. These are captured by restrictions under $P1$. The basic multiplier-accelerator relationship (i.e. a positive impact of the rate of investment on itself from the demand side) might be captured by the intraspecific cooperation, while the negative impact from an increase in the rate of investment due to crowding out of either real or financial resources might be captured by intraspecific competition (or ‘overcrowding’ or ‘social phenomenon’). Both these are contained in $P3$. For lower rates of investment, the positive feedback effect dominates; however,

\(^7\)For instance, literature following early contributions made by Samuelson (1939) or Hicks (1950).

\(^8\)See, for instance, Datta (2011).

\(^9\)See, for instance, Datta (forthcoming).
beyond a critical rate of investment, the negative feedback starts dominating. In short, introduction of the positive feedback effect of \(x\) on \(M(x, y)\) in the form of intraspecific cooperation allows us to model economic phenomena like the traditional Keynesian multiplier-accelerator relationship.

We should note here that positive feedback effect like the one resulting from a Keynesian multiplier-accelerator interaction (captured in our model as intraspecific cooperation), on its own, is typically destabilizing.\(^{10}\) We attempt to see a) the extent to which such interactions might be integrated with the rest of the literature on predator-prey Kolmogorov-Lotka-Volterra class of models, and b) whether robust cyclical possibilities exist in such modified Kolmogorov-Lotka-Volterra models.

Before proceeding with rest of our study, we introduce a specific economic example of such a model.

3. An Economic Application

Consider the dynamical system given below, representing the macroeconomic model developed in Datta (forthcoming):

\[
\begin{align*}
\dot{g}(t) &= \left[a_1 g(t) - a_2 \{g(t)\}^2 - a_3 d(t) + a_4\right] h g(t) \\
\dot{d}(t) &= \left[b_1 g(t) - b_2 d(t) + b_3\right] d(t)
\end{align*}
\]

(2)

where \(g \in [0, g_{\text{max}}]\) is the rate of investment (or the ratio of investment to capital stock), \(g_{\text{max}}\) is the maximum possible rate of investment\(^{11}\) \(d\) is the debt-capital ratio and \(a_1, a_2, a_3, a_4, b_1, b_2, b_3 \in]0, \infty[\) are composite parameters consisting of various combination of various behavioral parameters. \(h\) is a control parameter. In the model in Datta (forthcoming), \(h\) represented the speed of adjustment of actual to the desired rate of investment; more generally, this might be interpreted as a parameter representing the speed of adjustment of the variable \(g\).\(^{12}\) We note that the dynamical system represented by (2) satisfies all the conditions listed under P1, P2 and P3 in section 2 above.

We note that the dynamical system represented by (2) has six steady states, which we refer to as \(E_i(g_i, d_i), \ i \in [0, 1]\). A full list of these steady states is provided in appendix A. We further note that at most two of these steady states, \(E_5(\bar{g}_5, \bar{d}_5)\) and \(E_6(\bar{g}_6, \bar{d}_6)\), are economically meaningful, i.e. lies within real positive orthant. We further note the following:

Lemma 1. For the dynamical system represented by (2), the real positive orthant is invariant.

Proof. Provided in appendix B.

\(^{10}\)Consider, for instance, Hicks (1950) – the model had to rely on exogenous ceilings and floors to explain turnarounds in business cycles.

\(^{11}\)In other words, \(g_{\text{max}}\) represents resource constraint commonplace in economic models.

\(^{12}\)cf. Datta (forthcoming) for details and derivation of this model; however, these details, however, are not relevant for the purpose of illustration of our method in this paper.
It follows from lemma 1 that since only dynamics strictly within the real positive orthant is economically meaningful, we focus our attention on only such trajectories and ignore other trajectories in the rest of our discussion. In other words, we only consider E_5 and E_6 for discussion, and do not discuss the other steady states in the rest of this study.

Next we turn our attention to the trajectories starting from an initial point inside the real positive orthant. Depending on the configuration of parameters, we can list four different possibilities exhibiting qualitatively different dynamics. These four cases are illustrated in figure 1. Details of parametric conditions giving rise to these four cases are discussed in appendix C.

![Figure 1: Phase diagram of (2): Four cases](image)

Further, performing the Routh-Hurwitz condition for local stability on the two economically meaningful steady states, E_5 and E_6, we note that (a) whenever the non-trivial steady state solution, E_5 exists and is distinct from E_6 and lies in the interior of real positive orthant, it is a saddle-point; and, (b) depending on the configuration of the parameters, the non-trivial steady state solution, E_6, whenever it exists and is distinct from E_5 and lies within the interior of the real positive orthant, is either a source or a sink.
4. Andronov-Hopf Bifurcation

Lemma 2. For an appropriate value of the speed of adjustment, h, of the actual rate of investment to its desired rate, the characteristic equation to (2) evaluated at the non-trivial steady state, E_6, has purely imaginary roots.

