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Abstract

Extracting and forecasting the volatility of financial markets is an important empirical

problem. Time series of realized volatility or other volatility proxies, such as squared returns,

display long range dependence. Exponential smoothing (ES) is a very popular and successful

forecasting and signal extraction scheme, but it can be suboptimal for long memory time series.

This paper discusses possible long memory extensions of ES and finally implements a general-

ization based on a fractional equal root integrated moving average (FerIMA) model, proposed

originally by Hosking in his seminal 1981 article on fractional differencing. We provide a

decomposition of the process into the sum of fractional noise processes with decreasing orders

of integration, encompassing simple and double exponential smoothing, and introduce a low-

pass real time filter arising in the long memory case. Signal extraction and prediction depend

on two parameters: the memory (fractional integration) parameter and a mean reversion pa-

rameter. They can be estimated by pseudo maximum likelihood in the frequency domain. We

then address the prediction of volatility by a FerIMA model and carry out a recursive forecast-

ing experiment, which proves that the proposed generalized exponential smoothing predictor

improves significantly upon commonly used methods for forecasting realized volatility.

Keywords: Realized Volatility. Signal Extraction. Permanent-Transitory Decomposition. Frac-

tional equal-root IMA model.



1 Introduction

Volatility is an important characteristic of financial markets. Its measurement and prediction has

attracted a lot of interest, being quintessential to the assessment of market risk and the pricing of

financial products. A possible approach is to adopt a conditionally heteroscedastic or a stochastic

volatility model for asset returns, see Engle (1995) and Shephard (2005) for a collection of key

references in these areas. Alternatively, we can provide a statistical model for a time series proxy

of volatility, such as daily realized volatility measures, see e.g. McAleer and Medeiros (2008), or

squared returns (possibly after a logarithmic transformation of the series). This paper is based on

the latter approach and takes as well established fact the presence of long range dependence as

a characteristic feature of volatility, see Ding, Granger and Engle (1993), Bollerslev and Wright

(2000), Taylor (2005, section 12.9), Andersen et al. (2001), Hurvich and Ray (2003), among oth-

ers, though this point is not without controversy (see, e.g. Diebold and Inoue, 2001, and Granger

and Hyung, 2004, who illustrate that stochastic regime switching and occasional breaks can mimic

long range dependence).

Long memory is often modelled by a parametric model featuring fractional integration. Letting

{yt} denote a univariate random process and B the backshift operator, Bkyt = yt−k, a basic model

(Granger and Joyeux, 1980, and Hosking, 1981) is the fractional differenced noise,

(1− B)dyt = ξt, ξt ∼ WN(0, σ2),

where d is the memory parameter, WN(0, σ2) denotes white noise, a sequence of uncorrelated

random variables with zero mean and variance σ2, and, for non-integer d > −1, the fractional

differencing operator is defined according to the binomial expansion as

(1− B)d =
∞
∑

j=0

Γ(j − d)

Γ(j + 1)Γ(−d)B
j,

where Γ(·) is the gamma function. We shall denote this by yt ∼ FN(d). For d ∈ (0, 0.5) the

process is stationary and its properties can be characterised by the autocorrelation function, which

decays hyperbolically to zero, and its spectral density, which is unbounded at the origin. The model

can be extended so that ξt is replaced by a stationary short memory autoregressive moving aver-

age (ARMA), leading to the important class of ARFIMA (autoregressive, fractionally integrated,

moving average) processes. For comprehensive treatments of long memory time series see Palma

(2007), Giraitis, Koul and Surgailis (2012) and Beran et al. (2013).

The long-memory feature can also be approximated by the linear combination of short mem-

ory autoregressive processes, as in Gallant, Hsu and Tauchen (1999) (it should be considered that,
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according to Granger’s (1980) seminal result, a long memory process can result from the con-

temporaneous aggregation of infinite first order AR processes). The heterogeneous autoregressive

model (HAR) model by Corsi, based on a constrained long autoregressive model depending only

on three parameters, associated to volatility components over different horizons (daily, weekly and

monthly), can mimic the long memory feature and has proved extremely practical and successful

in predicting realized volatility.

At the same time, there is growing interest in decomposing volatility into its short and long

run components. Engle and Lee (1999) introduced a component GARCH model such that the

conditional variance is the sum of two AR processes. Adrian and Rosenberg (2008) formulate a

log-additive model of volatility where the long run component, a persistent AR(1) process with

non-zero mean, is related to business cycle conditions, and the short run component, a zero mean

AR(1), is related to the tightness of financial conditions. Engle, Ghysels and Sohn (2013) have

recently introduced multiplicative and log-additive GARCH-MIDAS model, where the long run

component is a weighted average of past realized volatilities, where the weights follow a beta dis-

tribution. Colacito, Engle and Ghysels (2011) formulate a multivariate GARCH-MIDAS compo-

nent model for dynamic correlations. Related recent papers in the multivariate framework dealing

with volatility components are Hafner and Linton (2010), Bauwens, Hafner and Pierret (2013),

and Amado and Teräsvirta (2013, 2014).

Exponential smoothing (ES) is a very popular and successful forecasting scheme among prac-

titioners, as well as a filter for extracting the long run component or underlying level of a time

series; it has also been extensively applied to forecasting volatility and value at risk. Its success

is not only due to its simplicity, but also for constituting a remarkably close approximation to the

volatility extracted by popular parametric methods such as GARCH models, when asset returns

are modelled. It has thus become a reference and it has been incorporated in the widely popular

RiskMetrics methodology. However, it is inadequate for handling long memory in volatility, which

is an important feature of realized volatility series and other volatility proxies, such as squared or

absolute returns. ES is a linear filter with weights declining according to a geometric progression

with given ratio, usually fixed at 0.94, as advocated by Riskmetrics (see RiskMetrics Group, 1996).

For long memory time series Riskmetrics (see Zumbach, 2007) has proposed a new methodology,

referred to as RM2006, which aims at mimicking a filter with weighs decaying at a hyperbolic,

rather than geometric, rate, by combining several ES filters with different smoothing constants.

This paper aims at evaluating the RM2006 filter from the point of view of filtering theory and it

will propose a sensible direction for extending ES to the class of long memory processes. We start

from the consideration of several alternative models that generalize aspects of the ES predictor,

and we end up by looking into the so called fractional equal-root integrated moving average (Fer-
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IMA) model, originally proposed by Hosking (1981): in the closing of his seminal paper, Hosking

mentions two fractionally integrated processes that can prove useful in applications: the first is

the generalized fractional Gegenbauer process, see Gray, Woodward and Zhang (1989), which has

found many applications in the modelling of stationary stochastic cycles with long range depen-

dence. The second is the FerIMA process (to be introduced in a later section), which according to

Hosking (p. 175, last paragraph) “as a forecasting model it corresponds to fractional order multi-

ple exponential smoothing”. The FerIMA process is a particular case of a fractional power process

which has the representation (1 − B)dyt =
(

θ(B)
φ(B)

)d

ξt, where φ(B) = 1 − φ1B − · · · − φpB
p,

and θ(B) = 1 − θ1B − · · · − θqB
q are polynomials in the lag operator B with roots outside the

unit circle. To the author’s knowledge not much work has been done in this area, although there

is some related work by Pillai, Shitan and Peiris (2012) and the class of Spectral ARMA models

considered in Proietti and Luati (2014).

