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Abstract

Exponential models of Autoregressive Conditional Heteroscedasticity (ARCH)
enable richer dynamics (e.g. contrarian or cyclical), provide greater robustness
to jumps and outliers, and guarantee the positivity of volatility. The latter
is not guaranteed in ordinary ARCH models, in particular when additional
exogenous or predetermined variables (“X”) are included in the volatility spec-
ification. Here, we propose estimation and inference methods for univariate
and multivariate Generalised log-ARCH-X (i.e. log-GARCH-X) models when
the conditional density is not known via (V)ARMA-X representations. The
multivariate specification allows for volatility feedback across equations, and
time-varying correlations can be fitted in a subsequent step. Finally, our
empirical applications on electricity prices show that the model-class is par-
ticularly useful when the X-vector is high-dimensional.
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1 Introduction

The Autoregressive Conditional Heteroscedasticity (ARCH) class of models due to
Engle (1982) is useful in a wide range of empirical applications. In finance in partic-
ular, it has been extensively used to model the clustering of large (in absolute value)
financial returns. Engle (1982) himself, however, originally motivated the class as
useful in modelling the time-varying conditional uncertainty (i.e. conditional vari-
ance) of economic variables in general, and of UK inflation in particular. Other
areas of application include, amongst other, temperature data (e.g. Franses et al.
(2001)) and electricity prices (e.g. Koopman et al. (2007)). More generally, ARCH
models can also be used to improve the estimation and inference in the conditional
mean by means of Feasible Generalised Least Squares (FGLS) methods (Hamilton
(2010)). For recent surveys of ARCH models, see Francq and Zaköıan (2010a) and
Terasvirta (2009, 2012).

Within the ARCH class of models exponential versions are of special interest.
This is because they enable richer autoregressive volatility dynamics (e.g. contrarian
or cyclical) compared with non-exponential ARCH models, and because their fitted
values of volatility are guaranteed to be positive. The latter is not necessarily the
case for ordinary (i.e. non-exponential) ARCH models, in particular when additional
exogenous or predetermined variables (“X”) are included in the volatility equation.
In fact, the greater the dimension of X, the more restrictions are needed in order to
ensure positivity. Another desirable property, which is shared by the log-GARCH
model and the Beta-t-EGARCH model of Harvey (2013) but not by Nelson’s (1991)
EGARCH (nor by ordinary GARCH models), is that volatility forecasts are more
robust to jumps and outliers (this is illustrated in the first empirical application
in section 4). Robustness is important in order to avoid volatility forecast failure
subsequent to jumps and outliers. The log-GARCH class of models can be viewed
as a dynamic version of Harvey’s (1976) multiplicative heteroscedasticity model,1

and was first proposed independently by Pantula (1986), Geweke (1986) and Milhøj
(1987). Engle and Bollerslev (1986) argued against log-ARCH models because of
the possibility of applying the log-operator (in the log-ARCH terms) on zero-values,
which occurs whenever the error term in a regression equals zero. A solution to this
problem, however, is provided in Sucarrat and Escribano (2013) for the case where
the zero-probability is zero (e.g. because zeros are due to discreteness or missing
values), and in Sucarrat (2013) for the case where the zero-probability is not zero
and possibly time-varying. Another issue that has been cited in the literature (e.g.
Teräsvirta (2009)), is that the first unconditional autocorrelations of the squared
errors – a measure of volatility persistence – can be unreasonably high. But this
only occurs in very specific cases. The log-GARCH class allows for a much larger
range of autocorrelation patterns than ordinary GARCH models (see table 1), since
the autocorrelation pattern depends on the shape of the conditional density (the
more fat-tailed, the lower correlations) in addition to the persistence parameters.

1In some statistical softwares, e.g. JMP (2013), the multiplicative heteroscedasticity model is
referred to as the log-variance model.
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The assumption that the conditional density is unknown is particularly con-
venient from a practitioner’s point of view, since the user then does not need to
worry about changing the conditional density from application to application, or
alternatively to work with a sufficiently general density that will often make esti-
mation and inference numerically more challenging. This explains the attraction
of Quasi Maximum Likelihood Estimators (QMLEs). In the univariate case consis-
tency and asymptotic normality of QMLE for ARCH models and a GARCH(1,1)
model, respectively, were first proved by Weiss (1986) and Lumsdaine (1996), while
Berkes et al. (2003) and Francq and Zaköıan (2004) established more general re-
sults under milder conditions. To the best of our knowledge, there are no results on
GARCH-X models. For exponential ARCH models, by contrast, most of the uni-
variate results are either very limited or hold under unreasonable assumptions. In
the multivariate case, asymptotic QML results have been established for the BEKK
model of by Comte and Lieberman (2003), for an ARMA-GARCH with constant
conditional correlations (CCCs) by Ling and McAleer (2003), for a VEC model by
Hafner and Preminger (2009), and for a multivariate GARCH with CCCs by Francq
and Zaköıan (2010b).2 For exponential ARCH models, by contrast, there are no
multivariate results when the conditional density is unknown, and the univariate
results are either very limited or hold under unreasonable assumptions. Straumann
and Mikosch (2006, p. 2452) prove consistency of the Gaussian QML estimator
for Nelson’s (1991) univariate EGARCH(1,1). But the result of Straumann and
Mikosch is limited in that it does not apply to higher order EGARCH models, nor
to multivariate versions. Also, their result is limited to estimator consistency; they
do not prove asymptotic normality. However, in a recent (but unpublished) paper
Wintenberger (2012) provides sufficient conditions for asymptotic normality under
the condition of continuous invertibility, and under restrictive assumptions on the
parameter space. Kristensen and Rahbek (2009) prove that QML is consistent for a
class of univariate non-linear ARCH models that includes the log-ARCH(P ) family.
But their result does not apply to models that includes log-GARCH terms, nor to
multivariate versions. Recently, Francq et al. (2012) prove consistency and asymp-
totic normality of an asymmetric version of the univariate log-GARCH(P,Q) model.
But methods for multivariate models are not put forward, and zero errors cannot be
handled satisfactorily since estimation is not via the ARMA representation, see Su-
carrat and Escribano (2013). Finally, Kawakatsu (2006) has proposed a multivariate
exponential ARCH model, the matrix exponential GARCH, which contains a multi-
variate version of Nelson’s 1991 model. But estimation and inference results for the
case where the conditional density is unknown have yet to be provided, and general
conditions for the existence of its unconditional error moments are not available.

This paper makes at least five contributions. The first and most important is a
theoretical result (Theorem 1), which we believe will have important consequences
for empirical practice. It is well-known that all the coefficients apart from the

2Jeantheau (1998) established general conditions for strong consistency for QML estimation of
multivariate GARCH models. However, as pointed out by Ling and McAleer (2003, p. 281), his
results are based on the unrealistic assumption that the initial values are known.
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log-volatility intercept in a univariate log-GARCH specification can be estimated
consistently (under suitable assumptions) via an ARMA representation, see for ex-
ample Psaradakis and Tzavalis (1999), and Francq and Zaköıan (2006). However,
the estimate of the log-volatility intercept will be asymptotically biased, and the
bias is made up of a log-moment expression that depends on the unknown den-
sity of the conditional error. We propose a simple estimator of the log-moment
expression made up of the empirical residuals of the ARMA regression, and prove
its consistency and asymptotic normality under mild assumptions. The proof relies
on a result by Yu (2007), which means that the result holds for a range of ARMA
estimators, including the Gaussian QMLE. Moreover, asymptotically our estimator
is as efficient as if the true errors were used instead of the residuals. Consequentially,
we prove the consistency and asymptotic normality of univariate log-GARCH(P,Q)
models via the ARMA(P,Q) representation.

The second contribution of the paper is a consequence of the first. The addition
of exogenous or predermined conditioning variables yields the log-GARCH-X model,
which has a corresponding ARMA-X representation (see Subsection 2.4). The rela-
tion between the ARMA coefficients and the log-GARCH coefficients are not affected
by the additional X-variables, so the ARMA error term retains the same structure
as before. Consistent estimation of the ARMA-X representation will thus produce
exactly the same bias as earlier. Accordingly, a reasonable conjecture is that the
bias correction procedure described above will also be valid for ARMA-X models.
This means a vast literature of already established time-series results and practices
is likely to be available for the further development and study of log-GARCH-X
models.

In a third contribution (Section 3) we propose a multivariate log-GARCH-X
model that admits time-varying conditional correlations. The model is truly multi-
variate – and not only a collection of separate single equation specifications – in that
it admits volatility feedback across the equations, via both lagged log-ARCH and
lagged log-GARCH terms. Also, since the positivity of the volatilites is guaranteed
due to the exponential specification, restrictive assumptions are not needed in order
to ensure the positive definiteness of the (possibly) time-varying covariance matrix
of the errors. The multivariate log-GARCH-X model has a VARMA-X representa-
tion with a vector of error-terms. The vector is either IID, which corresponds to
the Constant Conditional Correlation (CCC) case, or independent but non-identical
(ID), which corresponds to the time-varying correlations case. But even in the latter
case each entry in the vector of errors is marginally IID. So the bias-correction from
the univariate case can be used equation-by-equation subsequent to the estimation
of the VARMA-X representation. Again, due to the structure of the problem, the
bias-correction procedure is likely to hold under mild assumptions.

A fourth contribution (Propositions 1 and 2) consists of proving that the un-
conditional moments of the error exist for a much larger class of densities than the
EGARCH of Nelson (1991). The existence of these moments are unlikely to have
a bearing upon the estimation and inference methods that we propose. However,
they are important for economic interpretation and analysis when the errors are
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interpreted as (de-meaned) returns, as is often the case in finance. In exponential
ARCH models the existence of unconditional error moments (i.e. de-meaned re-
turns) depend on the shape of the conditional density, and the error moments of
Nelson’s (1991) EGARCH do generally not exist for t-distributed errors, see Nelson
(1991, p. 365).3 In fact, in the presence of volatility asymmetry (i.e. “leverage”)
the problem is exacerbated. We also provide sufficient conditions for the existence
of the unconditional error moments in the multivariate case.

The fifth contribution of this paper comprises three empirical applications to
electricity prices. In the first we illustrate the robustness of the model-class to large
values (i.e. “outliers” or “jumps”), a common feature of electricity price returns.
In the next two we illustrate the versatility and flexibility of the model class to
accommodate a large number of exogenous or predetermined variables in the log-
variance, for both univariate and multivariate specifications.

The rest of the paper is organised as follows. The next section, section 2, presents
the univariate log-GARCH model, contains our main theoretical result (Theorem 1)
and reports the results from a set of Monte Carlo simulations. The relation between
the univariate log-GARCH model and its ARMA representation is also set out in
this section, and it is showed that the addition of exogenous and predetermined
variables does not alter this relation. Section 3 show how the ideas extend to the
multivariate case, whereas section 4 contains the empirical applications. Section 5
concludes, whereas the subsequent appendices contain various supporting informa-
tion, including proofs. Tables and figures are located at the end.

