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                                                          Abstract 
 In this paper, we propose a Vasicek-type of models for estimating portfolio level probability of default 
(PD). With these Vasicek models, asset correlation and long-run PD for a risk homogenous portfolio both 
have analytical solutions, longer external time series for market and macroeconomic variables can be 
included, and the traditional asymptotic maximum likelihood approach can be shown to be equivalent to 
least square regression, which greatly simplifies parameter estimation. The analytical formula for long-run 
PD, for example, explicitly quantifies the contribution of uncertainty to an increase of long-run PD. We 
recommend the bootstrap approach to addressing the serial correlation issue for a time series sample. To 
validate the proposed models, we estimate the asset correlations for 13 industry sectors using corporate 
annual default rates from S&P for years 1981-2011, and long-run PD and asset correlation for a US 
commercial portfolio, using US delinquent rate for commercial and industry loans from US Federal 
Reserve.  
 

Keywords: Portfolio level PD, long-run PD, asset correlation, time series, serial correlation, bootstrapping, 
binomial distribution, maximum likelihood, least square regression, Vasicek model  
 

1. Introduction  
 

For a risk homogeneous portfolio, the long-run PD (LRPD) refers to the expected value of 
portfolio default rate in one-year horizon. It reflects the bank’s long-term view of portfolio 
default risk, and is usually the target PD a rating model calibrates to. Long-run PD and asset 
correlation both are key components for assessments of capital requirements ([4], [6], [7], [9], 
[10], [12], [13], [19]).  
 

Due to the insufficient internal portfolio default data, estimation of long-run PD and asset 
correlation proves to be difficult ([4], [7], [10], [12], [13], [19]). Traditional asset correlation 
estimation methodologies include the binomial maximum likelihood approach for observed 
default counts and the asymptotic maximum likelihood approach where observed default rates are 
equated to the portfolio level PD.  
 

Let n denote the size of the portfolio, and k the number of defaults in one-year horizon. Portfolio 
default rate at the horizon is given by nkr / . We assume that the default count k follows a 

binomial distribution, given the event probability )(sp dictated by a latent effect s. We call 

this )(sp the portfolio level PD given s, and write p for )(sp when it causes no ambiguity. We can 

think of )(sp as the asymptotic portfolio default rate, when portfolio size is sufficiently large 

([7]).    
 

Let  denote the cumulative distribution for a standard normal variable. Recall that a 

random variable y follows a Vasicek distribution if )(1 y is normal ([12, p52]). Thus a Vasicek 

distribution is determined by the mean and standard deviation of )(1 y . 
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We propose two types of Vasicek models for estimating portfolio level PD: 
 

      (I) )1,0(~),()( Nsbsasp    

      (II) )1,0(~),()(
1

Nscssbasp ii

m

i

 


 

Here msss ...,,, 21 are market factors or macroeconomic variables, subjected to an appropriate 

transformation by
1 when necessary. The latent random effect s is independent of msss ...,,, 21 . 

It represents the model residual in presence of market or macroeconomic factors msss ...,,, 21 , 

including for example, the effects and dynamics account for default contagion ([5]). Modeling 
portfolio level PD rather than default rate eliminates the effects of portfolio size.    
 

Clearly, type I models are the simplest form of type II models. Theoretical results shown under 
the type I model framework can be applied to type II models under the assumption that 

msss ...,,, 21 are normal. Type II models are particularly useful when internal portfolio historical 

default data is limited, but longer external market and macroeconomic variables are available. 
The use of longer market time series improves the quality of parameter estimation. 
 
The proposed models are a type of generalized linear models, targeting portfolio level PD. As 
shown later in section 2, the models can be reformulated as a type of probit models. Thus 
portfolio level PD can be interpreted as the probability of a binary credit event conditional on 
market or macroeconomic factors and a latent random effect. The models are slightly different 

from Merton models ([11], [17]) of the form )(z , where z is normalized and interpreted as the 

normalized asset value for a borrower (see section 3).   
 