Proof. Consider the trace of the jacobian of the right hand side of (2), evaluated at E_6, and recall that for case 1 of figure 1, $\bar{g}_6 > 0$, $\bar{d}_6 > 0$ and $a_1 - 2a_2\bar{g}_6 > 0$, so that

$$\frac{\partial \text{(Trace)}}{\partial h} = (a_1 - 2a_2\bar{g}_6) \bar{g}_6 > 0$$

i.e. the trace is smooth, differentiable and monotonically increasing in the speed of adjustment, h, of the actual to the desired rate of investment. We further note that the trace disappears at $h = \hat{h}$, when

$$\hat{h} = \frac{b_2\bar{d}_6}{(a_1 - 2a_2\bar{g}_6) \bar{g}_6} > 0$$

which, by substituting the values of \bar{g}_6 and \bar{d}_6 from (7), might be expanded as

$$\hat{h} = \frac{b_1b_2\sqrt{\frac{a_2b_2^2a_4 + 2a_2b_2a_3b_3 + b_2^2a_3^2 - 2a_1b_1b_2a_3 + a_1b_1b_2^2 + 2a_2b_2b_3 - b_2^2b_3 - b_2^2b_3 - b_2^2b_3 + b_2^2b_3 + a_1b_1b_2^2}{(2b_1a_3-a_1b_2)\sqrt{a_2b_2^2a_4 + 4a_2b_2a_3b_3 + b_2^2a_3^2 - 2a_1b_1b_2a_3 + a_1b_1b_2^2 + 2a_2b_2b_3 - b_2^2b_3 - b_2^2b_3 + b_2^2b_3 + a_1b_1b_2^2}}}}{b_2\bar{d}_6}$$

We define \hat{h} as the critical value of the parameter, h, and investigate the properties of a solution trajectory to (2) around \hat{h}. Next, we apply the Andronov-Hopf Bifurcation Theorem to note the following:

Corollary 2.1. For the dynamical system represented by (2), $h = \hat{h}$ provides a point of Andronov-Hopf bifurcation.

Proof. From lemma 2, the characteristic equation to (2) has purely imaginary roots at $h = \hat{h}$. Further, the transversality condition is satisfied from (3). Hence, $h = \hat{h}$ provides a point of Andronov-Hopf bifurcation.

Lemma 3. For the dynamical system represented by (2), we can identify specific combination of parameter values for which the Andronov-Hopf bifurcation at $h = \hat{h}$ is non-degenerate and supercritical (or subcritical), leading to emergence of unique and stable (or unique and unstable) limit cycles.

Proof. Provided in appendix D.

5. Global Stability Properties

We recall that for any $(g^0, d^0) \in \text{int} \mathbb{R}^2_{++}$ as the initial point, the solution to (2) is represented by $\Theta(t) = (g(t), d(t); g^0, d^0)$. We attempt in this section to find out the behavior of this trajectory as $t \to \infty$. Since cyclical possibilities exist only in case 1 among various cases shown in figure 1, we restrict our attention to this case for rest of this analysis.
We define a set $Q \subseteq \mathbb{R}^2_+$ consisting of the rectangular area as follows:

$$Q = \{(g, d) : g \in [0, \bar{g}_3], d \in [0, d_{\text{max}}]\}$$

(6)

where $d_{\text{max}} = (b_1/b_2) \bar{g}_3 + (b_3/b_2) = (b_1 \sqrt{4a_2a_4 + a_1^2} + 2a_2b_3 + a_1b_1) / (2a_2b_2)$. It would be evident that d_{max} is the point of intersection of $d/d = 0$ with the vertical straight line $g = \bar{g}_3$ (See figure 2).

![Figure 2: Invariant set Q](image)

We further define $Q_B \subseteq Q$ comprising the boundary of Q, such that

$$Q_B = \{(g, d) : g = 0, d \in [0, d_{\text{max}}]\} \cup \{(g, d) : g = \bar{g}_3, d \in [0, d_{\text{max}}]\} \cup \{(g, d) : g \in [0, \bar{g}_3], d = 0\} \cup \{(g, d) : g \in [0, \bar{g}_3], d = d_{\text{max}}\}.$$

Next, we note the following:

Lemma 4. For the trajectory $\Theta(t) = (g(t), d(t) : g^0, d^0)$, the set Q as defined in (6) is invariant.

Proof. Provided in appendix E.

Theorem 1. For any $(g^0, d^0) \in \mathbb{R}^2_+$, the trajectory, $\Theta(t)$ either approaches the non-trivial steady state, E_6, or is a limit cycle surrounding it.

Proof. First, suppose $(g^0, d^0) \in Q$. We recall that for case 1 of figure 1, E_6 is the unique steady state in the interior of the positive orthant, and is either a source or a sink. Equations (4) and (5) provide us with a condition to distinguish between the two. In other words, $h < \hat{h}$ will imply that E_6 is a sink; on the other hand, if $h > \hat{h}$, then the steady state E_6 is a source, so that by Poincaré-Bendixson Theorem there must be a limit cycle surrounding E_6. Next, consider $(g^0, d^0) \in \mathbb{R}^2_+ \setminus Q$. By construction, $\Theta(t)$ will eventually enter Q. Subsequently, it will either converge to E_6 or will approach a limit cycle around E_6. This completes the proof.

One should note that the result contained in theorem 1 is robust. It is valid for all set of configuration of parameters where $h > \hat{h}$, i.e. the speed of adjustment of the actual to desired rate of investment, h, exceeds certain threshold level \hat{h}. It also pertains to any solution with an economically feasible set of initial points.
6. Multiple Limit Cycles

In section 4, we noted the emergence of limit cycle from Andronov-Hopf bifurcation. We further noted that this limit cycle could be either attracting or repelling, depending on the configuration of the parameters. In case of a subcritical Andronov-Hopf bifurcation leading to repelling or unstable limit cycle, if the limit cycle is located within an invariant set, then, from Poincaré-Bendixson Theorem we have possibilities of another limit cycle which is attracting.\(^{13}\)

