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Abstract

Using the Andronov-Hopf bifurcation theorem and the Poincaré-Bendixson Theorem,
this paper explores robust cyclical possibilities in a generalized Kolmogorov-Lotka-Volterra
class of models with positive intraspecific cooperation in the prey population. This addi-
tional feedback effect introduces nonlinearities which modify the cyclical outcomes of the
model. Using an economic example, the paper proposes an algorithm to symbolically con-
struct the topological normal form of Andronov-Hopf bifurcation. In case the limit cycle
turns out to be unstable, the possibilities of the dynamics converging to another limit cycle
is explored.
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1. Introduction

Economic theory has long been engaged in attempts to explain persistent cyclical behavior of

variables like income and investment, resulting in business and growth cycles. At least one line

of investigation in this literature has been to look for endogenous deterministic explanations

for such cycles. In this paper, we look at the possibilities of robust cyclical behavior in a class

of planar dynamical systems which might be useful in this line of literature.

The specific class of planar dynamical systems which we are going to examine in this study

consists of two variables with a two-way causality running between them. The Lotka-Volterra or

the predator-prey class of models, originally formulated by Lotka (1925) and Volterra (1927) in

a biochemical and ecological application respectively, and later on generalized by Kolmogorov

(1936), Freedman (1980, chapter 5), Huang & Zhu (2005) and Mukherji (2005), is an example

of this class of models. The possibility of this class of models lending itself to model eco-

nomic phenomena was noticed by Goodwin (1967), Samuelson (1967), Samuelson (1971) and

many others. In fact, Flaschel (2010) demonstrated that this class of models might be utilized

in a very diverse set of macroeconomic problems to yield endogenously bounded and cycli-

cal outcomes. However, as pointed out, among others, by Flaschel (1984), Mukherji (2005)

and Datta & Mukherji (2010), robustness of the cyclical outcomes in these models might be a

matter of concern. In this study, we place a slightly modified set of restrictions to the general-

ized Kolmogorov-Lotka-Volterra class of models than the ones discussed in the abovementioned

studies. We demonstrate that the modifications we make to the restrictions are economically

meaningful in a wide class of models, and can lead us to a much more robust cyclical outcomes

than the ones found in the literature.

A related subject of our study is the Andronov-Hopf bifurcation theorem, which has been

widely used to establish existence of limit cycles in this line of literature.1 However, in addition

to the existence conditions, the Andronov-Hopf bifurcation must satisfy the non-degeneracy

condition in order to prevent the degeneration of these limit cycles.2 Further, the Andronov-

Hopf bifurcation might either be supercritical or subcritical. As pointed out by Benhabib &

Miyao (1981) and Kind (1999), these two possibilities might have different economic interpre-

tations. The supercritical case corresponds to stable limit cycles surrounding an unstable fixed

point, and hence might be interpreted as stylized business or growth cycles. The subcritical

case, on the other hand, correspond to repelling closed orbit surrounding a fixed point which

is still stable, and might be interpreted to be corresponding to the concept of corridor stability

as developed by Leijonhufvud (1973). A meaningful economic analysis of these limit cycles,

therefore, requires a test for both non-degeneracy and stability. While numerically testing an

Andronov-Hopf bifurcation point for non-degeneracy and stability is quite widespread in the

literature in natural sciences,3 a substantial literature in economics relies on symbolic compu-

tation. This is one of the reasons why the literature in economics often stops short of testing

1See, for instance, Asada & Yoshida (2003), Asada, Chen, Chiarella & Flaschel (2006), Barnett & He

(1998), Barnett & He (2006), Benhabib & Nishimura (1979), Benhabib & Miyao (1981), Chiarella & Flaschel

(2000), Chiarella, Flaschel & Franke (2005), Franke (1992), Velupillai (2006) and Minagawa (2007).
2See, for instance, Kuznetsov (1997).
3In fact, software packages like XPPAUT or MATCONT already incorporate some of the standard algorithms

for these tests.
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Andronov-Hopf bifurcation for non-degeneracy and stability.4 We attempt to address this con-

cern in this paper. We use a method outlined by Kuznetsov (1997) and Edneral (2007) to

symbolically compute the topological normal form for an Andronov-Hopf bifurcation in plane

and test for non-degeneracy and stability of its limit cycles. We also explore whether, under

certain conditions, there is a possibility of alternate stable limit cycles emerging when the test

for stability of the limit cycle from Andronov-Hopf bifurcation fails. It would be obvious that

a positive answer to the above question will widen the scope for cyclical possibilities to emerge

in this class of models.

We begin by providing an outline of the generalized Kolmogorov-Lotka-Volterra class of

models and point out the specific restrictions which we modify. We then illustrate this with a

simple example of such a dynamical system and examine the robustness of limit cycles emerging

from such a system.

2. A Generalized Kolmogorov-Lotka-Volterra Model

We begin with a generalized formulation of the predator-prey or Kolmogorov-Lotka-Volterra

class of models, in line with the ones found in Kolmogorov (1936), Freedman (1980, chapter 5),

Huang & Zhu (2005) and Mukherji (2005). Consider an ecological environment consisting of

two species, one of which (predator) preys on the other (prey). The population of the prey

depends inversely on the population of the predator, while the population of the predator

depends directly on the population of prey. This simple story, which formed the basis of

the original Lotka-Volterra formulation5 is often augmented with additional features, like the

problem of resource constraint or ‘overcrowding’6, when the prey population feeds on a natural

resource like grass. Growth of prey population leads to a shortage of this natural resource,

which acts as a self-limiting factor. Similar problem of overcrowding also exists for the predator

species.