As shown in later sections, the advantages of the proposed Vasicek models for portfolio level PD 
include: 
 

(a) Asset correlation and long-run PD for a risk homogenous portfolio both have analytical  
       solutions under type I model framework (Proposition 3.1) 
(b) Asymptotic maximum likelihood approach is equivalent to least square regression 

(Theorem 4.2) 
(c) Longer external time series of market and macroeconomic variables can be included by a 

type II model (see section 6 for examples) 
 

This paper is organized as follows. Some key theoretical results for the proposed models are 
shown in section 2. In section 3, we derive the analytical formulas for asset correlation and long-
run PD for a risk homogenous portfolio. In section 4, we review the traditional parameter 
estimation methodologies, show the equivalence between the asymptotic maximum likelihood 
and least square regression, and propose an asymptotic least square approach with a variance 
correction. In section 5, we discuss the serial correlation issues for a time series sample, and 
propose a bootstrap approach as a fix. We validate the proposed models and approaches in section 
6 by estimating: (a) the asset correlations for 13 industry sectors using corporate annual default 
rates posted by S&P for years 1981-2011; (b) the long-run PD and the asset correlations for a US 
commercial portfolio, using external US Federal Reserve delinquent rates for commercial and 
industry loans as a market factor.  
 

The author thanks the referees for valuable comments, particularly the comments for the example 
in section 6.1; and Clovis Sukam for many pleasant and valuable conversations. 
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2. Some Basic Results for the Proposed Vasicek Models  
 

Recall that the default count k is assumed to follow a binomial distribution, given the event 

probability )(sp , dictated by a latent effect s. The portfolio level PD (i.e., )(sp ) differs 

essentially from the default rate r. We can think of a realization of portfolio default rate r as 

consisting of two random processes: The first or inner process generates )(sp , which is governed 

by a latent effect s, the second or outer process generates k (thus r) following the binomial 
distribution with event probability )(sp . Therefore, by law of total variance, the variance for r is 

always larger than that of )(sp .  
 

The assumption of binomial distribution for default count k conditional on )(sp implies that 

obligors in the portfolio default independently conditional on )(sp (which does not mean 

unconditional independence).  
 

The following lemma on expected value of )( bsa  is useful for later discussions (see 

Appendix for a proof).  
 

Lemma 2.1. ([16, p47]) Let )1,0(~ Ns be standard normal. Then  

)1/())(( 2babsaE                 

Given a value of the sum )(
1




m

i

ib saa , we can drop off the random effect s for a type II model 

using Lemma 2.1, and calculate the model predicted portfolio level PD as in the corollary below. 

Corollary 2.2. ]1/)[(]...,,,|)([ 2

1
21

1

csaassscssbaE
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i

ii  


 

Let )(),( rvrE denote the expected value and variance of portfolio default rate r, and 00 , vp  the 

expected value and variance of )(sp , the portfolio level PD. Let D be a Bernoulli trial with event 

probability 0p . Then 0)( pDE   and )1()( 00 ppDv  . Proposition 2.3 (c) below is to be used 

in section 4.3 for a variance correction to the asymptotic least square approach. The quantity 0v  

will be further discussed by the joint default probability in Proposition 3.3.  
 

Proposition 2.3. (a) 0)( prE   

   (b) 000 )()1()( vrvppDv    

(c) )1/()]()1([)( 000  nrvpprvv  
 

Proof. The expected value of a binomial distribution, given the event probability p (i.e., )(sp ), 

equals to np . Thus the expected value of r, conditional on p, is p. Therefore  
 

       0)()]|([)( ppEprEErE   
 

and we have (a). Next, conditional on event probability p, the variance of a Bernoulli trial D 
is )1( pp  . By law of total variance, we have: 

)1()]1([)()]|([)1()( 0
2

000 vppEppEpDvEppDv     
 

Conditional on p, the variance of r is npp /)1(  , we thus have: 
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where (3) follows from (1). Because npppp /)1()1(  , we have (b) by (1) and (2). 

