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Abstract 
 

The Basel Accords have created the need to develop and implement models for PD, LGD 

and EAD. Although PD is quite well researched, LGD and EAD still lag both in theoretical 

and practical aspects. This paper proposes some empirical approaches for EAD/LGD 

modelling and provides technical insights into their implementation. It is expected that 

modellers will be able to use the tools proposed in this paper. 
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1. Introduction 
 
This paper proposes some practical approaches to modelling Loss Given Default (LGD) 
and Exposure at Default (EAD). These two measures are required by the BASEL 
Accords. 
 
Probability of default (PD) modelling is supported by widely known methodologies used 
in Marketing, Account Management and Risk. LGD and EAD modelling are much less 
supported by best business practices in the modelling community. As a result, modelling 
methodologies for LGD and EAD are still in the developmental stages. 
 
Several references ([1], [3]) give an overview of problems and restrictions encountered 
with LGD/EAD modelling.  The focus of this paper is on practical techniques that will 
lead to feasible implementation and improvements in LGD/EAD modelling. These 
techniques can also be applied in other areas of predictive modelling, especially in fast-
paced financial institutions.  
 
This paper briefly surveys current modelling methodologies, then proposes some 
empirical approaches, and provides technical insights into their implementation. It is 
expected that modellers will be able to use these proposed tools for EAD/LGD modelling 
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as well as other predictive modelling. Performance comparison for all proposed tools is 
provided in Section 8 using our own software implementation. The authors would like to 
thank our colleagues Ping Wang, James Fung, and Jason Zhang for many valuable 
conversations, Clovis Sukam for his critical comments and proofreading of this article.     
 
 
2. Overview of LGD and EAD Modelling Methodologies 

 

2.1 LGD Modelling Approaches 

 

Loss given default (LGD) is defined as: 
 

,

,1

DefaultatgOutstandinAmount

RecoveredAmount
RateRecovery

RateRecoveryLGD




  

 
where amount recovered sums up all discounted cash flows received during the recovery 
process after default, less the total cost incurred.   
 
There are major differences between PD and LGD modelling. While LGD is a continuous 
variable and usually follows a beta distribution, default events (PD) are binomial. LGD 
depends on the recovered amount, which may take several years after default to resolve, 
whereas PD describes the likelihood of a default event occurring within a specified 
period (usually 1 year).  Information about events occurring after default has no effect on 
PD. 
 
There is a lack of reliable historical data for LGD (and EAD). Interest in LGD (and EAD) 
data collection started in years 1996 - 2001 when specific mandatory BASEL 
requirements were imposed on financial institutions in order to become AIRB (advanced 
internal rating bands) compliant. 
 
The non-normality of LGD (and EAD Factor) distribution calls for an explicit 
transformation so that the target variable follows a standard normal distribution. This will 
alow one to use a linear regression with a normally distributed target variable to get an 
LGD prediction as proposed in [3]. Although this approach allows one to build LGD 
models on a transformed target variable, the inverse transformation (reverting and 
predicting the actual target), usually exhibits large errors. This situation is due to the 
gradient of the inverse transformation. This gradient is usually higher in the tails, and 
hence, a small error with the transformed target may turn into a much bigger conversion 
error. This challenge suggests practical tip #1: 
 

When linear regression is used, it is best to train the model by minimizing the error 

of the actual target, not the error of the transformed target. 

 
Another problem associated with LGD models is the use of information on the collateral 
for the loans. One needs to appropriately integrate collateral values for different collateral 
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types so that the integrated collateral values can become input variables for the LGD 
model.  The challenge with integrated collateral values is that many lenders and business 
people believe that there exists a linear relationship between collateral values and LGD. 
Since very often data suggest that LGD distribution over collateral values is non-linear, 
tensions can quickly build up between modellers and business people over the use of 
collaterals in LGD modelling.  Other variables, like company size for example, can also 
become a bone of contention ([4]). This suggests practical tip #2: 
 
Weight of Evidence (WOE) technique comes in useful when trying to incorporate 

business beliefs and judgements while maintaining the statistical strengths of the 

model. 
 
 
2.2. EAD Modelling Approaches 

EAD modelling approaches are illustrated with EAD-factor (Credit Conversion 

Factor) examples.  