In the sequel we explore the characteristics of this process and propose a decomposition and

corresponding filters that can be viewed as a generalization of exponential smoothing for fraction-

ally integrated time series. The main result is the decomposition of a process integrated of order

d > 0 into the sum of fractional noise processes of decreasing orders d, d − 1, d − 2, etc. plus a

stationary remainder term. The first component generalizes the ES filter to any value of the frac-

tional differencing parameter d and has the following features: (i) it encompasses the traditional

ES filter, as well as double exponential smoothing, when the order of integration is 2. (ii) In the

long memory case the filter weights have a interesting analytic form, resulting from the multipli-

cation of coefficients decaying at a geometric rate (as in traditional ES) and correction factors that

decline hyperbolically. (iii) For a FerIMA process it yields a fractional noise process with the same

integration order. (iv) It captures the persistent (long-run if d > 1) behaviour of the series as it can

be characterised as a low-pass filter.

We address the issue of the empirical relevance of the volatility predictor arising from the Fer-

IMA model by performing a recursive forecasting experiment and documenting that it almost

systematically outperforms the RiskMetrics predictor as well as th HAC model.

The paper is structured in the following way. Section 2 reviews the essential ES predictor and

signal extraction filter. We next consider the extension proposed by RiskMetrics for long memory

volatility proxies (section 3), as an attempt to accommodate the long memory feature by combining

ES predictors with different smoothness. Section 4 discusses various possible extensions of ES for

fractionally integrated processes: the fractional local level mode, the ARFIMA(0,d, 1) predictor,

the fractional lag IMA(1,1) process, and it eventually concentrates on the FerIMA model, propos-

ing a decomposition into fractional noise components of decreasing orders, the first of which yields

a fractional ES (FES) filter. The nature of the decomposition is discussed in section 5, as a special
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case of a generalized Beveridge and Nelson (1981) decomposition, whereas section 6 analyses the

properties of the FES filter as a low-pass filter in the frequency domain. In section 7 we briefly dis-

cuss maximum likelihood estimation of the parameters of the FerIMA model and prediction. Our

empirical assessment of the FerIMA predictor and signal extraction filter is presented in section 8.

Section 9 concludes the paper.

2 Exponential smoothing

Let yt denote a time series stretching back to the indefinite past. The method known as exponential

smoothing (ES) yields the l-steps-ahead predictor of yt, l = 1, 2, . . .,

ỹt+l|t = λ

∞
∑

j=0

(1− λ)jyt−j. (1)

The predictor depends on the smoothing constant, λ, which takes vales in the range (0,1). The

above expression is an exponentially weighted moving average (EWMA) of the available obser-

vations. The weights received by past observations decline according to a geometric progres-

sion with ratio 1 − λ. The eventual forecast function is a horizontal straight line drawn at ỹt+1|t.

The predictor is efficiently computed using either one of the two following equivalent recursions

(adaptive-expectations formulae) :

ỹt+1|t = λyt + (1− λ)ỹt|t−1, ỹt+1|t = ỹt|t−1 + λ(yt − ỹt|t−1). (2)

If a finite realisation is available, {yt, t = 1, 2, . . . n}, and we denote by ỹ1|0 the initial value of

(2), then

ỹt+l|t = λ

t−1
∑

j=0

(1− λ)jyt−j + (1− λ)tỹ1|0. (3)

If ỹ1|0 = y1 (in which case ỹ2|1 = y1), the weight of the first observation is increased, yielding

ỹt+l|t = λ
∑t−2

j=0(1 − λ)jyt−j + (1 − λ)t−1y1, and the weights attached to the past and current

observations sum up to unity. Alternatively, we could start the recursion with the average of the first

t observations, ỹ1|0 =
∑t−1

j=0 yt−j/t. The same solution is obtained by setting ỹ1|0 = 0 and rescaling

the weights so that they sum to one: ỹt+l|t = (1−(1−λ)t−1)−1λ
∑t−1

j=0(1−λ)jyt−j . Comprehensive

reviews of exponential smoothing and its extensions are provided by Gardner (1985), Gardner

(2006) and Hyndman et al. (2008).

It is well known that the ES predictor is the best linear predictor for the integrated moving

average (IMA) process

(1− B)yt = (1− θB)ξt, ξt ∼ WN(0, σ2), (4)
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where B is the backshift operator, 0 < θ < 1 is the moving average parameter, and WN denotes

white noise, a sequence of uncorrelated random variables with zero mean and variance σ2. In

particular

ỹt+l|t = yt − θξt =
1− θ

1− θB
yt, (5)

is the minimum mean square predictor of yt+l based on the time series {yj, j ≤ t}. This is equiva-

lent to the above EWMA with λ = 1−θ. The IMA(1,1) process admits the decomposition, known

as the Beveridge and Nelson (1981) decomposition, into a permanent component mt, represented

by a random walk (RW) process, mt = mt−1 + (1− θ)ξt, and a transitory purely random compo-

nent, et = θξt, so that yt = mt + et. The permanent component is equal to the long run prediction

of the series at time t and it is thus measurable at time t by mt = (1− θ)(1− θB)−1yt.

A remarkable feature of the IMA(1,1) process and the associated ES forecasting scheme is that

the one-step-ahead forecast is coincident with the long-run (eventual) forecast. This feature is only

possessed by this model (which encompasses the RW).

The ES predictor is useful also in the presence of model misspecification: see Cox (1961) and

Tiao and Xu (1993). Thus, it has potential also for a long memory process, if the parameter θ is

estimated so as to minimise the multistep prediction error variance.

3 Riskmetrics 2006

Exponential smoothing has been used for forecasting and extracting the level of volatility from

either squared returns or realized volatility measures according to the RiskMetrics methodology

developed by J.P. Morgan. The Riskmetrics 1994 methodology (RM1994, see RiskMetrics Group,

1996) is based on a single EWMA with parameter λ = 0.06, or, equivalently, θ = 0.94.

The new RM methodology, referred to as RM2006 (see Zumbach, 2007), extends the 1994

methodology to the long memory case, by computing the one-step-ahead volatility prediction,

denoted ỹt+1|t, as a weighted sum of K exponentially weighted moving averages with smoothing

constants λk, k = 1, . . . , K:

ỹt+1|t =
K
∑

k=1

wkỹ
(k)
t+1|t, ỹ

(k)
t+1|t = λkyt + (1− λk)ỹ

(k)
t+1|t.

The weights decay according to

wk ∝ 1− ln τk
ln τ0

,

where τk, k = 0, 1, . . . , K, are time horizons, chosen according to the geometric sequence:

τk = τ1ρ
k−1, k = 2, . . . , K, τ0 = 1560, τ1 = 4, ρ =

√
2.
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The smoothing constants are related to the time horizons via

λk = 1− exp(−τ−1
k ).