Statement (c) follows from (3). □ 
 

We end this section by mentioning that both types I and II models are a type of probit models, 

which means )(sp is the probability of a binary credit event, given s and msss ...,,, 21 . For 

example, for a type II model, we have: 
 

)...,,,,|1(
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where  can be interpreted as a variable measuring a type of credit risk for the portfolio, and the 

event variable D is defined to have value 1 if cssba ii

m

i

 
1

 , and is 0 otherwise.  

 

3. Analytical Formulas for LRPD and Asset Correlation for a Homogeneous Portfolio 
 

Under the Merton model framework ([11], [17]), obligor’s default risk is driven by a normalized 
latent variable z. A default event for an obligor occurs as soon as z falls below a threshold value 

called default point. Different obligors may have different default points. In the case when 
portfolio default risk is homogenous between obligors, we can assume that obligors have the 

same default point 0d . One factor Merton for a risk homogenous portfolio assumes that z splits 

into two parts: 
 

 

 

where s and   are independent random variables, both standard normal, with s the systemic risk, 
common to all obligors in the portfolio, and the idiosyncratic risk. The quantity  is called the 

asset correlation between obligors. Portfolio level PD given s is given by  
 
     
   

 

 

 
 

Therefore Merton models for a risk homogenous portfolio are one-parameter (i.e.  ) type I 

models with default point given and specified. By Lemma 2.1, we have  
 

)5()(])1/)(([))(( 00 dsdEspE    
 

For a risk homogenous portfolio, both long-run PD and asset correlation have analytical solutions 
under the type I model framework: 

)4(10,1   sz
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Proposition 3.1.  Given a type I model )( bsa  for the portfolio level PD, one has: 

(a) Expected portfolio level PD )1/( 2ba  , mode and median PD )(a  

(b) Default point 21/ ba   

(c) Default implied asset correlation )1/( 22 bb  .  
 

Proof.  Obviously, the mode and median PD is given by )(a . The formula for expected PD 

follows from Lemma 2.1. By (5) and (a), we have (b). Statement (c) follows from the fact that the 

normalization 21/)( bbs  splits into two parts as in (4), with the coefficient of s given 

by 21/ bb  .□ 
 

By Proposition 3.1 (a), when 0a  (i.e., when expected portfolio level PD is less than 50%), the 

expected portfolio level PD increases as uncertainty (variance 2b ) increases, and is in general 
larger than the mode/median PD for a type I model. The mode PD is considered by Canadian 
financial institution regulator, the Office of the Superintendent of Financial Institution (OSFI), to 
serve as the long-run PD ([13], [14]). However, under the type I model, this mode/median PD is 
lower than the expected portfolio level PD. Therefore, it is a biased estimator for the long-run PD. 

For a risk homogenous portfolio, let expLRPD and modLRPD  denote the expected portfolio level 

PD and the mode/median PD respectively. We thus have: 
 

Proposition 3.2. Under the type I model framework, one has expmod LRPDLRPD  if the 

expected portfolio level PD is less than 50%. 
 

To end this section, we summarize in the next proposition the relationships between the asset 

correlation , the pair-wise default correlation D , and the mean and variance of portfolio level 

PD (i.e., 0p and )0v . Let JDP denote the joint default probability between two borrowers, which 

is given by: 

              )),(),((),( 0
1

0
1

20  ppNpJDP    
 

where ),,( 212 xxN denotes the cumulative distribution for bivariate standard normal variables 

),( 21 xx with asset correlation as the correlation between variables 1x  and 2x . 
 

Proposition 3.3. For a risk homogenous portfolio, one has: 

(a) ([16, p48]) 2
000 )(),( ppJDPv    

(b) ([19, pp7-10]) ]1(/[]1([/))(),(( 00000
2

00 ppvppppJDPD    
 
 

4. Model Parameter Estimation Methodologies  
 

Traditional asset correlation estimation methodologies include: 
 

(a) Binomial maximum likelihood  
(b) Asymptotic maximum likelihood 

 

Binomial maximum likelihood maximizes the likelihood of observing portfolio default counts, 
assuming default count follows a binomial distribution given the event probability. Asymptotic 
maximum likelihood approaches equate the observed portfolio default rate to the portfolio level 
PD ( )(sp ), and maximizes the likelihood of observing portfolio default rates. We show in this 
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section the equivalence between the asymptotic maximum likelihood approach and the least 
square regression for a type II model. 
 