 
Denote 
 
       0Bal - the facility outstanding dollar amount at current time  

       1Bal - the facility outstanding dollar amount at default time  

       0Auth - the facility authorized dollar amount at current time       

       )( 000 BalAuthUndrawn  - the facility undrawn dollar amount at current time 

   
Define EAD Factor (also called Credit Conversion Factor) as follows: 
 

        














0,0

0,
)0,(

0

0

0

01

undrawnif

undrawnif
Undrawn

BalBalMax

FactorEAD   

 
Thus EAD Factor is the proportion of 0undrawn  to drawn down at default time.  The 

predicted exposure amount at default is then calculated as: 
 
            00 UndrawnFactorEADBalEAD    

 
The Max  function applies in the definition, as Basel requires one to model the risk of 
further drawing down at time of default.  Another practical option for the EAD Factor 
definition is to remove the Max  function and model the EAD Factor between -1 and 1 
(floored at -1 and capped at 1), then floor the prediction at 0.  Modelling the EAD Factor 
this way captures the two-directional spending behaviour of drawing more and paying 
down as well. It is worthwhile to mention that modeling the EAD factor within a range 
between -1 and +1 and flooring the resulted EAD prediction at 0 could lead to 
underestimated EAD values.     
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Another option in selecting a target variable in Exposure at Default modelling is to model 
the facility utilization change, which is defined as: 

          
0

01_
Auth

BalBal
ChUtil


  

floored at 0 and capped at 1. Both the EAD Factor and Utilization Change model the 
outstanding dollar amount change with the first as a fraction of undrawn amount 
( 0Undrawn ) and the latter as a fraction of current authorized limit ( 0Auth ).The EAD 

Factor is usually more difficult to model as the undrawn dollar amount for some facilities 
could be very small thus inflating the EAD Factor. Both types of models are good when 
converting back to predict the EAD dollar amount (or as fraction of current authorized 

limit 0Auth ). 

 
Possible other target variables for an EAD model include utilization ratio or the EAD 
dollar amount.  Please refer to ([10]) for a review of possible target variables for EAD 
models. 
 
We recommend modelling the EAD Factor or Utilization Change for the following 
reasons:   
  

(a) Basel requires one to floor the estimated exposure at current outstanding, which 
means one needs only to focus on the change of exposure.  

(b) Both are ratio variables, dimensionless (unlike dollars and cents which have a 
unit), thus will not be impacted by the magnitude of scale, and is within a narrow 
range between 0 and 1.  

 
 
In following discussion, we choose to model the EAD Factor floored at 0 and capped at 
1, rather than modelling the EAD dollar amount directly.  As the outstanding amount at 
default ( 1Bal ) varies significantly from a very low dollar amount to an extremely high 

dollar amount, modelling the EAD dollar amount directly would be statistically difficult.  
 
It turns out that even though an  EAD Factor model such as the Logit model shown in 
Section 8 may have  a low R squared ( RSQ ) .In the following example, the RSQ  is only 

0.27,therefore it can translate into a much higher RSQ  (like 0.91 below) when converting 

to predict the EAD dollar amount using the above formula.  This suggests practical tip 
#3: 
 

Choose to model the EAD Factor or Utilization Change rather than the outstanding 

dollar amount at default. 
 
By the definition of EAD Factor, one needs to divide the sample into two segments 

before modelling; one with 00 undrawn , the other with 00 undrawn .  We need to 

model the EAD Factor for those with 00 undrawn  only.  This suggests practical tip #4: 



 5

Model the EAD Factor only for those facilities with 00 undrawn . 

Different financial institutions, especially wholesale lending portfolios, face some 
common problems with EAD modelling. As an example, since the EAD Factor 
distribution usually exhibits higher concentration around 0 and 1 after flooring at 0 and 
capping at 1, a linear regression model will predict only a narrow range around the target 
variable average. Some other problems include, having a small model development 
sample size, and small pool of candidates for covariate selection, especially for 
companies that are not publicly traded, like wholesale portfolios. 
 