2 Univariate log-GARCH

2.1 Notation and specification

The univariate log-GARCH(P,Q) model is given by

ǫt = σtzt, zt ∼ IID(0, 1), P rob(zt = 0) = 0, σt > 0, (1)

ln σ2
t = α0 +

P∑

p=1

αp ln ǫ
2
t−p +

Q∑

q=1

βq ln σ
2
t−q, t ∈ Z, (2)

where P is the ARCH order and Q is the GARCH order. In finance, ǫt is often
interpreted as return or de-meaned return, but more generally it is simply the error
in a regression model. Denoting P ∗ = max{P,Q}, if the roots of the lag polynomial
1 − (α1 + β1)L − · · · − (αP ∗ + βP ∗)LP

∗

are all greater than 1 in modulus and if
|E(ln z2t )| < ∞, then {ln σ2

t } is stable. For common densities like the Student’s
t with degrees of freedom greater than 2, and the Generalised Error Distribution
(GED) with shape parameter greater than 1, then ǫt will generally be stable as well
if ln σ2

t is stable, see propositions 1 and 2. Practitioners are often interested in the

3The exponential versions of the models of Engle and Maricucci (2006, equation (16) on page
14), and of Hansen et al. (2012), are likely to be affected in a smiliar way, since they include ARCH
terms similar to those of Nelson.
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dynamics of other powers than the 2nd., e.g. the 1st. power (i.e. the conditional
standard deviation). For that purpose it should be noted that the dth. power
log-GARCH(P,Q) can be written as

ln σdt = α0,d +
P∑

p=1

αp ln |ǫt−p|d +
Q∑

q=1

βq ln σ
d
t−q, d > 0, (3)

where α0,d = α0d/2. This means that a complete analysis of the dth. power log-
GARCH model can be undertaken almost entirely in terms of the d = 2 representa-
tion.

Formulas that facilitate the computations of the unconditional moments, au-
tocovariances and autocrrelations of {ǫt} for the log-GARCH(1,1), are contained
in Appendix B. Table 1 contains unconditional autocorrelations for a small se-
lection of empirically relevant parameter values. As is clear from the table, the
log-GARCH(1,1) accommodates a broader range of persistency structures than the
ordinary GARCH(1,1). In particular, in contrast to the ordinary GARCH(1,1)
model, the unconditional autocorrelations of log-GARCH(1,1) models depend on
the distribution of zt: The more fat-tailed, the weaker correlations. Also, the
log-GARCH(1,1) is capable of generating both weaker and stronger autocorrela-
tions than the GARCH(1,1), and autocorrelation functions that decline either more
rapidly or more slowly.

2.2 The ARMA representation

If |E(ln z2t )| < ∞ and E[(ln z2t )
2] < ∞, then the log-GARCH(P,Q) model (1)-(2)

admits the ARMA(P,Q) representation

ln ǫ2t = φ0 +
P∑

p=1

φp ln ǫ
2
t−p +

Q∑

q=1

θqut−q + ut, ut ∼ IID(0, σ2
u), t ∈ Z (4)

almost surely with σ2
u <∞, where

φ0 = α0 + (1−
Q∑

q=1

βq) · E(ln z2t ) (5)

φp = αp + βp, 1 ≤ p ≤ P, (6)

θ1 = −β1, 1 ≤ q ≤ Q, (7)

ut = ln z2t − E(ln z2t ). (8)

Consistent and asymptotically normal estimates of all the ARMA parameters –
and hence all the log-GARCH parameters except the log-volatility intercept α0 – is
thus readily obtained via usual ARMA estimation methods subject to appropriate
assumptions, see e.g. Brockwell and Davis (2006). In order to obtain an estimate of
α0 the most common solutions have been to either impose restrictive assumptions
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regarding the distribution of zt (say, normality, see e.g. Psaradakis and Tzavalis
(1999)), or to use an ex post scale-adjustment (see e.g. Bauwens and Sucarrat
(2010), and Sucarrat and Escribano (2012)). What Theorem 1 below states is that
a slightly modified version of an ex post scale-adjustment provides a consistent and
asymptotically normal estimate of E(ln z2t ) for a range of ARMA estimators.

To obtain an understanding of the motivation behind the scale-adjustment, con-
sider writing (1) as

ǫt = σ∗
t z

∗
t , z∗t ∼ IID(0, σ2

z∗),

where σ∗
t is a time-varying scale not necessarily equal to the standard deviation,

and where z∗t does not necessarily have unit variance. Of course, by construction
we have σt = σ∗

t σz∗ and zt = z∗t /σz∗ . Next, suppose a log-scale specification (e.g.
an ARMA specification contained in (4)) is fitted to ln ǫ2t , with ln σ̂∗2

t denoting the
fitted value of the ARMA specification such that σ̂∗

t = exp(ln σ̂∗
t ), and with the

ARMA residual defined as ût = ln ǫ2t − ln σ̂∗2
t . In order to obtain an estimate of

the time-varying conditional standard deviation, which is needed for comparison
with most other volatility models, then it is natural to consider adjusting σ̂∗

t by
multiplying it with an estimate of σz∗ , say, the sample standard deviation of the
standardised residuals {ẑ∗t }. Although this argument is fine heuristically, it may not
be apparent what underlying magnitude the adjustment in fact estimates, nor may it
be straightforward to obtain the limiting properties of the adjustment under suitable
conditions. In the log-GARCH model, however, the log of the scale-adjustment
provides an estimate of −E ln(z2t ). To see this consider the scale adjustment and its
approximation:

σ̂2
z∗ =

1

T − 1

T∑

t=1

(ẑ∗t − ẑ
∗

t )
2 ≈ 1

T

T∑

t=1

(ẑ∗t )
2 =

1

T

T∑

t=1

exp(ût). (9)

The population analogue of the final expression on the right is E[exp(ut)]. Taking
the log of E[exp(ut)] gives

lnE[exp(ut)] = lnE[exp(ln z2t ) · exp(−E(ln z2t ))]

= ln
[
E(z2t ) · exp(−E(ln z2t ))

]

= ln
[
exp(−E(ln z2t ))

]

= −E(ln z2t ),

under the assumption that E(z2t ) = 1. This suggests that

− ln

[
1

T

T∑

t=1

exp(ût)

]
−→ E(ln z2t ) (10)

due to the continuity of the natural log operator. However, the expression
(1/T )

∑T
t=1 exp(ût) involves the ARMA residuals {û}, which means that the stan-

dard law of large numbers cannot be applied. But a result by Yu (2007) enables us to
show that a slightly modified scale adjustment provides a consistent, asymptotically
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normal and efficient estimate of E(ln z2t ) for a range of ARMA estimators.
Our result relies on the following assumptions:

A1: |E(ln z2t )| <∞.

A2: The ARMA representation (4) has no common roots, and all the roots
are outside the unit circle of the complex plane.

A3: Let φ̂p, θ̂q be some given estimators for φp, θq, where 0 ≤ p ≤ P and
1 ≤ q ≤ Q, such that:

a) The assumptions underlying the estimators are fulfilled and compatible
with A1 and A2

b)
√
T (φ̂p − φp) and

√
T (θ̂q − θq) are all OP (1)

A4: Let δM = sup{δ : E(z2δt ) <∞}:

a) δM > 1

b) δM > 2 and |E[(ln z2t )2]| <∞.

Assumption A1 is necessary for the ARMA representation (4) to exist. Because
ln x ≤ x− 1, we have E ln |zt| < E|zt| − 1. Since we assume zt to be standardized, zt
has at least two moments. However, a lower bound for E ln |zt| depends on the distri-
bution of zt near zero. If the density of zt given by fzt is bounded near zero, this ex-

pectation always exists, as |
∫ l
−l
(log |x|)fzt(x) dx| ≤ sup−l≤x≤l fzt(x)|

∫ l
−l
log |x| dx| <

∞ for any 0 ≤ l < ∞. However, if the density is unbounded near zero, then more
care is needed, and |E(ln z2t )| may even be infinite if there is sufficient probability
mass close to zero. For the two most commonly used densities of zt in finance, i.e.
N(0, 1) and the t, E(ln z2t ) is finite. In A2 the no common roots assumption implies
in this context that P ≥ Q. For example, in the ARMA representation of a log-
GARCH(1,2) we get that φ2 = −θ2, i.e. a common root. The additional assumption
that all the roots are outside the unit circle implies that all the roots of the lag
polynomial 1− (α1+β1)L− · · ·− (αP ∗ +βP ∗)LP

∗

are all greater than 1 in modulus,
that is, that ln σ2

t in (2) is stable. The consistency and asymptotic normality of
our estimator of E(ln z2t ) will hold for several ARMA estimators. Assumption A3
simply states that the assumptions – whatever they are – that underly these ARMA
estimators hold, that they are compatible with A1 and A2, and that they satisfy
A3 b). In that regard, it should be noted that A3b) is implied by asymptotic nor-
mality, but the condtition does not require it. In A4 condition a) will be required for
our consistency result, whereas b) will also be required for the asymptotic normality
result. Of course, b) implies a). Whether |E[(ln z2t )2]| < ∞ holds depends on the
density of zt near zero, see the discussion in A1. Of course, if |E[(ln z2t )2]| <∞, then
A1 also holds. As will become apparent by our later arguments (see the proof of
Lemma 1 for details), if ut were observable, then a necessary and sufficient condition
for consistency and asymptotic normality, respectively, would be that δM ≥ 1 and
δM ≥ 2, respectively. In other words, the conditions δM > 1 and δM > 2 are very
close to the weakest possible conditions.
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The following lemma is an important step towards our main result.

Lemma 1. Suppose (1)-(2) and assumptions A1 – A3 hold, and let ût for t =
1, 2, . . . , T denote the ARMA-residual when using some estimators φ̂p, θ̂q for φp, θq,
where 0 ≤ p ≤ P and 1 ≤ q ≤ Q, in estimating the ARMA representation (4).
Denoting ûT and uT as the empirical averages of ût and ut, respectively:

a) If A4a) holds, then
1

T

T∑

t=1

exp(ût − ûT )−
1

T

T∑

t=1

exp(ut − uT ) = oP (1)

b) If A4b) holds, then
√
T

[
1

T

T∑

t=1

exp(ût − ûT )−
1

T

T∑

t=1

exp(ut − uT )

]
= oP (1)

Proof. See Appendix C.

The intuition of the Lemma is that it provides sufficient conditions under which
sums of exponentials like (1/T )

∑
t exp(ût− ûT ) can be treated as if we observe the

actual errors {ut}. It should be noted that estimation of this term implies non-trivial
changes in the behaviour of the residuals, and so Lemma 1 will not be valid if the
residuals are not mean corrected with ûT . Nevertheless, in some cases, e.g. when
OLS is used to estimate the AR(P ) representation of a log-ARCH(P ) specification,
then ûT will by construction be zero. Our main theoretical result now follows.