We model the above story using two variables, x and y, and two continuously differentiable

functions M,N : ℜ+ ×ℜ+ → ℜ with the following set of properties:

P1. M (0, 0) > 0, My (x, y) < 0, Nx (x, y) > 0 ∀ (x, y) ∈ ℜ+ ×ℜ+

P2. Ny (x, y) < 0 ∀ (x, y) ∈ ℜ+ ×ℜ+

P3. N (0, 0) > 0, Mx (x, y) ≥ 0 ∀ x ∈ [0, x̂] , Mx (x, y) < 0 otherwise, Mxx (x, y) < 0

∀ (x, y) ∈ ℜ+ ×ℜ+

In the terminology of the predator-prey class of models, x might be interpreted to represent

the prey population, whereas y might be interpreted to represent the predator population. The

dynamical system might be described by the following system of differential equations:

ẋ (t) = x (t)M (x (t) , y (t)) (1a)

ẏ (t) = y (t)N (x (t) , y (t)) (1b)

4Benhabib & Nishimura (1979), however, is an early notable exception.
5See for instance Hirsch, Smale & Devaney (2004, chapter 11).
6cf. Hirsch et al. (2004, page 243). Hirsch & Smale (1974) termed this problem as ‘social phenomenon’.
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Out of the restrictions imposed on the functions M and N , namely P1, P2 and P3, Mukherji

(2005) contains a discussion of P1 and P2. Briefly, P1 comes from the basic Lotka-Volterra

relationship between the predator and the prey species explained above, while P2 comes from

the existence of ‘overcrowding’ in the predator species. P3, however, represents a modification

to the model outlined in the existing literature on this class of models, and hence merits a

more detailed discussion.

It might be noted that the restrictions included in P3 makes the function M nonlinear, un-

like the conventional literature in this area where both M and N are linear. Such nonlinearity

might arise, for instance, due to two opposite forces simultaneously at work – one leading to a

positive impact of x and other leading to a negative impact on itself. The latter might occur,

as we already discussed above, due to the existence of a resource constraint (‘overcrowding’

or ‘social phenomenon’), or more generally, intraspecific competition. The former might occur

due to a variety of reasons, for instance, in the context of predator-prey model, this might rep-

resent gains from intraspecific (i.e. among the members of the prey species) cooperation and

social networks. Examples of such an intraspecific cooperation could be the members of the

prey species signalling each other regarding the impending danger of an approaching predator,

or using various forms of social networks to defend themselves against the predator. We as-

sume that at low population size of the prey species, the intraspecific cooperation dominates,

resulting in a positive value of Mx (x, y). However, Mxx (x, y) < 0, i.e. the intraspecific compe-

tition progressively gets stronger vis-a-vis intraspecific cooperation with an increase in the prey

population, so that eventually, after a critical point x̂, it starts dominating. Mx (x, y) < 0 be-

yond x̂. The nonlinearities arising from introduction of intraspecific cooperation represent our

main departure from the existing literature on generalized Kolmogorov-Lotka-Volterra class of

models.

We should point out here that introduction of such nonlinearities due to intraspecific co-

operation might widen the scope of possible economic applications of such models. Consider,

for instance, a traditional Keynesian multiplier-accelerator model7 with financial dampeners.

The basic real-financial interaction might be thought of as a predator-prey relationship – a

real variable like, say, the rate of investment, might be thought of as the prey, while a suitably

defined financial variable like the rate of interest8 or the level of indebtedness in the economy9

might be thought of as a predator. An increase in the rate of investment typically results in a

deterioration of financial variables, captured by either an increase in the rate of investment or

an increase in the level of indebtedness, which in turn has a negative feedback effect on the rate

of investment. These are captured by restrictions under P1. The basic multiplier-accelerator

relationship (i.e. a positive impact of the rate of investment on itself from the demand side)

might be captured by the intraspecific cooperation, while the negative impact from an increase

in the rate of investment due to crowding out of either real or financial resources might be cap-

tured by intraspecific competition (or ‘overcrowding’ or ‘social phenomenon’). Both these are

contained in P3. For lower rates of investment, the positive feedback effect dominates; however,

7For instance, literature following early contributions made by Samuelson (1939) or Hicks (1950).
8See, for instance, Datta (2011).
9See, for instance, Datta (forthcoming).
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beyond a critical rate of investment, the negative feedback starts dominating. In short, intro-

duction of the positive feedback effect of x on M (x, y) in the form of intraspecific cooperation

allows us to model economic phenomena like the traditional Keynesian multiplier-accelerator

relationship.

We should note here that positive feedback effect like the one resulting from a Keynesian

multiplier-accelerator interaction (captured in our model as intraspecific cooperation), on its

own, is typically destabilizing.10 We attempt to see a) the extent to which such interactions

might be integrated with the rest of the literature on predator-prey Kolmogorov-Lotka-Volterra

class of models, and b) whether robust cyclical possibilities exist in such modified Kolmogorov-

Lotka-Volterra models.

Before proceeding with rest of our study, we introduce a specific economic example of such

a model.

3. An Economic Application

Consider the dynamical system given below, representing the macroeconomic model devel-

oped in Datta (forthcoming):

ġ (t) =
[

a1g (t)− a2 {g (t)}2 − a3d (t) + a4

]

hg (t)

ḋ (t) = [b1g (t)− b2d (t) + b3] d (t)
(2)

where g ∈ [0, gmax] is the rate of investment (or the ratio of investment to capital stock), gmax is

the maximum possible rate of investment11 d is the debt-capital ratio and a1, a2, a3, a4, b1, b2, b3 ∈
]0,∞[ are composite parameters consisting of various combination of various behavioral pa-

rameters. h is a control parameter. In the model in Datta (forthcoming), h represented the

speed of adjustment of actual to the desired rate of investment; more generally, this might be

interpreted as a parameter representing the speed of adjustment of the variable g.12 We note

that the dynamical system represented by (2) satisfies all the conditions listed under P1, P2

and P3 in section 2 above.