4.1. The Likelihood of Portfolio Level PD and Least Square Regression 
 

The following proposition on likelihood of portfolio level PD is important, with which we can 
show the equivalence between asymptotic maximum likelihood approach and least square 

regression. Proposition 4.1 (a) holds in general for any cumulative distribution )(x and 

density )(x , not just for normal distributions (see appendix for a proof). 
 

Proposition 4.1. Let )(1 pz   where )( bsap  and )1,0(~ Ns .  
 

      (a) The likelihood of p is given by: 

                        ))(/()/)(()( zbbazpd    

      (b) The negative log likelihood of p is given by  

                        2/))(()ln()]2/())([( 21221 pbbap    
 

Suppose },...,,,{( 21 kmkkk psssS  is a given sample with size N, and kp as the portfolio level 

PD at time k, where msss ...,,, 21 are market or macroeconomic variables, subjected to an 

appropriate transformation by
1 when necessary. Set )(1

kk
pz  . Assume a type II model 

for the portfolio level PD: 

                  )6()1,0(~,)(
1

Nscssbap ii

m
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The following theorem shows the equivalence between the asymptotic maximum likelihood 
approach and least square regression (see appendix for a proof). 
  
Theorem 4.2. For a type II model, the maximum likelihood approach is equivalent to least square 
regression minimizing the sum-square of errors: 

            )7()]([ 2

11
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m

i
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sbaz 


  

and c is estimated as the standard deviation of the errors: )(
1

kii

m

i

k sbaz 


 . 

For example, for a type I model, a special case of the type II models, parameters a and b can be 
estimated by Theorem 4.2 as: 
 

      NazazazbNzzza
NN

/])(...)()[(,/)...( 22
2

2
1

2
21     

 

Thus we have an estimator for long-run PD of the form )1/( 2ba   by Proposition 3.1, 

which is similar to the estimator given by Miu and Ozdemir ([13, (13b)]), using the relations 

)1/(11 2  b and )1/(  b . We also have an estimator for asset correlation of the 

form )1/( 22 bb  , similar to the estimator given by Meyer ([12, 4.3.2]).  
    

Here we assume that kp is the portfolio level PD, not the portfolio default rate. In the latter case, 

the above estimators for long-run PD and asset correlation could be biased when portfolio size is 
not sufficiently large. We will deal with this issue and propose in section 4.3 an asymptotic 
methodology with a variance correction.  
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4.2. Binomial Likelihood Approaches  
 

Let },,...,,,{( 21 iimiii nksssS  be a sample with size N, where msss ...,,, 21 are market or 

macroeconomic variables, and ii kn ,  are the numbers of obligors and one-year horizon defaults 

respectively at time index i.  Given the event probability )(spp  , the likelihood of observing k 

defaults for a portfolio with n obligors is: 

               knk
spsp

k

n 







))(1()(  

Its expected value with respect to s gives the unconditional likelihood:  

       dssspsp
k

n
nkbin

knk )())(1()(),( 












    

The negative natural logarithmic likelihood is the sum ([7], [10]): 

        )),(ln(log
1

ii

N

i

nkbinL 


   

With the maximum likelihood approach for type II models, we are required to find the model 
parameters by minimizing -log L. SAS non-linear mixed procedure (NLMIXED, [18]) provides a 
tool for fitting this type of models maximizing the binomial likelihood. 
  
4.3. Asymptotic Least Square Approaches 
 

Let },,...,,,{( 21 kkmkkk nrsssS  be a sample with size N, where kr denotes the default rate at 

time k. We consider two asymptotic approaches. 
 

Case I. Asymptotic (no variance correction)  
 

In this case, we equate the observed default rate kr to portfolio level PD, and transform kr to 

)(1
kk

rz  . We then estimate the parameters for model (6) through least square regression by 

Theorem 4.2. 
 