Theorem 1. Suppose (1)-(2) and assumptions A1 – A3 hold:

a) If assumption A4a) also holds, then

− ln

[
1

T

T∑

t=1

exp(ût − ûT )

]
P−→ E(ln z2t ). (11)

b) If assumption A4b) also holds, then

√
T

[
− ln

[
1

T

T∑

t=1

exp(ût − ûT )

]
− E(ln z2t )

]
d−→ N(0, ζ2), (12)

where

ζ2 = E[(ln z2t )
2]− [E(ln z2t )]

2 + (E(z4t )− 1)− 2E[(ln z2t )z
2
t ] + 2E(ln z2t ). (13)

Proof. The consistency result in a) follows straightforwardly from a) in Lemma 1 due
to the continuity of the log-transformation. The proof of the asymptotic normality
result b) is given in Appendix C.

The practical implication of Theorem 1 is that the residuals from a range of estima-
tors of the ARMA representation (4) – including Gaussian QML – can be plugged
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into the formula in order to obtain a consistent estimate of E(ln z2t ). Moreover, the
asymptotic variance ζ2 is in fact equal to the situation where we have access to the
actual errors {ut}.

An extensive set of Monte Carlo simulations were performed, of which Tables
2 and 3 only report a small subset. They succinctly summarise the main insights
from the simulations. Both tables report the results of simulations when Gaussian
QML is used to estimate the ARMA(1,1) representation of a log-GARCH(1,1). In
the first table zt is N(0, 1) and in the second zt is standardised t(5). The simulations
suggest the empirical standard errors and correlations coincide with their asymptotic
counterparts, although – as expected – a larger number of observations is needed
as the persistence parameter φ1 = α1 + β1 approaches 1, and when α1 goes towards
zero (i.e. the common root situation). Also, when φ1 approaches 1, the finite sample
bias of the estimator of E(ln z2t ) increases and the estimate becomes more imprecise.

2.3 Existence of unconditional moments of ǫt

The existence of the unconditional moments of ǫt do not have have any bearing upon
the estimation and inference methods that we propose. However, they are important
for the economic interpretation and analysis of the unconditional errors when they
are interpreted as (de-meaned) returns, as is often the case in finance. In particular,
their existence are needed for the computation of the autocorrelation function of
squared (de-meaned) returns ǫ2t . A shortcoming in Nelson’s (1991) EGARCH model
is that its unconditional variance (and other, higher order unconditional moments)
of ǫt may not exist for common distributions of the standardised innovations zt.

For example, if zt
IID∼ t(ν), ν > 2 in Nelson’s EGARCH(1,1) with log-volatility

specification

ln σ2
t = α0 + α1 (|zt−1| − E|zt−1|) + λzt−1 + β1 ln σ

2
t−1,

then the empirically unreasonable assumption α1 < 0 (i.e. a negative impact of
ARCH) is a necessary condition for the existence of the unconditional variance of
ǫt, see condition (A1.6) and the subsequent discussion in Nelson (1991, p. 365).
Moreover, if λ 6= 0 (i.e. there is a leverage effect), then α1 has to be even more
negative for the unconditional variance of ǫt to exist. These are the shortcomings
that prompted the work by Harvey (2013) on the Beta-t-EGARCH model.

In the log-GARCH(1,1) with zt ∼ t(ν), ν > 2, by contrast, the unconditional
variance of ǫt will generally exist, regardless of the signs of the ARCH and GARCH
coefficients α1 and β1. The following proposition provides a set of sufficient condi-
tions for the existence of the unconditional moments of ǫt.

Proposition 1. Consider the log-GARCH(1,1) specification

ln σ2
t = α0 + α1 ln ǫ

2
t−1 + β1 ln σ

2
t−1

with |α1 + β1| < 1:
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a) If zt
IID∼ GED(τ), τ > 1 and 2α1(α1 + β1)

i−1 > −1 for each i = 1, 2, . . ., then,
for s > −1, E(ǫst) <∞ and is given by equation (35) in Appendix B

b) If zt
IID∼ t(ν), ν 6= 2, s < ν and if 2α1(α1 + β1)

i−1 ∈ (−1, ν) for each i =
1, 2, . . . , t, then, for s > −1, E(ǫst) < ∞ and is given by equation (35) in
Appendix B

Proof. See Appendix D.

In practice, the conditions in Proposition 1 are very weak and will generally be
satisfied, since the typical estimates of α1 and β1 are about 0.05 and 0.90, respec-
tively. In particular, suppose τ > 1 if zt is GED(τ), and that ν > 2 if zt is t(ν). If
|α1 + β1| < 1 (which is the case in the majority of situations) and if α1 ∈ (−0.5, 2)
(which is almost always the case), then 2α1(α1 + β1)

i−1 takes values in (−1, 2) for
all i = 1, 2, . . . Hence, E(ǫst) < ∞ will generally hold. A set of sufficient conditions
for more general univariate log-GARCH specifications is provided by setting M = 1
in Proposition 2 in section 3.

2.4 Log-GARCH-X

Additional exogenous or predetermined variables (“X”) can be added linearly or
nonlinearly to the log-volatility specification ln σ2

t without affecting the relationship
between the log-GARCH coefficients and the ARMA coefficients. Specifically, let
the log-GARCH-X model be given by

ln σ2
t = α0 +

P∑

p=1

αp ln ǫ
2
t−p +

Q∑

q=1

βq ln σ
2
t−q + g(λ, xt), (14)

where g is a linear or nonlinear function of the exogenous or predetermined variables
xt and a parameter vector λ. The index t in xt does not necessarily mean that all (or
any) of its elements are contemporaneous. If |E(ln z2t )| <∞ and if E[(ln z2t )

2] <∞,
then the ARMA-X representation of (14) exists almost surely and is given by

ln ǫ2t = φ0 +
P∑

p=1

φp ln ǫ
2
t−p +

Q∑

q=1

θqut−q + g(λ, xt) + ut, ut ∼ IID(0, σ2
u), (15)

where the ARMA coefficients are defined as before, i.e. by (5)-(7), and where ut is the
same as earlier, i.e. ut = ln z2t−E(ln z2t ). Rigorously derived estimation and inference
results, which we do not provide here, would require precise assumptions on the
behaviour of xt, see for example Hannan and Deistler (2012, chapter 4). However, if
all the ARMA-X parameters are estimated consistently, then a reasonable conjecture
is that (11) provides a consistent estimate of E(ln z2t ), and hence that all the log-
GARCH parameters can be estimated consistently.
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3 Multivariate log-GARCH

3.1 Notation and specification

The M -dimensional log-GARCH model is given by

ǫt ∼ ID(0, Ht), t ∈ Z, (16)

D2
t = diag

{
σ2
m,t

}
, m = 1, . . . ,M, (17)

zt = D−1
t ǫt, zm,t ∼ IID(0, 1), P rob(zt = 0) = 0, (18)

where ǫt, σ
2
t and zt are M × 1 vectors, and where Ht and Dt are M ×M matrices.

Equation (16) means ǫt is independent with mean zero and a time-varying condi-
tional covariance matrix Ht. The IID assumption in equation (18) states that each
marginal series {zm,t} is IID(0, 1). Marginal identicality is a key characteristic of
the ARCH class of models, and is needed for the formula in Theorem 1 to be ap-
plicable after estimation via the VARMA representation. An implication of (18) is
that zt ∼ ID(0, Rt), where Rt is both the conditional covariance and correlation
matrix – possibly time-varying – of zt. In other words, the vector zt is ID but not
necessarily IID, even though each marginal series {zmt} is IID. Estimation of the
volatilities D2

t does not require that the off-diagonals of Ht (i.e. the covariances) are
specified explicitly. Nor do we need to assume that ǫt is distributed according to a
certain density, say, the normal.

If ln σ2
t denotes the M × 1 vector resulting from applying the log on σ2

t , then the
M -dimensional log-volatility specification is given by

ln σ2
t = α0 +

P∑

p=1

αp ln ǫ
2
t−p +

Q∑

q=1

βq ln σ
2
t−q, P ≥ Q, (19)

where

ln σ2
t =




ln σ2
1,t
...

ln σ2
m,t
...

ln σ2
M,t



, α0 =




α1.0
...

αm.0
...

αM.0



, αp =




α11.p · · · α1m.p · · · α1M.p
...

. . .
...

...
αm1.p · · · αmm.p · · · αmM.p
...

...
. . .

...
αM1.p · · · αMm.p · · · αMM.p



,

ln ǫ2t−p =




ln ǫ21,t−p
...

ln ǫ2m,t−p
...

ln ǫ2M,t−p



, βq =




β11.q · · · β1m.q · · · β1M.q
...

. . .
...

...
βm1.q · · · βmm.q · · · βmM.q
...

...
. . .

...
βM1.q · · · βMm.q · · · βMM.q



.

The multivariate log-GARCH model is thus not simply a collection of univariate
log-GARCH models, since any equation in the the multivariate log-GARCH(P,Q)
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admits feedback from any of the other M − 1 equations via the lagged log-ARCH
and log-GARCH terms. For example, a two-dimensional log-ARCH(1) specification
is given by

ln σ2
1,t = α1.0 + α11.1 ln ǫ

2
1,t−1 + α12.1 ln ǫ

2
2,t−1

ln σ2
2,t = α2.0 + α21.1 ln ǫ

2
1,t−1 + α22.1 ln ǫ

2
2,t−1,

whereas the specification of a two-dimensional log-GARCH(2,1) is given by

ln σ2
1,t = α1.0 + α11.1 ln ǫ

2
1,t−1 + α12.1 ln ǫ

2
2,t−1 + α11.2 ln ǫ

2
2,t−2

+α12.2 ln ǫ
2
2,t−2 + β11,1 ln σ

2
1,t−1 + β12,1 ln σ

2
2,t−1

ln σ2
2,t = α2.0 + α21.1 ln ǫ

2
1,t−1 + α22.1 ln ǫ

2
2,t−1 + α21.2 ln ǫ

2
2,t−2

+α22.2 ln ǫ
2
2,t−1 + β21,1 ln σ

2
1,t−1 + β22,1 ln σ

2
2,t−1.

And so on.
A drawback with Nelson’s (1991) EGARCH model is that the unconditional mo-

ments of ǫt generally do not exist for certain conditional densities, e.g. the standard-
ised t. By contrast, the proposition below provides a general set of non-restrictive
sufficient conditions for the existence of the unconditional moments of ǫt. Again, it
should be noted that the existence or non-existence of the unconditional moments
of ǫt will usually have no bearing upon the estimation and inference methods that
we propose.

Proposition 2. Consider an M -dimensional log-GARCH(P,Q) model with P ≥ Q
that admits the representation ln σ2

t = Ψ0 +
∑∞

i=1 Ψi ln z
2
t−i with {Ψi} being an ab-

solutely summable sequence of (M×M) matrices. Then the sth. unconditional mo-
ment E(ǫsm,t) = exp(s2−1ψm,0) ·

∏∞
i=1E

[
|z1,t−i|sψi,m1 |z2,t−i|sψi,m2 · · · |zM,t−i|sψi,mM

]
,

s ∈ {1, 2, . . .}, of variablem ∈ {1, . . . ,M} exists if |E(zsm,t)| <∞ and if E
[
|z1,t−i|sψi,m1

|z2,t−i|sψi,m2 · · · |zM,t−i|sψi,mM

]
<∞ for each i

Proof. See Appendix D.