Macroeconomic factors, even if not explicitly included in Basel models, inevitably 
influence the risk profile of the obligors and facilities associated with the obligor.  
Inclusion of macroeconomic factors in the model however, can significantly shift the 
model prediction from what is required by the Basel Accord. Namely, prediction could 
violate the Basel Accord expectation that EAD/LGD cannot be less than the long run 
default weighted average of the EAD/LGD risk factors.  With macroeconomic variables 
in the model, model prediction closely follows current conditions of the obligor 
regardless of the aggregated profiling parameters of a complete economic cycle. This 
model falls under the category of Point in Time models (PIT) and is considered not 
sufficiently conservative by many regulators. A Through the Cycle (TTC) model that is 
supposed to produce predictions throughout the economic cycle, is considered to be the 
most conservative risk assessment model. It should include neither direct macroeconomic 
variables nor any variable somewhat correlated with the economic state of being.  
Obviously, the latter is impossible to control, but such a model could have a significant 
advantage from the point of view of some regulators in a sense that capital, calculated 
based on a TTC model, shows essential stability over time.  The downside of TTC 
models is that they cause complete economic cyclical insensitivity, and can negatively 
influence overall economic development due to stable but low credit lending activity.    
 
It turns out that macroeconomic effects impact the EAD Factor in the following way:  
when business is booming for more than one year, or when there is a downturn for more 
than one year, the EAD Factor starts to climb during the 2nd year.  For this reason, we 
prefer not to include any macro variable in the EAD Factor model. This suggests 
practical tip #5: 
 
Choose to model the EAD Factor or Utilization Change model with no macro 

variables. 

  

 
3. Proposed Parameter Estimation Approaches 

 
3.1. Variable Transformation. Leaving selection of the target variable to the preference 
of the practitioner, the first proposed innovation for LGD/EAD modelling is the 
technique of Weight of Evidence (WOE) transformation for independent variables.  It 
applies to both types of variables; numeric and character.  As will be shown later, such 
variable transformation allows one to tackle problems with optimum selection of 
variables, issues with outliers, as well as problems with imputation of missing values.  
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WOE methodology is quite well known for Risk models, but surprisingly, it is not widely 
used for Basel specific models. As previously mentioned in 2.1, the WOE approach could 
accommodate business judgement as well. 
   
3.2 Variable Selection. With all independent variables WOE transformed, a Naïve 
Bayesian (see Section 5) model can be employed for variable selection.  Each time, it 
selects one variable that gives the highest lift to the Naïve Bayesian model.  Naïve 
Bayesian selection methodology is better than using the SAS stepwise selection 
procedure for logistic or linear regression, which also includes variables with negative 
coefficients.  With WOE transformed variables, a negative coefficient in general 
indicates noise effect, and will most likely not be accepted by business partners. 
 
3.3 Model Structure. We consider the following models, which are either trained by 
maximizing likelihood or minimizing the least square error: 
 

1. High/Low models by using SAS logistic procedure 
2. Logit model trained using SAS logistic procedure with events/trials syntax 
3. Logit model trained by minimizing the least square error 
4. Naïve Bayesian model with no parameter training 
5. Mixture model by minimizing least square error 
6. Single layer neural network by minimizing least square error 
 

As both LGD and EAD Factor distributions usually exhibit high concentration around 0 
and 1, the mixture model or single layer neural network demonstrate significant 
improvement over the logit model that uses only raw variables (with no WOE 
transformation).  Even a simple model like the Naïve Bayesian model sees a decent 
improvement (see Section 8).  
 
3.4 Boost Model. Boost modelling is discussed in Section 7. 

 

   
4. Nearest-Neighbour Method and WOE Transformation 

 
Due to the significant importance of WOE (weight of evidence) variable transformation 
as a vital component in further analysis, we now review the theory behind the WOE 
technique.  

 
The concept of weight of evidence (WOE) is close to the k  nearest-neighbour algorithm 
in machine learning.  Its importance can further be demonstrated by the Naïve Bayesian 
model as described in Section 5. 
   
Given a sample  ),( yxD  , where y  is the dependent variable, and  ),...,,( 21 mxxxx   

is a vector of independent variables, denote )|( xyE the regression function, that is, the 

expected value of y given x .  
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For a fixed k >1, the k -nearest neighbour method estimates )|( xyE by taking the average 

of k  values of y : kyyy ,...,, 21 , corresponding to k  nearest points relative to the current 

point x  (not including the current point x ): 
 
     y  ~   kyyy k /...21    

 
The resulting algorithm is called the k -NN algorithm in machine learning, which is a 
type of instance-based learning ([5] pp.14-16, pp.165-168, [13]). 
 
A special case when vector x  consists of only a single variable leads to the following 
concepts of WOE transformation: 
 
 
4.1 WOE Transformation  
 
Consider the linear regression model:  

          y ~ a + bx, 
where x is a vector of independent variables,  a is the intercept, and b is the vector of 
parameters. 
 