Note that the transformation )(1
k

r  requires 10  kr . Appropriate flooring or capping for the 

default rate is required when 0 or 1 appears in the time series, otherwise, extreme values of 

)(1
k

r will inflate the estimation. Though the default rate can be zero for a small sample, we 

don’t expect zero PD. Besides, if we didn’t observe any default when size is small, it does not 
mean we would not find one when size is increased.   
 

Case II. Asymptotic with a variance correction 
 

Because equating default rate to portfolio level PD exaggerates the variance of portfolio level PD 
by Proposition 2.3 (b), leading to an overestimate of asset correlation, we propose a variance 
correction as follows:  
 

Correction for the variance of portfolio level PD: 
 

(a) Assume a constant size n for the portfolio over time. First, estimate 0p as the simple 

average of sample default rates, and )(rv  as the sample variance, then compute by 

Proposition 2.3 (c) the variance of portfolio level PD as:        

                )1/()]()1([)( 000  nrvpprvv  
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(b) Let r denote the sample average of all kr , and )(/0 rvvw  . Replace kr by krr : 

            wrrrrr kk )(   

      The rest is the same  
 

Note that 0/)...(/)...()()1(
22

2

2

12100  mrrrmrrrrvpp
mm

unless 

0kr or 1 for all k.  We thus have 1)(/0  rvvw  and 0krr in general. This correction 

has the advantage of transforming extreme values of 0 and 1 to other regular values between 0 
and 1, which would have been an issue for the traditional asymptotic approach with no variance 

correction. More importantly, the sample variance of krr is now adjusted to the sample 

variance 0v  of portfolio level PD (i.e. )(sp ). 
 
 

5. The Serial Correlation and Bootstrap Methodologies  
 

Traditionally, historical default rate time series sample is used for model fitting. However, serial 
correlation for a times series sample is in general significant, and is an issue for parameter 
estimation ([13], [15, pp.159-175]).  
 

For a default rate time series, the serial correlation is in general positive. This positive serial 

correlation causes the sample variance of errors Nazk

N

k

/)( 2

1




to overestimate the 

parameter 2b under the type I model framework. By Proposition 3.1, this results in an 

overestimate for the asset correlation, and an underestimate for the long-run PD (when 0a , i.e., 
when the expected portfolio level PD is less than 50%).  
 

A model describes the joint distribution between the target and explanatory variables. Given a 
modeling sample, independence between data points is generally expected and required.  
 

Instead of fitting the model directly on the time series sample, we propose a bootstrap approach: 
Generate, say 1000, bootstrap samples each is of the same size as the original time series sample, 
and is sampled randomly from the original time series sample with replacement ([8, section 8.2]).  
Fit a model over each bootstrap sample and estimate the long-run PD and asset correlation. The 
final long-run PD and asset correlation are estimated by averaging all the estimates from the 
bootstrap samples. This is analogous to the bagging technique ([3], [8]). Confidence bounds can 
be calculated when the number of bootstrap samples is sufficiently large. 
 

We thus propose the following bootstrap steps for estimating long-run PD and asset correlation: 
 

(a) Generate B (sufficiently large, say 1000) bootstrap samples using the time series sample. 
(b) For each bootstrap sample, fit a type II model: 

            )1,0(~),()(
1

Nscssbasp ii

m

i

 


 

(c) Let ii

m

i

sbu 



1

 and cssbv ii

m

i


1

. Assume that msss ...,,, 21 are normal. Estimate 

the mean 1m and standard deviation 1 for u over the bootstrap sample, and calculate the 

mean and variance of v by 1m and 22

1 c  

(d) Estimate by Proposition 3.1 the asset correlation, long-run PD, mode, and median PD as: 
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6. Empirical Examples 

6.1. Asset Correlations for Industry Sectors by S&P Corporate Annual Default Rates  
 

In this section, we estimate asset correlations for 13 industry sectors based on corporate annual 
default rate time series posted by S&P for years 1981-2011. We follow the steps proposed in 
section 5 and bootstrap 1000 times. Each time we fit a type II model for each sector using the 
yearly default rate over all sectors as a common market factor:  