In practice, the natural condition to check is whether all the eigenvalues of the
(M × M) matrix

∑P ∗

p=1(αp + βp), where P
∗ = max{P,Q}, are smaller than 1 in

modulus. If this is the case, then {Ψi} is absolutely summable. Whether the sec-
ond set of conditions is satisfied or not, that is, |E(zsm,t)| < ∞ for each m and

E
[
|z1,t−i|sψi,m1 |z2,t−i|sψi,m2 · · · |zM,t−i|sψi,mM

]
< ∞ for each i, will depend on the dis-

tribution of zt.
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3.2 Estimation and inference via the VARMA representa-
tion

If |E(ln z2t )| < ∞, then the VARMA(P,Q) representation of the M -dimensional
log-GARCH(P,Q) model (19) exists almost surely and is given by

ln ǫ2t = φ0 +
P∑

p=1

φp ln ǫ
2
t−p +

Q∑

q=1

θqut−q + ut, ut ∼ ID(0,Σt), (20)

where

φ0 = α0 + (IM −
Q∑

q=1

βq · E(ln z2t )), φp = αp + βp, θq = −βq, (21)

ut = ln zt − E(ln z2t ), ln z2t =




ln z21,t
...

ln z2m,t
...

ln z2M,t



, E(ln z2t ) =




E(ln z21,t)
...

E(ln z2m,t)
...

E(ln z2M,t)



. (22)

Additional assumptions are needed for Σt to be finite, but not for the VARMA
representation to exist almost surely. Although {ut} is only an independent and not
necessarily an identical zero-mean vector process, each marginal process {umt}, m =
1, . . . ,M , is IID due to the assumption in (18). In the special case where the vector zt
is IID, which implies that the conditional correlations are constant, then the vector ut
is IID as well. In this case it is well known that multivariate Gaussian QML provides
consistent and asymptotically normal estimates of the VARMA coefficients under
suitable assumptions, see e.g. Lütkepohl (2005). Accordingly, consistent estimation
and asymptotically normal inference regarding all the log-GARCH coefficients (apart
from the log-volatility intercept α0) is available as well. But in order to obtain a
consistent estimate of α0, an estimate of the vector E(ln z2t ) is needed. Since the
process {um,t} is marginally IID for m = 1, . . . ,M , a reasonable conjecture is that
equation-by-equation application of the formula in Theorem 1 after estimation of the
VARMA representation will provide consistent estimates of each element in E(ln z2t ).

In the more general case where the vector zt is only ID, which is implied by
time-varying correlations, then the vector ut is only ID as well. This corresponds to
a VARMA model with a heteroscedastic error ut. Fewer QML results are available
in this case, e.g. Bardet and Wintenberger (2009). But a natural conjecture –
on which widespread statistical practice is based – is that multivariate Gaussian
QML estimation will provide consistent estimates of the VARMA coefficients (under
suitable conditions). If this is indeed the case, another natural conjecture is that
equation-by-equation application of the formula in Theorem 1 will provide consistent
estimates of each element in E(ln z2t ) also here.
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3.3 Multivariate log-GARCH-X

Just as in the univariate case, the multivariate log-GARCHmodel permits exogenous
or predetermined conditioning variables in each of the M equations. Specifically,
write the multivariate log-GARCH-X specification as

ln σ2
t = α0 +

P∑

p=1

αp ln ǫ
2
t−p +

Q∑

q=1

βq ln σ
2
t−q +

K∑

k=0

λkxt−k, (23)

where xt is an L × 1 vector of predetermined or exogenous variables, and where
λ0, λ1, . . . , λK are M × L matrices. Here, for notational simplicity, we let the pre-
determined or exogenous variables enter linearly. However, in principle they could
instead enter non-linearly, just as in the univariate case. The VARMA-X represen-
tation is given by

ln ǫ2t = φ0 +
P∑

p=1

φp ln ǫ
2
t−p +

Q∑

q=1

θqut−q +
K∑

k=0

λkxt−k + ut, ut ∼ ID(0,Σt),

with the VARMA coefficients and ut defined as before (i.e. by (21) and (22)). In
other words, the relation between the VARMA coefficients and the log-GARCH
coefficients are not affected when

∑K
k=0 λkxt−k is added to (23). Again, a natural

conjecture to make is that multivariate Gaussian QML via the VARMA-X repre-
sentation will provide consistent estimates and asymptotically normal inference of
the VARMA-X coefficients (and therefore of the log-GARCH-X coefficients apart
from the log-volatility intercept), and that the formula from Theorem 1 can be used
equation-by-equation to estimate each element in E(ln z2t ) in order to obtain an
estimate of α0.

3.4 Time-varying correlations

Estimation of the volatilities D2
t does not require that the off-diagonals of Ht are

specified explicitly. Accordingly, estimation of the (possibly) time-varying covari-
ances for some application would have to be undertaken subsequently. Arguably
the most common approach of this type is Engle’s (2002) Dynamic Conditional
Correlations (DCC) model. In the model (16)-(18) this amounts to specifying Ht as

Ht = DtRtDt, (24)

Rt = diag {Qt}−1Qtdiag {Qt}−1 , (25)

where Rt and Qt are M × M matrices. There is a range of possibilities for the
specification of Qt in equation (24), see e.g. Bauwens et al. (2006, pp. 89-91) and
the discussion in Engle (2002). The most commonly used specification, however, is
the one that specifies the entries of Qt in a GARCH(1,1) like manner,

qij,t = ρ̄ij + a(zi,t−1zj,t−1 − ρ̄ij) + b(qij,t−1 − ρ̄ij), (26)
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where ρ̄ij is the unconditional correlation between zi,t and zj,t. This specification is
commonly referred to as the DCC of Engle (2002), and this is the specification used
in the empirical section for the multivariate application.

4 Modelling the uncertainty of short-term elec-

tricity prices

Sucarrat and Escribano (2012) explicitly relies on the methods of this paper. There,
in the empirical aplication, a log-ARCH-X model is used to model exchange rate
volatility and stock price volatility, respectively. Here, our focus is on short-term
electricity prices.

Short-term electricity price modelling and forecasting is of great importance
for energy market participants on both the supply and on the demand side. On
the supply side producers need forecasts of prices and the time-varying uncertainty
associated with those forecasts, in order to appropriately determine the price and
production levels. On the demand side consumers and speculators need the same
type of information in order to decide when and where to produce, in order to
speculate and/or hedge against adverse price changes, and for risk management
purposes.

Daily electricity prices are characterised by strong autoregressive persistence,
day-of-the week effects, seasonal effects, large spikes or jumps, fast mean-reversal
and ARCH. Koopman et al. (2007), and Escribano et al. (2011) have proposed uni-
variate models that contain some or all of these features. However, in neither of these
models is the volatility specification – a GARCH(1,1) – robust to the large spikes
that is a common characteristic of electricity prices. Nor are they flexible enough
to accommodate a complex and rich heteroscedasticity dynamics similar to that of
the mean specification without imposing very strong parameter restrictions. Nor
are multivariate versions available, which are needed when, say, a factory considers
shifting its production away from peak hours to off-peak hours. Also, automated
model selection is infeasible in practice due to computational complexity and pos-
itivity constraints, and this problem is compounded in the multivariate case. The
log-GARCH-X class of models, by contrast, remedies these deficiencies and permits
a robust, flexible and rich characterisation of the volatility dynamics. We illustrate
this in three applications. In the first the robustness to spikes is illustrated by com-
paring a log-GARCH(1,1) model with a GARCH(1,1) and with an EGARCH(1,1)
specification. In the second application the flexibility and computational simplicity
of the log-ARCH-X model is illustrated by undertaking automated model selection
of a starting model with 33 deletable regressors. In the third application a similar
exercise is performed for a bivariate model of the relationship between peak and
off-peak spot daily electricity prices.
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4.1 Robustness to price spikes: The log-GARCH(1,1)

In order to illustrate the robustness to spikes of the log-GARCH(1,1) model we
revisit the Spanish electricity price data in Escribano et al. (2011). The part of the
data that we revisit spans the period 1 January 1998 to 31 December 2003 (T = 2191
observations), see the upper two graphs of Figure 1. If rt = ∆ lnSt denotes the log-
return of the daily Spanish spot electricity price St, then our empirical model of
the conditional mean is given by (t-ratios in parentheses and p-values in square
brackets):4

r̂t = 0.088
(13.5)

− 0.050
(−21.0)

· (8rt−1 + 6rt−2 + 4rt−3 + 2rt−4 + 2rt−5 + 2rt−6

+rt−9 + rt−10 + rt−11 + rt−12 + rt−13 + rt−14)

+0.063
(10.4)

· (rt−7 + rt−14 + rt−21 + rt−28 + rt−35)

+0.142
(4.03)

I{rt−1<−0.5} + 0.077
(2.29)

I{rt−2<−0.5}

−0.051
(−15.2)

(Tuet +Wedt + Thut + 2Frit + 3Satt + 4Sunt)

−0.028
(−2.75)

Dect (27)

AR1 AR2 AR7 AR14 ARCH1 ARCH2 ARCH7 ARCH14 R2

−0.03
[0.22]

0.01
[0.39]

−0.00
[0.43]

−0.01
[0.25]

0.23
[0.00]

0.05
[0.00]

0.12
[0.00]

0.05
[0.00]

0.56

The threshold variables I{rt−1<−0.5} and I{rt−2<−0.5} seek to capture the strong and
often almost immediate reversal effect when rt drops by more than 0.5 points. The
variables Tuet to Sunt are day-of-the-week dummies, whereas Dect is a month-
of-the-year dummy. The lag structure suggests a negative but declining effect of
previous intra-week days, whereas the effect of lag-multiples of 7—a periodicity
effect—is positive. The negative effects of the day-of-the week dummies suggests
that electricity prices tend to be lower throughout the week in comparison with
Mondays, the more so on Saturdays and Sundays, and similarly for the month of
December. AR and ARCH are the autocorrelations of the residuals and squared
residuals, respectively, with the p-value of a Ljung and Box (1979) test in square
brackets. The model is well-specified in the sense that the AR tests show no sign
of autocorrelation in the residuals. However, the ARCH tests show clear signs of

4The model was obtained by means of General-to-Specific (GETS) model selection with
the R package AutoSEARCH, see Sucarrat (2012), using the White (1980) coefficient covari-
ance matrix for the regressor and parsimonious encompassing tests. The starting model con-
tained an intercept (which was excluded from deletion), lags 1 to 14, 21, 28 and 35, six
day-of-the-week dummies, eleven month-of-the-year dummies and the four threshold variables
I{rt−1<−0.5}, I{rt−2<−0.5}, I{rt−1>0.5}, I{rt−2>0.5} intended to capture the reversal effect of prior
spikes, negative and positive. After simplification economically meaningful restrictions on the pa-
rameters were imposed in order to make the model more interpretable. Formally, our starting
model had the form rt = γ0 +

∑
m∈M

γmrt−m +
∑

21

n=1
ηnxnt + ǫt with M = {1, . . . , 14, 21, 28, 35}

and ǫt = σtzt, zt ∼ IID(0, 1), and estimation was undertaken with OLS.
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ARCH. Graphs of the residuals and absolute residuals, respectively, are contained
at the bottom of Figure 1.

