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Abstract

How can di¤erent individuals� probability functions on a given �-algebra
of events be aggregated into a collective probability function? Classic ap-
proaches to this problem often require �event-wise independence�: the col-
lective probability for each event should depend only on the individuals�
probabilities for that event. In practice, however, some events may be �ba-
sic� and others �derivative�, so that it makes sense �rst to aggregate the
probabilities for the former and then to let these constrain the probabilities
for the latter. We formalize this idea by introducing a �premise-based� ap-
proach to probabilistic opinion pooling, and show that, under a variety of
assumptions, it leads to linear or neutral opinion pooling on the �premises�.

Keywords: Probabilistic opinion pooling, judgment aggregation, subjec-
tive probability, premise-based aggregation

1 Introduction

Suppose each individual member of some group (expert panel, court, jury etc.)
assigns probabilities to some events. How can these individual probability as-
signments be aggregated into a corresponding collective probability assignment?
Classically, this problem has been modelled as the aggregation of probability func-
tions, which are de�ned on some �-algebra of events, a set of events that is closed

�Although both authors are jointly responsible for this paper and project, Christian List
wishes to note that Franz Dietrich should be considered the lead author, to whom the credit
for the present mathematical proofs is due. This paper is the second of two self-contained, but
technically related companion papers inspired by binary judgment-aggregation theory. Both
papers build on our earlier, unpublished paper �Opinion pooling on general agendas� (September
2007).
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under negation and countable disjunction, and by implication also countable con-
junction. Each individual submits a probability function on the given �-algebra,
and these probability functions are then aggregated into a single collective proba-
bility function on it.1 One of the best-known solutions to this aggregation problem
is linear pooling, where the collective probability function is a linear average of
the individual probability functions. Linear pooling has several salient proper-
ties. First, if all individuals unanimously assign probability 1 (or probability 0)
to some event, this probability assignment is preserved collectively (�consensus
preservation�). Second, the collective probability for each event depends only on
individual probabilities for that event (�event-wise independence�). And third,
all events are treated equally: the pattern of dependence between individual and
collective probability assignments is the same for all events (�neutrality�).

In many practical applications, however, not all events are equal. In particu-
lar, the events in a �-algebra may fall into two categories (whose boundaries may
be drawn in di¤erent ways). On the one hand, there are events that correspond
to intuitively basic propositions, such as �it will rain�, �it will be humid�, or �at-
mospheric CO2 causes global warming�. On the other hand, there are events that
are intuitively non-basic. These are �constructible� by combining basic events,
for instance via disjunction (union) of basic events, conjunction (intersection), or
negation (complementation). It is not obvious that when we aggregate probabili-
ties, basic and non-basic events should be treated alike.

For a start, in reasoning about a given set of events, we may conceptualize
basic and non-basic events di¤erently. We may conceptualize non-basic events
as combinations of basic events, just as we form composite propositions by com-
bining atomic propositions. Second, the way in which we assign probabilities to
non-basic events is likely to di¤er from the way in which we assign probabilities
to basic events. When we assign a probability to some non-basic event, say a
conjunction or disjunction of basic events, this typically presupposes the assign-
ment of probabilities to the underlying basic events. For example, the natural
way to assign a probability to the disjunctive event �rain or heat� is to ask what
the probability of rain is, what the probability of heat is, and whether the two
are correlated.2 If this is correct, the natural method of making probabilistic
judgments is to consider basic events �rst and to consider non-basic events next.
Basic events serve as �premises�: we �rst assign probabilities to them, and then
let these probability assignments constrain our probability assignments to other,
non-basic events.

In this paper, we propose an approach to probability aggregation that captures
this idea: the premise-based approach. Under this approach, the group �rst assigns

1For a departure from the classical approach in which the �agenda� of events for which prob-
abilities are aggregated is a �-algebra, see our companion paper Dietrich and List (2013b).

2The correlation question might be approached by looking for causal e¤ects between, or
common causes of, rain and heat. Of course, what we have described is a very styzlied method
of probability assignment.

2



collective probabilities to all basic events (the �premises�) by aggregating the in-
divididuals� probabilities for them; and then it assigns probabilities to all other
events, constrained by the probabilities of the basic events. If the basic events
are, for instance, �rain� and �heat�, then, in a �rst step, the collective probabilities
for these two events are determined by aggregating the individual probabilities
for them. In a second step, the collective probabilities for all other events are as-
signed. For example, the collective probability of �rain and heat� might be de�ned
as a suitable function of the collective probability of �rain�, the collective prob-
ability of �heat�, and an estimated rain/heat-correlation coe¢cient, which could
be the result of aggregating the rain/heat-correlation coe¢cients encoded in the
individual probability functions.

This proposal can be expressed more precisely by a single axiom, which does
not require the (inessential) sequential implementation just sketched, but fo-
cuses instead on a core informational restriction: the collective probability of any
�premise� (basic event) should depend solely on the individual probabilities for
this premise, not on individual probabilities for other events. We call this axiom
independence on premises. Our axiomatic treatment of premise-based aggrega-
tion is inspired by binary judgment-aggregation theory, where the premise-based
approach has also been characterized by a restricted independence axiom; see, for
instance, Dietrich (2006), Mongin (2008), and Dietrich and Mongin (2010). For
less formal discussions of premise-based aggregation, see Kornhauser and Sager
(1986), Pettit (2001), List and Pettit (2002), and List (2006).

The way in which we have just motivated the premise-based approach and the
corresponding axiom is bound to raise some questions. For example, although the
distinction between �basic� events and �non-basic� events is arguably not ad hoc,
there is no purely formal criterion for drawing that distinction.3 However, there

3Indeed, one could construct (�derive�) basic events from non-basic events, using the opera-
tions of negation and disjunction. Formally, while the basic events typically form a generating
system of the �-algebra, there exist many alternative generating systems, and usually none of
them is canonical in a technical sense. The task of determining the �basic� events therefore
involves some interpretation and may be context-dependent and open to disagreement. One
might, however, employ a syntactic criterion which counts an event as �basic� if, in a suitable
language (perhaps one deemed �natural�), it can be expressed by an atomic sentence (one that
is not a combination of other sentences using Boolean connectives). An event expressible by the
sentence �it will rain or it will snow� would then count as non-basic. This syntactic criterion relies
on our choice of language, which, though not a purely technical matter, is arguably not ad hoc.
An n-place connective (e.g., the two-place connective �or�) is called Boolean or truth-functional
if the truth-value of every sentence constructed by applying this connective to n other sentences
is determined by the truth values of the latter sentences. For instance, �or� is Boolean since �p or
q� is true if and only if �p� is true or �q� is true. Many languages, especially ones mimic natural
language, contain non-Boolean connectives, for instance non-material conditionals for which the
truth-value of �if p then q� is not always determined by the truth-values of p and q. When the
sentence �if p then q� is not truth-functionally decomposable, an event represented by it would
count as �basic� under the present syntactic criterion. The sentence �CO2 emissions cause global
warming� can be viewed as a non-material (speci�cally, causal) conditional �if p then q�, hence
would describe a basic event. See Priest (2001) for an introduction to non-classical logic.
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is another, less controversial motivation for the premise-based approach. Our
central axiom � independence on premises � privileges particular events, called
the �premises�. We have so far interpreted these quite speci�cally, taking them
to correspond to basic events and to constitute the premises in an individual�s
probability-assignment process. But we can give up this speci�c interpretation
and de�ne a �premise� simply as an event for which it is desirable that the col-
lective probability depend solely on the event-speci�c individual probabilities. If
�premises� are de�ned like this, then our axiom � independence on premises � is
justi�ed by de�nition (though of course we can no longer o¤er any guidance as
to which events should count as premises). The terminology �premise� is still jus-
ti�ed, though not in the sense of �premise of individual probability assignment�
(since we no longer assume that premises are basic in the individuals� forma-
tion of probabilistic beliefs), but in the sense of �premise of collective probability
assignment� (because the collective probabilities for these events are determined
independently of the probabilities of other events and then constrain other collec-
tive probabilities).

We show that premise-based opinion pooling imposes signi�cant restrictions
on how the collective probabilities of the premises can be determined. At the
same time, these restrictions are not undesirable; they do not lead to �undemo-
cratic� or �degenerate� forms of opinion pooling. Speci�cally, as soon as there are
certain logical interconnections between the premises, independence on premises,
together with a unanimity-preservation requirement, implies that the collective
probability for each premise is a (possibly weighted) linear average of the indi-
vidual probabilities for that premise, where the vector of weights across di¤erent
individuals is the same for each premise. We present several variants of this re-
sult, which di¤er in the precise nature of the unanimity-preservation requirement
and in the kinds of interconnections that are assumed between premises. In some
variants, we do not obtain the �linearity� conclusion, but only a weaker �neutral-
ity� conclusion: the collective probability for each premise must be a (possibly
non-linear) function of the individual probabilities for that premise, where this
function is the same for each premise. These results are structurally similar to
those in our companion paper, though interpretationally di¤erent (Dietrich and
List 2013b). Furthermore, our results stand in contrast with existing results on
the premise-based approach in binary judgment aggregation. When judgments are
binary, independence on premises leads to dictatorial aggregation under analogous
conditions (see especially Dietrich and Mongin 2010).

Our results apply regardless of which events are deemed to serve as premises.
In the extreme case in which all events count as premises, the requirement of
independence on premises reduces to the familiar event-wise independence axiom
(sometimes called the strong setwise function property), and our results reduce
to a classic characterization of linear pooling (see Aczél and Wagner 1980 and
McConway 1981; see also Wagner 1982 and 1985; Aczél, Ng and Wagner 1984;
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Genest 1984a, Mongin 1995; and Chambers 2007).4

2 The framework

We consider a group of n � 2 individuals, labelled i = 1; :::; n, who have to assign
collective probabilities to some events.

The agenda: a �-algebra of events. We consider a non-empty set 
 of pos-
sible worlds (or states). An event is a subset A of 
; its complement (�negation�)
is denoted Ac := 
nA. The set of events to which probabilities are to be as-
signed is called the agenda. We assume that it is a �-algebra, � � 2
, i.e., a
set of events that is closed under complementation and countable union (and by
implication also countable intersection). The simplest non-trivial example of a
�-algebra is of the form � = fA;Ac;
;?g, in which A might be the event that it
will rain. Another example is the set 2
 of all events; this is a commonly studied
�-algebra when 
 is �nite or countably in�nite. A third example is the �-algebra
of Borel-measurable sets when 
 = R.