Consider, for instance, the non-trivial steady state, \(E_6\), located within an invariant set, \(Q\), in figure 2. We recall that the steady state \(E_6\) is either a source or a sink, depending on whether the value of the parameter, \(h\), is greater than or less than the critical value, \(\hat{h}\). We further note from corollary 2.1 that \(E_6\) undergoes an Andronov-Hopf bifurcation leading to emergence of a small amplitude limit cycle when the bifurcation parameter, \(h\) passes through its critical value, \(\hat{h}\). Let \(\Gamma_h\) be this limit cycle. Since \(\Gamma_h \in Q\), it follows from the Jordan curve theorem\(^{14}\) that \(Q\) is separated into two sets – a compact set, \(A(\Gamma_h)\), comprising the area enclosed by \(\Gamma_h\) such that \(A(\Gamma_h) \subseteq Q\), and, the half-open bounded set \(Q \setminus A(\Gamma_h) \equiv \{(g, d) : (g, d) \in Q \& (g, d) \notin A(\Gamma_h)\}\). \(A(\Gamma_h)\) is bounded by \(\Gamma_h\), the limit cycle resulting due to Poincaré-Andronov-Hopf bifurcation. Suppose further that the configuration of parameters is such that the Andronov-Hopf bifurcation is subcritical, so that \(\Gamma_h\) is repelling. Now we note the following:

Lemma 5. \(Q \setminus A(\Gamma_h)\) is non-empty.

Proof. We recall that \(Q\) is a compact invariant set, bounded by \(Q_B\), and that all trajectories with an initial point on \(Q_B\) such that \(g, d \neq 0\) gets pushed towards interior of \(Q\). In other words, \(Q_B\) cannot be the \(\omega\)-limit set of any trajectory. Since \(\Gamma_h\) is a limit cycle, \(A(\Gamma_h)\) must be a proper subset of \(Q\), so that \(Q \setminus A(\Gamma_h)\) is non-empty. \(\square\)

Lemma 6. For \(\Theta(t) = (g(t), d(t) : g^0, d^0)\), \(Q \setminus A(\Gamma_h)\) is invariant.

Proof. Consider a trajectory, \(\Theta(t)\) starting from an initial point, \((g^0, d^0) \in Q \setminus A(\Gamma_h)\). We have already established, from lemma 4 that for all \((g^0, d^0) \in Q\) the solution trajectory, \(\Theta(t)\) cannot cross \(Q_B\). We further note that, since \(\Gamma_h\) is repelling, for all \((g^0, d^0) \in Q \setminus A(\Gamma_h), \Theta(t)\) cannot cross \(\Gamma_h\). Since \(Q \setminus A(\Gamma_h)\) is constructed on a plane, the solution needs to cross either \(Q_B\) or \(\Gamma_h\) in order to leave \(Q \setminus A(\Gamma_h)\). Hence, \(Q \setminus A(\Gamma_h)\) is invariant. \(\square\)

Theorem 2. If the steady state \(E_6\) undergoes a subcritical Poincaré-Andronov-Hopf bifurcation at the critical value of the bifurcation parameter, \(h\), then as the bifurcation parameter \(h\) passes through \(\hat{h}\), in addition to the small amplitude unstable limit cycle, \(\Gamma_h\), there exists at least one large amplitude limit cycle which is attracting.

Proof. We note that, by construction, \(Q \setminus A(\Gamma_h)\) contains no locally stable fixed point. Hence, from Poincaré-Bendixson Theorem, for any \((g^0, d^0) \in Q \setminus A(\Gamma_h)\), \(\omega\)-limit set of the solution

\(^{13}\)See Hofbauer & So (1990), Hsu & Hwang (1999) and Yuquan, Zhujun & Chan (1999) for practical examples of emergence of multiple limit cycles by this method.

\(^{14}\)The Jordan Curve Theorem. Let \(C\) be a simple closed curve in \(S^2\). Then \(C\) separates \(S^2\) precisely into two components \(W_1\) and \(W_2\). Each of the sets \(W_1\) and \(W_2\) has \(C\) as its boundary. (Munkres 2000, Chapter 10)
trajectory, $\Theta(t)$ will be a closed orbit. Further, the limit cycle, Γ_h, emerging from Andronov-Hopf bifurcation as the bifurcation parameter passes through its critical value is not contained in $Q \setminus A(\Gamma_h)$, i.e. $\Gamma_h \notin Q \setminus A(\Gamma_h)$. Hence, the ω-limit set of $\Theta(t)$ must be a large amplitude limit cycle which is distinct from Γ_h. We further note that this large amplitude limit cycle is attracting. (See figure 3)

![Figure 3: A small amplitude unstable limit cycle surrounded by a large amplitude stable limit cycle](image)

It is clear from theorem 2 that in case of a subcritical Andronov-Hopf bifurcation, the following two kinds of trajectories would emerge:

1. For any $(g^o, d^o) \in \text{int}A(\Gamma_h)$ the ω-limit set of the solution trajectories would be the steady state, E_h. This behavior would be similar to Leijonhufvud’s (1973) notion of corridor stability.

2. For any $(g^o, d^o) \in Q \setminus A(\Gamma_h)$, the ω-limit set of the solution trajectories would be a large amplitude limit cycle.

In other words, a subcritical Andronov-Hopf bifurcation leads to possibilities of emergence of multiple limit cycles.

7. Conclusions

The above discussion leads us to the following conclusions:

1. For the dynamical system represented by (2), we define a critical value of the parameter h given by \hat{h} where we have a non-degenerate Andronov-Hopf bifurcation, leading to emergence of limit cycles.
2. The limit cycle emerging from Andronov-Hopf bifurcation is either stable or unstable; in case it is unstable, from theorem 2, we have another stable limit cycle enclosing the unstable limit cycle.