  )1,0(~),()( 1 Nscsbsasp     

where )sectors allover  ratedefault yearly (1
1

s   
 

Given the default rate time series for a sector, we assume that the yearly number of firms rated for 
the sector is constant across years, and is equal to the average of numbers of firms rated for the 
sector across years in the sample. Table 1 shows the results by three approaches: binomial 
maximum likelihood, asymptotic least square with (“Asymptotic Adj”) and without (“Asymptotic 
No Adj”) variance correction. The last column shows the 95% percentile upper bound for the 
bootstrap estimate under the asymptotic approach with a variance correction. These results are 
comparable to the results by Demey ([7]), which were based on S&P annual corporate default 
rates for years 1981-2002. Results by bootstrap method are compared to the traditional method, 
where the original time series sample is used directly.    
 

Table 1. Asset correlation for industry sectors 
Traditional method Bootstrap method

      Asymptotic       Asymptotic

Industry Sector Avg DR Binomial Adj No Adj Binomial Adj No Adj P95 (Adj)

Aerospace/automobile 2.3% 9.9% 10.1% 13.1% 8.9% 9.0% 12.0% 13.3%

Consumer/service 2.4% 7.0% 7.1% 10.4% 5.8% 6.2% 9.2% 8.8%

Energy/natural resources 2.1% 10.2% 12.4% 17.5% 9.3% 11.2% 16.7% 15.9%

Financial institutions 1.2% 14.1% 12.7% 14.1% 12.1% 10.8% 13.4% 17.7%

Forest/building products 2.6% 15.1% 16.1% 19.3% 13.6% 14.7% 18.3% 20.5%

Health 3.2% 23.7% 25.5% 26.5% 19.7% 20.5% 24.6% 37.9%

High tech 2.3% 13.1% 18.7% 21.8% 11.8% 15.8% 21.1% 26.6%

Insurance 0.9% 3.0% 5.7% 9.3% 3.0% 5.0% 9.2% 9.5%

Leisure time/media 3.4% 15.1% 14.7% 18.3% 13.5% 13.3% 17.1% 19.0%

Real estate 1.7% 13.8% 19.0% 22.4% 12.6% 17.8% 21.6% 23.4%

Telecoms 2.5% 15.2% 20.7% 24.9% 13.6% 18.7% 23.6% 26.9%

Transportation 2.1% 3.2% 5.9% 16.5% 3.4% 5.7% 15.9% 8.9%

Utilities 0.7% 2.2% 4.6% 6.9% 2.4% 4.0% 6.7% 8.9%  
                                                                                                                                                                                                                                                                                                            
The results show: (a) Overall, results by asymptotic approach with a variance correction are fairly 
consistent with the results by binomial approach. (b) Estimates by bootstrap method are generally 
lower than the traditional method as expected (see section 5), and are significant for some cases 
(e.g., Health). This means the serial correlation would have inflated the estimates should one use 
the traditional method. (c) Asset correlations are mostly below or around 15%, except for Health, 
High Tech, Real Estate, and Telecoms, where high variances are found from the observed default 
rate time series (default correlation and asset correlation, are positively correlated with the 
variance of portfolio level PD, by Proposition 3.3 (b)). (d) The results of asymptotic approach 
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with a variance correction are always lower than results with no correction. (e) The 95% 
percentile upper bound for the estimate under the asymptotic approach with a variance correction 
is in general not too significantly higher than the estimate itself, except for Health, High Tech, 
and Telecoms, which are again due to the high variances of the observed default rates.   
 

We should be cautious when interpreting the results by asymptotic approach with no adjustment. 
With this approach, default rate has to be floored appropriately, as pointed out in section 4.3. We 
floor the default rate at 0.2% when default rate is 0. This could have inflated the estimates for 
some sectors, such as Energy, High Tech, Telecoms, and Transportation. For this reason, estimate 
by asymptotic approach with a variance correction or by binomial approach is preferred.   
 