An example. Let us give an example similar to the lead example in our com-
panion paper (Dietrich and List 2013b), except that we now take the agenda to be
a �-algebra. Let the set 
 of possible worlds be the set of vectors f0; 1g3nf(1; 1; 0)g
with the following interpretation. The �rst component of each vector indicates
whether atmospheric CO2 is above some critical threshold (1 = �yes� and 0 =
�no�), the second component indicates whether there is a mechanism to the ef-
fect that if atmospheric CO2 is above that threshold, then Arctic summers are
ice-free, and the third component indicates whether Arctic summers are ice-free.
The triple (1; 1; 0) is excluded from 
 because it would represent an inconsistent
combination of characteristics. An expert committee may well be faced with an
opinion pooling problem on the agenda � = 2
.

The opinions: probability functions. In the present framework, opinions are
represented by probability functions on � (the agenda). Formally, a probability
function on � is a function P : �! [0; 1] such that P (
) = 1 and P is �-additive
(i.e., P (A1[A2[ :::) = P (A1)+P (A2)+ ::: for every sequence of pairwise disjoint
events A1; A2; ::: 2 �). We write P� to denote the set of all probability functions
on �.

4Historically, linear pooling goes back at least to Stone (1961). Linear pooling is by no means
the only plausible way to aggregate subjective probabilities. Other approaches include geometric
and, more generally, externally Bayesian pooling (e.g., McConway 1978, Genest 1984b and
Genest, McConway and Schervish 1986), multiplicative pooling (Dietrich 2010), supra-Bayesian
pooling (e.g., Morris 1974), and pooling of ordinal probabilities (Weymark 1997). A useful,
though somewhat outdated, literature review is given in Genest and Zidek (1986).
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Opinion pooling. Given the agenda �, a combination of probability functions
across the individuals, (P1; :::; Pn), is called a pro�le (of probability functions).
An (opinion) pooling function is a function F : Pn� ! P�, which assigns to each
pro�le (P1; :::; Pn) a collective probability function P = F (P1; :::; Pn), also denoted
PP1;:::;Pn. An example of PP1;:::;Pn is the arithmetic average

1
n
P1 + :::+

1
n
Pn.

Some logical terminology. We conclude this section with some further termi-
nology. Events distinct from ? and 
 are called contingent. A set S of events is
consistent if its intersection \A2SA is non-empty, and inconsistent otherwise; S
entails an event B if the intersection of S is included in B (i.e., \A2SA � B).

3 Axiomatic requirements on �premise-based�

opinion pooling

We now introduce the axioms that we require a premise-based opinion pooling
function to satisfy.

3.1 Independence on premises

Before we introduce our new axiom of independence on premises, let us recall the
familiar requirement of (event-wise) independence. It requires that the collective
probability for any event depend only on the individual probabilities for that
event, independently of the probabilities of other events.

Independence. For each event A 2 �, there exists a functionDA : [0; 1]
n ! [0; 1]

(the local pooling criterion for A) such that, for all P1; :::; Pn 2 P�,

PP1;:::;Pn(A) = DA(P1(A); :::; Pn(A)):

This requirement can be criticized � in the classical framework where the
agenda is a �-algebra � for being normatively unattractive. Typically only some
of the events in the �-algebra � correspond to intuitively basic propositions such
as �the economy will grow� or �atmospheric CO2 causes global warming�. Other
events in � are combinations of basic events, such as �the economy will grow or at-
mospheric CO2 causes global warming�. The non-basic events can get enormously
complicated: they can be conjunctions of (�nitely or countably in�nitely many)
basic events, or disjunctions, or disjunctions of conjunctions, and so on. It seems
natural to privilege the basic events over the other, more �arti�cial� events by re-
placing the independence requirement with a restricted independence requirement
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that quanti�es only over basic events. Indeed, it seems implausible to apply inde-
pendence to composite events such as �the economy will grow or atmospheric CO2
causes global warming�, since this would prevent us from using the probabilities
of each of the constituent events in determining the overall probability.

By restricting the independence requirement to basic events alone, we e¤ec-
tively treat these as premises in the collective probability-assignment process, �rst
aggregating individual probabilities for basic events and then letting the resulting
collective probabilities constrain the collective probabilities of all other events.
(The probabilities of the premises constrain those other probabilities because the
probability assignments in their entirety must be coherent, i.e., constitute a well-
de�ned probability function.)

Formally, consider a sub-agenda of �, denoted X, which we interpret as con-
taining the basic events, called the premises. By a sub-agenda we mean a subset
of � which is non-empty and closed under complementation (i.e., it forms an
�agenda� in the generalized sense discussed in our companion paper, Dietrich and
List 2013b). We introduce the following axiom:

Independence on X (�on premises�). For each A 2 X, there exists a function
DA : [0; 1]

n ! [0; 1] (the local pooling criterion for A) such that, for all P1; :::; Pn 2
P�,

PP1;:::;Pn(A) = DA(P1(A); :::; Pn(A)):

In the climate-change example of Section 2, the sub-agenda of premises might
be de�ned asX = fA1; A

c
1; A2; A

c
2; A3; A

c
3g, where A1 is the event that atmospheric

CO2 is above the critical threshold, A2 is the event that there is a mechanisms by
which CO2 concentrations above the threshold cause ice-free Arctic summers, and
A3 is the event of ice-free Arctic summers. Note, for example, that conjunctions
such as A1 \ A2 are not included in the set X of premises here. As a result,
independence on X allows the collective probability for any such conjunction
to depend not only on the experts� probabilities for that conjunction, but also,
for instance, on their probabilities for the underlying conjuncts (together with
auxiliary assumptions about correlations between them).5

We have explained why event-wise independence should not be required for
non-basic events. But why should we require it for basic events (premises)? We
o¤er three reasons:

� First, if we accept the idea that an individual�s probabilistic belief about a
given premise is not in�uenced by, but might in�uence, his or her probabilis-
tic beliefs about other events, then we are led to regard those other beliefs as
by-products of, or unrelated to, the individual�s belief about the premise in

5These assumptions might be given exogenously; or they might be determined endogenously
based on the experts� probability functions (e.g., based on how dependent or independent the
conjuncts are according to these probability functions).
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question. It then seems reasonable to treat those other beliefs as irrelevant
to the question of what probability should be collectively assigned to that
premise. (More precisely, any beliefs about other events provide no rele-
vant additional information once the individual�s belief about the premise
is given.)

� Second, the premise-based approach can be motivated by appealing to the
idea of a �rational collective agent� that forms its probabilistic beliefs by
reasoning from premises to conclusions. This kind of collective reasoning
can be implemented by �rst aggregating the probabilities for the premises
and then letting these constrain the probabilities assigned to other events.
In the case of binary judgment aggregation, Pettit (2001) has described this
process as the �collectivization of reason�.

� Third, as mentioned in the introduction, one might simply de�ne the
premises as the events for which it is desirable that the collective probabili-
ties depend solely on the event-speci�c individual probabilities. This would
render the requirement of independence on premises justi�ed by de�nition.

3.2 Consensus preservation on premises

Informally, our second requirement on premise-based opinion pooling says that
whenever there is unanimous agreement among the individuals about the prob-
ability of certain events, this agreement should be preserved collectively. We
distinguish between di¤erent versions of this requirement. The most familiar one
is the following:

Consensus preservation. For all A 2 � and all P1; :::; Pn 2 P�, if, for all i,
Pi(A) = 1, then PP1;:::;Pn(A) = 1.

6

A second, less demanding version of the requirement is restricted to events in
the sub-agenda X of premises.

Consensus preservation on X (�on premises�). For all A 2 X and all
P1; :::; Pn 2 P�, if, for all i, Pi(A) = 1, then PP1;:::;Pn(A) = 1.

Restricting consensus preservation in this way may be plausible because a con-
sensus on any event outsideX may be considered less compelling than a consensus
on a premise in X, for reasons similar to those for which we restricted event-wise
independence to premises. A consensus on a non-basic event could be �spurious� in
the sense that there might not be any agreement on its basis (see Mongin 2005).7

6Equivalently, one can demand the preservation of the unanimous assignment of probability
0.

7In our companion paper (Dietrich and List 2013b), we make the opposite move of extend-
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We also consider a third version of consensus preservation, which is still re-
stricted to premises, but refers to conditional probabilities. It says that if all
individuals assign a conditional probability of 1 to some premise given another,
then this should be preserved collectively.8

Conditional consensus preservation on X (�on premises�). For all A;B 2
X and all P1; :::; Pn 2 P�, if, for all i, Pi(AjB) = 1 (provided Pi(B) 6= 0), then
PP1;:::;Pn(AjB) = 1 (provided PP1;:::;Pn(B) 6= 0).

Conditional consensus preservation on X is equivalent to another requirement.
This says that if all individuals agree that some premise implies another with
probabilistic certainty (i.e., the probability of the �rst event occurring without
the second is zero), then that agreement should be preserved collectively.

Implication preservation on X (�on premises�). For all events A;B 2 X
and all P1; :::; Pn 2 P�, if, for all i, Pi(AnB) = 0, then PP1;:::;Pn(AnB) = 0.

The equivalence between conditional consensus preservation onX and implica-
tion preservation onX follows from the fact that the clause �Pi(AjB) = 1 (provided
Pi(B) 6= 0)� is equivalent to �Pi(BnA) = 0�, and the clause �PP1;:::;Pn(AjB) = 1
(provided PP1;:::;Pn(B) 6= 0)� is equivalent to �PP1;:::;Pn(BnA) = 0�. Thus the state-
ment of conditional consensus preservation on X can be reduced to that of impli-
cation preservation on X (except that the roles of A and B are swapped).

This equivalence also illuminates the relationship between conditional con-
sensus preservation on X and consensus preservation on X, because the former,
re-formulated as implication preservation on X, clearly implies the latter. Simply
note that, in the statement of implication preservation onX, taking B = Ac yields
P (AnB) = P (A), so that a unanimous zero probability of any event A in X must
be preserved, which is equivalent to consensus preservation on X.