We note that the dynamical system represented by (2) has six steady states, which we refer to

as Ei

(

ḡi, d̄i
)

, i ∈ [0, 1]. A full list of these steady states is provided in appendix A. We further

note that at most two of these steady states, E5

(

ḡ5, d̄5
)

and E6

(

ḡ6, d̄6
)

, are economically

meaningful, i.e. lies within real positive orthant. We further note the following:

Lemma 1. For the dynamical system represented by (2), the real positive orthant is invariant.

Proof. Provided in appendix B.

10Consider, for instance, Hicks (1950) – the model had to rely on exogenous ceilings and floors to explain

turnarounds in business cycles.
11In other words, gmax represents resource constraint commonplace in economic models.
12cf. Datta (forthcoming) for details and derivation of this model; however, these details, however, are not

relevant for the purpose of illustration of our method in this paper.
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It follows from lemma 1 that since only dynamics strictly within the real positive orthant

is economically meaningful, we focus our attention on only such trajectories and ignore other

trajectories in the rest of our discussion. In other words, we only consider E5 and E6 for

discussion, and do not discuss the other steady states in the rest of this study.

Next we turn our attention to the trajectories starting from an initial point inside the real

positive orthant. Depending on the configuration of parameters, we can list four different

possibilities exhibiting qualitatively different dynamics. These four cases are illustrated in

figure 1. Details of parametric conditions giving rise to these four cases are discussed in

appendix C.

Figure 1: Phase diagram of (2): Four cases

Further, performing the Routh-Hurwitz condition for local stability on the two economically

meaningful steady states, E5 and E6, we note that (a) whenever the non-trivial steady state

solution, E5 exists and is distinct from E6 and lies in the interior of real positive orthant, it

is a saddle-point; and, (b) depending on the configuration of the parameters, the non-trivial

steady state solution, E6, whenever it exists and is distinct from E5 and lies within the interior

of the real positive orthant, is either a source or a sink.
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4. Andronov-Hopf Bifurcation

Lemma 2. For an appropriate value of the speed of adjustment, h, of the actual rate of

investment to its desired rate, the characteristic equation to (2) evaluated at the non-trivial

steady state, E6, has purely imaginary roots.

Proof. Consider the trace of the jacobian of the right hand side of (2), evaluated at E6, and

recall that for case 1 of figure 1, ḡ6 > 0, d̄6 > 0 and a1 − 2a2ḡ6 > 0, so that

∂ (Trace)

∂h
= (a1 − 2a2ḡ6) ḡ6 > 0 (3)

i.e. the trace is smooth, differentiable and monotonically increasing in the speed of adjustment,

h, of the actual to the desired rate of investment. We further note that the trace disappears

at h = ĥ, when

(a1 − 2a2ḡ6) ĥḡ6 − b2d̄6 = 0

⇒ ĥ =
b2d̄6

(a1 − 2a2ḡ6) ḡ6
> 0 (4)

which, by substituting the values of ḡ6 and d̄6 from (7), might be expanded as

ĥ =
b1 b2

√
4 a2 b2

2
a4−4 a2 b2 a3 b3+b2

1
a2
3
−2 a1 b1 b2 a3+a2

1
b2
2
+2a2 b

2
2 b3−b

2
1 b2 a3+a1 b1 b

2
2

(2 b1 a3−a1 b2)
√

4 a2 b
2
2 a4−4 a2 b2 a3 b3+b

2
1 a

2
3−2 a1 b1 b2 a3+a

2
1 b

2
2−4 a2 b

2
2 a4+4 a2 b2 a3 b3−2 b

2
1 a

2
3+3 a1 b1 b2 a3−a

2
1 b

2
2

(5)

We define ĥ as the critical value of the parameter, h, and investigate the properties of a

solution trajectory to (2) around ĥ. Next, we apply the Andronov-Hopf Bifurcation Theorem

to note the following:

Corollary 2.1. For the dynamical system represented by (2), h = ĥ provides a point of

Andronov-Hopf bifurcation.

Proof. From lemma 2, the characteristic equation to (2) has purely imaginary roots at h = ĥ.

Further, the transversality condition is satisfied from (3). Hence, h = ĥ provides a point of

Andronov-Hopf bifurcation.

Lemma 3. For the dynamical system represented by (2), we can identify specific combination

of parameter values for which the Andronov-Hopf bifurcation at h = ĥ is non-degenerate and

supercritical (or subcritical), leading to emergence of unique and stable (or unique and unstable)

limit cycles.

Proof. Provided in appendix D.

5. Global Stability Properties

We recall that for any (g◦, d◦) ∈ int ℜ2
++ as the initial point, the solution to (2) is represented

by Θ (t) = (g (t) , d (t) ; g◦, d◦). We attempt in this section to find out the behavior of this

trajectory as t → ∞. Since cyclical possibilities exist only in case 1 among various cases shown

in figure 1, we restrict our attention to this case for rest of this analysis.
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We define a set Q ⊆ int ℜ2
++ consisting of the rectangular area as follows:

Q = {(g, d) : g ∈ [0, ḡ3] , d ∈ [0, dmax]} (6)

where dmax = (b1/b2) ḡ3 +(b3/b2) =
(

b1
√

4 a2 a4 + a2
1
+ 2 a2 b3 + a1 b1

)

/ (2 a2 b2). It would be

evident that dmax is the point of intersection of ḋ/d = 0 with the vertical straight line g = ḡ3
(See figure 2).