With this S&P data, the default rate time series is split by year. Splitting by 6 months or by 
quarter will give more data points, which will definitely be helpful for parameter estimation. This 
is what we do for the example in next section. 
 
 

6.2. Long-Run PD and Asset Correlation for a Commercial Portfolio  
 

In this section, we estimate the asset correlation, long-run PD for a US commercial portfolio, 
where historical one-year default rates for the portfolio are available for each quarter between 
2006 and 2012.  
 

The market variable we use is the delinquent rate for commercial and industry loans (no seasonal 
adjustment), posted by US Federal Reserve, available since 1987. The chart below depicts the US 
delinquency since 1987. There have been two cycles since 1995: 
 

US C&I Loan Delinqent Rate by Quarter
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Based on historical default rate data, portfolio default rate responds to US delinquent rate by a lag 
of two quarters. We thus shift up the US delinquent rate by two quarters to line up with the 
internal portfolio default rate for modeling purpose.  
 

Again, we follow the steps proposed in section 5 and bootstrap for 1000 times. Each time we fit a 
type II Vasicek model of the form  

             )1,0(~),()( 1 Nscsbsasp     

where )(1
1 ratedelinquentUSs    

 

Table 2 below shows the asset correlation, median/mode PD, and long-run PD by three 
approaches. The results show, bootstrap method estimates slightly lower asset correlations, but 
slightly higher long-run PDs. This is expected as explained in section 5. We calculate the 
bootstrap 95% percentile value of the long-run PD as 3.47%, under the asymptotic approach with 
a variance correction. This can be used as an upper confidence bound.   
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 Table 2. Long-run PD and Asset Correlation on a commercial portfolio using two cycles  
               of US delinquent rates since 199501 

Traditional method Bootstrap method

Estimating Median Expected Asset Median Expected Asset

Methodology Avg DR Value PD Value PD Correlation Value PD Value PD Correlation

Binomial 3.01% 2.73% 3.07% 5.16% 2.79% 3.11% 4.7%

Asym Adj 3.01% 2.76% 3.13% 5.34% 2.82% 3.16% 4.9%

Asym 3.01% 2.78% 3.14% 5.81% 2.85% 3.16% 5.3%  
 

Conclusion. With the proposed Vasicek models for portfolio level PD, asset correlation and 
long-run PD for a risk homogenous portfolio both have analytical solutions, parameters can be 
estimated through least square regression, which is simple and easy to implement. These Vasicek 
models have the advantages of incorporating longer external market and macroeconomic 
variables, improving the quality of parameter estimation in contrast to using only a shorter period 
of internal default data. The proposed bootstrap approach corrects the bias of parameter estimates 
by traditional method due to serial correlation. We believe that the proposed models, the 
bootstrap technique, and the asymptotic least square approach with a variance correction are 
potentially a good tool for assessments of long-run PD, asset correlation, and portfolio level PD. 
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APPENDIX 
 

Proof of Lemma 2.1. Given s, we have  
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where )1,0(~ N is independent of s. At this moment, s is given as a fixed effect, the only 

random variable is . However, we can view s as random when taking expectation 

))(( bsaE  with respect to s. Since 21/)( bbsu   is standard normal, ))(( bsaE   

is equal to )1/( 2ba  .□ 
 

Proof of Proposition 4.1. We have: 
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where )(1 yw  . The derivative of w with respect to y is given by )(/1 w . Thus the 

derivative of )( ypP  with respect to y is given by 
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Replacing w by z, we have statement (a). For (b), if )(x is the cumulative distribution for a 

standard normal variable, then the negative log likelihood reduces to  
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This proves (b). □ 
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Proof of Theorem 4.2. By Proposition 4.1 (b), where the parameter b replaces c in Theorem 4.2, 
the negative log likelihood has the form: 
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where C(z) depends only on { }kz . With the maximum likelihood approach, parameters are 

estimated by minimizing (8). Given b, expression (8) is minimized whenever parameters 

mbbba ...,,,, 21 (which are independent of b) minimize expression (7). For parameter b, taking the 

derivative of (8) with respect to b and setting the derivative to zero, we have: 
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This completes the proof. □ 