The WOE transformation for a numerical variable z consists of the following steps: 
 

(a) Partition the variable z  into intervals. 
(b) Calculate the average of y  for each interval. 

(c) Derive a new variable )(zw  by assigning the average from (b) when the value 

of the variable z falls in that interval.  
      
We call the derived variable )(zw the WOE transformation for the variable z .  The idea 

with WOE transformation is that it gets the model right on the individual variable level 
first, regardless of what we do subsequently.   
 
For a class variable, the WOE transformation can be implemented by first calculating  
the average of y  for each class level, then grouping based on business and statistical 

considerations.   
 
Step (b) in general requires adaption when the chosen model structure is not linear.  
Below are two practical examples. 
 

 

4.2 Two Practical Examples  

 
A. Binary dependent variable ( 1,0y ) 

 
   Assume that we choose the logit model: 
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          ))1/(log( pp  ~ mm xbxbxbb  ...22110  

 
   where p and p1 are the conditional probabilities given by: 

 
               )|1( xyPp  , 

          )|0(1 xyPp   .   

 
   By Bayes theorem, we have: 
 

               ,
)0()0|(

)1()1|(

1 



 yPyxP

yPyxP

p

p
 

 

          
 p

p

1
log

)0(

)1(
log

)0|(

)1|(
log








yP

yP

yxP

yxP
. 

 

   The second term 
)0(

)1(
log




yP

yP
is just the population log odd, which does not depend  

   on x .  While the first term (when x reduces to a single variable) 
)0|(

)1| (
log




yxP

yxP
  

   suggests the following adaption to (b) of Section 4.1: 
    
       (b1) Divide the sample into Bad ( 1y ) and Good ( 0y ) segments. 

              Calculate the percentage distribution of Bad over the partitioned intervals  
              (denoted by bdist), and the percentage distribution of Good over the partitioned  
              intervals (denoted by gdist). Compute the WOE value for an interval as:  
            

                        
gdist

bdist
WOE log   . 

 
 

B. Continuous Dependent Variable ( 10  y ) 

 
   Again, assume that we choose the logit model: 
 
       ))1/(log( yy  ~ mm xbxbxbb  ...22110  , 

 
   or that the logit model is a model component, as with the mixture model or single layer    
   neural network discussed in Section 6.  
    
   Notice that y  can be estimated by the regression function )|( xyE , which is estimated  

   by avg(y), the average of y values for a given x .  When x  reduces to a single 

   variable, this suggests the following adaption to (b) of Section 4.1: 
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      (b2) Calculate the average of y  values over a partitioned interval and denote it 

              by avg(y).  Compute the WOE value for that interval as: 
 
                  WOE = log (avg(y)/(1-avg(y))  
 
 
4.3. Technical Implementation 
 
An automation of the WOE transformation should encompass the following: 
 
     (i) Controlling the number of intervals and the size of an interval. 
     (ii) Choosing the interval partition that maximizes the variable predictive power. 
     (iii) Isolating special values of the variable.  
 
Such application should also provide other functionalities including: printing the SAS 
code for the WOE transformation, allowing interval breaking and regrouping, calculating 
the predictive power for the transformed variable, and outputting the bucketing for 
reporting and documentation.  
 
     
5.   Naïve Bayesian Models 

 
A Naïve Bayesian model calculates the conditional probability under some assumptions 
of independence.  We show in this section how the WOE technique contributes 
interestingly to the implementation of Naïve Bayesian models. 
 

Suppose y  is a binary dependent variable.  As before, let ),...,,( 21 mxxxx   denote a list 

of independent variables.  
 

Under the Naïve Bayes assumptions, variables mxxx ,...,, 21  are independent conditional 

on 1y  and 0y , respectively. 

 
 
5.1 Naïve Bayesian Models 

 
Under the Naïve Bayes assumptions, we have by Bayes theorem: 
  

        
)0()0|(

)1()1|(

)|0(

)|1(








yPyxP

yPyxP

xyP

xyP
  

 
 

                            
)0()0|(...)0|()0|(

)1()1|(...)1|()1|(

21

21


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
yPyxPyxPyxP

yPyxPyxPyxP

m

m               . 

      
Taking the natural logarithm, we have 
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              )(...)()( 210 mxwxwxww  , 

 where  
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The constant 0w  is just the population log odd as seen before.  But )( ixw  is something 

interesting, as it can be estimated by the WOE transformation described in adaption (b1) 
of Section 4.2.  
 