In fact, conditional consensus preservation on X, when re-formulated as im-
plication preservation on X, is also easily seen to be equivalent to a further
unanimity-preservation requirement, which refers to unanimous assignments of
probability 1 to a union of two events in X (just note that AnB has probability 0
if and only if Ac[B has probability 1). This also shows that conditional consensus
preservation on X is logically weaker than consensus preservation in its original
form (on all of �), since it does not require preservation of unanimous assignments

ing consensus preservation to events outside the agenda. More precisely, we extend consensus
preservation to events constructible from events in the agenda using the standard operations of
conjunction (intersection), disjunction (union), or negation (complementation). In the present
paper, there is no point in trying to extend consensus preservation to other events, since there
are no events outside the agenda constructible from events in it (the agenda is a �-algebra and
is therefore closed under the relevant operations).

8We are indebted to Richard Bradley for suggesting this formulation of the requirement.
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of probability 1 to intersections of two events in X, or unions or intersections of
more than two events in X.

The following proposition summarizes the logical relationships between the dif-
ferent consensus-preservation requirements (in part (a)) and adds another simple
but useful observation (in part (b)).

Proposition 1 (a) For any sub-agenda X of �, conditional consensus preserva-
tion on X

� implies consensus preservation on X;
� is implied by (global) consensus preservation;
� is equivalent to implication preservation on X, and to each of the following
two requirements:
[8i Pi(A[B) = 1]) PP1;:::;Pn(A[B) = 1, for all A;B 2 X, P1; :::; Pn 2 P�;
[8i Pi(A\B) = 0]) PP1;:::;Pn(A\B) = 0, for all A;B 2 X, P1; :::; Pn 2 P�.

(b) For the maximal sub-agenda X = �, all of these requirements are equivalent.

4 A class of applications

So far, all our examples of opinion pooling problems have involved events corre-
sponding to propositions in natural language, such as �it will rain�. As argued in
our companion paper (Dietrich and List 2013b), in such applications the classical
assumption that the agenda is a �-algebra (which we have retained here) is often
unnatural.

However, there is a second class of applications, in which it is more natural to
de�ne the agenda as a �-algebra, �, and to restrict the independence requirement
to some sub-agenda X. Suppose we wish to estimate the distribution of a real-
valued or vector-valued variable, such as rainfall or the number of insurance claims
in a particular period. Here, the set of worlds 
 could be R, Z, N, or f0; 1; :::;mg,
or it could be Rk, Zk, Nk, or f0; 1; :::;mgk (for natural numbers m and k). In such
cases, the focus on the �-algebra of events seems more realistic. First, we may
need a full probability distribution on that �-algebra. Second, individuals may be
able to come up with such a probability distribution, because, in practice, they
can do the following:

� �rst choose some parametric class of probability functions (e.g., the class of
Gaussian distributions if 
 = R, Poisson distributions if 
 = N, or binomial
distributions if 
 = f0; 1; :::;mg);

� then estimate the relevant parameter(s) of the distribution (e.g., the mean
and standard deviation in the case of a Gaussian distribution).

Because the agenda in this kind of application (e.g., the �-algebra of Borel
sets over R, or the power set of N) contains very complicated events, it would
be implausible to require event-wise independent aggregation for all such events.
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For instance, suppose 
 = R, and consider the event that a number�s distance to
the nearest prime exceeds 37. It would seem arti�cial to determine the collective
probability for that event without paying attention to the probabilities of other
events. Here, the sub-agenda X on which event-wise independence is plausible is
likely to be much smaller than the full �-algebra �.

Let us summarize how such applications di¤er from the above mentioned ap-
plications involving events that correspond to natural-language propositions such
as �it will rain� or �atmospheric CO2 causes global warming�:

(1) 
 is a subset of R or of a higher-dimensional Euclidean space Rk, rather
than a set of �possible worlds� speci�ed by natural-language descriptions;

(2) it is often natural to arrive at a probability function by choosing a parametric
family of such functions (such as the family of Gaussian distributions) and
then specifying the relevant parameter(s), while this approach would seem
ad hoc in the other kind of application;

(3) in practice, we may be interested in a probability function on the entire
�-algebra (e.g., in order to compute the mean of the distribution and other
moments), rather than just in the probabilities of speci�c events.

5 When is opinion pooling neutral on premises?

We now show that, once there are certain interconnections between the premises in
X, any pooling function satisfying independence on X and consensus preservation
in one of the senses we have introduced must be neutral onX. This means that the
pattern of dependence between individual and collective probability assignments
is the same for all premises. In the next section, we turn to the question of whether
our axioms imply linear pooling on premises, over and above neutrality.

Formally, a pooling function for agenda � is called neutral on X (� �) if there
exists some function D : [0; 1]n ! [0; 1] � the local pooling criterion for events in
X � such that, for every pro�le (P1; :::; Pn) 2 P

n
�, the collective probability of any

event A in X is given by

PP1;:::;Pn(A) = D(P1(A); :::; Pn(A)):

If X = �, neutrality onX reduces to neutrality in the familiar global sense, brie�y
mentioned in the introduction.

Our �rst result uses the strongest consensus-preservation requirement we have
introduced, namely �global� consensus preservation (on all of �). Here, we obtain
the neutrality conclusion as soon as the sub-agenda of premises satis�es a very
mild condition: it is �non-nested�. We call a sub-agenda X nested if it has the
form X = fA;Ac : A 2 X+g for some set of events X+ which is linearly ordered
by set-inclusion, and non-nested otherwise. For instance, X = fA;Acg is nested
(take X+ := fAg), as is X = fA;Ac; A\B; (A\B)cg (take X+ = fA;A\Bg). By
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contrast, X = fA;Ac; B;Bcg is non-nested when the events A and B are logically
independent. Also, the above-mentioned sub-agendaX = fA1; A

c
1; A2; A

c
2; A3; A

c
3g

in our climate-change example is non-nested. Further examples are given in our
companion paper (Dietrich and List 2013b).

Theorem 1 (a) For any non-nested (�nite9) sub-agenda X of the �-algebra �,
every pooling function F : Pn� ! P� satisfying independence on X and
(global) consensus preservation is neutral on X.

(b) For any nested sub-agenda X of the �-algebra � (where X is �nite and
distinct from f?;
g), there exists a pooling function F : Pn� ! P� satisfying
independence on X and (global) consensus preservation that is not neutral
on X.

The result continues to hold if we weaken consensus preservation to conditional
consensus preservation on premises:

Theorem 2 (a) For any non-nested (�nite) sub-agenda X of the �-algebra �,
every pooling function F : Pn� ! P� satisfying independence on X and
conditional consensus preservation on X is neutral on X.

(b) For any nested sub-agenda X of the �-algebra � (where X is �nite and not
f?;
g), there exists a pooling function F : Pn� ! P� satisfying indepen-
dence on X and conditional consensus preservation on X that is not neutral
on X.

However, if we weaken the consensus-preservation requirement further � namely
to consensus preservation on X � then the neutrality conclusion follows only if
the events within the sub-agendaX exhibit stronger interconnections. Speci�cally,
the set X must be �path-connected�, as originally de�ned in binary judgment-
aggregation theory (often under the name �total blockedness�; see Nehring and
Puppe 2010). To de�ned path-connectedness formally, we begin with a prelimi-
nary notion. Given the sub-agenda X, we say that an event A 2 X conditionally
entails another event B 2 X � written A `� B � if there is a subset Y � X (pos-
sibly empty, but not uncountably in�nite) such that fAg[Y entails B, where, for
non-triviality, Y [fAg and Y [fBcg are each consistent.10 In our climate-change
example with sub-agenda X = fA1; A

c
1; A2; A

c
2; A3; A

c
3g, A1 conditionally entails

A3 (take Y = fA2g), but none of A
c
1, A

c
2, and A3 conditionally entails any event

in X other than itself.

9The �niteness assumptions in Theorems 1(a), 1(b), 2(a), 2(b), 3(a), 4(a), 4(b), 5(a), and
6(a) could each be replaced by the assumption that the �-algebra generated by X is the agenda
� (rather than a sub-�-algebra of �), as is clear from our proofs. It might be that some of
these �niteness assumptions (or their substitutes) � especially in Theorems 1(b), 2(b) and 4(b)
� could be dropped.
10A set S of events is consistent if \C2SC is non-empty; S entails an event B if \C2SC � B.
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We call the sub-agenda X path-connected if any two events A;B 2 Xnf?;
g
can beconnected by a path of conditional entailments, i.e., there exist events
A1; :::; Ak 2 X (k � 1) such that A = A1 `

� A2 `
� ::: `� Ak = B, and

non-path-connected otherwise. For example, suppose X = fA;Ac; B;Bc; C; Ccg,
where fA;B;Cg is a partition of 
 (and A;B;C 6= ?). Then X is path-
connected. For instance, to see that there is a path from A to B, note that
A `� Cc (take Y = ?) and Cc `� B (take Y = fAcg). Many sub-agendas are
not path-connected, including all nested sub-agendas X (6= f?;
g) and the sub-
agenda X = fA1; A

c
1; A2; A

c
2; A3; A

c
3g in the climate-change example.

Theorem 3 (a) For any path-connected (�nite) sub-agenda X of the �-algebra
�, every pooling function F : Pn� ! P� satisfying independence on X and
consensus preservation on X is neutral on X.

(b) For any non-path-connected (�nite) sub-agenda X of the �-algebra �, there
exists a pooling function F : Pn� ! P� satisfying independence on X and
consensus preservation on X that is not neutral on X.

6 When is opinion pooling linear on premises?

Our next question is whether, and for which sub-agendas X, our requirements on
an opinion pooling function imply linearity on premises, over and above neutrality.
Formally, a pooling function for agenda � is called linear on X (� �) if there
exist real-valued weights w1; :::; wn � 0 with w1+ :::+wn = 1 such that, for every
pro�le (P1; :::; Pn) 2 P

n
�, the collective probability of any event A in X is given by

PP1;:::;Pn(A) =
nX

i=1

wiPi(A).

If X = �, linearity on X reduces to linearity in the global sense, familiar from
the established literature.

As in the case of neutrality, whether our axioms imply linearity on a given
sub-agenda X depends on how the events in X are interconnected and which
consensus-preservation requirement we impose on the pooling function. Again,
our �rst result uses the strongest consensus-preservation requirement and applies
to a very large class of sub-agendas.

Theorem 4 (a) For any non-nested (�nite) sub-agenda X of the �-algebra �
with jXnf
;?gj > 4, every pooling function F : Pn� ! P� satisfying inde-
pendence on X and (global) consensus preservation is linear on X.