Figure 2: Invariant set Q

We further defineQB ⊆ Q comprising the boundary ofQ, such thatQB = {(g, d) : g = 0, d ∈ [0, dmax]} ∪
{(g, d) : g = ḡ3, d ∈ [0, dmax]} ∪ {(g, d) : g ∈ [0, ḡ3] , d = 0} ∪ {(g, d) : g ∈ [0, ḡ3] , d = dmax}.
Next, we note the following:

Lemma 4. For the trajectory Θ(t) = (g (t) , d (t) ; g◦, d◦), the set Q as defined in (6) is

invariant.

Proof. Provided in appendix E.

Theorem 1. For any (g◦, d◦) ∈ int ℜ2
++, the trajectory, Θ(t) either approaches the non-trivial

steady state, E6, or is a limit cycle surrounding it.

Proof. First, suppose (g◦, d◦) ∈ int Q. We recall that for case 1 of figure 1, E6 is the unique

steady state in the interior of the positive orthant, and is either a source or a sink. Equations (4)

and (5) provide us with a condition to distinguish between the two. In other words, h < ĥ will

imply that E6 is a sink; on the other hand, if h > ĥ, then the steady state E6 is a source, so that

by Poincaré-Bendixson Theorem there must be a limit cycle surrounding E6. Next, consider

(g◦, d◦) ∈ int
[

ℜ2
++ \Q

]

. By construction, Θ (t) will eventually enter Q. Subsequently, it will

either converge to E6 or will approach a limit cycle around E6. This completes the proof.

One should note that the result contained in theorem 1 is robust. It is valid for all set of

configuration of parameters where h > ĥ, i.e. the speed of adjustment of the actual to desired

rate of investment, h, exceeds certain threshold level ĥ. It also pertains to any solution with

an economically feasible set of initial points.
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6. Multiple Limit Cycles

In section 4, we noted the emergence of limit cycle from Andronov-Hopf bifurcation. We

further noted that this limit cycle could be either attracting or repelling, depending on the

configuration of the parameters. In case of a subcritical Andronov-Hopf bifurcation leading to

repelling or unstable limit cycle, if the limit cycle is located within an invariant set, then, from

Poincaré-Bendixson Theorem we have possibilities of another limit cycle which is attracting.13

Consider, for instance, the non-trivial steady state, E6, located within an invariant set, Q,

in figure 2. We recall that the steady state E6 is either a source or a sink, depending on

whether the value of the parameter, h, is greater than or less than the critical value, ĥ. We

further note from corollary 2.1 that E6 undergoes a Andronov-Hopf bifurcation leading to

emergence of a small amplitude limit cycle when the bifurcation parameter, h passes through

its critical value, ĥ. Let Γh be this limit cycle. Since Γh ∈ Q, it follows from the Jordan

curve theorem14 that Q is separated into two sets – a compact set, A (Γh), comprising the

area enclosed by Γh such that A (Γh) ⊆ Q, and, the half-open bounded set Q \ A (Γh) ≡
{(g, d) : (g, d) ∈ Q &(g, d) /∈ A (Γh)}. A (Γh) is bounded by Γh, the limit cycle resulting due

to Poincaré-Andronov-Hopf bifurcation. Suppose further that the configuration of parameters

is such that the Andronov-Hopf bifurcation is subcritical, so that Γh is repelling. Now we note

the following:

Lemma 5. Q \A (Γh) is non-empty.

Proof. We recall that Q is a compact invariant set, bounded by QB, and that all trajectories

with an initial point on QB such that g, d 6= 0 gets pushed towards interior of Q. In other

words, QB cannot be the ω-limit set of any trajectory. Since Γh is a limit cycle, A (Γh) must

be a proper subset of Q, so that Q \ A (Γh) is non-empty.

Lemma 6. For Θ(t) = (g (t) , d (t) ; g◦, d◦), Q \ A (Γh) is invariant.

Proof. Consider a trajectory, Θ (t) starting from an initial point, (g◦, d◦) ∈ Q \ A (Γh). We

have already established, from lemma 4 that for all (g◦, d◦) ∈ Q the solution trajectory, Θ (t)

cannot cross QB. We further note that, since Γh is repelling, for all (g◦, d◦) ∈ Q \A (Γh), Θ (t)

cannot cross Γh. Since Q \A (Γh) is constructed on a plane, the solution needs to cross either

QB or Γh in order to leave Q \ A (Γh). Hence, Q \A (Γh) is invariant.

Theorem 2. If the steady state E6 undergoes a subcritical Poincaré-Andronov-Hopf bifurcation

at the critical value of the bifurcation parameter, ĥ, then as the bifurcation parameter h passes

through ĥ, in addition to the small amplitude unstable limit cycle, Γh, there exists at least one

large amplitude limit cycle which is attracting.

Proof. We note that, by construction, Q\A (Γh) contains no locally stable fixed point. Hence,

from Poincaré-Bendixson Theorem, for any (g◦, d◦) ∈ Q \ A (Γh), ω-limit set of the solution

13See Hofbauer & So (1990), Hsu & Hwang (1999) and Yuquan, Zhujun & Chan (1999) for practical examples

of emergence of multiple limit cycles by this method.
14
The Jordan Curve Theorem. Let C be a simple closed curve in S2. Then C separates S2 precisely into two

components W1 and W2. Each of the sets W1 and W2 has C as its boundary. (Munkres 2000, Chapter 10)
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trajectory, Θ (t) will be a closed orbit. Further, the limit cycle, Γh, emerging from Andronov-

Hopf bifurcation as the bifurcation parameter passes through its critical value is not contained

in Q \ A (Γh), i.e. Γh /∈ Q \ A (Γh). Hence, the ω-limit set of Θ (t) must be a large amplitude

limit cycle which is distinct from Γh. We further note that this large amplitude limit cycle is

attracting. (See figure 3)

Figure 3: A small amplitude unstable limit cycle surrounded by a large amplitude stable limit

cycle

It is clear from theorem 2 that in case of a subcritical Andronov-Hopf bifurcation, the

following two kinds of trajectories would emerge:

1. For any (g◦, d◦) ∈ intA (Γh) the ω-limit set of the solution trajectories would be the

steady state, E6. This behavior would be similar to Leijonhufvud’s (1973) notion of

corridor stability.