Finally, in the current empirical implementation the value K is chosen so that τK = 512, which

gives K = 15. Table 1 reports the values of the time horizons, the smoothing constants of the K

EWMAs, and the combination weights for the current implementation of RM2006.

Table 1: RM2006: values of the time horizons τk, the corresponding smoothing constants, λk =

1− exp(−τ−1
k ) and the weight wk, proportional to 1− ln τk

ln τ0
.

k τk λk wk

1 4.0000 0.2212 0.1124

2 5.6569 0.1620 0.1058

3 8.0000 0.1175 0.0993

4 11.3137 0.0846 0.0928

5 16.0000 0.0606 0.0862

6 22.6274 0.0432 0.0797

7 32.0000 0.0308 0.0732

8 45.2548 0.0219 0.0667

9 64.0000 0.0155 0.0601

10 90.5097 0.0110 0.0536

11 128.0000 0.0078 0.0471

12 181.0193 0.0055 0.0406

13 256.0000 0.0039 0.0340

14 362.0387 0.0028 0.0275

15 512.0000 0.0020 0.0210

Denoting w†
j =

∑K
k=1wkλk(1 − λk), so that ỹt+1|t =

∑

j w
†
jyt−j , the weights attached to

past observations are an arithmetic weighted average of those arising from EWMAs with different

smoothing constants and are no longer a geometric sequence. For l ≥ 1, multistep volatility

prediction is carried out by multiplying ỹt+1|t by the square root of the forecast horizon.

Recalling that the RM1994 volatility prediction is based on a single EWMA with parameter

λ = 0.06, the forecast horizon corresponding to this smoothing constant is τ = −1/ ln(0.94) =

16.16. It is not clear how to interpret this. In section 6 we consider the notion of a reference period

for the EWMA filter based on its properties as a band-pass filter.
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4 Exponential smoothing for long memory processes

In this section, after discussing several possible interesting extensions of ES that can be envisaged

in the long memory case, some of which are based on the structural decomposition into an underly-

ing level and a noise component, whereas others are based on the reduced form integrated moving

average representation, we turn our attention to the FerIMA model.

4.1 Fractional Local Level Model

As it is well known (see, e.g. Harvey, 1989), ES provides the minimum mean square estimator

(MMSE) of the level component of the unobserved components model yt = µt + ǫt, where the

level component, µt, evolves as a random walk, µt = µt−1 + ηt, ηt ∼ IID N(0, σ2
η), and ǫt ∼

IID N(0, σ2
ǫ ), with E(ηsǫt) = 0, forall t, s.

Hence, we may think of replacing µt by a fractional noise process, giving the following frac-

tional local level model (fLLM)

yt = µt + ǫt, (1− B)dµt = ηt,

(

ǫt

ηt

)

∼ N

[(

0

0

)

,

(

σ2
ǫ 0

0 σ2
η

)]

, t = 1, . . . , n.

Estimation of d and of the noise-signal variance ratio σ2
ǫ/σ

2
η by frequency domain and wavelet

methods has been considered in Tanaka (2004). Deo and Hurvich (2001) have investigated the

estimation of d via log-periodogram regression, whereas Arteche (2004) has focused on local

Whittle estimation.

The main difficulty with the fLLM is signal extraction. Applying the Wiener-Kolmogorov

filter (see Whittle, 1983, chapter 5 and section 8.5), the MMSE of the underlying fractional noise,

assuming the availability of a doubly infinite sample, is

µ̃t|∞ =
1

1 + σ2
ǫ

σ2
η
(1− B)d(1− B−1)d

yt.

The above filter encompasses two-sided exponential smoothing (d = 1) and the Hodrick and

Prescott (1991) filter (d = 2). The MMSE of the level based on a semi-infinite sample (also said

the concurrent or real time estimator) is (Whittle, 1983, p. 58).

mt =
ϕ(1)

ϕ(B)

[

ϕ(1)

ϕ(B−1)

]

+

yt,

where ϕ(B)ϕ(B−1)σ2 = σ2
η + σ2

ǫ (1 − B)d(1 − B−1)d and the operator [h(B)]+ defines a lag

polynomial containing only nonnegative powers of B, i.e. if h(B) =
∑b

−a hjB
j , a, b > 0,,
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then [h(B)]+ =
∑b

j=0 hjB
j . For fractional d, the above expressions are complicated and do not

provide the signal extraction weights in closed form. The easiest way to address signal extraction

and forecasting with the fLLM is to approximate the process µt by a finite order Markovian process

as in Chan and Palma (1998).

4.2 ARFIMA(0, d, 1) process

The ARFIMA(0,d,1) process (1− B)dyt = (1− θB)ξt, ξt ∼ IID N(0, σ2), where we assume that

0 ≤ θ < 1, admits the orthogonal decomposition into two orthogonal fractional noise processes

integrated respectively of order d and d− 1:

yt =
ηt

(1− B)d
+

ǫt
(1− B)d−1

,

(

ǫt

ηt

)

∼ N

[(

0

0

)

, σ2

(

(1− θ)2 0

0 θ

)]

, t = 1, . . . , n.

This results from writing (1− θB)ξt = ηt + (1− B)ǫt.

If µt denotes the first component, then the MMSE based on a doubly infinite sample is

µ̃t|∞ =
(1− θ)

(1− θB)

(1− θ)

(1− θB−1)
yt.

This is a two-sided EWMA which depends only on the MA parameter. The second FN(d − 1)

process is extracted by the filter
θ(1−B)(1−B−1)
(1−θB)(1−θB−1)

.

The real time signal extraction filter is again ES: as a matter of fact, writing (1 − θB) =

(1 − θ) + θ∆, yt = mt + et, where (1 − B)dmt = (1 − θ)ξt can be written in terms of the

observations, mt = [(1 − θ)/(1 − θB)]yt, i.e. an EWMA of the current and past observations.

Moreover, et = θξt/(1 − B)d, and in terms of the observed time series, et =
θ

1−θB
(1 − B)yt, is

proportional to the same EWMA filter applied to the first differences.

Hence, the peculiar trait of this model is that signal extraction takes place by ES, regardless of

the d parameter. In the case d = 1 we obviously obtain ES, whereas for d = 2 we decompose an

IMA(2,1) process into an integrated RW and a RW. The forecasts are however dependent on the

long memory parameter and would not take the form of exponential smoothing. In particular, the

one-step-ahead predictor is given by the recursive formula

ỹt+1|t =

(

−
∞
∑

j=0

Γ(j − d)

Γ(−d)Γ(j + 1)
− θ

)

yt−j + θỹt|t−1.

Notice also that et is predictable from its past (it is an FN(d − 1) process). Also, if d ∈ (0, 1) the

long run prediction (which reverts to zero) is not coincident with mt.
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4.3 Fractional Lag IMA(1,1)

Consider the following fractional lag IMA(1,1) model:

(1− B)dyt = (1− θBd)ξt, 0 ≤ θ < 1,

where the fractional lag operator, Bd, is defined as Bd = 1− (1−B)d. This is a generalization of

the lag operator to the long memory case originally proposed by Granger (1986) and it has been

recently adopted by Johansen (2008) to define a new class of vector autoregressive models.