(b) For any other sub-agenda X of the �-algebra � (where X is �nite and
distinct from f?;
g), there exists a pooling function F : Pn� ! P� satisfying
independence on X and (global) consensus preservation that is not linear on
X.
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If we weaken consensus preservation to conditional consensus preservation on
X, the linearity conclusion still follows, but only if the sub-agenda X is �non-
simple� � a condition stronger than non-nestedness, but still weaker than path-
connectedness.11 The notion of non-simplicity also comes from binary judgment-
aggregation theory, where the non-simple agendas are those that are susceptible
to majority inconsistencies, the judgment-aggregation analogues of Condorcet�s
paradox (e.g., Nehring and Puppe 2010, Dietrich and List 2007). Formally, a sub-
agenda X is non-simple if it has a minimal inconsistent subset Y � X of more
than two (but not uncountably many) events, and simple otherwise. (A set Y is
minimal inconsistent if it is inconsistent but all its proper subsets are consistent.)
For example, the sub-agenda X = fA1; A

c
1; A2; A

c
2; A3; A

c
3g in our climate-change

example is non-simple, since its three-element subset Y = fA1; A2; A
c
3g is minimal

inconsistent. By contrast, a sub-agenda of the form X = fA;Acg is simple. For
further discussion, see our companion paper (Dietrich and List 2013b).

Theorem 5 (a) For any non-simple (�nite) sub-agenda X of the �-algebra �,
every pooling function F : Pn� ! P� satisfying independence on X and
conditional consensus preservation on X is linear on X.

(b) For any simple sub-agenda X of the �-algebra � (where X is �nite and
distinct from f?;
g), there exists a pooling function F : Pn� ! P� satisfying
independence on X and conditional consensus preservation on X that is not
linear on X.

Finally, if we impose only the weakest of our three consensus-preservation
requirements � consensus preservation onX � then the linearity conclusion follows
only if the sub-agenda X is path-connected and satis�es an additional condition.
A su¢cient such condition is �partitionality�. A sub-agenda X is partitional if
some subset Y � X partitions 
 into at least three non-empty events (where Y
is �nite or countably in�nite), and non-partitional otherwise. As an illustration,
recall our earlier example of a sub-agenda given by X = fA;Ac; B;Bc; C; Ccg,
where fA;B;Cg partitions 
 (with A;B;C 6= ?). This sub-agenda is both path-
connected (as mentioned above) and partitional.

Theorem 6 (a) For any path-connected and partitional (�nite) sub-agenda X of
the �-algebra �, every pooling function F : Pn� ! P� satisfying indepen-
dence on X and consensus preservation on X is linear on X.

(b) For any non-pathconnected (�nite) sub-agenda X of the �-algebra �, there
exists a pooling function F : Pn� ! P� satisfying independence on X and
consensus preservation on X that is not linear on X.

It is clear from part (b) that path-connectedness of the premises is necessary
for the linearity conclusion to follow. The other condition, partitionality, is not
necessary. But it is not redundant:

11To be precise, path-connectedness implies non-simplicity as long as X 6= f?;
g.
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Proposition 2 For some path-connected and non-partitional (�nite) sub-agenda
X of the �-algebra �, there exists a pooling function F : Pn� ! P� satisfying
independence on X (even neutrality on X) and consensus preservation on X that
is not linear on X.12

7 Classical results as special cases

As should be evident, if we apply our results to the maximal sub-agendaX = �, we
obtain classic results (by Aczél and Wagner 1980 and McConway 1981) as special
cases. To see why this is the case, we note three things. First, when X = �, our
various conditions on the sub-agenda X all reduce to a single condition on the
size of the �-algebra �.

Lemma 1 For the maximal sub-agenda X = � (where � 6= f
;?g), the con-
ditions of non-nestedness, non-simplicity, path-connectedness, and partitionality
are all equivalent, and they all hold if and only if j�j > 4, i.e., if and only if � is
not of the form fA;Ac;
;?g.

Second, when X = �, independence, neutrality, and linearity on X reduce to
independence, neutrality, and linearity in the familiar �global� sense, as already
noted. Third, our various consensus-preservation requirements all become equiv-
alent, by Proposition 1.

In consequence, our six theorems reduce to two classic results:13

� Theorems 1 to 3 reduce to the result that all pooling functions satisfying
independence and consensus preservation are neutral if jXj > 4, but not if
jXj = 4;

� Theorems 4 to 6 reduce to the result that all pooling functions satisfying
independence and consensus preservation are linear if jXj > 4, but not if
jXj = 4.

(The case j�j < 4 is uninteresting because it means that � is the trivial �-
algebra f
;?g.) Let us slightly re-formulate these two results:

Corollary 1 For the �-algebra �,

(a) if jXj > 4, every pooling function F : PnX ! PX satisfying independence
and consensus preservation is linear (and by implication neutral);

(b) if jXj = 4, there exists a pooling function F : PnX ! PX satisfying inde-
pendence and consensus preservation that is not neutral (and by implication
not linear).

12This assumes that the agenda � is not very small, i.e., contains more than 23 = 8 events
(e.g., � = 2
 with j
j > 3). Note that, as � is a �-algebra, it has the size 2k for some
k 2 f1; 2; 3; :::g or is in�nite.
13We require no restriction to a �nite �, as observed in footnote 9.
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A Proofs

This appendix contains all proofs. Since our results are mathematically related
to those in the companion paper (Dietrich and List 2013b), some parts of the
present results (notably, parts (a) of each theorem) will not be proved directly
but reduced to results in the companion paper.

In Section A.1 we prove some lemmas which will help us translate between
our results and those in the companion paper. Section A.2 contains the proof of
Theorem 1, Section A.3 that of Theorems 2, and so on until Section A.7. Finally,
Section A.8 contains the proof of Proposition 2.

A.1 The relationship to opinion pooling on general agen-

das

We now relate premise-based opinion pooling to opinion pooling on a general
agenda as introduced in the companion paper. We start by generalizing the frame-
work to arbitrary agendas. In general, an agenda is a non-empty setX of events of
the form A � 
 which is closed under complementation (i.e., A 2 X ) Ac 2 X).
Interpretationally, X contains the events on which opinions are formed. It need
not be closed under disjunction (union) or conjunction (intersection) of two events,
and thus need not take the classical form of a �-algebra. Examples are given in
the companion paper.

Given an agenda X, an opinion function is a function P : X ! [0; 1] which is
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coherent, i.e., extendible to a probability function on the �-algebra �(X) generated
by X (i.e., the smallest �-algebra which includes X, constructible by closing X
under countable unions and complements). Let PX be the set of all opinion
functions for agenda X. Note that if X happens to be a �-algebra, PX consists of
all probability functions on X, in line with the notation used above. An opinion
pooling function for agenda X is a function PnX ! PX assigning to each pro�le
(P1; :::; Pn) of individual opinion functions a collective opinion function, typically
denoted PP1;:::;Pn. We call the pooling function linear and neutral, respectively, if
it is linear and neutral on X in line with the de�nition above.

Crucially, a pooling function for a �-algebra � induces new pooling functions
for any sub-agendas X on which it is independent. Formally, a pooling function
F : Pn� ! P� for agenda � is said to induce the pooling function F

0 : PnX ! PX
for (sub-)agenda X if F and F 0 generate the same collective opinions within X,
i.e.,

F 0(P1jX ; :::; PnjX) = F (P1; :::; Pn)jX for all P1; :::; Pn 2 P�

(and if, in addition, PX = fP jX : P 2 P�g, where this addition holds auto-
matically whenever X is �nite or �(X) = �14). Our axiomatic requirements on a
pooling function for agenda � � i.e., independence on a sub-agenda X and various
consensus requirements � should be compared with the following requirements on
a pooling function for the agenda X (introduced and discussed in the companion
paper). The �rst two requirements are unrestricted versions of independence and
consensus preservation:

Independence. For each event A 2 X, there exists a function DA : [0; 1]
n !

[0; 1] (the local pooling criterion forA) such that, for all P1; :::; Pn 2 PX , PP1;:::;Pn(A)
= DA(P1(A); :::; Pn(A)).

Consensus preservation. For all A 2 X and all P1; :::; Pn 2 PX , if Pi(A) = 1
for all individuals i then PP1;:::;Pn(A) = 1.

The next two requirements are two di¤erent extensions of consensus preser-
vation, namely to either implicitly revealed or unrevealed beliefs. An individual
i�s implicitly revealed beliefs are given by any probabilities of events in �(X)nX
which are �implied� by the explicitly revealed beliefs, i.e., by the submitted opin-
ion function Pi: they hold under every extension of Pi to a probability function
on �(X). For instance, if Pi assigns probability 1 to an event A 2 X, then the
agent implicitly reveals certainty of events B � A outside X. The following axiom
extends consensus preservation to implicitly revealed beliefs:

14In this case, each opinion function in PX is extendible not just to a probability function
on �(X), but also to one on �. Probability theorists will be aware that the extendibility of a
probability function to a larger �-algebra cannot be taken for granted.
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Implicit consensus preservation. For all A 2 �(X) and all P1; :::; Pn 2 PX , if
each Pi implies certainty of A (i.e., P i(A) = 1 for every extension P i of Pi to a
probability function on �(X)), then so does PP1;:::;Pn.

By contrast, individual i�s unrevealed beliefs are any probabilistic beliefs which
the agent privately holds relative to events in �(X)nX, and which are inacces-
sible based on the submitted opinion function Pi because di¤erent extensions of
Pi to a probability function on �(X) assign di¤erent probabilities to the events
in question. The following axiom requires the collective opinion function to be
compatible with any unanimously held certainty of an event � including any un-
revealed certainty, which is not implied by the submitted opinion functions but
is consistent with them. This ensures that no (possibly unrevealed) consensus is
ever overruled.

Consensus compatibility. For all A 2 �(X) and all P1; :::; Pn 2 PX , if each Pi
is consistent with certainty of A (i.e., P i(A) = 1 for some extension P i of Pi to a
probability function on �(X)), then so is PP1;:::;Pn.

A �nal requirement pertains to conditional beliefs. Note that, based on an in-
dividual i�s opinion function Pi, the conditional belief Pi(AjB) = Pi(A\B)=Pi(B)
of one agenda event A given another B (where Pi(B) 6= 0) is typically unde�ned,
since typically A \ B 62 X, so that Pi(A \ B) is unde�ned. Hence, if the agent
happens to be certain of A given B, then this conditional certainty is typically
unrevealed. Our axiom of conditional consensus compatibility requires that any
(possibly unrevealed) unanimous conditional certainty should not be overruled.
In fact, we require something subtly stronger: any set of (possibly unrevealed)
unanimous conditional certainties should not be overruled (see the companion
paper for details).