2. For any (g◦, d◦) ∈ Q \A (Γh), the ω-limit set of the solution trajectories would be a large

amplitude limit cycle.

In other words, a subcritical Andronov-Hopf bifurcation leads to possibilities of emergence of

multiple limit cycles.

7. Conclusions

The above discussion leads us to the following conclusions:

1. For the dynamical system represented by (2), we define a critical value of the parameter

h given by ĥ where we have a non-degenerate Andronov-Hopf bifurcation, leading to

emergence of limit cycles.
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2. The limit cycle emerging from Andronov-Hopf bifurcation is either stable or unstable;

in case it is unstable, from theorem 2, we have another stable limit cycle enclosing the

unstable limit cycle.

3. For h > ĥ, from theorem 1, we have a stable limit cycle from an application of Poincaré-

Bendixson theorem.

In other words, given ĥ, we have established the existence of a unique stable limit cycle for all

h ≥ ĥ. We should note that this result for existence of stable limit cycles is more robust than

much of the current literature on Kolmogorov-Lotka-Volterra class of models.

Finally, we also point out that these results can be more generally applied to the broader

class of economic applications of planar dynamical systems of the type described in section 2

and characterized by the restrictions imposed under P1, P2 and P3, where both Andronov-

Hopf bifurcation theorem and Poincaré-Bendixson theorem are applicable. Applicability of

this method is not limited by other details of the model chosen in this study.

Appendix A Steady states

The steady states of the dynamical system represented by (2) are as follows:

E1 :
(

ḡ1, d̄1
)

= (0, 0) (7a)

E2 :
(

ḡ2, d̄2
)

=

(

−
√

4 a2 a4+a21−a1

2 a2
, 0

)

(7b)

E3 :
(

ḡ3, d̄3
)

=

(√
4 a2 a4+a21+a1

2 a2
, 0

)

(7c)

E4 :
(

ḡ4, d̄4
)

=
(

0, b3
b2

)

(7d)

E5 :
(

ḡ5, d̄5
)

=

(

−
√

4 a2 b
2
2 a4−4 a2 b2 a3 b3+b21 a

2
3−2 a1 b1 b2 a3+a21 b

2
2+b1 a3−a1 b2

2 a2 b2
,

− b1
√

4 a2 b
2
2 a4−4a2 b2 a3 b3+b21 a

2
3−2 a1 b1 b2 a3+a21 b

2
2−2 a2 b2 b3+b21 a3−a1 b1 b2

2 a2 b
2
2

)

(7e)

E6 :
(

ḡ6, d̄6
)

=

(√
4 a2 b

2
2 a4−4 a2 b2 a3 b3+b21 a

2
3−2 a1 b1 b2 a3+a21 b

2
2−b1 a3+a1 b2

2 a2 b2
,

b1
√

4 a2 b
2
2 a4−4 a2 b2 a3 b3+b21 a

2
3−2 a1 b1 b2 a3+a21 b

2
2+2 a2 b2 b3−b21 a3+a1 b1 b2

2 a2 b
2
2

)

(7f)

It would be evident that E2 /∈ ℜ2
++ since ḡ2 < 0. Hence we do not discuss E2 any further

in the following sections. Further, E3 and E4 are non-negative and lie on the g and d axis

respectively. Regarding E5 and E6, we note the following:

1. Whenever E5 and E6 are real and distinct, ḋ/d = 0 must intersect ġ/g = 0 from above

at E5 and from below at E6. If E5 and E6 are not distinct, then ḋ/d = 0 is a tangent to

ġ/g = 0 at the point representing the unique non-trivial steady state.

2. a3b3 < a4b2 is a sufficient (though not necessary) condition for the non-trivial steady

state E6 to be inside the real positive orthant, ℜ2
++.
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3. For g (t) ≥ ḡ3, we have ġ (t) ≤ 0 for all d (t) ∈ ℜ+; in other words, if ḡ3 ≤ gmax, then the

feasibility condition 0 ≤ g (t) ≤ gmax is always satisfied.

Appendix B Proof of Lemma 1

For any (g◦, d◦) ∈ int ℜ2
++ as the initial point, let the solution to (2) be represented by

Θ (t) = (g (t) , d (t) ; g◦, d◦). From (2), we can conclude the following about the behavior of

trajectories in case the initial point is on one of the axes:

(a) ġ > 0, ḋ = 0 ∀ {(g◦, d◦) : g◦ ∈ ]0, ḡ3[ , d◦ = 0} as the initial point.

(b) ġ < 0, ḋ = 0 ∀ {(g◦, d◦) : g◦ ∈ ]ḡ3,∞[ , d◦ = 0} as the initial point.

(c) ġ = 0, ḋ > 0 ∀
{

(g◦, d◦) : g◦ = 0, d◦ ∈
]

0, d̄4
[}

as the initial point.

(d) ġ = 0, ḋ < 0 ∀
{

(g◦, d◦) : g◦ = 0, d◦ ∈
]

d̄4,∞
[}

as the initial point.

(8)

i.e. both the g-axis and the d-axis are trajectories. Since trajectories cannot cross each other,

this would make the real positive orthant invariant, i.e. trajectories starting from an initial

point in the real positive orthant will always remain within it.