The above specification provides an interesting extension of ES to the fractional case. In fact,

the process admits the decomposition into a fractional noise component and a WN component:

yt = mt + et, mt =
1− θ

(1− B)d
ξt, et = θξt.

In terms of the observations,

mt =
1− θ

1− θBd

yt

which is the ES in the case d = 1. In the case d = 2, the model is the basis for the decomposition

of yt into an integrated random walk plus a noise component (the reduced form being (1− B)2 =

(1− 2θB + θ2B2)ξt).

4.4 Fractional Equal Root Moving Average Process

In his seminal Biometrika paper, Hosking (1981) introduced the fractional equal–root integrated

moving average process

(1− B)dyt = (1− θB)dξt, ξt ∼ WN(0, σ2). (6)

Writing 1−θB = (1−θ)−θ(1−B) and using the binomial expansion of [(1−θ)−θ(1−B)]d,

the process (6) admits the following decomposition:

yt =
∑∞

j=0 zjt, zjt =
(d)j
j!

(

θ
1−θ

)j ( 1−θ
1−θB

)d
(1− B)jyt (7)

where (d)j = d(d − 1) · · · (d − j + 1) is the Pochhammer symbol. This is an infinite sum of

generalized EWMAs applied to yt and its successive differences.

The first component is the weighted moving average of the observations available at time t:

z0t =

(

1− θ

1− θB

)d

yt =
∞
∑

j=0

w∗
jyt−j, (8)
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with weights given by

w∗
j = (1− θ)dϕj, ϕj = −θ1

j
(1− d− j)ϕj−1, j > 0, ϕ0 = 1,

by application of Gould’s formula (Gould, 1974), or

w∗
j = (1− θ)d

θj

j!
d(j), (9)

where d(j) denotes the rising factorial d(j) = d(d+ 1) · · · (d+ j − 1).

In terms of λ = 1− θ,

w∗
j = wjcj, wj = λ(1− λ)j, cj =

λd−1d(j)

j!
, (10)

which shows that the weights result from correcting the geometrically declining weights, wj =

(1− λ)wj−1, w0 = 1, by a factor depending on d, decreasing hyperbolically with j:

cj =

(

1− 1− d

j

)

, c0 = λd−1.

The importance of the correction term is larger, the smaller is λ, due to the factor λd−1. Moreover,

if d = 1, λ
d−1d(j)

j!
= 1.

We label the linear filter [(1 − θ)/(1 − θB)]d in (8) a fractional exponential smoothing (FES)

filter. Section 6 will provide a discussion of its properties. The filter performs a long memory -

EWMA of the available observations. It depends on two parameters, the memory parameter, d,

and the parameter θ, which regulates the speed of mean reversion.

According to (12) the process yt is decomposed as the sum of fractionally integrated processes

of order d− j, j = 0, 1, . . . .

zjt =
(d)j
j!
θj(1− θ)j−d(1− B)j

∑∞
k=0

Γ(k+d)
Γ(k+1)Γ(d)

ξt−k (11)

The components, for d in certain ranges, can be interpreted as the underlying level (z0t), the under-

lying slope (z1t), acceleration (z2t), etc., as it will be discussed in the next section. For a stationary

long memory process, z0t is the fractional noise process, (1− B)dz0t = (1− θ)dξt, whereas z1t is

the antipersistent process (1−B)d−1z1t = dθ(1− θ)d−1ξt, etc. To extract the j-th component, the

filter (1 − θB)−d =
∑

j ϕjB
j, ϕj =

θj

j!
d(j), is applied to the series (1 − B)jyt, and the outcome

is rescaled by (d)jθ
j(1 − θ)d−j . The filters can be approximated by truncating the weights at lag

m, and rescaling them so that their sum is one (see Percival and Walden, 1993). Alternatively, a

suitable number of initial values, yj, j ≤ 0 can be backcasted using the FerIMA model.
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If d is integer, then the number of components is finite. When d = 1,

yt = z0t + z1t, (1− B)z0t = (1− θ)ξt, z1t = θξt,

and the two components can be interpreted as the permanent and the transitory components in the

series (see the next section).

When d = 2,

yt = z0t + z1t + z2t, (1− B)2(z0t + z1t) = (1− θB)(1− θ)ξt, z3t = θ2ξt

so that z0t is a stochastic level (an integrated RW), which is coincident with double exponential

smoothing (Brown, 1963). The latter is the optimal predictor for the IMA(2,2) process with a MA

root θ−1 with multiplicity 2; z1t is a stochastic slope (a RW), and their sum is IMA(2,1), and the

process z2t is white noise.

The next section discusses the interpretation of the components and their relation with the mul-

tistep predictor.

5 Permanent-Transitory (Beveridge and Nelson) Decomposi-

tion

The decomposition of the FerIMA process proposed above arises as a special case of the following

result, which can be viewed as a generalization of the Beveridge and Nelson (1981, BN hence-

forth).

Assume d > 0 and let yt be the (possibly fractionally) integrated process

∆dyt = ψ(B)ξt, ψ(B) = 1 + ψ1B + ψ2B
2 + · · · ,

∑

j

ψ2
j <∞,

and ξt ∼ WN(0, σ2). Consider the expansion of the Wold polynomial

ψ(B) =
r−1
∑

j=0

ψj(1)(1− B)j + ψr(B)(1− B)r,

where

ψj−1(B) = ψj−1(1) + ∆ψj(B), j = 1, 2, . . . , ψ0(B) = ψ(B).

Two interesting particular cases arise:

• If ψ(B) = 1 + ψ1B + · · · + ψqB
q, an MA(q) polynomial, then, if r = q, ψr(B) is a zero

degree polynomial. If r < q, then ψr(B) is MA(q − r).
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• If ψ(B) is an ARMA(p, q) polynomial, then ψr(B) is an ARMA(p,min{(p − r), (q − r)})

polynomial. Consider for simplicity the case when q ≥ p, so that, defining θ(B) = 1 −
θ1B − · · · − θqB

q and φ(B) = 1− φ1B − · · · − φpB
p, we can write

ψ(B) =
θ(B)

φ(B)
=
θ0(1) + θ1(1)(1− B) + · · ·+ θq(1)(1− B)q

φ(B)

we have that for r ≤ q,

ψr(B) = θr(1) + θr+1(1− B) + · · ·+ θq(1)(1− B)q−r,

i.e. an MA(q − r) lag polynomial.

For a given integer r > 0, the following decomposition is valid:

yt = z0t + z1t + · · · zr−1,t + z̃rt, (12)

where

zjt =
ψj(1)

(1− B)d−j
ξt, j = 0, . . . , r − 1,

is an FN(d− j) process, and

z̃rt =
ψr(B)

(1− B)d−r
ξt.

For integer d = r > 0, z̃r,t is a stationary short memory process, with ARMA(p,min{(p −
r), (q − r)} representation if ψ(B) is ARMA(p, q), and can be referred to as the BN transitory

component, as its prediction converges fastly to zero as the forecast horizion increases. The sum
∑d−1

j=0 zjt is the long run or permanent component, as it represents the value that the series would

take if it were on the long run path, i.e. the value of the long run forecast function actualised at

time t.