Conditional consensus compatibility. For all P1; :::; Pn 2 PX , and all �nite
sets S of pairs (A;B) of events in X, if every opinion function Pi is consistent
with certainty of A given B for all (A;B) in S (i.e., some extension P i of Pi to a
probability function on �(X) satis�es P i(AjB) = 1 for all pairs (A;B) 2 S such
that Pi(B) 6= 0), then so is the collective opinion function PP1;:::;Pn.

The following lemma shows how properties of a pooling function for a �-
algebra translate into corresponding properties of an induced pooling function for
a sub-agenda.

Lemma 2 Suppose pooling function F for �-algebra � induces pooling function
F 0 for sub-agenda X (where X is �nite or �(X) = �). Then:

� F 0 is independent (respectively neutral, linear) if and only if F is independent
(respectively neutral, linear) on X,
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� F 0 is consensus-preserving if and only if F is consensus-preserving on X,
� F 0 is consensus-compatible if F is consensus-preserving,
� F 0 is conditional-consensus-compatible if F is conditional-consensus-pre-
serving on X.

This lemma follows from a more general result proved in the companion paper:

Lemma 3 Consider a �-algebra � and a sub-agenda X (where X is �nite or
�(X) = �). Any pooling function for X is

(a) induced by some pooling function for agenda �,
(b) independent (respectively neutral, linear) if and only if every inducing pooling

function for agenda � is independent (respectively neutral, linear) on X,
where �every� can be replaced by �some�,

(c) consensus-preserving if and only if every inducing pooling function for agenda
� is consensus-preserving on X, where �every� can be replaced by �some�,

(d) consensus-compatible if and only if some inducing pooling function for agenda
� is consensus-preserving,

(e) conditional-consensus-compatible if and only if some inducing pooling func-
tion for agenda � is conditional-consensus-preserving on X

(where in (d) and (e) the �only if � claim assumes that X is �nite).

We �nally note a simple su¢cient condition for when a given pooling function
induces a new one for a sub-agenda (see the companion paper for the simple
proof):

Lemma 4 If a pooling function for a �-algebra � is independent on a sub-agenda
X (where X is �nite or �(X) = �), then it induces a pooling function for agenda
X.

A.2 Proof of Theorem 1

We draw on a measure-theoretic fact (proved in the companion paper):

Lemma 5 Every probability function on a �nite sub-�-algebra of �-algebra � can
be extended to a probability function on �.

Proof of Theorem 1. (a) We reduce this part to the companion paper�s The-
orem 1(a). Let X be a non-nested �nite sub-agenda of the �-algebra agenda �.
Suppose F : Pn� ! P� is independent on X and (globally) consensus preserving.
By independence on X (and �niteness of X), F induces a pooling function F 0

for agenda X (see Lemma 4). Now F 0 is independent and consensus-compatible
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(by Lemma 2), hence neutral by the companion paper�s Theorem 1(a). So F is
neutral on X (see Lemma 2).

(b) Consider a �nite nested sub-agenda X 6= f?;
g of the �-algebra agenda
�. (As will become clear, the �niteness assumption could be replaced by the as-
sumption that �(X) = �. Under this alternative assumption, the �Claim� below
can be skipped, and the rest of the proof remains almost una¤ected.) We con-
struct a pooling function (P1; :::; Pn) 7! PP1;:::;Pn for agenda � with the relevant
properties. Without loss of generality, we may suppose that ?;
 2 X. We start
by establishing the following fact:

Claim. If Theorem 1(b) holds in the case that �(X) = �, then it holds in
general.

Indeed, suppose Theorem 1(b) holds in the special case. Let �0 := �(X)
(� �). By assumption, there exists a pooling function F 0 : Pn�0 ! P�0 with the
relevant properties. Let A be the set of atoms of the (�nite) �-algebra �0. We
de�ne a pooling function F : Pn� ! P� as follows. Consider P1; :::; Pn 2 P�
and let P 0 := F 0(P1j�0 ; :::; Pnj�0). For each A 2 A such that P 0(A) 6= 0 there is
an individual iA such that PiA(A) 6= 0, since otherwise all individuals assign a
probability of one to 
nA while P 0(
nA) 6= 1, a contradiction as F 0 is consensus-
preserving. By Lemma 5, P 0 can be extended to a probability function P on �.
It is clear from that lemma�s proof (given in the companion paper) that we may
assume without loss of generality that

P (�jA) = PiA(�jA) for each A 2 A such that P (A) 6= 0:

(In that proof, it su¢ces to choose the QA�s appropriately, since each QA equals
P (�jA) provided P (A) 6= 0.) We de�ne F (P1; :::; Pn) to be this P . It remains to
show that the just-de�ned pooling function F inherits all relevant properties from
F 0. This is obvious for the properties of independence on X and non-neutrality
on X. To show that F is (globally) consensus-preserving, consider any B 2 � and
any P1; :::; Pn 2 P� such that P1(B) = � � � = Pn(B) = 1. We have to show that
P (B) = 1, where P := F (P1; :::; Pn). Note �rst that

P (B) =
X

A2A:P (A) 6=0

P (BjA)P (A).

Here (in the notation above) each P (BjA) equals PiA(BjA), which, in turn, equals
1 because PiA(B) = 1. So

P (B) =
X

A2A:P (A) 6=0

P (A) = 1:

This proves the claim.

By the previous �Claim�, we may assume without loss of generality that �(X) =
�. As X is nested, we may write it as X = fA;Ac : A 2 X+g for a subset X+ � X
which is linearly ordered by set-inclusion, and which contains both ? and 
.
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As an ingredient to our construction, we consider any pooling function for
agenda � which is neutral (at least) on X and consensus-preserving and whose
pooling criterion on X, denoted D : [0; 1]n ! [0; 1], is at least weakly increas-
ing in each argument. (For instance we might use dictatorship by individual 1,
given by (P1; :::; Pn) 7! P1, with pooling criterion given by D(t1; :::; tn) = t1.) As
X 6= f?;
g, there is a contingent event A 2 X. As A is contingent, there are
P1; :::; Pn 2 P� which all assign probability 1=2 to A (hence to A

c), so that the
collective probabilities of A and of Ac are each given by D(1=2; :::; 1=2). As these
probabilities sum to 1, it follows that

D(1=2; 1=2; :::; 1=2) = 1=2: (1)

We now transform this on X neutral pooling function into a pooling function
(P1; :::; Pn) 7! PP1;:::;Pn which is non-neutral on X, but still independent on X and
consensus-preserving. To do so, we consider a function T : [0; 1] ! [0; 1] such
that (i) T (1=2) 6= 1=2, (ii) T (0) = 0 and T (1) = 1, (iii) T is at least weakly
increasing, and (iv) T is Lipschitz continuous, i.e., there is a K > 0 such that
jT (x)� T (y)j � K jx� yj for all x; y 2 [0; 1]. (For instance, T could be de�ned
by T (x) = minf2x; 1g.)

Now consider any P1; :::; Pn 2 P�. We have to de�ne the collective probability
function PP1;:::;Pn. We write P for the result of applying the neutral pooling
function to (P1; :::; Pn). To anticipate, our de�nition will imply that

PP1;:::;Pn(C) = T (P (C)) whenever C 2 X+.

As a �rst step towards our de�nition, we de�ne PP1;:::;Pn on the subdomain

eX := fA \B : A;B 2 Xg = fBnA : A;B 2 X+ such that A � Bg:

The restriction of PP1;:::;Pn to eX, to be denoted g, is de�ned as follows. Each
C 2 eX is uniquely representable as C = BnA with A;B 2 X+ and A � B (and
A = B = ? if C = ?), and we de�ne

g(C) = T (P (B))� T (P (A))

= T (D(P1(B); :::; Pn(B)))� T (D(P1(A); :::; Pn(A))).

In particular,

g(C) =

�
T (P (C)) = T (D(P1(C); :::; Pn(C))) if C 2 X+

1� T (P (Cc)) = 1� T (D(P1(C
c); :::; Pn(C

c))) if C 2 XnX+,
(2)

because, �rstly, each C 2 X+ can be written as Cn? where C;? 2 X+, and,
secondly, each C 2 XnX+ can be written as 
nC

c where 
; Cc 2 X+ and where
T (P (
)) = T (1) = 1.

Note that eX is a semi-ring in 
 (since (i) ? 2 eX, (ii) C;C 0 2 eX ) C\C 0 2 eX,
and (iii) for all C;C 0 2 eX the di¤erence CnC 0 is a union of �nitely many � in
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fact, at most two � events in eX). We next show that the function g on this semi-
ring is �-additive. First, g is �nitely additive, i.e., for all disjoint C1; C2 2 eX, if
C1 [ C2 2 eX, then g(C1 [ C2) = g(C1) + g(C2), as is easily checked using the
additivity of P and the de�nition of g. To show �-additivity, consider pairwise
disjoint C1; C2; ::: 2 eX such that [1k=1Ck 2

eX. We have to show that

�K := g([
1
k=1Ck)�

KX

k=1

g(Ck)! 0 as K !1:

For all K 2 f1; 2; :::g, note that the di¤erence

([1k=1Ck) n
�
[Kk=1Ck

�
= [1k=K+1Ck

may not belong to eX, but can be partitioned into a �nite set CK of events in
eX. Clearly, CK [ fC1; :::; CKg partitions [1k=1Ck. By carefully inspecting the
de�nition of g, one can see that

�K =
X

C2CK

g(C).

So, since g(C) � KP (C) for each C 2 eX (by the de�nition of g and the property
(iv) of T ), we have

�K � K
X

C2CK

P (C) = KP ([1k=K=1Ck),

As K ! 1, we have P ([1k=K=1Ck) ! 0 (by �-additivity of P ), and hence,
�K ! 0, as required.

Since g is �-additive, and of course also �-�nite (i.e., 
 is a union of count-

ably many events in eX of �nite g-measure, which is trivially true since 
 2 eX),
Caratheodory�s Extension Theorem tells us that g extends uniquely to a mea-
sure on �( eX) = �(X) = �. Let PP1;:::;Pn be this extension. PP1;:::;Pn is indeed a
probability measure since, �rstly, g (and hence, PP1;:::;Pn) is non-negative by the

weak increasingness of T , and, secondly, PP1;:::;Pn(
) = 1 because 
 2 eX and
g(
) = T (1) = 1.