The most popular model of ARCH in the residuals is the GARCH(1,1) of Boller-
slev (1986), but it may not be the most appropriate model when modelling the
uncertainty of electricity prices. Electricity prices occasionally exhibit large spikes
or jumps with almost immediate and subsequent reversal to its normal level, and it
is well known that the GARCH(1,1) is not robust to such spikes, see for example
Carnero et al. (2007). In order to compare the conditional standard deviations,
a GARCH(1,1), a log-GARCH(1,1) and an EGARCH(1,1) without leverage were
fitted to the residuals of (27). The estimates of the models are:5

GARCH(1,1): σ̂2
t = 0.002 + 0.144ǫ̂2t−1 + 0.758σ̂2

t−1

EGARCH(1,1): ln σ̂2
t = −0.710 + 0.289

∣∣∣∣
ǫ̂t−1

σ̂t−1

∣∣∣∣+ 0.879 ln σ̂2
t−1

log-GARCH(1,1): ln σ̂2
t = −0.067 + 0.063 ln ǫ̂2t−1 + 0.894 ln σ̂2

t−1

Figure 2 compares the fitted conditional standard deviations. The upper graph in
the figure may be interpreted to suggest that the conditional standard deviations
of the three models are, on the whole, very similar. However, a closer look shows
that they are occasionally very different. For example, in the bottom left graph
we see that the three conditional SDs are very similar until 2 March 2002 when the
residual experiences a 0.89 point drop. In financial terms this is a huge number, since
it would correpsond to a 89% drop if log-differences were an accurate approximation
to relative changes. On the subsequent day a new large residual of 0.52 points
occurs, but thereafter the residuals remain relatively low (in absolute value). The
log-GARCH SDs are not much affected by the large (in absolute value) residual,
since the effect of a shock works through the logarithm operator. The GARCH,
by contrast, produces SD forecast that are twice as high for the subsequent days
compared with the log-GARCH. Moreover, the GARCH needs almost two weeks in
order to return to the level of the log-GARCH. The EGARCH is an intermediate
case, since it reacts almost as abruptly as the GARCH, but it needs substantially
less time for the reversal. Similarly, on 6 November 2002 another large spike occurs.
The GARCH SD more than doubles from about 17 to about 42 points, and rises
further one more day before it needs almost two weeks to return back to the level
of the two other models. By contrast, for the log-GARCH the effect of the shock is
dampened, so the SDs remain much closer to the values of the absolute residuals.
Again, the EGARCH is an intermediate case in that it does not react as abruptly
as the GARCH, and in that it does not need as many days for the reversal.

5The GARCH and EGARCH models were estimated by means of Gaussian QML in the stan-
dardised error zt, whereas the log-GARCH model was estimated by means of Gaussian QML in ut

via the ARMA representation.
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4.2 The log-ARCH-X: Flexible modelling without compu-
tational difficulties

Electricity prices are strongly characterised by periodicity effects, so it seems rea-
sonable that the same may hold for the price uncertainty (i.e. volatility). Adding
many exogenous or predetermined variables to the GARCH, EGARCH and log-
GARCH models, however, presents numerical challenges due to the complexity of
the estimation problem. One solution, which is pursued by Koopman et al. (2007, p.
20), is to decompose the periodicity and ARCH multiplicatively, and then estimate
the two effects separately. However, this assumes the two effects have no bearing
upon each other. By contrast, periodicity, ARCH and other effects can be modelled
jointly within the log-ARCH-X model. In fact, the model of Koopman et al. (2007)
is nested in the log-ARCH-X if one of the conditioning variables is defined as the
log of the GARCH volatility prediction.

Our starting point is a general volatility model that is fitted to the same residuals
as earlier (i.e. the residuals of (27)):

ǫt = σtzt, zt ∼ IID(0, 1), σt > 0,

ln σ2
t = α0 +

∑

p∈P

αp ln ǫ
2
t−p + λ1 lnEqWMA(7)t−1 +

21∑

l=1

λlxlt.

The log-ARCH lags are P = {1, . . . , 7, 14, 21, 28, 35}, EqWMA(7)t−1 is a volatility
proxy6 made up of a rolling average of ǫ2t−1, . . . , ǫ

2
t−7 and the 21 xnt variables are

the same as in the mean specification (see footnote 4). This means the general un-
restricted log-volatility specification contains a total of 33 deletable regressors, and
one regressor (the intercept) which is restricted from deletion in the specification
search. Automated GETS multi-path model selection with AutoSEARCH (Sucarrat
2012) yields a parsimonious model, which we further simplify by imposing econom-
ically meaningful parameter restrictions. The end result is (t-ratios in parentheses
and p-values in square brackets):

ln σ̂2
t = −1.502− 0.037

(−1.62)
ln ǫ̂2t−3 − 0.063

(2.75)
ln ǫ̂2t−4 − 0.026

(−1.13)
ln ǫ̂2t−6

+0.677
(11.2)

lnEqWMA(7)t−1 − 0.086
(−5.49)

(7Tuet + 5Thut + 7Frit)

−0.064
(−1.72)

(4Mart + 3Novt) (28)

AR1 AR2 AR7 AR14 ARCH1 ARCH2 ARCH7 ARCH14

−0.01
[0.63]

0.01
[0.75]

0.00
[0.80]

−0.00
[0.89]

0.04
[0.10]

−0.02
[0.17]

0.01
[0.62]

0.02
[0.87]

The model is well-specified in the sense that the AR and ARCH tests exhibit little
or no signs of autocorrelation in the standardised residuals, and in the squared stan-
dardised residuals (see also the bottom graph of Figure 1). It is worth underlining

6The fitted volatilities of the GARCH, EGARCH and log-GARCH models were also considered
as volatility proxies. However, they did not lead to final models free from ARCH.
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that since the R2 of the conditional mean specification (27) is substantially different
from zero, the log-volatility specification should not be interpreted as a measure of
price variability as is common in financial econometrics. Rather, the log-volatility
specification acquires the more traditional interpretation of a measure of the time-
varying inaccuracy of the mean specification: The lower ln σ2

t is, the more accurate
is the mean specification. The negative effect of the log-ARCH terms suggests that
there is some sort of cyclical behaviour in the uncertainty. Two of the log-ARCH
terms are not significant at 5%, and this means they have been retained because
their deletion would induce serial correlation in either the standardised residuals
or in the squared standardised residuals or in both (see Sucarrat and Escribano
(2012) for the details of GETS model selection). The lagged impact of the log of the
volatility proxy EqWMA(7)t is positive and about 0.68, which suggests a notable
degree of persistence. The negative effects of the day-of-the-week dummies and of
the two month-of-the-year dummies, means that the mean specification tend to be
more precise on Tuesdays, Thursdays and Fridays, and in March and November.

4.3 Multivariate electricity price volatility modelling

Multivariate ARCH models are plagued by the curse of dimensionality due to the
number of parameters that has to be estimated. Here, we show that a rich, multi-
variate model contained in the log-GARCH-X class can be straightforwardly esti-
mated equation-by-equation with OLS, thus avoiding numerical estimation issues,
even when the number of observations is relatively small. Next, the same automated
GETS model selection methods that were used in the previous subsection are ap-
plied. The end result is a parsimonious, multivariate model and, in the process, a
test for Granger-causality in the volatilities. Finally, we fit the DCC model of Engle
(2002) to the time-varying correlations.

The data of our multivariate analysis consist of the daily peak and off-peak
spot electricity price from 1 January 2010 to 19 September 2012 (T = 993 obser-
vations) for the Oslo area in Norway.7 Factories, companies and other institutions
with substantial electricity consumption may want to shift part of their activity to
and from peak hours for efficient cost management, since the difference between
peak and off-peak prices can be very large at times (see the bottom graph of Fig-
ure 3). As an aid in the decision-making process, forecasts of future prices and
price uncertainty (volatility) can therefore be of great usefulness. The daily peak
spot price S1,t is computed as the average of the spot prices during peak hours,
that is, S1,t = (St(8am) + · · · + St(9pm))/14, whereas the daily off-peak spot price
S2,t is computed as the average of the spot prices during off-peak hours, that is,
S2,t = (St(0am) + · · · + St(7am) + St(10pm) + St(11pm))/10. Note that St(8am) should be
interpreted as the electricity price from 8am to 9am, St(9am) should be interpreted
as the electricity price from 9am to 10am, and so on. Graphs of S1,t, S2,t and their

7The source of the data is http://www.nordpoolspot.com/, and the sample was determined
by availability: Observations prior to the sample period are not available, and the data were
downloaded 20 September 2012.
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log-returns are contained in Figures 3 and 4. The price and returns figures ex-
hibit the usual characteristics of electricity prices, namely that the price variability
is substantially larger than those of financial prices (say, stocks, stock indices and
exchange rates), and that big jumps with fast reversion occurs relatively frequently.

Conditional mean specifications are obtained in a similar way to above.8 In
terms of R2, the simplified conditional mean specifications explain about 48% and
47% of the variation in the peak and off-peak log-returns, respectively. Most of this
explanatory and predictive power comes from own AR-dynamics, asymmetry terms
and the lagged error-correction term.