Appendix C Parametric conditions for four cases of Figure 1

For g, d 6= 0, from (2) we have

ġ (t) ⋚ 0 ⇔ d (t) R
a1
a3

g (t)− a2
a3

{g (t)}2 + a4
a3

ḋ (t) ⋚ 0 ⇔ d (t) R
b1
b2
g (t) + b3

(9)

Depending on the configuration of parameters, we can list four different possibilities exhibiting

qualitatively different dynamics:

1. Case 1: Here, a4b2 − a3b3 > 0, i.e. intercept of ġ/g = 0 is greater than that of ḋ/d = 0,

and b1/b2 > (a1 − 2a2ḡ6) /a3 > 0, i.e. ḋ/d = 0 intersects ġ/g = 0 from below in the

positively sloped section of the latter curve. E6 ∈ intℜ2
++ is the only steady state in this

case inside the real positive orthant.

2. Case 2: Here, a4b2 − a3b3 > 0, i.e. intercept of ġ/g = 0 is greater than that of ḋ/d = 0,

but unlike case 1, (a1 − 2a2ḡ6) /a3 < 0 < b1/b2, i.e. ḋ/d = 0 intersects ġ/g = 0 from

below in the negatively sloped section of the latter curve. E6 ∈ intℜ2
++ is the unique

steady state inside the real positive orthant.

3. Case 3: Here, a4b2 − a3b3 < 0, i.e. intercept of ġ/g = 0 is less than that of ḋ/d = 0, and

(a1 − 2a2ḡ5) /a3 > b1/b2 > 0 > (a1 − 2a2ḡ6) /a3, i.e. ḋ/d = 0 intersects ġ/g = 0 from

below at E5 when the latter is sloping upward, and from above at E6 when the latter is

sloping downward. In this case, E5, E6 ∈ intℜ2
++, i.e. ḋ/d = 0 intersects ġ/g = 0 twice

in the interior of the real positive orthant.

4. Case 4: Here, a4b2 − a3b3 < 0, i.e. intercept of ġ/g = 0 is less than that of ḋ/d = 0,

and, unlike case 3, E5, E6 /∈ intℜ2
++ so that there does not exist any steady state in

the interior of the real positive orthant. Since we are interested in only the real positive

orthant, we do not discuss case 4 any further in the rest of our discussion.
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Appendix D Proof of Lemma 3

In order to establish that this Andronov-Hopf bifurcation point is non-degenerate, and to

determine the stability of the limit cycles emerging from this bifurcation, we reduce our dy-

namical system represented by (2) to its topological normal form, using a method outlined

by Edneral (2007), Wiggins (1990), Kuznetsov (1997) and Kuznetsov (2006).15 This consists

of the steps given below:

1. We perform a linear transformation of coordinates from (g (t) , d (t)) to the new plane,

(x1 (t) , x2 (t)) such that g (t) = x1 (t) + ḡ6, and d (t) = x2 (t) + d̄6. With this shift, the

steady state, E6 :
(

ḡ6, d̄6
)

is placed at the origin, and the dynamical system (2) can be

represented as

ẋ1 (t) = h
[

−a2 {x1 (t)}3 + a6 {x1 (t)}2 + a5x1 (t)− a3x1 (t)x2 (t)− a7x2 (t)
]

ẋ2 (t) = b4x1 (t) + b1x1 (t) x2 (t)− b5x2 (t)− b3 {x2 (t)}2
(10)

where

a5 =
2 b1 a3 s1 − a1 b2 s1 − 4 a2 b

2
2 a4 + 4 a2 b2 a3 b3 − 2 b21 a

2
3 + 3 a1 b1 b2 a3 − a21 b

2
2

2 a2 b22

a6 = −3 s1 − 3 b1 a3 + a1 b2
2 b2

a7 =
a3 (s1 − b1 a3 + a1 b2)

2 a2 b2

b4 =
b1
(

b1 s1 + 2 a2 b2 b3 − b21 a3 + a1 b1 b2
)

2 a2 b22

b5 =
b1 s1 + 2 a2 b2 b3 − b21 a3 + a1 b1 b2

2 a2 b2

s1 =
√

4 a2 b
2
2
a4 − 4 a2 b2 a3 b3 + b2

1
a2
3
− 2 a1 b1 b2 a3 + a2

1
b2
2

2. For the transformed dynamical system represented by (10), we take a Taylor series ex-

pansion around the steady state represented by the origin. The resulting expression can

be represented in matrix notation as

Ẋ = A (h)X + F (X,h) (11)

where X =

(

x1
x2

)

is a column vector of the two variables, and A (h) is the jacobian

matrix so that A (h)X represents the linear part of the Taylor series expansion, i.e.

A (h) =

(

a5h −a7h

b4 −b5

)

(12)

and F (X,h) represents the non-linear terms of the Taylor series expansion, starting with

at least quadratic terms, such that F (X,h) = O
(

||x| |2
)

+O
(

||x| |3
)

+ . . .

15We implement this method by writing a program, using computer algebra system Maxima (Version 5.21.1, us-

ing Lisp SBCL 1.0.29.11.debian, distributed under the GNU Public License. http://maxima.sourceforge.net).

Program code is available from authors on request.
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3. Next, we calculate the eigenvalues, ϑ (h) and ϑ (h) of the jacobian matrix, A (h) from (12):

ϑ (h) , ϑ (h) =
1

2

{

(a5h− b5)±
√

a2
5
h2 + (2a5b5 − 4a7b4) + b2

5

}

so that real part of the eigenvalues is expressed as Re ϑ (h) = a5h− b5. Further,

d (Re ϑ (h))

dh

∣

∣

∣

∣

h=0

= a5 > 0

i.e. transversality condition is satisfied.