This means that the Naïve Bayesian model can be interpreted simply as a model with log 
odd score being given by summing up the WOE transformed variables and the population 
log odd: 
 

        
)2()(...)()(

)1())1/(log(log

210 mxwxwxww

ppscoreodd




 

                          
)logexp(1

1

scoreodd
p


                                          (3) 

 
The Naïve Bayesian model is a particularly simple model in structure, but is very robust 
in performance for ranking order, and no training of the parameters is required. 
 
Although the above discussion is specific to the case when the dependent variable y is 

binary, it can be extended to the case when y  is continuous with 10  y .  The only 

difference is that we need to calculate WOE by adapting (b2) of Section 4.2 and change 
))1/(log( pp   in (1) to ))1/(log( yy  .  

  
5.2 Technical Implementation 
 
To implement the Naïve Bayesian model for either a binary dependent variable y, or a 
continuous dependent variable 0<y<1, such as the EAD Factor and LGD, we take the 
following steps: 
 

(a) Apply the WOE transformation appropriately (either adapt (b1) or (b2) of 
Section 4.2) to independent variables 
(b) Use stepwise selection of variables that add incremental performance lift 
(c) Output the model in the forms of (1)-(3)   
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Although the Naïve Bayesian model rank orders well, one may run into a problem when 
the magnitude of the predicted value matters.  This is because Naïve Bayes assumptions 
are generally not strictly satisfied ([8], [14]). Under this circumstance, a segmentation 
step can be applied: 
 

(d) create score bands for the built Naïve Bayesian model and map a score band to 
the average of y values over that band 

 
Another solution is to apply the boost methodologies as described in Section 7 to correct 
and adjust the prediction bias. 
 
 
6. Modelling a Continuous Dependent Variable 
 
In this section, we assume that y is a continuous dependent variable with values 
 10  y (with EAD Factor or LGD, one can always cap or floor or scale the dependent  

  variable to the 0 - 1 range).  
 
 We propose in this section a few methodologies in addition to the Naïve Bayesian model   
 discussed previously.  We will compare their performance in Section 8. 
 
 
  6.1 High and Low Binary Modelling 
  
   With this methodology, we first define two binary variables: 
 

        



 





 



else

byif
L

else

ayif
H

0

,1

0

,1

         

 
   where constants a  and b  can be chosen appropriately depending on the distribution  
   of the dependent variable y.  For example, we may choose 75.0a  and 05.0b .  In 
   general, the sizes of segments 1H  and 1L  should not be too small to pick up 
   the high and low trends of  y values respectively. 
 

   We then build a probability model 1p  to predict 1H , and a probability model 2p  to 

   predict 1L .  Reverse the probability 2p  by taking 21 p , and define an enhanced 

   composite score as: 
       
             2/)( 21 ppp            

     

   Typically, the composite score p exhibits stronger ranking power than either 1p  or 

  2p  individually.  Keep in mind that as long as a model rank orders well, bias in 
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   magnitude can be corrected by the segmentation methodology as mentioned in  
   Section 5.2 (d). 
 
       
  6.2. Logit Model 
    
  With this model, we assume:  
 

         ))1/(log( yy  ~ )(...)()( 22110 mm xwbxwbxwbb                            (4) 

 
where )( ixw  is the WOE transformation described in Section 4.2 for a continuous 

dependent variable y at a given ix . 

 

Parameters mbbb ...,,, 10 can be obtained by either  

 
       (a) maximizing the negative log likelihood function, or  
       (b) minimizing the least square error of the model prediction.  
 
For EAD Factor and LGD modelling, the least square minimization (b) is generally 
preferred.  In this case, we label this least square logit model as LS Logit.  We will 
discuss the LS Logit models in Section 6.3. 
    
Training the logit model by maximum likelihood is implemented in SAS logistic 
procedure.  One can use the events/trials syntax for SAS logistic procedure to get the 
parameter estimates (notice that on the left side of the equal sign in the model statement, 
it is " 1/y " instead of " y "): 

 
          proc logistic data=data; 

                  model  )(...)()(1/ 21 mxwxwxwy  ; 

          run; 
 
Alternatively, one can use the regular SAS logistic procedure for a binary dependent 
variable to train a model predicting y, following the steps below:   
 

(a) augment the original sample  ),( yxD   in such a way: for each record in D  

duplicate the same record 100 times (or 1000 times if higher precision is 

required).  For example, if 0f  stands for a record for a facility in the sample D ,   

then inside the augmented dataset there are 100 duplicate records for 0f . 