The resulting set of residuals of the simplified VECM models are used for the
modelling of the log-volatility specifications. First, the following two-dimensional
general model is formulated:

ln σ2
1,t = α1,0 +

∑

p∈P

α11,p ln ǫ
2
1,t−p +

∑

p∈P

α12,p ln ǫ
2
2,t−p +

∑

k∈K

λ11,k lnEqWMA(k)1,t−1

+
∑

k∈K

λ12,k lnEqWMA(k)2,t−1 +
∑

p∈P

+(lnλ213,p)I{ǫ1,t−p<0} ln ǫ
2
1,t−p

+
∑

l∈L

ω1,lx1l,t

ln σ2
2,t = α2,0 +

∑

p∈P

α21,p ln ǫ
2
1,t−p +

∑

p∈P

α22,p ln ǫ
2
2,t−p +

∑

k∈K

λ21,k lnEqWMA(k)1,t−1

+
∑

k∈K

λ22,k lnEqWMA(k)2,t−1 +
∑

p∈P

+(lnλ223,p)I{ǫ2,t−p<0} ln ǫ
2
2,t−p

+
∑

l∈L

ω2,lx2l,t,

where P = {1, . . . , 14, 21, 28, 35},K = {3, 7, 14, 21, 28, 35} and the {x(·)1,t, . . . , x(·)17,t}
are 11 month-of-the-year dummies and 6 day-of-the-week dummies. This amounts
to a total of 62 regressors (intercept included) in each log-volatility specification.
Next, automated GETS model selection is undertaken separately for each equation,

8First, a general unrestricted Vector Error Correction Model (VECM) is formulated and esti-
mated. Each of the two VECMs contain AR-lags (1 to 14, 21, 28 and 35) of each return, daily
and monthly impulse dummies, a lagged error-correction term, two “GARCH-in-mean” proxies
and several terms to capture various types of asymmetry. This amounts to a total of 59 regressors
(intercept included) in each of the two specifications. Next, simplification of each conditional mean
specification is undertaken by means of GETS model selection using a significance level of 5% (re-
gressors, parsimonious encompassing tests and overall diagnostics) and White (1980) coefficient
covariance matrix.
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which ultimately yields (t-ratios in parentheses and p-values in square brackets)

ln σ̂2
1,t = −1.573 + 0.071

(2.02)
ln ǫ̂21,t−2 + 0.073

(2.06)
ln ǫ̂21,t−3 − 0.093

(−2.64)
ln ǫ̂21,t−5 − 0.082

(−2.38)
ln ǫ̂21,t−6

+0.101
(3.23)

ln ǫ̂21,t−21 − 0.092
(−2.34)

ln ǫ̂22,t−3 + 0.450
(4.89)

lnEqWMA(7)1,t−1

+0.184
(2.71)

lnEqWMA(3)2,t−1 − 0.447
(−2.45)

Satt (29)

ln σ̂2
2,t = −1.947 + 0.429

(8.77)
lnEqWMA(3)2,t−1 + 0.087

(2.89)
ln ǫ̂21,t−4 + 0.756

(4.12)
Sunt, (30)

AR1 AR2 AR7 AR14 ARCH1 ARCH2 ARCH7 ARCH14

1: 0.03
[0.42]

−0.01
[0.66]

0.07
[0.25]

−0.01
[0.53]

0.04
[0.18]

0.02
[0.33]

0.01
[0.67]

0.07
[0.70]

2: 0.02
[0.47]

−0.02
[0.63]

0.01
[0.96]

−0.04
[0.92]

0.05
[0.15]

0.04
[0.18]

0.00
[0.66]

0.10
[0.38]

The AR and ARCH tests of the standardised residuals suggest that the log-volatility
specifications are well-specified. The simplified log-volatility specifications suggest
there is Granger-causality in the log-volatilities, since there are feedback effects in
both equations: The volatility of peak price returns depends on the 3rd. order
log-ARCH of off-peak prices, and on the lagged 3-period moving average of past
squared residuals, EqWMA(3)t−1 (i.e. a volatility proxy), whereas the volatility of
off-peak price returns depend on the 4th. order log-ARCH term of peak returns. In
terms of the estimated coefficient sizes, the effect is greater from off-peak volatility
to peak volatility than opposite. None of volatility asymmetry effects are retained,
which may not be a surprise, since such effects are particularly associated with the
stock market. Finally, the retention of one day-of-the-week dummy in each of the
log-volatility specification (Saturday for peak and Sunday for off-peak), suggests
that the precision of the return forecasts varies across the week.

In the next step the standardised residuals ẑ1,t and ẑ2,t are used to fit a DCC
model of the Engle (2002) type.9 Estimation is undertaken by ML using a bivariate
Gaussian density, and this gives

q̂ij,t = ρ̄+ 0.036
(0.017)

(ẑi,t−1ẑj,t−1 − ρ̄) + 0.551
(0.226)

(q̂ij,t−1 − q̄ij,2),

where ρ̄ = 0.4021, and where the fitted time-varying conditional correlations ρ̂t are
computed as q̂12,t/

√
q̂11,tq̂22,t. Figure 7 contains a graph of the fitted conditional

correlations. Most of the correlations are close to the unconditional estimate of
about 0.4. However, occasionally, in relation with large electricity price jumps, a
similar abrupt and large movement occurs in the conditional correlations. Partly
as a consequence of this, the estimate of persistence, 0.036 + 0.551 = 0.587, is
relatively low in comparison with financial price returns (say, stocks, stock indices
and exchange rates).

9For computational convenience we do not use the bias-corrected estimator of Aielli (2009),
since it is likely to produce almost identical results.
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5 Conclusions

We have proposed estimation and inference methods for univariate and multivari-
ate log-GARCH-X models via (V)ARMA-X representations. Estimation of log-
GARCH-X models via the (V)ARMA-X representation induces a bias in the log-
volatility intercept made up of a log-moment expression that depends on the condi-
tional density. We proposed an estimator of the log-moment expression and proved
its consistency, asymptotic normality and asymptotic efficienty for a range of ARMA
estimators in the univariate log-GARCH case. Due to the structure of the problem
the bias-correction procedure is likely to also hold for univariate log-GARCH-X
models and – equation-by-equation – for multivariate log-GARCH-X models. We
have also showed that the unconditional moments of the log-GARCH model exist
under much weaker assumptions than for Nelson’s (1991) EGARCH. Finally, our
empirical applications on electricity prices show that the methods are particularly
useful when the volatility dynamics are complex and affected by a number of factors,
and when the conditional density is fat-tailed and/or contains jumps or outliers.

This paper is part of a larger research agenda. Sucarrat and Escribano (2012)
rely explicitly on Theorem 1, whereas Bauwens and Sucarrat (2010) is a precursor to
that paper. These two papers led to the development of AutoSEARCH, an R package
for automated General-to-Specific (Gets) model selection of log-ARCH-X models
(see Sucarrat (2012)). An early critique of the log-ARCH class of models was that
the log-ARCH terms in the log-volatility specification may not exist, since the errors
of a regression in empirical practice can be zero. This problem, however, is solved
in Sucarrat and Escribano (2013), and in Sucarrat (2013).
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A Closed form expressions of E|zt|c when zt ∼
GED(τ ) and when zt ∼ t(ν)

The expectation of the absolute value of a GED variate ε raised to the power c
is readily available, since it can be showed that |ε|c is Gamma(1/2, τ) distributed
where τ is the GED shape parameter (τ = 2 yields the standard normal), see Harvey
and Chakravarty (2008). Accordingly:

E|ε|c = 2c/τΓ[(c+ 1)/τ ]

Γ(1/τ)
, c > −1, τ > 0. (31)

In particular, V ar(ε) = E|ε|2 = 22/τΓ(3/τ)/Γ(1/τ), and so for the standardised
(zero-mean, unit variance) GED variate z = ε/

√
V ar(ε) we obtain:

E|z|c = Γ(1/τ)c/2Γ[(c+ 1)/τ ]

Γ(3/τ)c/2Γ(1/τ)
, c > −1, τ > 0. (32)

Using the property that a t-variate with ν > −1 degrees of freedom can be
written as Xν1/2/Y

1/2
ν where X is a standard normal and Yν is a Chi-squared with

ν degrees of freedom, and where X and Y are independent, then the expectation of
the absolute value of a t variate ε is:

E|ε|c = νc/2Γ(c/2 + 1/2)Γ(−c/2 + ν/2)

Γ(1/2)Γ(ν/2)
, −1 < c < ν, (33)
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see Harvey and Shephard (1996, p. 434). Next, since V ar(ε) = ν/(ν − 2) we obtain
(by setting z = ε/

√
V ar(ε)):

E|z|c = (ν − 2)c/2Γ(c/2 + 1/2)Γ(−c/2 + ν/2)

Γ(1/2)Γ(ν/2)
, −1 < c < ν, ν 6= 2. (34)

B E(ǫst) and E(ǫ2t ǫ
2
t−j) for the univariate log-GARCH(1,1)

model

For the univariate log-GARCH(1,1) model the unconditional variance of {ǫt}, and
the autocovariances and autocorrelations of {ǫ2t}, are all made up of E(ǫ2t ), E(ǫ

2
t ǫ

2
t−j)

and E(ǫ4t ). If |α1 + β1| < 1, then the sth. unconditional moment E(ǫst) (assuming it
exists) is given by

E(ǫst) = E(zst ) · exp
(
s

2
· α0

1− α1 − β1

)

·
∞∏

i=1

E

(
|zt−i|sα1(α1+β1)i−1

)
, (35)

whereas for j = 1, 2, . . . the formula for E(ǫ2t ǫ
2
t−j) is

E(ǫ2t ǫ
2
t−j) = exp

[
α0(1 + (α1 + β1)

j)

(1− α1 − β1)
+

j∑

i=1

α0(α1 + β1)
i−1

]

·
j∏

i=1

E

(
(z2t−i)

α1(α1+β1)i−1

)

·
∞∏

i=1

E

(
(z2t−j−i)

α1(α1+β1)i−1·[1+(α1+β1)j ]
)
. (36)

C Proofs of Lemma 1 and Theorem 1

C.1 Proof of Lemma 1

Proof of Lemma 1. We will only prove the second, more fine tuned statement, since
the proof of the first statement follows along the same lines. Let

dt = dt,T := (ût − ûT )− (ut − ūT ).

We have that

√
T∆T :=

1√
T

T∑

t=1

[
eût−

¯̂ut − eut−ūt
]
=

1√
T

T∑

t=1

eut−ūt(edt − 1).

27



Choose a δ with 1 < δ ≤ δM so that the Hölder conjugate of δ given by γ =
δM/(δM − 1) is an integer divisible by two. This can always be arranged, since
x/(x−1) goes to infinity when x→ 1+. By the Hölder inequality, we have the basic
bound

|
√
T∆T | =

∣∣∣∣∣
1√
T

T∑

t=1

eut−ūt(edt − 1)

∣∣∣∣∣ ≤
(

1√
T

T∑

t=1

|eδut−δūt |
)1/δ

Q
1/γ
T .

where QT = T−1/2
∑T

t=1 |edt − 1|γ. We hence have

(
√
T∆T )

δ ≤
(

1√
T

T∑

t=1

eδut−δūt − Eeδu1 + Eeδu1

)
Q
δ/γ
T

=

(
1√
T

T∑

t=1

eδut−δūt − Eeδu1

)
Q
δ/γ
T +Q

δ/γ
T Eeδu1 .

The assumed existence of δM enables us to use the Central Limit Theorem and
Slutsky’s Theorem to conclude that because δM ≥ δ,

1√
T

T∑

t=1

(
eδut−δūt − Eeδu1

)

is asymptotically normal, and henceOP (1). We can therefore conclude that
√
T∆T =

oP (1) if we show that QT = oP (1).
Because Yu (2007) proves that T−1/2

∑T
t=1 d

γ
t = oP (1), we wish to connect

exp(dt)− 1 to |dt| through the inequality

ex − 1 ≤ 7

4
|x|, (37)

which is valid when |x| < 1. By the structure of the ARMA-residuals revealed in Yu
(2007), this is clearly justified as T → ∞. However, the exact result that we need
is not contained in Yu (2007), but will be given by Lemma 2 which is stated below.
For T ′ as in the Lemma and for Q ∈ N with T ′ +Q < T we have that

QT = T−1/2

T∑

t=1

|edt − 1|γ = T−1/2

T ′+Q−1∑

t=1

|edt − 1|γ + T−1/2

T∑

t=T ′+Q

|edt − 1|γ.