4. We now recalculate the critical value, ĥ, of the bifurcation parameter, h. This would

correspond to the right hand side of (5), expressed in terms of the new parameters

defined above. Thus, we have

ĥ =
b5
a5

(13)

Substituting the value of ĥ from (13) into (12), we have the jacobian at the critical value

of bifurcation parameter:

A
(

ĥ
)

=





b5 −a7b5
a5

b4 −b5



 (14)

Further, we have Determinant
(

A
(

ĥ
))

= (b4b5a7) /a5 − b25. We define ω such that

ω2 = Determinant
(

A
(

ĥ
))

. We now express A
(

ĥ
)

from (14) in terms of ω.

A
(

ĥ
)

=







b5 −a7b5
a5

a5
(

b25 + ω2
)

a7b5
−b5






(15)

The eigenvalues of A
(

ĥ
)

evaluated at the critical value of the bifurcation parameter can

now be expressed as ϑ
(

ĥ
)

, ϑ
(

ĥ
)

= ±ıω.

5. We now calculate the eigenvector of A
(

ĥ
)

with respect to ϑ
(

ĥ
)

and call it q, where

q =

(

ıa7b5ω + a7b
2
5

a5ω
2 + a5b

2
5

)

i.e. A
(

ĥ
)

q = ϑ
(

ĥ
)

q. It would be evident that eigenvector of A
(

ĥ
)

with respect to

ϑ
(

ĥ
)

would be q, where q is the complex conjugate of q, so that A
(

ĥ
)

q = ϑ
(

ĥ
)

q.

6. We next calculate AT
(

ĥ
)

, the transpose of A
(

ĥ
)

:

AT
(

ĥ
)

=







b5
a5
(

b25 + ω2
)

a7b5

−a7b5
a5

−b5






(16)
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We note that the eigenvalues of AT
(

ĥ
)

would be the same as those of A
(

ĥ
)

and might

be represented as ϑ
(

ĥ
)

and ϑ
(

ĥ
)

.

7. We next calculate the eigenvector of AT
(

ĥ
)

with respect to ϑ
(

ĥ
)

and call it p, i.e.

p =





1
a7b5

ıa5ω − a5b5





i.e. AT
(

ĥ
)

p = ϑ
(

ĥ
)

p. It would be clear that the eigenvector of AT
(

ĥ
)

with respect

to ϑ
(

ĥ
)

would be p, i.e. AT
(

ĥ
)

p = ϑ
(

ĥ
)

p.

8. We note that the scalar product of p and q is given by

〈p, q〉 = 2ıa7b
2
5ω − 2a7b5ω

2

b5 + ıω

We next normalize p with respect to q by suitably transforming from p to p̂, so that the

scalar product of p̂ and q is one, i.e. 〈p̂, q〉 = 1. This can be achieved by multiplying the

column vector p with the reciprocal of the conjugate of the scalar product of p and q, i.e.

p̂ ≡ p.
1

〈p, q〉
This leaves us with the following:

p̂ =







ıω − b5
2a7b5ω2 + 2ıa7b

2
5
ω

1

2a5ω2 + 2ıa5b5ω






(17)

We now note that 〈p̂, q〉 = 1.

9. Next, we perform a complex linear transformation, z = 〈p̂, x〉 so that x = zq + zq. We

should note that x = zq+zq ⇔ 〈p̂, x〉 = z〈p̂, q〉+z〈p̂, q〉 ⇔ 〈p̂, x〉 = z [∵ 〈p̂, q〉 = 1, 〈p̂, q〉 = 0].

The transformation from (x1, x2) to z might be viewed as a combination of two transfor-

mations, y = T (h) x and z = y1+ ıy2. It would be clear that the components (y1, y2) are

the coordinates of (x1, x2) in the real eigenbasis of A (h) composed by (2Re q,−2Im q).

In this basis, the matrix A (h) has its canonical real (Jordan) form

J (h) = T (h)A (h)T−1 (h) =

(

Re ϑ (h) −ω (h)

ω (h) Re ϑ (h)

)

This complex linear transformation imposes a linear relationship between (x1, x2) and

the real and imaginary parts of z. With this transformation, the dynamical system

represented by (10) is now reduced to a single differential equation:

ż = ϑ (h) z + g (z, z, h) (18)

where g (z, z, h) = 〈p (h) , F (zq (h) + zq (h) , α)〉.
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To perform this transformation, we first represent the right hand side of (10) by

F1 (x1, x2) and F2 (x1, x2) respectively. Next, we make the following substitution:

x1 = zq1 +wq1 =
(

a7b
2
5 + a7b5ıω

)

z +
(

a7b
2
5 − a7b5ıω

)

w

x2 = zq2 +wq2 =
(

a5b
2
5 + a5ω

2
)

(z + w)
(19)

It might be noted that in the substitution made above in (19), we introduce an addi-

tional variable, w instead of z in order to simplify the implementation of the algorithm

in a symbolic manipulation software like Maxima. (See, for instance, Kuznetsov 1997,

page 103, footnote 5). Substituting from (19), we have

F1 (zq1 + wq1, zq2 + wq2)

=
b5
a5

[

−a3
{(

ıa7b5ω + a7b
2
5

)

z +
(

a7b
2
5 − ıa7b5ω

)

w
} (

a5ω
2 + a5b

2
5

)

(z + w)

−a7
(

a5ω
2 + a5b

2
5

)

(z + w)− a2
{(

ıa7b5ω + a7b
2
5

)

z +
(

a7b
2
5 − ıa7b5ω

)

w
}3

+a6
{(

ıa7b5ω + a7b
2
5

)

z +
(

a7b
2
5 − ıa7b5ω

)

w
}2

+ a5
{(

ıa7b5ω + a7b
2
5

)

z

+
(

a7b
2
5 − ıa7b5ω

)

w
}]