3. For $h > \hat{h}$, from theorem 1, we have a stable limit cycle from an application of Poincaré-Bendixson theorem.

In other words, given \hat{h}, we have established the existence of a unique stable limit cycle for all $h \geq \hat{h}$. We should note that this result for existence of stable limit cycles is more robust than much of the current literature on Kolmogorov-Lotka-Volterra class of models.

Finally, we also point out that these results can be more generally applied to the broader class of economic applications of planar dynamical systems of the type described in section 2 and characterized by the restrictions imposed under P1, P2 and P3, where both Andronov-Hopf bifurcation theorem and Poincaré-Bendixson theorem are applicable. Applicability of this method is not limited by other details of the model chosen in this study.

Appendix A Steady states

The steady states of the dynamical system represented by (2) are as follows:

\[
E_1 : (\bar{g}_1, \bar{d}_1) = (0, 0)
\]

\[
E_2 : (\bar{g}_2, \bar{d}_2) = \left(-\frac{\sqrt{4a_2a_4+a_1^2}}{2a_2}, 0\right)
\]

\[
E_3 : (\bar{g}_3, \bar{d}_3) = \left(\frac{\sqrt{4a_2a_4+a_1^2}}{2a_2}, 0\right)
\]

\[
E_4 : (\bar{g}_4, \bar{d}_4) = (0, \frac{b_3}{b_2})
\]

\[
E_5 : (\bar{g}_5, \bar{d}_5) = \left(-\frac{\sqrt{4a_2b_2^2a_4-4a_2b_2a_3b_3+a_3^2-2a_1b_1b_2+a_3-a_1b_2}}{2a_2b_2}, \frac{b_1\sqrt{4a_2b_2^2a_4-4a_2b_2a_3b_3+a_3^2-2a_1b_1b_2+a_3-a_1b_2}}{2a_2b_2}\right)
\]

\[
E_6 : (\bar{g}_6, \bar{d}_6) = \left(\frac{\sqrt{4a_2b_2^2a_4-4a_2b_2a_3b_3+a_3^2-2a_1b_1b_2+a_3-a_1b_2}}{2a_2b_2}, \frac{b_1\sqrt{4a_2b_2^2a_4-4a_2b_2a_3b_3+a_3^2-2a_1b_1b_2+a_3-a_1b_2}}{2a_2b_2}\right)
\]

It would be evident that $E_2 \notin \mathbb{R}^2_{++}$ since $\bar{g}_2 < 0$. Hence we do not discuss E_2 any further in the following sections. Further, E_3 and E_4 are non-negative and lie on the g and d axis respectively. Regarding E_5 and E_6, we note the following:

1. Whenever E_5 and E_6 are real and distinct, $\frac{d}{d} = 0$ must intersect $\dot{g}/g = 0$ from above at E_5 and from below at E_6. If E_5 and E_6 are not distinct, then $\frac{d}{d} = 0$ is a tangent to $\dot{g}/g = 0$ at the point representing the unique non-trivial steady state.

2. $a_3b_3 < a_4b_2$ is a sufficient (though not necessary) condition for the non-trivial steady state E_6 to be inside the real positive orthant, \mathbb{R}^2_{++}.

11
3. For \(g(t) \geq \bar{g}_3 \), we have \(\dot{g}(t) \leq 0 \) for all \(d(t) \in \mathbb{R}^+ \); in other words, if \(\bar{g}_3 \leq g_{\text{max}} \), then the feasibility condition \(0 \leq g(t) \leq g_{\text{max}} \) is always satisfied.

Appendix B Proof of Lemma 1

For any \((g^0, d^0) \in \text{int} \mathbb{R}_+^2\) as the initial point, let the solution to (2) be represented by \(\Theta(t) = (g(t), d(t); g^0, d^0) \). From (2), we can conclude the following about the behavior of trajectories in case the initial point is on one of the axes:

\[
\begin{align*}
(\text{a}) & \quad \dot{g} > 0, \quad d = 0 \forall \quad \{(g^0, d^0) : g^0 \in]0, \bar{g}_3[, \quad d^0 = 0\} \quad \text{as the initial point.} \\
(\text{b}) & \quad \dot{g} < 0, \quad d = 0 \forall \quad \{(g^0, d^0) : g^0 \in]\bar{g}_3, \infty[, \quad d^0 = 0\} \quad \text{as the initial point.}
\end{align*}
\]

\[
\begin{align*}
(\text{c}) & \quad \dot{g} = 0, \quad d > 0 \forall \quad \{(g^0, d^0) : g^0 = 0, \quad d^0 \in]0, \bar{d}_4[\} \quad \text{as the initial point.} \\
(\text{d}) & \quad \dot{g} = 0, \quad d < 0 \forall \quad \{(g^0, d^0) : g^0 = 0, \quad d^0 \in]\bar{d}_4, \infty[\} \quad \text{as the initial point.}
\end{align*}
\]

i.e. both the \(g \)-axis and the \(d \)-axis are trajectories. Since trajectories cannot cross each other, this would make the real positive orthant invariant, i.e. trajectories starting from an initial point in the real positive orthant will always remain within it.