Clearly, QT ′+Q,T := T−1/2
∑T ′+Q−1

t=1 |edt − 1|γ is non-negative and oP (1). For an
ε > 0, we have that

P (QT > ε) ≤ P (QT > ε, |M1| < T ′ +Q, |M2| <
√
T )

+ P (|M1| ≥ T ′ +Q) + P (|M2| ≥
√
T ).
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Because M1 and M2 are random variables, and hence finite, we can make P (|M1| ≥
T ′ + Q) + P (|M2| ≥

√
T ) arbitrarily small by increasing T and Q. By the non-

negativity of QT ′+Q,T , we have that

P
(
QT > ε, |M1| < T ′ +Q, |M2| <

√
T
)

≤ P
(
QT ′+Q,T > ε/2, |M1| < T ′ +Q, |M2| <

√
T
)

+ P

(
T−1/2

T∑

t=T ′+Q

|edt − 1|γ > ε/2, |M1| < T ′ +Q, |M2| <
√
T

)
.

The first term on the right hand side of the above inequality converges to zero as
T → ∞, so we only need to deal with the second term. Here eq. (37) is valid, and
so

P

(
T−1/2

T∑

t=T ′+Q

|edt − 1|γ > ε/2, |M1| < T ′ +Q, |M2| <
√
T

)

≤ P

(
(7/8)γT−1/2

T∑

t=T ′+Q

|dt|γ > ε/2, |M1| < T ′ +Q, |M2| <
√
T

)

≤ P

(
T−1/2

T∑

t=1

|dt|γ > (8/7)γε/2

)
,

which converges to zero by Theorem 3 in Yu (2007).

Lemma 2. Under Assumptions A1 – A3, there exists a T ′ ∈ N and random vari-
ables M1,M2 with |dt,T | < M1/t+M2/

√
T for all T ≥ T ′.

Proof. Using the notation and basic results of Section 3 in Yu (2007), we have that

dt = dt,T = (ût − ûT )− (ut − ūT ) = Λt(â, b̂, ĉ) + Λ̄T (â, b̂, ĉ)

where
(â, b̂, ĉ) = (

√
n(θ̂ − θ),

√
n(φ̂− φ),

√
n(µ̂− µ)).

We have that Λ̄T (x) = T−1
∑T

t=1 Λt(x) is defined by a function Λ : RP+Q+1 7→ R.
Let x = (a, b, c) in which a ∈ R

Q, b ∈ R
P and c ∈ R. We have that

Λt(x) = Yt

(
θ +

1√
T
a

)
− 1√

T
ξt(a, b) +

1√
T
Zt(a, b, c)
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in which θ = (θ1, θ2, . . . , θQ) and

Yt(a) = −ψt(a)u0 − {ψt+1(a) + ψt(a)a1}u−1

− · · · − {ψt+1−1(a) + ψt+q−2(a)u1 + · · ·+ ψt(a)aq−1}u−q+1,

ξt(a, b) =

p∑

i=1

bi

t−1∑

j=0

ψj

(
θ +

1√
T
a

)
Xt−i−j +

q∑

i=1

ai

t−1∑

j=0

ψj

(
θ +

1√
T
a

)
ut−i−j,

Zt(a, b, c) = −
(
1−

p∑

i=1

φi −
1√
T

p∑

i=1

bi

)
c

t−1∑

j=0

ψj

(
θ +

1√
T
a

)

where ψi are the coefficients of the power series expansion 1/Φ(z) =
∑∞

i=0 ψi(θ)z
i.

The basic logic of Bai (1994) and Yu (2007) is to use the assumed consistency of
an estimator of the ARMA parameters to justify the assumption that for sufficiently
large T , we have that for any r > 0, we eventually have (â, b̂, ĉ) ∈ Br where Br is
a ball of radius r in R

P+Q+1. We therefore reach our conclusion by bounding the
supremum of |Λt(x) + Λ̄T (x)| over x ∈ Br.

We will first deal with the terms in Yt and ξt. The bounding of the corresponding
terms in Λ̄T (x) will then follow as an immediate consequence. The proof of Lemmas
3 and 4 in Yu (2007) shows that for sufficiently small r > 0 there exists some
constants M, ε > 0, 0 < β < 1 so that

At := sup
|a|≤r

∣∣∣∣Yt
(
θ +

1√
T
a

)∣∣∣∣ ≤
M max(|θ|+ ε, 1)

1− β
βt

∑

−q+1≤i≤0

|ui|

and

ĀT := T−1

T∑

t=1

At ≤ T−1M max(|θ|+ ε, 1)

1− β

1− βT+1

1− β

∑

−q+1≤i≤0

|ui|,

both of which are of the desired form. We also have that

Bt :=
1√
T

sup
|u|≤r,|v|≤r

|ξt(a, b)| ≤
bM√
T

t−1∑

j=0

{
p∑

i=1

βj|Xt−i−j|+
q∑

i=1

βj|ut−i−j|
}

≤ bM√
T

∞∑

j=0

βj

{
p∨q∑

i=1

|Xj−i+1|+
p∨q∑

i=1

|uj−i+1|
}
.

Because Xt and ut have finite first order moments, this provides the desired bound
for both Bt and its average.

30



We now work with

Ct(x) = Zt(a, b, c)−
1

T

T∑

s=1

Zs(a, b, c)

= DT (x)

[
t−1∑

j=0

ψj

(
θ +

1√
T
a

)
− 1

T

T∑

s=1

s−1∑

k=0

ψk

(
θ +

1√
T
a

)]
,

where

DT (x) :=

(
1−

p∑

i=1

φi −
1√
T

p∑

i=1

bi

)
c.

Notice that for any numbers {xj : j ∈ Z}, we have

t−1∑

j=0

xj −
1

T

T∑

s=1

s−1∑

k=0

xk =
t−1∑

j=0

xj −
1

T

∑

1≤s≤T
0≤k≤s−1

xk =
t−1∑

j=0

xj −
1

T

T−1∑

k=0

T∑

s=k+1

xk

=
t−1∑

j=0

xj −
1

T

T∑

j=0

(T − j − 1)xj = −
T∑

j=t

xj +
1

T

T∑

j=0

(j + 1)xj

so that Lemma 1 (i) of Yu (2007) implies that

sup
x∈Br

|Ct(x)| ≤ sup
x∈Br

|DT (x)|M
(

T∑

j=t

βj +
1

T

T∑

j=0

(j + 1)βj

)
.

As 0 < β < 1 we have

T∑

j=t

βj = βt
T−t∑

j=0

βj ≤ βt
∞∑

j=0

βj =
βt

1− β
,

T∑

j=0

(j + 1)βj ≤
∞∑

j=0

(j + 1)βj =
1

(1− β)2
,

and can conclude that

sup
x∈Br

|Ct(x)| ≤M

(
βt

1− β
+

1

T

1

(1− β)2

)
sup
x∈Br

|DT (x)|

which is also of the desired form as supx∈Br
|DT (x)| is non-stochastic and bounded.
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C.2 Proof of b) in Theorem 1

Proof of b) in Theorem 1. Lemma 1 and the smoothness of the logarithm function
imply that

τ̂T = − ln

[
1

T

T∑

t=1

exp(ût − ûT )

]
and τ̃T = − ln

[
1

T

T∑

t=1

exp(ut − uT )

]

have the same behaviour up to either oP (1) or oP (T
−1/2). Let τ = E ln(z21) =

− lnEeut . Since b) in Lemma 1 holds, we have that

√
T (τ̂T − τ) =

√
T (τ̃T − τ) + oP (1).

Slutsky’s Theorem hence implies that we only need show that ∆̃T :=
√
T (τ̃T − τ) is

asymptotically normal. We have that

τ̃T = − log
1

T

T∑

t=1

eut−ūT = ūT − log
1

T

T∑

t=1

eut .

Hence,

∆̃T =
√
T ūT +

√
T

[
f

(
1

T

T∑

t=1

eut

)
− f(Eeu1)

]

where f(x) = − ln x, with f ′(x) = −1/|x|. By the smoothness of f , the delta
method implies that

∆̃T =
√
T ūT + f ′(Eeu1)

√
T

[
1

T

T∑

t=1

eut − Eeu1

]
+ oP (1)

= (f ′(Eeu1), 1)
1√
T

T∑

t=1

(
eut − Eeu1

ut

)
+ oP (1).

By the Multivariate Central Limit Theorem, we have that

1√
T

T∑

t=1

(
eut − Eeu1

ut

)
d−→
(
X
Y

)
∼ N

((
0
0

)
,

(
Var eu1 Eu1e

u1

Eu1e
u1 Var u1

))

where we used that Eu1 = 0 so that Cov (u1, e
u1) = Eu1e

u1 . Hence,

∆̃T
d−→ f ′(Eeu1)X + Y.
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which is mean zero normal with variance equal to

ζ2 = (f ′(Eeu1))
2
VarX +VarY + 2f ′(Eeu1)Cov (X, Y )

=
Var [exp(u1)]

[E exp(u1)]2
+Var (u1)− 2

E[u1 exp(u1)]

E exp(u1)
.

Using the equalities

Var (u1) = E[(ln z2)2]− [E ln(z2)]2

Var [exp(u1)] =
1

{exp[E ln(z2)]}2
· (Ez4 − 1)

E exp(u1) =
1

exp[E ln(z2)]

E[u1 exp(u1)] =
1

exp[E ln(z2)]
·
{
E[(ln z2)z2]− E ln(z2)

}

we see that

ζ2 = E[(ln z2t )
2]− [E(ln z2t )]

2 + (E(z4t )− 1)− 2E[(ln z2t )z
2
t ] + 2E(ln z2t ).

The assumption A4b) implies that |E(z4t )| <∞, and the Cauchy-Schwarz inequality
implies that |E[(ln z2)z2]|2 ≤ (E[(ln z2)2])(Ez4), whose right-hand side terms are
assumed to be finite. Hence, ζ2 is finite.

D Proofs of propositions

The following result from Gradshteyn and Ryzhik (2007, section 0.25) will be used
in the proofs of the remaining propositions.

Lemma 3. Suppose {ai} is a sequence of finite, positive and non-zero real numbers.
A sufficient condition for the product

∏∞
i=1 ai to converge to a finite, non-zero number

is that the series
∑∞

i=1 |ai − 1| converges.

Proof of Proposition 1. From equation (35) in Appendix B it follows that E(zst ) must
be finite for E(ǫst) to exist. This is the case for both zt ∼ GED(τ) and zt ∼ t(ν)
under the conditions (i.e. τ > 1, ν 6= 2 and s < ν) stated in the proposition.

Next, E

(
|zt−i|2α1(α1+β1)i−1

)
must also be finite for each i = 1, 2, . . .. For zt ∼

GED(τ), τ > 1, then E(|zt|c) <∞ for c > −1, see Appendix A. For zt ∼ t(ν), ν > 2,
then E(|zt|c) < ∞ for −1 < c < ν, c 6= 2, see Appendix A. So if |α1 + β1| < 1

and 2α1(α1 + β1)
i−1 ∈ (−1, 2) for each i, then E

(
|zt−i|2α1(α1+β1)i−1

)
< ∞ for each

i = 1, 2, . . . Finally, due to Lemma 3, the infinite product converges and so E(ǫst) <
∞.