(20)

and

F2 (zq1 + wq1, zq2 + wq2)

= − b2
{(

a5ω
2 + a5b

2
5

)

(z + w)
}2

+ b1
{(

ıa7b5ω + a7b
2
5

)

z +
(

a7b
2
5 − ıa7b5ω

)

w
}

{(

a5ω
2 + a5b

2
5

)

(z + w)
}

− b5
(

a5ω
2 + a5b

2
5

)

(z + w) + b4
{(

ıa7b5ω + a7b
2
5

)

z

+
(

a7b
2
5 − ıa7b5ω

)

w
}

(21)

We define a matrix F such that

F =

(

F1 (zq1 + wq1, zq2 + wq2)

F2 (zq1 + wq1, zq2 + wq2)

)

(22)

and a new complex-valued function G (z, w) such that

G (z, w) = 〈p̂, F 〉 (23)

where G can be calculated by a scalar multiplication of p̂ from (17) with F from (22).16

10. Next, we calculate the First Lyapunov Exponent, ℓ1

(

ĥ
)

as follows:

ℓ1

(

ĥ
)

=
1

2ω2
Re

(

ı
∂2G

∂z2

∣

∣

∣

∣

z=0,w=0

∂2G

∂z∂w

∣

∣

∣

∣

z=0,w=0

+ ω
∂3G

∂z∂z∂w

∣

∣

∣

∣

z=0,w=0

)

(24)

The computer algebra system, Maxima, calculates the value of first Lyapunov exponent

of our system as:

ℓ1

(

ĥ
)

=− 1

2a2
5
ω3

{

b5
(

b25 + ω2
) (

3a2a5a
2
7b

2
5ω

2 + a3a5a6a7b
2
5ω

2 − a35a7b1b2ω
2

−a23a
2
5b

2
5ω

2 − a3a
3
5b2b5ω

2 + 2a45b
2
2ω

2 − 2a26a
2
7b

4
5 + a5a6a

2
7b1b

3
5 + a25a

2
7b

2
1b

2
5

+3a3a5a6a7b
4
5 − 3a35a7b1b2b

2
5 − a23a

2
5b

4
5 − a3a

3
5b2b

3
5 + 2a45b

2
2b

2
5

)}

(25)

16The actual output of G is too long to be displayed here.
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11. Once we have calculated the value of the First Lyapunov Exponent from (25) and estab-

lished that it is non-zero (i.e. non-degeneracy conditions are satisfied), we can reduce (18)

to its topological normal form using a series of transformations, including an invertible

parameter-dependent shift of complex coordinates, a linear time rescaling and a non-

linear time reparametrization, and elimination of terms of degree greater than four from

the Taylor series (cf. Kuznetsov 1997, page 94-100). In this case, (18) can be represented

in the topological normal form as:

(

ẏ1
ẏ2

)

=

(

α −1

1 α

)(

y1
y2

)

+̟
(

y21 + y22
)

(

y1
y2

)

(26)

where ̟ = sign
(

ℓ1

(

ĥ
))

= ±1, α =
Re ϑ (h)

ω (h)
∈ ℜ and y = (y1, y2)

T ∈ ℜ2.

The normal form represented by (26) is locally topologically equivalent to the original dy-

namical system represented by (2) near the steady state, E6. For ̟ = +1, the normal form

has a steady state at the origin, which is asymptotically stable for α ≤ 0 and unstable for

α > 0; in the latter case, a unique and stable limit cycle with radius
√
α will emerge. This

is the case of a supercritical Andronov-Hopf bifurcation. Similarly, for ̟ = −1, the normal

form has a steady state at the origin, which is asymptotically stable for α < 0 and unstable

for α ≥ 0; in the former case, a unique and unstable limit cycle will emerge. This is the case

of a subcritical Andronov-Hopf bifurcation.

Appendix E Proof of Lemma 4

Consider a trajectory Θ (t) starting from an initial point located on the boundary, QB of Q,

i.e. (g◦, d◦) ∈ QB . We recall from (8) that the g-axis and the d-axis are both trajectories. In

particular, since E1 (0, 0) is a steady state,

(g◦, d◦) = E1 (0, 0) ⇒ Θ(t) = E1 (0, 0) ∀ t ∈ ℜ (27)

Since E3 (ḡ3, 0) and E4

(

0, d̄4
)

are also steady states, by same logic,

(g◦, d◦) = E3 (ḡ3, 0) ⇒ Θ(t) = E3 (ḡ3, 0) ∀ t ∈ ℜ (28)

(g◦, d◦) = E4

(

0, d̄4
)

⇒ Θ(t) = E4

(

0, d̄4
)

∀ t ∈ ℜ (29)

In other words, if the initial point is either on E1, E2 or E3 then the trajectory will remain

at the initial point. Further, from (8), if the initial point is on either g-axis or d-axis, but

not on one of the steady states, it will approach E3 and E4 respectively. On the other hand,

for (g◦, d◦) ∈ {(g, d) : g = ḡ3, d ∈ ]0, dmax[}, we have ġ < 0 and ḋ > 0 ; whereas for (g◦, d◦) ∈
{(g, d) : g ∈ ]0, ḡ3[} we have ġ < 0 and ḋ < 0; i.e. in both cases the trajectories would be

pushed towards interior of Q. To summarize, for any (g◦, d◦) ∈ QB, the trajectories either

remain on QB or are pushed towards the interior of Q; in no case do the trajectories leave Q.

[See figure 2] In addition, since Q is constructed on a plane, i.e. Q ⊆ ℜ2
++, no trajectory with

an initial point in the interior of Q can leave Q without crossing QB. This completes the proof

of invariance of Q.
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