More generally, for both fractional and integer values of d, we set r = [d], where [d] is the

nearest integer to d, in the expression (12) to obtain a generalized BN decomposition:

yt = mt + et, mt = z0t + · · ·+ z[d]−1,t, et =
ψr(B)

(1− B)d−[d]
ξt.

The component mt is the nonstationary component, determining the behaviour of the forecast

function for long multistep horizons. The component et is stationary, its integration order being

d− [d] ∈ (−0.5, 0.5).

It is perhaps useful to highlight some particular cases:

13



• When d ∈ [0, 0.5) the component mt is identically equal to zero and all the series is transi-

tory. In fact, [d] = 0 and the multistep forecast takes the form

ỹt+l|t =

[

ψ(B)

(1− B)d
B−l

]

+

ξt. (13)

• When d ∈ (0.5, 1.5), yt admits the following nonstationary-stationary decomposition:

yt = mt + et, mt = z0t, et =
ψ1(B)

(1− B)d−1
ξt

If d = 1 and ψ(B) = (1 − θB), then mt is an EWMA of yt and et is white noise. Notice

that for d ∈ [0.5, 1) the long run forecast of the series is zero and the shocks (1 − θ)ξt have

long lasting, but transitory effects. Hence mt is not equivalent its long run prediction, i.e.

the value the series would take if it were on its long run path.

• When d ∈ (1.5, 2.5), yt admits the following nonstationary-stationary decomposition:

yt = mt + et, mt = z0t + z1t, et =
ψ2(B)

(1− B)d−2
ξt

If d = 2 and ψ(B) = (1 − θ1B − θ2B
2), then mt can be computed according to the Holt-

Winters recursive formulae (see Harvey, 1989) and et is white noise.

• In general, the component et is a stationary process featuring long memory (d > [d]) or

antipersistence (d < [d]).

It should be noticed that the above decomposition differs from the one proposed by Ariño and

Marmol (2004) for nonstationary fractional processes with d ∈ (0.5, 1.5). The latter is based on a

different interpolation argument and decomposes yt = m∗
t + e∗t , where, in terms of our notation,

e∗t =
ψ1(B)
Γ(d)

ξt. As a result, their permanent component is

m∗
t = yt − e∗t = z0t +

1

Γ(d)

[

Γ(d)(1− B)1−d − 1
]

ψ1(B)ξt.

Thus, it contains a purely short memory component and in the case d ∈ (0.5, 1) differs from the

long run prediction of the series, which is equal to zero.

6 Fractional Exponential Smoothing Filters

Both the Riskmetrics volatility estimates and the generalized FES component in (8), result from the

application of linear filters (with infinite impulse response) whose properties can be investigated

in the frequency domain.
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Letting w(B) =
∑

wjB
j denote a generic linear filter, we denote its transfer function by

G(ω) = w(e−ıω), e−iω = cosω − ı sinω, where ı is the imaginary unit and ω ∈ [0, π] is the

angular frequency in radians. As it is well known, see for instance Percival and Walden (1993),

the gain function, |G(ω)|, provides a useful characterisation about how the linear filter modifies

the amplitude of the cyclical components in the series. A low-pass filter is a filter that passes low

frequency fluctuations and reduces the amplitude of fluctuations with frequencies higher than a

cutoff frequency ωc (see e.g. Percival and Walden, 1993). The latter is defined as the angular

frequency at which a monotonically decreasing gain is equal to 1/2. Correspondingly, the filter

is said to pass the fluctuations with period greater than 2π/ωc and suppress to a large extent (e.g.

compress by a factor small than 0.5) those with smaller period (ω > ωc). The cutoff frequency or

period is a useful summary measure for defining the characteristic properties of a low-pass filter,

although it is not the unique, as we shall see immediately.

Figure 3 compares the gains of the two Riskmetrics filters, RM1994 and RM2006. The cutoff

frequency is very close, being equal to ωc = 0.0889 for RM1994 and ωc = 0.0765, which corre-

spond to a period of 70.69 and 82.13 observations, respectively. However, the RM1994 filter is

more concentrated at the cutoff. The concentration can be measured by

β2(ωc) =

∫ ωc

0
|G(ω)|2dω

∫ π

0
|G(ω)|2dω

The above concentration measure was defined and analysed according to different perspectives by

Tufts and Francis (1970), Papoulis and Bertran (1970), Eberhard (1973) and Slepian (1978). As

a result, the RM2006 volatility estimate will be slightly smoother than RM1994. However, the

output of the filters will be very similar.

The FES filter w(B) = (1− θ)d(1− θB)−d has gain

|G(ω)| =
[

(1− θ)2

1 + θ2 − 2θ cosω

]d/2

=

[

1

1 + 2λ−2(1− λ) cosω

]d/2

and cutoff frequency

ωc = arccos

(

1− 22/d − 1

2g

)

, g =
1− λ

λ2
.

Figure 2 displays the combinations of d and θ, respectively in the interval (0,2] and [0,1], giving

the same cutoff frequency ωc, for some values of ωc. The curve for ωc = 0.0765 provides the com-

binations that will deliver filtered estimates with comparable smoothness with respect to RM2006;

for instance, we need d = 0.7, θ = 0.98 to obtain a similar filter. Other cutoff frequencies taken

into consideration are ωc = 0.5, corresponding to a period of 13 observations, ωc = 1, correspond-

ing to a period of 6 observations, and ωc = π, corresponding to a period of 2 observations. For
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Figure 1: Plot of the gains of the RM1994 and RM2006 filters versus the angular frequency ω.
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stationary values of d and θ less than 0.5 the FES filter is an all-pass filter (i.e. |G(π)| < 0.5),

and in order to obtain a substantial amount of smoothing we need to have θ very close to 1. Small

variations of the θ parameter in the neighbourhood of 1 cause big changes of the cutoff frequency.

Obviously, d = 1, θ = 0.94 yields the RM1994 ES filter.

7 Estimation and Forecasting with the FerIMA model

Estimation of the parameters d and θ characterising the FerIMA process can be carried out by

frequency domain maximum likelihood. Given a time series realisation {yt, t = 1, 2, . . . , n}, and
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letting ωj =
2πj
n
, j = 1, . . . , ⌊n−1

2
⌋, denote the Fourier frequencies, where ⌊·⌋ is the largest integer

not greater than the argument, the periodogram, or sample spectrum, is defined as

I(ωj) =
1

2πn

∣

∣

∣

∣

∣

n
∑

t=1

(yt − ȳ)e−ıωjt

∣

∣

∣

∣

∣

2

,

where ȳ = n−1
∑n

t=1 yt.