To complete the proof, we must show that the pooling function just de�ned,
(P1; :::; Pn) 7! PP1;:::;Pn, is independent on X, (globally) consensus-preserving, but
not neutral on X.

Independence on X. This holds because, for all P1; :::; Pn 2 P�, the function
PP1;:::;Pn is an extension of a function g which satis�es (2). Notice that the pooling
criterion DC for each C 2 X+ is de�ned as T �D, and the pooling criterion DC

for each C 2 CnX+ is de�ned by t 7! 1� T �D(1� t).

Non-neutrality on X. To show non-neutrality on X, it su¢ces to show that,
for some C 2 Xnf
;?g, the pooling criteria DC and DCc di¤er. (We require that
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C 62 f
;?g to ensure that the criteria DC and DCc are uniquely determined by
the pooling function; the criteria D
 and D? are not uniquely determined and
could be chosen to di¤er even if the pooling function were neutral on X.) This
follows from the following argument. First, Xnf
;?g 6= ? since X 6= f?;
g by
assumption. So there is a pair C;Cc 2 Xnf
;?g. Without loss of generality,
assume C 2 X+ and C

c 2 XnX+. By the previous proof of independence on X,
DC = T � D and DCc = 1 � T � D(1 � �). It follows that DC 6= DCc, because
DC(1=2; :::; 1=2) 6= DCc(1=2; :::; 1=2), as is clear from the fact that

DAj(1=2; :::; 1=2) = T �D(1=2; :::; 1=2) = T (1=2),

DAcj
(1=2; :::; 1=2) = 1� T �D(1� 1=2; :::; 1� 1=2)

= 1� T �D(1=2; :::; 1=2) = 1� T (1=2),

where T (1=2) 6= 1=2.

Consensus preservation. Consider any P1; :::; Pn 2 P� and any A 2 � such
that each Pi(A) is one. We have to show that PP1;:::;Pn(A) = 1. Let P be the result
of pooling P1; :::; Pn using the (at least on X) neutral pooling rule de�ned above.
Since that pooling function is consensus-preserving, P (A) = 1. Note further that

there is a K > 0 such that PP1;:::;Pn(B) � KP (B) for all B 2 eX (by property
(iv) above). Since the (�-additive and �-�nite) restrictions PP1;:::;Pnj eX and KP j eX
satisfy the inequality PP1;:::;Pnj eX � KP j eX , their (by Caratheodory�s Extension

Theorem uniquely existing) measure extensions on �( eX) = �(X) = � satisfy the
analogous inequality. So, as these extensions are simply PP1;:::;Pn and KP , we
have PP1;:::;Pn � KP . In particular, PP1;:::;Pn(A

c) � KP (Ac) = K(1 � P (A)) =
K(1� 1) = 0, whence PP1;:::;Pn(A) = 1. �

A.3 Proof of Theorem 2

(a) This part is reducible to the companion paper�s Theorem 2(a) via Lemmas 4
and 2, in the same way in which we also reduced Theorem 1(a) to the companion
paper�s Theorem 1(a).

(b) This part follows immediately from Theorem 1(b), since (global) consensus
preservation implies conditional consensus preservation on X by Proposition 1. �

A.4 Proof of Theorem 3

(a) This part is reducible to the companion paper�s Theorem 3(a) via Lemmas 4
and 2, just as Theorem 1(a) is reducible to the companion paper�s Theorem 1(a),
and Theorem 2(a) to the companion paper�s Theorem 2(a).

(b) Now let X be a non-path-connected and �nite sub-agenda of the �-algebra
�. As in the proof of Theorem 1(b), we start by proving that we may assume
without loss of generality. that �(X) = �.
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Claim 1. If Theorem 3(b) holds in the case that �(X) = �, then it holds in
general.

Assume Theorem 3(b) holds for the special case and let �0 := �(X) (� �).
By assumption, there is a F 0 : Pn�0 ! P�0 which, on X, is independent and
consensus-preserving but not neutral. Consider a pooling function F : Pn� ! P�
which, for any P1; :::; Pn 2 P�, generates a probability function in P� which
extends F 0(P1j�0 ; :::; Pnj�0) (where such an extension exists by Lemma 5 and the
�niteness of �0). The so-de�ned pooling function F inherits all relevant properties
from F 0: it is, on X, independent, consensus preserving, and non-neutral. This
proves the claim.

Henceforth, let �(X) = �. Notationally, for any sub-�-algebra �� � �, let
A(��) be its set of atoms (i.e., elements of ~�nf?g which are minimal with respect to
set-inclusion). We now de�ne a pooling function for agenda � and show that it has
the desired properties. As an ingredient to the de�nition, let D0 : [0; 1]n ! [0; 1]
and D00 : [0; 1]n ! [0; 1] be the local pooling criteria of two distinct linear pooling
functions; and let �A 2 Xnf?;
g be a (by assumption existing) event such that
not for all A 2 Xnf?;
g there is �A ``� A, where "``�" denotes the transitive
closure of `�. Consider any pro�le (P1; :::; Pn) 2 P

n
�. To de�ne the probability

function PP1;:::;Pn 2 P�, we start by de�ning probability functions on two sub-�-
algebras of �, denoted �0 and �00 and de�ned as the �-algebras generated by the
sets

X 0 : = fA 2 X : �A ``� B for both B 2 fA;Acgg,

X 00 : = fA 2 X : �A ``� B for no B 2 fA;Acgg,

respectively. Let P 0P1;:::;Pn 2 P�0 and P
00
P1;:::;Pn

2 P�00 be de�ned by

P 0P1;:::;Pn(A) = D0(P1(A); :::; Pn(A)) for all A 2 �
0,

P 00P1;:::;Pn(A) = D00(P1(A); :::; Pn(A)) for all A 2 �
00.

These two functions are indeed probability functions (on �0 resp. �00), as they are
linear averages of of probability functions.

Claim 2. The �-algebras �0 and �00 are logically independent, that is: if A0 2 �0

and A00 2 �00 are non-empty, so is A0 \ A00.

Suppose the contrary. Then, as each non-empty element of �0 is a superset
of an atom of �0 and hence of a non-empty intersection of events in X 0, and
similarly for �00, there are consistent sets Y 0 � X 0 and Y 00 � X 00 such that Y 0[Y 00

is inconsistent. Let Y be a minimal inconsistent subset of Y 0 [ Y 00. Y is not a
subset of any of Y 0 and Y 00, because the latter sets are consistent. So there are
A 2 Y \X 0 and B 2 Y \X 00. Note that A `� Bc, a contradiction since A 2 X 0

and Bc 2 X 00. This proves the claim.

We now extend the functions P 0P1;:::;Pn and P
00
P1;:::;Pn

to a probability function

on the �-algebra ~� := �(�0 [�00) = �(X 0 [X 00), in such a way that the events in
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�0 are probabilistically independent of those in �00. By Claim 2, the atoms of ~�
are precisely the intersections of an atom of �0 and one of �00: A(~�) = fA0 \A00 :
A0 2 A(�0); A00 2 A(�00)g. Let ~PP1;:::;Pn be the unique probability function on ~�
that behaves as follows on the atoms:

~PP1;:::;Pn(A
0 \ A00) = P 0P1;:::;Pn(A

0)P 00P1;:::;Pn(A
00) (3)

for all A0 2 A(�0) and all A00 2 A(�00). This function is indeed a probability
function, because

X

A2A(~�)

~PP1;:::;Pn(A) =
X

A02A(�0);A002A(�00)

P 0P1;:::;Pn(A
0)P 00P1;:::;Pn(A

00)

=
X

A02A(�0)

P 0P1;:::;Pn(A
0)

X

A002A(�00)

P 00P1;:::;Pn(A
00)

| {z }
=1

= 1.

As one easily checks, restricting ~PP1;:::;Pn to �
0 (respectively �00) gives P 0P1;:::;Pn

(respectively P 00P1;:::;Pn), and so

~PP1;:::;Pn(A) =

�
D0(P1(A); :::; Pn(A)) for all A 2 �0

D00(P1(A); :::; Pn(A)) for all A 2 �00.
(4)

Before we can extend ~PP1;:::;Pn to the full �-algebra �, we �rst prove another claim.
For all A 2 X such that �A ``� A but not �A ``� Ac, de�ne

AP1;:::;Pn :=

�
A if Pi(A) > 0 for some i
Ac if Pi(A) = 0 for all i.

Claim 3. For all atoms C of ~� (= �(X 0[X 00)) with ~PP1;:::;Pn(C) > 0, the event
C \ (\A2X: �A``�A and not �A``�AcAP1;:::;Pn) is an atom of �.

Let C be as speci�ed, and write CP1;:::;Pn for the event in question. As noted
above, C takes the form C = A0 \ A00 with A0 2 A(�0) and A00 2 A(�00). By
P (C) > 0 and (3), we have ~PP1;:::;Pn(A

0) > 0 and ~PP1;:::;Pn(A
00) > 0. As A0 2

A(�0), we may write A0 = \A2Y 0A for some set Y 0 � X 0 containing exactly
one member of each pair A;Ac 2 X 0. Similarly, A00 = \A2Y 00A for some set
Y 00 � X 00 containing exactly one member of each pair A;Ac 2 X 00. Note also that
\A2X: �A``�A and not �A``�AcAP1;:::;Pn can be written as \A2YP1;:::;PnA, where the set

YP1;:::;Pn = fAP1;:::;Pn : A 2 X; �A ``
� A; not �A ``� Acg

consists of exactly one member of each pair A;Ac 2 Xn(X 0[X 00). Thus CP1;:::;Pn =
\A2Y 0[Y 00[YP1;:::;PnA, where the set Y

0[Y 00[YP1;:::;Pn consists of exactly one member
of each pair A;Ac 2 X. So, as � = �(X), CP1;:::;Pn is either an atom or empty.
Hence it su¢ces to show that CP1;:::;Pn 6= ?. Suppose the contrary. Then Y 0 [
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Y 00 [ YP1;:::;Pn is inconsistent, hence has a minimal inconsistent subset Y . We
distinguish two cases and derive a contradiction in each.

Case 1: there is a B 2 Y \YP1;:::;Pn with �A ``
� B. Consider any B0 2 Y nfBg.