 
(b) Define a binary dependent variable H for the augmented sample as follows: 

suppose for record 0f in D  the y  value rounds up to 100/k , where 

1000  k is an integer.  Among these 100 duplicate records for 0f  in the 
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augmented sample, assign k of them to have 1H , and the rest k100 to have 
0H . 

 

The frequency of event 1H  for the given facility 0f  is k  (out of 100). We thus have 

transformed the target variable y  into the probability of the event 1H  for the given 

facility 0f  with the augmented sample.  One can then apply the WOE transformation for 

a binary target (as in Section 4.2) to independent variables, and train the probability 
model predicting the probability of 1H  using the regular SAS binary logistic 
regression.   
 
This methodology is essentially the same as using SAS logistic events/trials syntax if 
one scales up  y by 100 (that is, replace y  by 100y ) and change “y/1” to “y/100”, as in 

the following:  
 
            proc logistic data=data; 

              model )(...)()(100/ 21 mxwxwxwy  ; 

            run; 
     
Although both methodologies result in essentially the same parameter estimates (except  
possibly the intercept, due to the fact that the binary WOE transformation differs from the 
continuous version of WOE transformation by a constant), scaling up y  by 100 usually 

decreases the p value for the significance of a variable to be included in the model. 

 
 
6.3 Least Square Logit (LS Logit) Models 

 
This is a model where model (4) is trained by minimizing the total least square error: 
 

                              2)( py  

 
 where 

                                      
)logexp(1

1

scoreodd
p


 , 

 

             
)(...)()(

))1/(log(log

22110 mm xwbxwbxwbb

ppscoreodd




 

Here )( ixw  is the WOE transformation for variable ix  as in Section 6.2. 

 
Usually, for generalized linear models, including the logit model, it is assumed that the 
error term should follow a distribution belonging to exponential family ([9]), which is not 
normal in the case of logit model. As maximizing likelihood is not necessarily equivalent 
to minimizing the total least square error (unless the error term is normal), general logit 
model differs in general from the least square logit model. We do not assume that the 
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error term for least logit model follows a normal distribution, as in the case of Single 
Index model described in [2]. 
 
Technical Implementation 

 
Training the LS Logit model can be implemented following the Iteratively Re-Weighted 
Least Square algorithm as described in ([5] p349).  This algorithm applies to the training 
of models of the form: 
 
            y  ~ ))(...)()(( 22110 mm xwbxwbxwbbh  , 

 
where h  is a given differentiable function. 
 
We mention here that with SAS logistic procedure, the maximum likelihood   estimation 
of parameters is also implemented using the Iteratively Re-Weighted Least Square 
algorithm ([12] or [6]).  However, the weight assigned for each iteration differs from 
what is assigned here for an LS Logit model.  This is because their objective functions for 
optimization are different. 
 
 
6.4 Mixture Models and Single Layer Neural Networks 

 
When capped at 1 and floored at 0, the distribution of the EAD Factor or LGD exhibits 
heavy concentration around 0 and 1, as mentioned previously.  Recall the mixture model 
for cluster analysis for unsupervised learning ([15]), where we model probability density 

by assembling the component densities from individual clusters (density ),( ii bxf for i-th 

cluster) as in the following: 
 

            ),( bxf  ~ ),(...),(),( 222111 mmm bxfpbxfpbxfp  . 

 
Here, }...,,,{ 21 mbbbb  are parameters to be determined, and ip  is the prior probability 

of falling into the i-th cluster.  This suggests an adapted mixture model (for our 
supervised learning) of two components: one component that models the low y value (y 

is the LGD or EAD Factor in our case) cluster and another that models the high y value 

cluster. 
 
Adding another component to address the median y values usually improves the 
prediction accuracy. This middle component serves as a correction component between 
the high and low y value clusters. 

 
This suggests a 3-component mixture model.  
 

 

6.4.1 3-Component Mixture Models and Single Layer Neural Networks 
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 A 3-component mixture model is defined as: 
 

          y  ~  
))(...)()((

))(...)()((

2222121202

1212111101

mm

mm

xwbxwbxwbbhp

xwbxwbxwbbhp




  

                   ))(...)()(( 3232131303 mm xwbxwbxwbbhp                                  (5) 

 
where )( ixw  is the WOE transformation for variable ix  as in Section 6.2, and 

          

           
)exp(1

1
)(

z
zh


 .   