Appendix C Parametric conditions for four cases of Figure 1

For \(g, d \neq 0 \), from (2) we have

\[
\begin{align*}
\dot{g}(t) \leq 0 & \iff d(t) \geq \frac{a_1}{a_3} \dot{g}(t) - \frac{a_2}{a_3} g(t)^2 + \frac{a_4}{a_3} \\
\dot{d}(t) \leq 0 & \iff d(t) \geq \frac{b_1}{b_2} \dot{g}(t) + b_3
\end{align*}
\]

Depending on the configuration of parameters, we can list four different possibilities exhibiting qualitatively different dynamics:

1. **Case 1**: Here, \(a_4 b_2 - a_3 b_3 > 0 \), i.e. intercept of \(\dot{g}/g = 0 \) is greater than that of \(\dot{d}/d = 0 \), and \(b_1/b_2 > (a_1 - 2a_2 \bar{g}_b)/a_3 > 0 \), i.e. \(\dot{d}/d = 0 \) intersects \(\dot{g}/g = 0 \) from below in the positively sloped section of the latter curve. \(E_6 \in \text{int} \mathbb{R}_+^2 \) is the only steady state in this case inside the real positive orthant.

2. **Case 2**: Here, \(a_4 b_2 - a_3 b_3 > 0 \), i.e. intercept of \(\dot{g}/g = 0 \) is greater than that of \(\dot{d}/d = 0 \), but unlike case 1, \((a_1 - 2a_2 \bar{g}_b)/a_3 < 0 < b_1/b_2 \), i.e. \(\dot{d}/d = 0 \) intersects \(\dot{g}/g = 0 \) from below in the negatively sloped section of the latter curve. \(E_6 \in \text{int} \mathbb{R}_+^2 \) is the unique steady state inside the real positive orthant.

3. **Case 3**: Here, \(a_4 b_2 - a_3 b_3 < 0 \), i.e. intercept of \(\dot{g}/g = 0 \) is less than that of \(\dot{d}/d = 0 \), and \((a_1 - 2a_2 \bar{g}_b)/a_3 > b_1/b_2 > 0 > (a_1 - 2a_2 \bar{g}_b)/a_3 \), i.e. \(\dot{d}/d = 0 \) intersects \(\dot{g}/g = 0 \) from below at \(E_5 \) when the latter is sloping upward, and from above at \(E_6 \) when the latter is sloping downward. In this case, \(E_5, E_6 \in \text{int} \mathbb{R}_+^2 \), i.e. \(\dot{d}/d = 0 \) intersects \(\dot{g}/g = 0 \) twice in the interior of the real positive orthant.

4. **Case 4**: Here, \(a_4 b_2 - a_3 b_3 < 0 \), i.e. intercept of \(\dot{g}/g = 0 \) is less than that of \(\dot{d}/d = 0 \), and, unlike case 3, \(E_5, E_6 \notin \text{int} \mathbb{R}_+^2 \) so that there does not exist any steady state in the interior of the real positive orthant. Since we are interested in only the real positive orthant, we do not discuss case 4 any further in the rest of our discussion.
Appendix D Proof of Lemma 3

In order to establish that this Andronov-Hopf bifurcation point is non-degenerate, and to determine the stability of the limit cycles emerging from this bifurcation, we reduce our dynamical system represented by (2) to its topological normal form, using a method outlined by Edneral (2007), Wiggins (1990), Kuznetsov (1997) and Kuznetsov (2006).\(^\text{15}\) This consists of the steps given below:

1. We perform a linear transformation of coordinates from \(\left(g(t), d(t) \right) \) to the new plane, \((x_1(t), x_2(t))\) such that \(g(t) = x_1(t) + \theta_0\) and \(d(t) = x_2(t) + \delta_0\). With this shift, the steady state, \(E_0 : (\theta_0, \delta_0)\) is placed at the origin, and the dynamical system (2) can be represented as

\[
\begin{align*}
\dot{x}_1(t) &= h \left[-a_2 \left\{ x_1(t) \right\}^3 + a_6 \left\{ x_1(t) \right\}^2 + a_5 x_1(t) x_2(t) - a_7 x_2(t) \right] \\
\dot{x}_2(t) &= b_4 x_1(t) + b_1 x_1(t) x_2(t) - b_5 x_2(t) - b_3 \left\{ x_2(t) \right\}^2
\end{align*}
\]

(10)

where

\[
\begin{align*}
a_5 &= \frac{2 b_1 a_3 s_1 - a_1 b_2 s_1 - 4 a_2 b_2^2 a_4 + 4 a_2 b_2 a_3 b_3 - 2 b_1^2 a_3^2 + 3 a_1 b_1 b_2 a_3 - a_1^2 b_2^2}{2 a_2 b_2^2} \\
a_6 &= -\frac{3 s_1 - 3 b_1 a_3 + a_1 b_2}{2 b_2} \\
a_7 &= \frac{a_3 \left(s_1 - b_1 a_3 + a_1 b_2 \right)}{2 a_2 b_2} \\
b_4 &= \frac{b_1 \left(b_1 s_1 + 2 a_2 b_2 b_3 - b_1^2 a_3 + a_1 b_1 b_2 \right)}{2 a_2 b_2^2} \\
b_5 &= \frac{b_1 s_1 + 2 a_2 b_2 b_3 - b_1^2 a_3 + a_1 b_1 b_2}{2 a_2 b_2} \\
s_1 &= \sqrt{4 a_2 b_2^2 a_4 - 4 a_2 b_2 a_3 b_3 + b_1^2 a_3^2 - 2 a_1 b_1 b_2 a_3 + a_1^2 b_2^2}
\end{align*}
\]

2. For the transformed dynamical system represented by (10), we take a Taylor series expansion around the steady state represented by the origin. The resulting expression can be represented in matrix notation as

\[
\dot{X} = A(h) X + F(X, h)
\]

(11)

where \(X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\) is a column vector of the two variables, and \(A(h)\) is the jacobian matrix so that \(A(h) X\) represents the linear part of the Taylor series expansion, i.e.