We have (i) not �A ``� B0: otherwise, by B0 `� Bc we would have �A ``� Bc,
hence B 2 X 0, in contradiction as B 2 YP1;:::;Pn. Further, as �A ``� B and
B `� (B0)c, we have (ii) �A ``� (B0)c. By (i) and (ii), letting A := (B0)c, the event
AP1;:::;Pn (2 fA;A

cg) is well-de�ned. As YP1;:::;Pn contains AP1;:::;Pn (2 fA;A
cg),

and contains B0 = Ac but not (B0)c = A, we must have AP1;:::;Pn = A
c. So, for all

i we have Pi(A) = 0, and hence, Pi(B
0) = 1. Since this holds for all B0 2 Y nfBg,

for all i we have Pi(\B02YB
0) = Pi(B). Hence, as Y is inconsistent, for all i we

have Pi(B) = 0. Thus BP1;:::;Pn = Bc. So Bc 2 YP1;:::;Pn, a contradiction since
B 2 YP1;:::;Pn.

Case 2: there is no B 2 Y \YP1;:::;Pn with �A ``
� B. Then all B 2 Y \YP1;:::;Pn

take the form AP1;:::;Pn = A
c, so that for all i we have Pi(A) = 0, i.e., for all i we

have Pi(B) = 1. So, (*) for all i we have Pi(\B2YB) = Pi(\B2Y nYP1;:::;PnB). Now,
either (i) Y � YP1;:::;Pn [ Y

0, or (ii) Y � YP1;:::;Pn [ Y
00, because otherwise there

exist an A0 2 Y 0 and an A00 2 Y 00, and we have A0 `� (A00)c, hence �A ``� (A00)c,
a contradiction as (A00)c 2 X 00. First suppose (i). Then Y nYP1;:::;Pn � Y 0, and
so (*) implies that (**) all i have Pi(\B2YB) � Pi(\B2Y 0B) = Pi(A

0). As by
assumption ~PP1;:::;Pn(A

0) > 0, there exists by (4 ) at least one i with Pi(A
0) > 0,

hence by (**) with Pi(\B2YB) > 0. So \B2YB 6= ?, i.e., Y is consistent, a
contradiction. Similarly, in the case of (ii) one can show that Y is consistent, a
contradiction. This completes the proof of Claim 3.

Now we de�ne PP1;:::;Pn as the unique function on � that assigns the following
measure to the atoms of �. If an atom takes the form given in Claim 3, i.e., the
form

B = C \ (\A2X: �A``�A and not �A``�AcAP1;:::;Pn)

where C 2 A(~�) and ~PP1;:::;Pn(C) > 0, then we de�ne the atom�s measure as

PP1;:::;Pn(B) = ~PP1;:::;Pn(C).

Any other atom has measure de�ned as zero.

Claim 4. PP1;:::;Pn extends ~PP1;:::;Pn (in particular, is a probability function).

It su¢ces to show that PP1;:::;Pn coincides with ~PP1;:::;Pn on A(~�). Consider any
C 2 A(~�). As � is a re�nement of ~�, we have

PP1;:::;Pn(C) =
X

B2A(�):B�C

PP1;:::;Pn(B): (5)

There are two cases.

Case 1: ~PP1;:::;Pn(C) = 0. Then for all B 2 A(�) with B � C we have
PP1;:::;Pn(B) = 0 (by de�nition of PP1;:::;Pn), and so by (5) we have PP1;:::;Pn(C) =
0 = ~PP1;:::;Pn(C), as desired.
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Case 2: ~PP1;:::;Pn(C) > 0. Then, among all atoms B 2 A(�) with B � C, there
exists (by de�nition of PP1;:::;Pn) exactly one such that PP1;:::;Pn(B) > 0 (namely
B = C\(\A2X: �A``�A and not �A``�AcAP1;:::;Pn)), and this atom B receives probability
PP1;:::;Pn(B) = ~PP1;:::;Pn(C). So by (5) we have PP1;:::;Pn(C) = ~PP1;:::;Pn(C). This
completes the proof of Claim 4.

Claim 5. For all A 2 X such that �A ``� A and not �A ``� Ac, PP1;:::;Pn(A) is
1 if for some individual i Pi(A) > 0, and 0 otherwise.

By de�nition of PP1;:::;Pn, every atom of � that has positive probability is a
subset of the event \A2X: �A``�A and not �A``�AcAP1;:::;Pn, and so this event has prob-
ability 1. It follows that, for all A 2 X such that �A ``� A and not �A ``� Ac, we
have PP1;:::;Pn(AP1;:::;Pn) = 1, and hence

PP1;:::;Pn(A) =

�
1 if AP1;:::;Pn = A, i.e., if Pi(A) > 0 for some i
0 if AP1;:::;Pn = A

c, i.e., if Pi(A) = 0 for all i.

This proves Claim 5.

By Claim 4, we have constructed a well-de�ned pooling function (P1; :::; Pn) 7!
PP1;:::;Pn for agenda �. By (4 ) and Claims 5 and 6, we know its behaviour on
the entire sub-agenda X: the pooling function is independent on X and the local
pooling criterion DA of an event A 2 X is given by

(i) the linear criterion D0 if A 2 X 0,
(ii) the di¤erent linear criterion D00 if A 2 X 00,
(iii) a non-linear criterion D̂ (taking everywhere except at (0; :::; 0) the value 1)

if �A ``� A but not �A ``� Ac,
(iv) the non-linear criterion 1� D̂ if not �A ``� A but �A ``� Ac.

These pooling criteria also ensure unanimity preservation on X. To see that
pooling is not neutral, it su¢ces to show that at least two of the four di¤erent
types of events (i)-(iv) do indeed occur. This is so because �A is of type (i) or (iii)
and because by assumption there exists an A 2 X such that not �A ``� A, i.e.,
such that A has type (ii) or (iv). �

A.5 Proof of Theorem 4

(a) This part is reducible to the companion paper�s Theorem 4(a) via Lemmas 4
and 2 (in the way in which we reduced Theorem 1(a) to the companion paper�s
Theorem 1(a)).

(b) Consider any �nite sub-agenda X 6= f?;
g (of the �-algebra agenda �)
which is nested or satis�es jXnf?;
gj � 4. If X is nested, the claim follows
from Theorem 1(b), since non-neutrality on X implies non-linearity on X. Now
assume the other case, i.e., jXnf?;
gj � 4. We reduce the claim to the companion
paper�s Theorem 4(b). By that result, there is a pooling function F 0 for agenda
X which is independent, consensus compatible and not linear. By Lemma 3, F 0 is
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induced by a pooling function for agenda � which is independent on X, (globally)
consensus-preserving, and not linear on X. �

A.6 Proof of Theorem 5

(a) This part is reducible to the companion paper�s Theorem 5(a) via Lemmas 4
and 2, again in the way in which (for instance) Theorem 1(a) is reducible to the
companion paper�s Theorem 1(a).

(b) Consider a simple sub-agenda X of �-algebra �, where X is �nite and not
f?;
g. We construct a pooling function which, on X, is independent (in fact,
neutral) and conditional-consensus-preserving, but not linear. We may assume
without loss of generality that �(X) = �, because the �Claim� in the proof of
Theorem 1(b) (proved using Lemma 5) holds analogously here as well.

As an ingredient to the construction, we use an arbitrary pooling function
(P1; :::; Pn) 7! P linP1;:::;Pn which, at least on X, is linear and conditional-consensus-
preserving; the rule could be simply given by (P1; :::; Pn) 7! P1, which is even
globally linear and conditional consensus preserving. We denote by Dlin its (uni-
form) pooling criterion for all events in X. To anticipate, the pooling function
(P1; :::; Pn) 7! PP1;:::;Pn to be constructed will for each event in X have the pooling
criterion D : [0; 1]n ! [0; 1] given by

D(t1; :::; tn) :=

8
<
:

0 if Dlin(t1; :::; tn) < 1=2
1/2 if Dlin(t1; :::; tn) = 1=2
1 if Dlin(t1; :::; tn) > 1=2.

(6)

Consider any P1; :::; Pn 2 P�. We have to de�ne PP1;:::;Pn. We write collective
probabilities under the (at least on X) linear pooling function simply as

p(A) := P linP1;:::;Pn(A) for all A 2 �,

and de�ne

X�1=2 : = fA 2 X : p(A) � 1=2g

X>1=2 : = fA 2 X : p(A) > 1=2g

X=1=2 : = fA 2 X : p(A) = 1=2g.

Notice that for all A 2 X we have A 2 X>1=2 ) Ac 62 X>1=2 and A 2 X=1=2 ,
Ac 2 X=1=2.

(Although p(A) and the sets X�1=2; X>1=2; X=1=2 depend on P1; :::; Pn, our
notation suppresses P1; :::; Pn for simplicity.)

To de�ne PP1;:::;Pn, we �rst need to prove two claims (which use that X is
simple).
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Claim 1. X=1=2 can be partitioned into two (possibly empty) sets X
1
=1=2 and

X2
=1=2 such that (i) each X

j
=1=2 satis�es p(A\B) > 0 for all A;B 2 X

j
=1=2 and (ii)

each Xj
=1=2 [X>1=2 is consistent (whence X

j
=1=2 contains exactly one member of

every pair A;Ac 2 X=1=2).

To show this, note �rst that X=1=2 has of course a subset Y such that p(A \
B) > 0 for all A;B 2 Y (e.g., Y = ?). Among all such subsets Y � X=1=2, let
X1
=1=2 amaximal one (with respect to set-inclusion), and letX

2
=1=2 := X=1=2nX

1
=1=2.

By de�nition, X1
=1=2 and X

2
=1=2 form a partition of X=1=2. We show that (i) and

(ii) hold.

(i) Property (i) holds by de�nition for X1
=1=2, and holds for X

2
=1=2 too by

the following argument. Let A;B 2 X2
=1=2 and suppose for a contradiction that

p(A \ B) = 0. By the maximality property of X1
=1=2, there are A

0; B0 2 X1
=1=2

such that p(A \ A0) = 0 and p(B \ B0) = 0. Thus, p(A \ C) = p(B \ C) = 0
where C := A0 \B0. Since the intersection of any two of the sets A;B;C has zero
p-probability, we have

p(A) + p(B) + p(C) = p(A [B [ C) � 1,

as p is a probability function. This is a contradiction, since p(A) = p(B) = 1=2
and p(C) = p(A0 \B0) > 0 (the latter as (i) holds for X1

=1=2).

(ii) Suppose for a contradiction that some Xj
=1=2[X>1=2 is inconsistent. Then

(as X and hence Xj
=1=2 [ X>1=2 is �nite) there is a minimal inconsistent subset

Y � Xj
=1=2 [ X>1=2. As X is moreover simple, jY j � 2, say Y = fA;Bg. As

A \B = ? and p is a probability function, we have

p(A) + p(B) = p(A [B) � 1.