Letting

f(ω) =
1

2π

(

1 + θ2 − 2θ cosω

2(1− cosω)

)p

σ2

denote the (pseudo) spectral density of yt, the Whittle likelihood is:

ℓ(d, θ, σ2) = −
⌊(n−1)/2⌋
∑

j=1

[

ln f(ωj) +
I(ωj)

f(ωj)

]

. (14)

The maximiser of (14) is the Whittle pseudo maximum likelihood estimator of (d, θ, σ2). We

refer to Dahlhaus (1989), Giraitis, Koul and Surgailis (2012), and Beran et al. (2013) and for the

properties of the estimator in the long memory case. In the nonstationary case, the consistency

and the asymptotic normality of the Whittle estimator has been proven by Velasco and Robinson

(2000). Tapering may be needed to eliminate polynomial trends, see Velasco and Robinson (2000),

but we do not contemplate this possibility here. Notice that we have excluded the frequencies

ω = 0, and π from the analysis; the latter may be included with little effort, and their effect on the

inferences is negligible in large samples.

The l-step-ahead forecast of the FerIMA model is obtained from each components forecasts,

i.e. ỹt+l|t =
∑

j z̃j,t+l|t. The components are characterised by decreasing levels of predictability:

in fact, the prediction error variance increases with the order of the component, j.

Alternatively, the predictor can be obtained directly from the model specification. Denoting

by ȳt = t−1
∑t−1

j=0 yt−j , the mean of the available sample observations at time t, the l-steps-ahead

predictor of yt is

ỹt+l|t = ȳt +
∑t−1

j=0 πjl(yt−j − ȳt),

=
∑t−1

j=0 π
∗
jlyt−j, π∗

jl = πjl +
1
t
(1− πjl).

The weights πjl are computed by the Durbin-Levinson algorithm (see e.g. Palma, 2007) and in

large sample they are obtained as follows:

πjl =
l−1
∑

i=0

ψiπj+l−i

where ψi is the coefficient of the Wold polynomial associated to Bi, yt = ψ(B)ξt and π(B) is the

AR polynomial in the infinite AR representation π(B)yt = ξt.
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8 The Empirical Performance of the FerIMA Volatility Predic-

tor

We consider the empirical problem of forecasting one-step-ahead the daily asset returns volatility,

using realized measures constructed from high frequency data. The volatility proxy is the Realized

Variance (5-minute) of 21 stock indices extracted from the database ”OMI’s realized measure

library” version 0.2, produced by Heber, Lunde, Shephard, and Sheppard (2009). The background

information for realized measures can be found in the survey articles by by McAleer and Medeiros

(2008) and Andersen, Bollerslev and Diebold (2010). The series range from 03/01/2000 to the

22/01/2014 for a total of 3,674 daily observations.

Denoting by RVt a generic realized volatility series, we focus on its logarithmic transformation,

that is we take yt = lnRVt. We are interested in assessing the properties of the FerIMA predictor

discussed in the previous section, in comparison to three well established alternative: RM1994,

which is the standard exponential smoothing predictor with λ = 0.06, the RM2006 methodology,

and the heterogeneous autoregressive (HAR) model proposed by Corsi (2009), which is specified

as follows:

yt = φ0 + φ1yt−1 + φ5ȳt−5 + φ22ȳt−22 + ξt, ξt ∼ WN(0, σ2),

where

ȳt−5 =
1

5

5
∑

j=1

yt−j, ȳt−22 =
1

22

22
∑

j=1

yt−j,

are respectively the average realized variance over the previous trading week and over the previous

month. This specification captures the long memory feature of RV via a long autoregression, yet

preserving the parsimony, and has proven to be very effective for forecasting volatility, rapidly

becoming one of the discipline’s standards.

We perform a recursive forecasting experiment such that starting from time n0 = 500 we com-

pute the one step ahead volatility predictions according to the four methods and we proceed adding

one observation at time. For the HAR And FerIMA specifications we re-estimate the parameters

each time a new observation is added. The experiment yields 3,174 one step ahead prediction

errors for each forecasting methodology to be used for the comparative assessment.

Denoting by ỹk,t|t−1 the prediction arising from method k, where k is an element of the set

{RM1994, RM2006, HAR, F}, F standing for FerIMA, and by vk,t = yt− ỹk,t|t−1, the correspond-

ing prediction error, t = n0 + 1, . . . , n, we compare the mean square forecast error,

MSFEk =
1

n− n0

n
∑

t=n0+1

v2k,t,
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and compute the Diebold-Mariano-West test of equal forecasting accuracy. Denoting dk,t = v2k,t−
v2F,t the quadratic loss differential, the Diebold-Mariano-West test of the null hypothesis of equal

forecast accuracy, H0 : E(dk,t) = 0, versus the one sided alternative H1 : E(dkt) > 0, is the test

statistic

DMk =
d̄k
√

σ2
k

, d̄k =
1

n− n0

n
∑

t=n0+1

dk,t, σ2
k =

1

n− n0

[

c0 + 2
J−1
∑

j=1

J − j

J
cj

]

,

where cj is the sample autocovariance of dk,t at lag j and σ2
k is a consistent estimate of the long

run variance of the loss differential. We set the truncation lag equal to J = 22. See Diebold and

Mariano (1995) and West (1996). The null distribution of the test is Student’s t with n − n0 − 1

degrees of freedom.

The results for the 21 realized volatility series (yt = lnRVt) are reported in table 2. The

FerIMA predictor is characterised by a lower MSFE and systematically outperforms the RM1994

and RM2006 predictors, with a single exception (All Ord. series). Only in 3 out of 21 cases the

HAR predictor has a lower MSFE. In terms of the Diebold-Mariano-West test, we reject the null

that the RM1994 and RM2006 predictors have the same forecast accuracy as the FerIMA predictor

at the 5% significance level in all but two cases (All Ord. and Hang Seng). When the HAR predictor

is compared to the FerIMA predictor, we do not reject in four cases (All Ord., DIJA, Hang Seng,

and IPC Mexico).

Hence, the evidence is strongly in favour of the FerIMA predictor. We also observe that the

performance of RM2006 does not differ substantially from RM1994, since, as it was anticipated

in section 6, the two predictors are very similar. Also, HAR systematically outperforms both

RiskMetrics predictors.

The last two columns of the table report the values of the estimated FerIMA parameters θ and d.

The memory parameter is always in the nonstationary region (the average of the estimated values

being 0.60, with standard deviation 0.04), whereas the moving average parameter ranges from 0.21

to 0.65 with an average value 0.36 and standard deviation 0.12.

Figure 3 displays the logarithm of the realized volatility series for the S&P 500 index, along

with the RM2006 filtered series and the component mt = z0t extracted from the FerIMA model,

computed according to 8, replacing the unknown parameters by their maximum likelihood esti-

mates d̃ = 0.56 and θ̃ = 0.35. The bottom left plot is the stationary component yt − mt = et

and the bottom right plot is the deviation from the RM2006 filtered series. It is noticeable that a

substantial part of the variation of yt is absorbed by the component z0t, whereas RM2006 seems to

oversmooth the series. The overall message is that volatility is a strongly persistent process with a

stationary component contributing little. Notice that if the θ estimate were close to zero, then the

series would be a FN(d) process and all the variability would be absorbed by z0t.
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Table 2: Log-Realized volatility series. Recursive forecasting exercise: comparison of one-step-ahead predictive performance.