\[
A(h) = \begin{pmatrix} a_5 h & -a_7 h \\ b_4 & -b_5 \end{pmatrix}
\]

(12)

and \(F(X, h)\) represents the non-linear terms of the Taylor series expansion, starting with at least quadratic terms, such that \(F(X, h) = O(\|x\|^2) + O(\|x\|^3) + \ldots\)

\(^{15}\)We implement this method by writing a program, using computer algebra system Maxima (Version 5.21.1, using Lisp SBCL 1.0.29.11.debian, distributed under the GNU Public License. http://maxima.sourceforge.net). Program code is available from authors on request.
3. Next, we calculate the eigenvalues, \(\vartheta(h) \) and \(\vartheta(h) \overline{\vartheta(h)} \) of the jacobian matrix, \(A(h) \) from (12):

\[
\vartheta(h), \overline{\vartheta(h)} = \frac{1}{2} \left\{ \left(a_5 h - b_5\right) \pm \sqrt{a_5^2 h^2 + (2a_5 b_5 - 4a_7 b_4) + b_5^2} \right\}
\]

so that real part of the eigenvalues is expressed as \(\text{Re} \vartheta(h) = a_5 h - b_5 \). Further,

\[
\left| \frac{d \left(\text{Re} \vartheta(h) \right)}{dh} \right|_{h=0} = a_5 > 0
\]

i.e. **transversality condition** is satisfied.

4. We now recalculate the critical value, \(h^* \), of the bifurcation parameter, \(h \). This would correspond to the right hand side of (5), expressed in terms of the new parameters defined above. Thus, we have

\[
h^* = \frac{b_5}{a_5}
\]

Substituting the value of \(h^* \) from (13) into (12), we have the jacobian at the critical value of bifurcation parameter:

\[
A \left(h^* \right) = \begin{pmatrix}
b_5 & -a_7 b_5 \\
a_5 & b_5 \\
-b_5 & a_5
\end{pmatrix}
\]

Further, we have \(\text{Determinant} \left(A \left(h^* \right) \right) = (b_4 b_5 a_7)/a_5 - b_5^2 \). We define \(\omega \) such that \(\omega^2 = \text{Determinant} \left(A \left(h^* \right) \right) \). We now express \(A \left(h^* \right) \) from (14) in terms of \(\omega \).

\[
A \left(h^* \right) = \begin{pmatrix}
b_5 & -a_7 b_5 \\
a_5 & b_5 \\
-a_7 b_5 & a_5
\end{pmatrix}
\]

The eigenvalues of \(A \left(h^* \right) \) evaluated at the critical value of the bifurcation parameter can now be expressed as \(\vartheta \left(h^* \right), \overline{\vartheta \left(h^* \right)} = \pm i \omega \).

5. We now calculate the eigenvector of \(A \left(h^* \right) \) with respect to \(\vartheta \left(h^* \right) \) and call it \(q \), where

\[
q = \begin{pmatrix} a_7 b_5 \omega + a_7 b_5^2 \\ a_5 \omega^2 + a_5 b_5^2 \end{pmatrix}
\]

i.e. \(A \left(h^* \right) q = \vartheta \left(h^* \right) q \). It would be evident that eigenvector of \(A \left(h^* \right) \) with respect to \(\overline{\vartheta \left(h^* \right)} \) would be \(\overline{q} \), where \(\overline{q} \) is the complex conjugate of \(q \), so that \(A \left(h^* \right) \overline{q} = \overline{\vartheta \left(h^* \right) q} \).

6. We next calculate \(A^T \left(h^* \right) \), the transpose of \(A \left(h^* \right) \):

\[
A^T \left(h^* \right) = \begin{pmatrix}
b_5 & -a_7 b_5 \\
a_5 & b_5 \\
a_7 b_5 & a_5
\end{pmatrix}
\]

14
We note that the eigenvalues of $A^T(\hat{h})$ would be the same as those of $A(\hat{h})$ and might be represented as $\vartheta(\hat{h})$ and $\vartheta(\hat{h})$.

7. We next calculate the eigenvector of $A^T(\hat{h})$ with respect to $\vartheta(\hat{h})$ and call it p, i.e.

$$p = \begin{pmatrix} 1 \\ a_7b_5 \\ a_5b_5 \end{pmatrix}$$

i.e. $A^T(\hat{h})p = \vartheta(\hat{h})p$. It would be clear that the eigenvector of $A^T(\hat{h})$ with respect to $\vartheta(\hat{h})$ would be \tilde{p}, i.e. $A^T(\hat{h})\tilde{p} = \vartheta(\hat{h})\tilde{p}$.

8. We note that the scalar product of p and q is given by

$$\langle p, q \rangle = \frac{2a_7b_5^2\omega - 2a_7b_5\omega^2}{b_5 + i\omega}$$

We next normalize p with respect to q by suitably transforming from p to \hat{p}, so that the scalar product of \hat{p} and q is one, i.e. $\langle \hat{p}, q \rangle = 1$. This can be achieved by multiplying the column vector p with the reciprocal of the conjugate of the scalar product of p and q, i.e.

$$\hat{p} \equiv p \frac{1}{\langle p, q \rangle}$$

This leaves us with the following:

$$\hat{p} = \begin{pmatrix} i\omega - b_5 \\ 2a_7b_5^2\omega^2 + 2a_7b_5\omega^2 \\ 2a_5\omega^2 + 2a_5b_5\omega \end{pmatrix}$$

We now note that $\langle \hat{p}, q \rangle = 1$.