So, as p(A); p(B) � 1=2, it must be that p(A) = p(B) = 1=2, i.e., that A;B 2
Xj
=1=2. Hence, by (i), p(A \B) > 0, a contradiction since A \B = ?.

Claim 2. \C2X1

=1=2
[X>1=2

C and \C2X2

=1=2
[X>1=2

C are atoms of the �-algebra

�, i.e., (�-)minimal elements of �nf?g (they are the same atoms if and only if
X=1=2 = ?, i.e., if and only if X

1
=1=2 = X

2
=1=2 = ?).

To show this, �rst write X as X = fC0j ; C
1
j : j = 1; :::; Jg, where J = jXj =2

and where each pair C0j ; C
1
j consists of an event and its complement. We may

write � as the set of all unions of intersections of the form Ck11 \ :::\C
kJ
J , i.e., as

� = f[(k1;:::;kJ )2K(C
k1
1 \ ::: \ C

kJ
J ) : K � f0; 1gJg: (7)

Recalling that � is the �-algebra generated by X, the inclusion ��� in (7) is ob-
vious, and the inclusion ��� holds because the right hand side of (7) includes X
(as any Ckj 2 X can be written as the union of all intersections Ck11 \ :::\C

kJ
J for
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which kj = k) and is a �-algebra (as it is closed under taking unions and comple-
ments: just take the unions (respectively complements) of the corresponding sets
K � f0; 1gJ).

From (7) and the pairwise disjointness of the intersections of the form Ck11 \
::: \ CkJJ , it is clear that every consistent such intersection is an atom of �. Now
\C2Xj

=1=2
[X>1=2

C is (for j 2 f0; 1g) precisely such a consistent intersection. Indeed,

\C2Xj
=1=2

[X>1=2
C is consistent by Claim 1, and contains a member of each pair

A;Ac in X, if p(A) = p(Ac) = 1=2 by Claim 1 and if p(A) 6= p(Ac) since there
then is a B 2 fA;Acg with p(B) > 1=2, i.e., with B 2 X>1=2 � Xj

=1=2 [ X>1=2.
This proves Claim 2.

We are now in a position to de�ne the function PP1;:::;Pn on �. Since
\C2X1

=1=2
[X>1=2

C and \C2X2

=1=2
[X>1=2

C are non-empty by Claim 1, there exist

worlds !1 2 \C2X1

=1=2
[X>1=2

C and !2 2 \C2X2

=1=2
[X>1=2

C, where we assume that

!1 = !2 if X=1=2 = ?, i.e., if \C2X1

=1=2
[X>1=2

C = \C2X2

=1=2
[X>1=2

C = \C2X>1=2C.

(Our notation for worlds again suppresses P1; :::; Pn.) Let �!1 and �!2 be the cor-
responding Dirac measures on �, given for all A 2 � by �!j(A) = 1 if !

j 2 A and
�!j(A) = 0 if !

j =2 A. We de�ne

PP1;:::;Pn :=
1

2
�!1 +

1

2
�!2,

where !1; !2 of course depend on P1; :::; Pn. (So PP1;:::;Pn(A) is either 1 or 1/2 or
0, depending on whether A 2 � contains both, exactly one, or none of !1 and !2;
further, PP1;:::;Pn = �! if !

1 = !2 = !, i.e., if X=1=2 = ?.)

As PP1;:::;Pn is a convex combination of probability functions, PP1;:::;Pn is indeed
a probability function. The proof is completed by showing that the so-de�ned
pooling function (P1; :::; Pn) 7! PP1;:::;Pn has the desired properties, as shown in
the next two claims.

Independence on X. We show that the pooling function is neutral onX (hence
independent on X) with the pooling criterion D given in (6). To do so, consider
any P1; :::; Pn 2 P� and any A 2 X, and write (t1; :::; tn) := (P1(A); :::; Pn(A)).
We have to show that PP1;:::;Pn(A) = D(t1; :::; tn). To do this, we consider three
cases, and use p; X>1=2; X

1
=1=2; X

2
=1=2; !

1; !2 as de�ned above.

Case 1. p(A) = Dlin(t1; :::; tn) < 1=2. Then D(t1; :::; tn) = 0. So we must
prove that PP1;:::;Pn(A) = 0, i.e., that A contains neither !1 nor !2. Assume
for a contradiction that !1 2 A (the proof is analogous if we instead assume
!2 2 A). Then A includes the set \C2X1

=1=2
[X>1=2

C, as this set contains !1 and

is (by Claim 2) an atom of �. So Ac \ [\C2X1

=1=2
[X>1=2

C] = ?. Hence the set

fAcg [ X1
=1=2 [ X>1=2 is inconsistent, so has a minimal inconsistent subset Y .

Since X is simple, jY j � 2. Y does not contain ?, as Ac is non-empty (by
p(Ac) = 1 � p(A) > 1=2) and as all B 2 X1

=1=2 [ X>1=2 are non-empty (by
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p(B) � 1=2). So jY j = 2. Moreover, Y is not a subset of X1
=1=2[X>1=2, since this

set is consistent by Claim 1. Hence Y = fAc; Bg for some B 2 X1
=1=2 [ X>1=2.

As Ac \ B = ? and as p(Ac) = 1 � p(A) > 1=2 and p(B) � 1=2, we have
p(Ac [B) = p(Ac) + p(B) > 1=2 + 1=2 = 1, a contradiction.

Case 2. p(A) = Dlin(t1; :::; tn) > 1=2. Then D(t1; :::; tn) = 1. Hence we must
prove that PP1;:::;Pn(A) = 1, or equivalently that PP1;:::;Pn(A

c) = 0. The latter
follows from case 1 as applied to Ac, since p(Ac) = 1� p(A) < 1=2.

Case 3. p(A) = Dlin(t1; :::; tn) = 1=2. Then D(t1; :::; tn) = 1=2. So we must
prove that PP1;:::;Pn(A) = 1=2, i.e., that A contains exactly one of !

1 and !2. As
p(A) = 1=2, exactly one of X1

=1=2 and X
2
=1=2 contains A and the other one contains

Ac, by Claim 1. Say A 2 X1
=1=2 and A

c 2 X2
=1=2 (the proof is analogous if instead

A 2 X2
=1=2 and A

c 2 X1
=1=2). So A � \C2X1

=1=2
[X>1=2

C, and hence !1 2 A. On

the other hand, !2 =2 A, because A is disjoint from Ac, hence from its subset
\C2X2

=1=2
[X>1=2

C, which contains !2.

Non-linearity on X. As X 6= f?;
g, there is a contingent event A 2 X,
hence a probability function P 2 P� with t := P (A) =2 f0; 1=2; 1g. Now assume
all individuals submit this P . If the pooling function were linear on X, the
collective probability of A would again be t (=2 f0; 1=2; 1g), a contradiction since
the collective probability is given by D(t; :::; t) (2 f0; 1=2; 1g), as just shown.

Conditional consensus preservation on X. We consider any A;B 2 X and
P1; :::; Pn 2 P� such that Pi(A[B) = 1 for all i, and show that PP1;:::;Pn(A[B) =
1; this establishes conditional consensus preservation on X by Proposition 1(a).
For all i we have Pi(A) + Pi(B) � Pi(A [ B) = 1, and hence Pi(A) � 1 �
Pi(B) = Pi(B

c). So, as Dlin : [0; 1]n ! [0; 1] takes a linear form with non-negative
coe¢cients and hence is weakly increasing in every component,

Dlin(P1(A); :::; Pn(A)) � Dlin(P1(B
c); :::; Pn(B

c))

= D(1; :::; 1)�Dlin(P1(B); :::; Pn(B))

= 1�Dlin(P1(B); :::; Pn(B)).

Hence, with p as de�ned earlier, p(A) � 1 � p(B), i.e., p(A) + p(B) � 1. We
distinguish three cases:

Case 1. p(A) > 1=2. Then, by the above proof of independence on X,
PP1;:::;Pn(A) = 1. So PP1;:::;Pn(A [B) = 1, as desired.

Case 2. p(B) > 1=2. Then, again by the above proof of independence on X,
PP1;:::;Pn(B) = 1. Hence, PP1;:::;Pn(A [B) = 1, as desired.

Case 3. p(A); p(B) � 1=2. Then, as p(A) + p(B) � 1, we have p(A) =
p(B) = 1=2. LetX>1=2; X

1
=1=2; X

2
=1=2; !

1; !2 be as de�ned above. Note that A;B 2

X1
=1=2 [X

2
=1=2. It cannot be that A and B are both in X1

=1=2: otherwise A
c and

Bc are both in X2
=1=2 by Claim 1, whence p(Ac \ Bc) > 0 (again by Claim 1), a
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contradiction since

p(Ac \Bc) = p((A [B)c) = 1� p(A [B) = 1� 1 = 0

(to see why p(A[B), recall that p(A[B) = P linP1;:::;Pn(A[B), where Pi(A[B) = 1
for all i). Analogously, it cannot be that A and B are both in X2

=1=2. So one of A

and B is in X1
=1=2 and the other one in X

2
=1=2; say A 2 X

1
=1=2 and B 2 X

2
=1=2 (the

proof is analogous otherwise). SoA � \C2X1

=1=2
[X>1=2

C andB � \C2X2

=1=2
[X>1=2

C,

and hence !1 2 A and !2 2 B. Thus A [ B contains both !1 and !2, whence
PP1;:::;Pn(A [B) = 1, as desired. �

A.7 Proof of Theorem 6

Proof of Theorem 6. (a) This part is reducible to the companion paper�s Theorem
6(a) via Lemmas 4 and 2, once again in the way in which, for instance, Theorem
1(a) is reducible to the companion paper�s Theorem 1(a).

(b) This part follows from Theorem 3(b) since non-neutrality on X implies
non-linearity on X. �

A.8 Proof of Proposition 2

Consider the �-algebra agenda �, of which we assume that j
j > 23 = 8, i.e.,
j
j � 24 = 16. Then � includes a partition of 
 into four non-empty events.
Let X be the sub-agenda consisting of any union of two of these four events.
In the proof of Proposition 2 we have constructed a pooling function for agenda
X which is neutral and consensus-preserving but not linear. By Lemma 3, this
pooling function is induced by a pooling function for agenda � which, on X, is
neutral and consensus-preserving but not linear. �
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