The first three columns present the relative MSFE ratios MSFEF

MSFERM2006
, MSFEF

MSERM1994
, MSFEF

MSFEHAR

, respectively. The next three

columns report the p-values of the Diebold-Mariano test of equal forecast accuracy versus the alternative that the FerIMA

(abbreviated to F) is more accurate.

Relative Mean Square Forecast Error p-values of DM test

Series F vs RM2006 F vs RM1994 F vs HAR F vs RM2006 F vs RM1994 F vs HAR d̃ θ̃

S&P 500 0.84 0.85 0.96 0.000 0.000 0.070 0.63 0.44

FTSE 100 0.74 0.76 0.88 0.000 0.000 0.000 0.65 0.35

Nikkei 225 0.76 0.75 0.84 0.000 0.000 0.000 0.55 0.23

DAX 0.75 0.77 0.87 0.000 0.000 0.000 0.61 0.29

Russel 0.86 0.86 0.95 0.000 0.000 0.021 0.58 0.41

All Ord. 1.03 1.04 1.09 0.833 0.887 1.000 0.64 0.65

DJIA 0.91 0.91 1.01 0.016 0.017 0.694 0.65 0.50

Nasdaq 100 0.75 0.75 0.83 0.000 0.000 0.000 0.59 0.21

CAC 40 0.75 0.76 0.88 0.000 0.000 0.000 0.62 0.31

Hang Seng 0.97 0.98 1.04 0.255 0.341 0.935 0.64 0.55

KOSPI Composite Index 0.76 0.76 0.86 0.000 0.000 0.000 0.61 0.27

AEX Index 0.73 0.74 0.87 0.000 0.000 0.000 0.63 0.31

Swiss Market Index 0.73 0.76 0.91 0.000 0.000 0.001 0.66 0.36

IBEX 35 0.75 0.75 0.85 0.000 0.000 0.000 0.58 0.26

S&P CNX Nifty 0.81 0.79 0.85 0.000 0.000 0.000 0.53 0.26

IPC Mexico 0.94 0.94 0.98 0.030 0.020 0.141 0.55 0.50

Bovespa Index 0.80 0.79 0.87 0.000 0.000 0.000 0.51 0.23

S&P/TSX Composite Index 0.87 0.88 0.92 0.003 0.002 0.002 0.57 0.40

Euro STOXX 50 0.82 0.82 0.91 0.000 0.000 0.001 0.60 0.37

FT Straits Times Index 0.82 0.83 0.88 0.000 0.000 0.000 0.58 0.36

FTSE MIB 0.78 0.79 0.88 0.000 0.000 0.000 0.59 0.29

2
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9 Conclusions

We have dealt with the problem of forecasting volatility and decomposing it into meaningful com-

ponents in the presence of long memory and possible nonstationarity.

We have reviewed the solutions available in the literature and have concluded that the recent

RM2006 yields results that are not substantially different from the exponential smoothing predictor

with fixed smoothing constant known as RM1994. From the point of view of signal extraction,

when applied to realized volatility series (rather than squared or absolute returns or similar noisy

proxies), both methodologies yield estimates of underlying volatility that are very stable and imply

a very smooth estimate.

After reviewing some plausible extensions of ES to the fractionally integrated framework, we

have looked at the properties of a signal extraction filter and the predictor arising from the FerIMA

model, a specification originally formulated by Hosking (1981), proposing a decomposition into

fractional noise components of decreasing order and offering an interpretation in the light of the

well known Beveridge and Nelson decomposition.

A forecasting experiment has illustrated the potential of the FerIMA model for forecasting daily

realized volatility, showing that it outperforms both RiskMetrics predictors and the Heterogeneous

Autoregressive Model.

In conclusion, the FerIMA model is a simple and parsimonious model, which can play a useful

role in forecasting volatility and extracting its underlying level.
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[3] Amado, C., and Teräsvirta, T. (2014). Modelling changes in the unconditional variance of long

stock return series. Journal of Empirical Finance, 25(C), 15-35.

[4] Andersen, T.G., Bollerslev, T., and Diebold, F.X. (2010). Parametric and Nonparametric

Volatility Measurement. In Y. Aı̈t-Sahalia and L.P. Hansen (eds.), Handbook of Financial

Econometrics, Chapter 2, pp. 67-128. Amsterdam: Elsevier Science B.V.

[5] Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P. (2003). Modeling and forecasting

realized volatility. Econometrica, 71, 579-625.

[6] Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P. (2001). The Distribution of Exchange

Rate Volatility. Journal of the American Statistical Association, 96, 4255.

[7] Arteche, J. (2004). Gaussian Semiparametric Estimation in Long Memory in Stochastic

Volatility Models and Signal plus Noise Models. Journal of Econometrics, 119, 131-154.

[8] Beran, J., Feng, Y., Ghosh, S. and Kulik, R. (2013), Long-Memory Processes Probabilistic

Properties and Statistical Methods, Springer-Verlag Berlin Heidelberg.

[9] Bauwens, L., Hafner, C.M., and Pierret, D. (2013). Multivariate Volatility Modeling of Elec-

tricity Futures. Journal of Applied Econometrics, 28, 743 761.

[10] Beveridge, S., and Nelson, C.R. (1981). A new approach to decomposition of economic time

series into permanent and transitory components with particular attention to measurement of

the business cycle. Journal of Monetary Economics, 7, 151 174.

[11] Bollerslev, T. and Wright, J.H. (2000). Semiparametric Estimation of Long-Memory Volatil-

ity Dependencies: The Role of High Frequency Data. Journal of Econometrics, 98, 81106.

[12] Brown, R.G. (1963). Smoothing, Forecasting and Prediction of Discrete Time Series. NJ:

Prentice-Hall, Englewood Cliffs.

[13] Chan, N. H. and Palma, W. (1998). State Space Modeling of Long-Memory Processes. The

Annals of Statistics, 26, 719–740.

[14] Colacito, R., Engle R.F., Ghysels, E. (2011). A component model for dynamic correlations.

Journal of Econometrics, 164, 45–59.

22



[15] Corsi, F. (2009). A simple long memory model of realized volatility. Journal of Financial

Econometrics, 7, 174-196.

[16] Cox, D. R. (1961). Prediction by exponentially weighted moving averages and related meth-

ods. Journal of the Royal Statistical Society, Series B, 23, 414-422.

[17] Dahlhaus, R. (1989). Efficient Parameter Estimation for Self Similar Processes. The Annals

of Statistics, 17, 4, 1749-1766.

[18] Deo, R.S. and Hurvich, C.M. (2001). On the log periodogram regression estimator of the

memory parameter in long memory stochastic volatility models. Econometric Theory, 17, 686-

710.

[19] Diebold, F. X. and Inoue, A. (2001). Long memory and regime switching. Journal of Econo-

metrics, 105, 131–159.

[20] Diebold, F. X. and Mariano, R. (1995). Comparing predictive accuracy. Journal of Business

& Economic Statistics, 13, 253 - 263.