9. Next, we perform a complex linear transformation, $z = \langle \hat{p}, x \rangle$ so that $x = zq + \overline{z}\overline{q}$. We should note that $x = zq + \overline{z}q \Leftrightarrow \langle \hat{p}, x \rangle = z\langle \hat{p}, q \rangle + \overline{z}\langle \hat{p}, \overline{q} \rangle \Leftrightarrow \langle \hat{p}, x \rangle = z$ [i.e. $\langle \hat{p}, q \rangle = 1$, $\langle \hat{p}, \overline{q} \rangle = 0$].

The transformation from (x_1, x_2) to z might be viewed as a combination of two transformations, $y = T(h)x$ and $z = y_1 + iy_2$. It would be clear that the components (y_1, y_2) are the coordinates of (x_1, x_2) in the real eigenbasis of $A(h)$ composed by $(2\text{Re } q, -2\text{Im } q)$. In this basis, the matrix $A(h)$ has its canonical real (Jordan) form

$$J(h) = T(h)A(h)T^{-1}(h) = \begin{pmatrix} \text{Re } \vartheta(h) & -\omega(h) \\ \omega(h) & \text{Re } \vartheta(h) \end{pmatrix}$$

This complex linear transformation imposes a linear relationship between (x_1, x_2) and the real and imaginary parts of z. With this transformation, the dynamical system represented by (10) is now reduced to a single differential equation:

$$\dot{z} = \dot{\vartheta}(h)z + g(z, \overline{z}, h)$$

where $g(z, \overline{z}, h) = \langle p(h), F(zq(h) + \overline{z}\overline{q}(h), \alpha) \rangle$.

15
To perform this transformation, we first represent the right hand side of (10) by \(F_1(x_1, x_2) \) and \(F_2(x_1, x_2) \) respectively. Next, we make the following substitution:

\[
\begin{aligned}
x_1 &= zq_1 + w \frac{q_1}{q_1} = (a_1 b_2^2 + a_1 b_5 \omega) z + (a_1 b_5^2 - a_1 b_5 \omega) w \\
x_2 &= zq_2 + w \frac{q_2}{q_2} = (a_5 b_2^2 + a_5 \omega^2) (z + w)
\end{aligned}
\]
(19)

It might be noted that in the substitution made above in (19), we introduce an additional variable, \(w \) instead of \(\tau \) in order to simplify the implementation of the algorithm in a symbolic manipulation software like Maxima. (See, for instance, Kuznetsov 1997, page 103, footnote 5). Substituting from (19), we have

\[
F_1(zq_1 + w \frac{q_1}{q_1}, zq_2 + w \frac{q_2}{q_2}) = b_5 \left\{ -a_3 \{ (a_1 b_5 \omega + a_1 b_2^2) z + (a_1 b_2^2 - a_1 b_5 \omega) w \} (a_5 \omega^2 + a_5 b_2^2) (z + w) \\
- a_7 \{ a_5 \omega^2 + a_5 b_2^2 \}(z + w) - a_2 \{ (a_1 b_5 \omega + a_1 b_2^2) z + (a_1 b_2^2 - a_1 b_5 \omega) w \} \right\}^3 \\
+ a_6 \{ (a_1 b_5 \omega + a_1 b_2^2) z + (a_1 b_2^2 - a_1 b_5 \omega) w \}^2 + a_5 \{ (a_1 b_5 \omega + a_1 b_2^2) z \\
+ (a_1 b_2^2 - a_1 b_5 \omega) w \}
\]
(20)

and

\[
F_2(zq_1 + w \frac{q_1}{q_1}, zq_2 + w \frac{q_2}{q_2}) = - b_2 \{ (a_5 \omega^2 + a_5 b_2^2) (z + w) \}^2 + b_1 \{ (a_1 b_5 \omega + a_1 b_2^2) z + (a_1 b_2^2 - a_1 b_5 \omega) w \} \\
\{ (a_5 \omega^2 + a_5 b_2^2) (z + w) \} - b_5 \{ a_5 \omega^2 + a_5 b_2^2 \} (z + w) + b_4 \{ (a_1 b_5 \omega + a_1 b_2^2) z \\
+ (a_1 b_2^2 - a_1 b_5 \omega) w \}
\]
(21)

We define a matrix \(F \) such that

\[
F = \begin{pmatrix}
F_1(zq_1 + w \frac{q_1}{q_1}, zq_2 + w \frac{q_2}{q_2}) \\
F_2(zq_1 + w \frac{q_1}{q_1}, zq_2 + w \frac{q_2}{q_2})
\end{pmatrix}
\]
(22)

and a new complex-valued function \(G(z, w) \) such that

\[
G(z, w) = \langle \hat{\rho}, F \rangle
\]
(23)

where \(G \) can be calculated by a scalar multiplication of \(\hat{\rho} \) from (17) with \(F \) from (22).\(^{16}\)

10. Next, we calculate the First Lyapunov Exponent, \(\ell_1(\hat{h}) \) as follows:

\[
\ell_1(\hat{h}) = \frac{1}{2 \omega^2} \text{Re} \left(\left. \frac{\partial^2 G}{\partial z^2} \right|_{z=0, w=0} - \left. \frac{\partial^2 G}{\partial z \partial w} \right|_{z=0, w=0} + \omega \left. \frac{\partial^3 G}{\partial z \partial^2 w} \right|_{z=0, w=0} \right)
\]
(24)