Proof of Proposition 2. By definition, absolute summability of the matrix sequence
{Ψi} means

∑∞
i=1 |ψi,mn| < ∞ for each m,n ∈ {1, 2, . . . ,M}. Next, a sufficient
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condition for an infinite product
∏∞

i=1 ai to converge to a finite, nonzero number
is that the series

∑∞
i=1 |ai − 1| converges (Gradshteyn and Ryzhik (2007, section

0.25)). Since E
[
|z1,t−i|sψi,m1 |z2,t−i|sψi,m2 · · · |zM,t−i|sψi,mM

]
→ 1 as i → ∞ due to

absolute summability, it follows that |ai − 1| → 0 as i → ∞. Accordingly, if ai =
E
[
|z1,t−i|sψi,m1 |z2,t−i|sψi,m2 · · · |zM,t−i|sψi,mM

]
< ∞ for each i, and if |E(zsm,t)| < ∞, it

follows that E(ǫsmt) exists.
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Table 1: Unconditional autocorrelations of {ǫ2t} for the log-GARCH(1,1) model
and for the GARCH(1,1) model, with α0 = 0.005, α1 = 0.05 and β1 ∈ {0.9, 0.94}

Log-GARCH(1,1), β1 = 0.9 Log-GARCH(1,1), β1 = 0.94 GARCH(1,1)

Lag N GED(1.1) t(5) N GED(1.1) t(5) β1 = 0.9 β1 = 0.94
1 0.096 0.062 0.031 0.215 0.135 0.070 0.073 0.155
2 0.091 0.058 0.029 0.212 0.133 0.069 0.069 0.153
3 0.086 0.055 0.028 0.209 0.132 0.068 0.065 0.152
4 0.081 0.052 0.026 0.207 0.130 0.067 0.062 0.150
5 0.077 0.049 0.025 0.204 0.128 0.066 0.059 0.149
6 0.073 0.047 0.023 0.201 0.126 0.065 0.056 0.147
7 0.069 0.044 0.022 0.199 0.124 0.065 0.053 0.146
8 0.066 0.042 0.021 0.196 0.123 0.064 0.051 0.144
9 0.062 0.040 0.020 0.194 0.121 0.063 0.048 0.143
10 0.059 0.038 0.019 0.191 0.119 0.062 0.046 0.142
11 0.056 0.036 0.018 0.189 0.118 0.061 0.043 0.140
12 0.053 0.034 0.017 0.187 0.116 0.060 0.041 0.139
13 0.050 0.032 0.016 0.184 0.114 0.060 0.039 0.137
14 0.048 0.030 0.015 0.182 0.113 0.059 0.037 0.136
15 0.045 0.029 0.014 0.180 0.111 0.058 0.035 0.135
16 0.043 0.027 0.014 0.177 0.110 0.057 0.034 0.133
17 0.041 0.026 0.013 0.175 0.108 0.057 0.032 0.132
18 0.039 0.024 0.012 0.173 0.107 0.056 0.030 0.131
19 0.037 0.023 0.012 0.171 0.105 0.055 0.029 0.129
20 0.035 0.022 0.011 0.169 0.104 0.054 0.027 0.128
21 0.033 0.021 0.010 0.167 0.103 0.054 0.026 0.127
22 0.031 0.020 0.010 0.165 0.101 0.053 0.025 0.125
23 0.030 0.019 0.009 0.163 0.100 0.052 0.023 0.124
24 0.028 0.018 0.009 0.161 0.099 0.052 0.022 0.123
25 0.027 0.017 0.008 0.159 0.097 0.051 0.021 0.122

The label N means zt ∼ N(0, 1), GED(1, 1) means zt ∼ GED with shape parameter τ = 1.1

(τ = 2 gives N , τ < 2 gives densities that are more fat-tailed than the normal), whereas t(5)

means zt is standardised t with 5 degrees of freedom.
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Table 2: Finite sample properties of Gaussian QML via the ARMA(1,1) representation using a N(0, σ2
u) density

in the ARMA error ut. DGP: Log-GARCH(1,1) with zt ∼ N(0, 1),E(ln z2t ) = −1.27
Sample size T : 1000 10000 100000 1000 10000 100000 1000 10000 100000
DGP (α0, α1, β1): 0, 0.3, 0.1 0, 0.3, 0.1 0, 0.3, 0.1 0, 0.1, 0.8 0, 0.1, 0.8 0, 0.1, 0.8 0, 0.05, 0.94 0, 0.05, 0.94 0, 0.05, 0.94
m(α̂0) -0.010 -0.001 0.000 -0.036 -0.001 0.000 -0.134 -0.004 0.000
se(α̂0) 0.083 0.026 0.008 0.097 0.023 0.005 0.552 0.018 0.004
m(α̂1) 0.299 0.300 0.300 0.104 0.101 0.100 0.055 0.051 0.050
se(α̂1) 0.031 0.010 0.003 0.023 0.007 0.002 0.015 0.004 0.001
ase(α̂1) 0.032 0.010 0.003 0.022 0.007 0.002 0.012 0.004 0.001

m(β̂1) 0.092 0.098 0.100 0.763 0.797 0.800 0.912 0.938 0.940

se(β̂1) 0.103 0.033 0.010 0.090 0.018 0.005 0.089 0.006 0.002

ase(β̂1) 0.101 0.032 0.010 0.053 0.017 0.005 0.015 0.005 0.001

c(α̂1, β̂1) -0.391 -0.375 -0.347 -0.506 -0.792 -0.774 -0.183 -0.934 -0.925

ac(α̂1, β̂1) -0.398 -0.398 -0.398 -0.778 -0.778 -0.778 -0.923 -0.923 -0.923

m(Ê(ln z2t )) -1.267 -1.270 -1.270 -1.276 -1.275 -1.271 -1.292 -1.285 -1.273

se(Ê(ln z2t )) 0.054 0.017 0.006 0.060 0.079 0.007 0.101 0.159 0.038

ase(Ê(ln z2t )) 0.054 0.017 0.005 0.054 0.017 0.005 0.054 0.017 0.005
m(x), sample mean of the estimates of estimator x. se(x), sample standard deviation (division by R instead of R−1, where R = 1000

is the number of replications). ase(x), asymptotic standard error of x (computed as
√
av(x)/

√
n, where av(x) is the asymptotic

variance of x). c(x, y), sample correlation between estimators x and y. ac(x, y), asymptotic correlation between x and y (computed

as acov(x, y)/
√
av(x) · av(y), where acov(x, y) is the asymptotic covariance between x and y). The asymptotic standard errors and

correlations are those implied by Brockwell and Davis (2006, pp. 259-260).
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Table 3: Finite sample properties of Gaussian QML via the ARMA(1,1) representation using a N(0, σ2
u) density

in the ARMA error ut. DGP: Log-GARCH(1,1) with ηt ∼ t(5),E(ln z2t ) = −1.56
Sample size T : 1000 10000 100000 1000 10000 100000 1000 10000 100000
DGP (α0, α1, β1): 0, 0.3, 0.1 0, 0.3, 0.1 0, 0.3, 0.1 0, 0.1, 0.8 0, 0.1, 0.8 0, 0.1, 0.8 0, 0.05, 0.94 0, 0.05, 0.94 0, 0.05, 0.94
m(α̂) -0.010 -0.004 -0.001 -0.039 -0.003 -0.001 -0.163 -0.006 0.000
se(α̂) 0.112 0.034 0.012 0.113 0.019 0.006 0.354 0.035 0.009
m(α̂1) 0.297 0.299 0.300 0.104 0.100 0.100 0.056 0.051 0.050
se(α̂1) 0.032 0.010 0.003 0.024 0.007 0.002 0.015 0.004 0.001
ase(α̂1) 0.032 0.010 0.003 0.022 0.007 0.002 0.012 0.004 0.001

m(β̂1) 0.096 0.098 0.100 0.768 0.797 0.800 0.911 0.938 0.940

se(β̂1) 0.099 0.031 0.010 0.087 0.017 0.005 0.055 0.007 0.002

ase(β̂1) 0.101 0.032 0.010 0.053 0.017 0.005 0.015 0.005 0.001

c(α̂1, β̂1) -0.396 -0.374 -0.400 -0.567 -0.773 -0.802 -0.631 -0.921 -0.936

ac(α̂1, β̂1) -0.398 -0.398 -0.398 -0.778 -0.778 -0.778 -0.923 -0.923 -0.923

m(Ê(lnz2t )) -1.568 -1.567 -1.568 -1.563 -1.570 -1.568 -1.596 -1.593 -1.577

se(Ê(lnz2t )) 0.087 0.026 0.009 0.095 0.040 0.010 0.140 0.296 0.134

ase(Ê(lnz2t )) 0.085 0.027 0.009 0.085 0.027 0.009 0.085 0.027 0.009
m(x), sample mean of the estimates of estimator x. se(x), sample standard deviation (division by R instead of R−1, where R = 1000

is the number of replications). ase(x), asymptotic standard error of x (computed as
√
av(x)/

√
n, where av(x) is the asymptotic

variance of x). c(x, y), sample correlation between estimators x and y. ac(x, y), asymptotic correlation between x and y (computed

as acov(x, y)/
√
av(x) · av(y), where acov(x, y) is the asymptotic covariance between x and y). The asymptotic standard errors and

correlations are those implied by Brockwell and Davis (2006, pp. 259-260).
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Figure 1: Daily electricity price (upper graph), log-returns (second graph), and the residuals (third graph) and absolute residuals
(bottom graph) of the conditional mean model (27) for Spain (1 January 1998 - 31 December 2003).
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Figure 2: Conditional standard deviations (upper graph) of a GARCH(1,1), an
EGARCH(1,1) and a log-GARCH(1,1) fitted to the residuals of the mean speci-
fication (27), and two snapshots (lower graphs) of the same conditional standard
deviations against the absolute residuals
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Figure 3: Daily peak and off-peak (and their difference) spot electricity prices (in
Euros) for the Oslo area in Norway, 1 January 2010 - 19 September 2012 (T = 993
observations)
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Figure 4: Daily peak and off-peak spot electricity price log-returns (in Euros) for
the Oslo area in Norway, 1 January 2010 - 19 September 2012
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Figure 5: The residuals of the simplified conditional mean model of peak log-returns,
and the fitted conditional standard deviations and standardised residuals of the
simplified log-ARCH-X model (29)
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Oslo: Daily off−peak price uncertainty

Figure 6: The residuals of the simplified conditional mean model of off-peak log-
returns, and the fitted conditional standard deviations and standardised residuals
of the simplified log-ARCH-X model (30)
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Figure 7: Constant (i.e. the sample correlation) and time-varying DCC correlations
(Engle (2002)) of the standardised residuals ẑ1,t and ẑ2,t of (29)-(30)
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