Ding, Z., and Granger, C. W. J. (1996). Modeling Volatility Persistence of Speculative Returns:

A New Approach, Journal of Econometrics, 73, 185 215.

[21] Ding, Z., Granger, C. W. J., and Engle, R.F. (1993). A Long Memory Property of StockMarket

Returns and a New Model. Journal of Empirical Finance, 1, 83106.

[22] Engle, R.F. (1995). ARCH: Selected Readings. Oxford University Press, 1995.

[23] Engle, R.F., Ghysels, E., and Sohn, B. (2013). Stock market volatility and macroeconomic

funda- mentals. Review of Economic and Statistics, 95, 776797.

[24] Engle, R.F., and Lee (1999). A Long-Run and Short-Run Component Model of Stock Re-

turn Volatility. In Engle, R.F., and White, A. (eds), Cointegration, Causality, and Forecasting,

Oxford University Press. Oxford, UK.

[25] Gallant, A.R., Hsu, C.T. and Tauchen, G. (1999). Using Daily Range Data to Calibrate

Volatility Diffusions and Extract the Forward Integrated Variance, Review of Economics and

Statistics, 81, 617 - 631.

[26] Gardner, E.S. (1985). Exponential smoothing: the state of the art. Journal of Forecasting, 4,

1-28.

23



[27] Gardner, E.S. (2006). Exponential smoothing: the state of the art. Part II. International Jour-

nal of Forecasting, 22, 637-666.

[28] Giraitis, L., Koul, H.L., Surgailis, D. (2013), Large Sample Inference for Long Memory Pro-

cesses, Imperial College Press.

[29] Gould, H. W. (1974). Coefficient Identities for Powers of Taylor and Dirichlet Series. Amer-

ican Mathematical Monthly, 81, 3 14.

[30] Giraitis, L., Koul, H. and Surgailis, D. (2012). Large Sample Inference for. Long memory

Processes, Imperial College Press, London.

[31] Granger, C.W.J. (1980). Long memory relationships and the aggregation of dynamic models.

Journal of Econometrics, 14, 227238.

[32] Granger, C.W.J. (1986). Developments in the study of cointegrated economic variables. Ox-

ford Bulletin of Economics and Statistics, 48, 213-228.

[33] Granger, C.W.J., and Hyung, N. (2004). Occasional Structural Breaks and Long Memory

with an Application to the S&P 500 absolute returns. Journal of Empirical Finance, 11, 399 –

421.

[34] Granger, C.W.J., and Joyeux, R. (1980). An introduction to long memory time series models

and fractional differencing, Journal of Time Series Analysis, 1, 15 - 29.

[35] Gray, H.L., Woodward, W. A. and Zhang, N. (1989). On Generalized Fractional Processes.

Journal of Time Series Analysis, 10, 233–257.

[36] Hafner, C., and Linton, O.B. (2010). Efficient estimation of a multivariate multiplicative

volatility model. Journal of Econometrics, 159, 5573.

[37] Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter.

Cambridge: Cambridge University Press.

[38] Heber, G., Lunde, A., Shephard, N. and Sheppard, K. K. (2009). OMIs realised measure

library. Version 0.2, Oxford-Man Institute, University of Oxford.

[39] Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008). Forecasting with Expo-

nential Smoothing. The State Space Approach. Springer Series in Statistics, Springer.

24



[40] Hodrick, J. R., Prescott E. C. (1997). Postwar U.S. business cycles: an empirical investiga-

tion. Journal of Money, Credit and Banking, 29, 116.

[41] Hosking, J.R.M. (2006). Fractional differencing. Biometrika, 88, 168-176.

[42] Hurvich, C.M., and Ray, B.K. (2003). The Local Whittle Estimator of Long-Memory

Stochastic Volatility. Journal of Financial Econometrics, 1, 445–470.

[43] Johansen, S. (2008). A representation theory for a class of vector autoregressive models for

fractional processes. Econometric Theory, 24, 651 676.

[44] McAleer, M. and Medeiros, M. C. (2008). Realized Volatility: A Review. Econometric Re-

views, 27, 10–45.

[45] Palma, W. (2007). Long-memory Time Series: Theory and Methods. Wiley. Hoboken, New

Jersey.

[46] Percival D., Walden A. (1993). Spectral Analysis for Physical Applications. Cambridge Uni-

versity Press.

[47] Pillai, T.R., Shitan. M. and Peiris, M.S. (2012) Some Properties of the Generalized Autore-

gressive Moving Average (GARMA (1,1;δ1, δ2)) Model. Communications in Statistics - Theory

and Methods, 41, 699–716.

[48] Proietti, T., and Luati A. (2012). Generalised Linear Spectral Models. Forthcoming in Shep-

hard, N. and Koopman, S.J. (2014), Unobserved Components and Time Series Econometrics,

Oxford University Press, Oxford, UK.

[49] RiskMetrics Group (1996). RiskMetrics Technical Document, New York: J.P. Mor-

gan/Reuters

[50] Shephard, N. (2005). Stochastic Volatility: Selected Readings. Oxford University Press.

[51] Slepian D., Pollak H.O. (1961), Prolate Spheroidal Wave Functions, Fourier Analysis and

Uncertainty, I, The Bell System Technical Journal, 40, 43-64.

[52] Taylor, S.J. (2005). Asset Price Dynamics, Volatility and Prediction. Princeton University

Press.

25



[53] Tanaka, K. (2004). Frequency domain and wavelet-based estimation for long-memory signal

plus noise models. In A. Harvey. S.J. Koopman and N. Shephard (eds.), State Space and Un-

observed Component Model. Theory and Application, ch. 4, p. 75–91, Cambridge University

Press. 13, 109–131.

[54] Tiao, G. C., and Tsay, R. S. (1994). Some advances in non-linear and adaptive modeling in

time-series. Journal of Forecasting, 13, 109–131.

[55] Tiao, G.C., and Xu, D. (1993). Robustness of maximum likelihood estimates for multi-step

predictions: the exponential smoothing case. Biometrika, 80, 623 641.

[56] Velasco, C., and Robinson, P.M. (2000), Whittle pseudo-maximum likelihood estimation for

non-stationary time series, Journal of the American Statistical Association, 95, 1229-1243.

[57] West, K. (1996). Asymptotic inference about predictive ability, Econometrica, 64, 1067 -

1084.

[58] Whittle, P. (1953). Estimation and Information in Stationary Time Series, Arkiv för Matem-

atik, 2, 423–434.

[59] Whittle, P. (1983). Prediction and Regulation by Linear Least-square Methods (2nd edition).

Basil Blackwell, Oxford, UK.

[60] Zumbach, G.O. (2007). The Riskmetrics 2006 Methodology. Available at SSRN:

http://ssrn.com/abstract=1420185 or http://dx.doi.org/10.2139/ssrn.1420185.

26



Figure 2: Combinations of d (horizontal axis) and θ (vertical axis) giving the same cutoff frequency

for FES filter.
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Figure 3: Logarithms of 5-minutes daily realized volatility for the SP500 index (red points) and

FES and RM2006 components.
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