The computer algebra system, Maxima, calculates the value of first Lyapunov exponent of our system as:

\[
\ell_1(\hat{h}) = - \frac{1}{2 a_3^2 \omega^2} \{ b_5 (b_5^2 + \omega^2) (3 a_2 a_3 a_5 a_6^2 z q_1^2 + a_3 a_5 a_6 b_5^2 \omega^2 - a_3 a_5 b_1 b_2 \omega^2 \\
- a_3^3 a_5^2 b_5^2 \omega^2 - a_3^3 a_5 b_2 b_5 \omega^2 + 2 a_5^2 a_1^2 b_5^2 - 2 a_6^2 a_1^2 b_5^2 + a_5 a_6 a_7 b_1 b_2 b_5 + a_5^2 a_1^2 b_5^2 \\
+ a_3 a_5 a_6 a_7 b_1^2 b_2 b_5 - a_3 a_3^2 a_7 b_1 b_2 b_5 - a_3^2 a_7^2 b_1 b_2 b_5 + a_3 a_3 a_7^2 b_1 b_2 b_5 + 2 a_5^2 a_1^2 b_5^2) \}
\]
(25)

\(^{16}\)The actual output of \(G \) is too long to be displayed here.
11. Once we have calculated the value of the First Lyapunov Exponent from (25) and established that it is non-zero (i.e. non-degeneracy conditions are satisfied), we can reduce (18) to its topological normal form using a series of transformations, including an invertible parameter-dependent shift of complex coordinates, a linear time rescaling and a non-linear time reparametrization, and elimination of terms of degree greater than four from the Taylor series (cf. Kuznetsov 1997, page 94-100). In this case, (18) can be represented in the topological normal form as:

\[
\begin{pmatrix}
\dot{y}_1 \\
\dot{y}_2
\end{pmatrix} = \begin{pmatrix}
\alpha & -1 \\
1 & \alpha
\end{pmatrix} \begin{pmatrix}
y_1 \\
y_2
\end{pmatrix} + \varpi \left(y_1^2 + y_2^2 \right) \begin{pmatrix}
y_1 \\
y_2
\end{pmatrix}
\]

(26)

where \(\varpi = \text{sign} \left(\ell_1 \left(\hat{h} \right) \right) = \pm 1, \alpha = \text{Re} \left(\hat{\vartheta} \left(\hat{h} \right) / \omega \left(\hat{h} \right) \right) \in \mathbb{R} \) and \(y = (y_1, y_2)^T \in \mathbb{R}^2 \).

The normal form represented by (26) is locally topologically equivalent to the original dynamical system represented by (2) near the steady state, \(E_0 \). For \(\varpi = +1 \), the normal form has a steady state at the origin, which is asymptotically stable for \(\alpha \leq 0 \) and unstable for \(\alpha > 0 \); in the latter case, a unique and stable limit cycle with radius \(\sqrt{\alpha} \) will emerge. This is the case of a supercritical Andronov-Hopf bifurcation. Similarly, for \(\varpi = -1 \), the normal form has a steady state at the origin, which is asymptotically stable for \(\alpha < 0 \) and unstable for \(\alpha \geq 0 \); in the former case, a unique and unstable limit cycle will emerge. This is the case of a subcritical Andronov-Hopf bifurcation.

App. E Proof of Lemma 4

Consider a trajectory \(\Theta \left(t \right) \) starting from an initial point located on the boundary, \(Q_B \) of \(Q \), i.e. \((g^0, d^0) \in Q_B \). We recall from (8) that the \(g \)-axis and the \(d \)-axis are both trajectories. In particular, since \(E_1 (0, 0) \) is a steady state,

\[(g^0, d^0) = E_1 (0, 0) \Rightarrow \Theta \left(t \right) = E_1 (0, 0) \quad \forall \ t \in \mathbb{R} \]

(27)

Since \(E_3 (\bar{g}_3, 0) \) and \(E_4 (0, \bar{d}_4) \) are also steady states, by same logic,

\[(g^0, d^0) = E_3 (\bar{g}_3, 0) \Rightarrow \Theta \left(t \right) = E_3 (\bar{g}_3, 0) \quad \forall \ t \in \mathbb{R} \]

(28)

\[(g^0, d^0) = E_4 (0, \bar{d}_4) \Rightarrow \Theta \left(t \right) = E_4 (0, \bar{d}_4) \quad \forall \ t \in \mathbb{R} \]

(29)

In other words, if the initial point is either on \(E_1 \), \(E_2 \) or \(E_3 \) then the trajectory will remain at the initial point. Further, from (8), if the initial point is on either \(g \)-axis or \(d \)-axis, but not on one of the steady states, it will approach \(E_3 \) and \(E_4 \) respectively. On the other hand, for \((g^0, d^0) \in \{(g, d) : g = \bar{g}_3, d \in [0, \bar{d}_\text{max}]\}\), we have \(\dot{g} < 0 \) and \(\dot{d} > 0 \); whereas for \((g^0, d^0) \in \{(g, d) : g \in [0, \bar{g}_3]\}\) we have \(\dot{g} < 0 \) and \(\dot{d} < 0 \); i.e. in both cases the trajectories would be pushed towards interior of \(Q \). To summarize, for any \((g^0, d^0) \in Q_B \), the trajectories either remain on \(Q_B \) or are pushed towards the interior of \(Q \); in no case do the trajectories leave \(Q \). [See figure 2] In addition, since \(Q \) is constructed on a plane, i.e. \(Q \subseteq \mathbb{R}^2_{++} \), no trajectory with an initial point in the interior of \(Q \) can leave \(Q \) without crossing \(Q_B \). This completes the proof of invariance of \(Q \). □
References

Barnett, W. & He, Y. (2006), ‘Existence of Bifurcation in Macroeconomic Dynamics: Grandmont was Right’, Working papers series in theoretical and applied economics 200610, University of Kansas, Department of Economics.