 

Here parameters 32,1 , ppp  are nonnegative numbers just like the prior probabilities for 

the mixture models for the cluster analysis, satisfying  
           
           1321  ppp .                                                                                             (6)  

 
When the constraint (6) is removed, the model is called a 3-component single layer 
neural network.  In either case, the parameters can be trained by minimizing the total 
least square error of the prediction.   
 
Compared to the Logit or LS Logit model, a mixture model or single layer neural 
network usually demonstrates strong predictive power and high accuracy even with just a 
minimal increase of the number of parameters. 
 
 
6.4.2 Technical Implementation  
 
The above mixture models and single layer neural networks can be implemented and 
trained by using the conjugate gradient algorithm and the Fletcher-Reeves method as 
described in ([7] pp121-133, [16] pp424-429, [5] p355): first, find a decreasing trend for 
the total least square error, then perform a line search along this direction to ensure that a 
sufficient decrease has been found with the total least square error.  
 
Just as with the cluster analysis, the EM (Expectation Maximization)-algorithm ([15], 
lecture 16) applies, where for the M-step the above minimization process applies for 

training parameters }{ ijb , and for the E-step the above minimization process applies for 

training parameters }{ ip .  Both steps iterate until convergence. 

 
With the WOE technique, one can knock out a variable during the training process when 
the corresponding coefficient becomes negative.  As mentioned earlier, negative 
coefficients usually indicate noise effect and are rarely accepted by business partners. 
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7. Boost Modelling 
 
A situation can arise where we are not satisfied with the model built, probably because of 
its bias in prediction for some score bands.  In addition to the segmentation methodology 
mentioned in Section 5.2 (d), we can use the following boost strategies to improve the 
accuracy: 
 

(a) boosting the model by a decision tree 
(b) boosting the model by a scalar model 
(c) boosting the model by a linear regression 

 
With methodology (a), we simply choose the model prediction error as the new 
dependent variable and train a decision tree using all available variables (no WOE 
transformation is required), including the built model score.  In general, we get a decent 
improvement in accuracy. 
 
We now focus on methodologies (b) and (c). 
 
 
7.1. Boosting by a Scalar Model 

            
Let ptrend  denote the value of y predicted by the model built (base model). A scalar 

model can be trained by scaling an exponential factor to the base model:  
 

           y  ~  ptrendzazazaa km  )...exp( 22110  , 

 
where kzzz ,...,, 21 are either indicator variables denoting the score bands that require 

adjustment for the prediction error, or other available variables that give lift to this scalar 
model.  The resulting boost model needs to be capped at 1 (because 0<y<1). 
 
Scalar boost models can be implemented and trained similarly by using the conjugate 
gradient algorithm and the Fletcher-Reeves method as described in ([7] pp121-133, [16] 
pp424-429) through the minimization of the total least square error. 
 
  
7.2. Boosting by a Linear Regression 

             
In this section, we discuss how linear regression can be used to improve the base model 
prediction. 
 
First, we transform all independent variables, including the built base model 
score ptrend , into WOE format following (a)-(c) in Section 4.1.  At this point, if we 

regress y on these WOE transformed variables, we usually end up with just one variable 
in the model; the base model score ptrend .  This is because the base model has already 

absorbed all the possible available information. 
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Therefore, more diligence is required as suggested in (a) and (b): 
 

(a) generate new predictive variables 
(b) segment the sample into high and low segments using ptrend . 

 
For example, we can divide the sample into high/low segments using indicators H and L , 
where: 
 

         

HL

else

cptrendif
H




 



1

0

,1

 

 
where number c can be chosen to be the mean or mode of variable y.  
 
We can then fit a linear sub-model to each segment, individually forcing the WOE 
transformed ptrend variable to be included in the new models (as the base score).  Let 

1p  and 2p  be the sub-model scores for H  and L  segments respectively, both capped at 

1.  Then the final model can be given by: 
 

                21 pLpHp   .      

          
To generate new predictive variables, we consider variables of the form:    
 
                )(zwptrend  ,                                                                                           (7) 

  
where )(zw is the WOE transformed variable for variable z following (a)-(c) in Section 

4.1.  Usually, these types of variables exhibit higher predictive power. 
 
Applying the Bayes theorem, we can show that a boost variable of the form (7) usually 
carries more information than )(zw  or ptrend individually, provided that variable z  had 

not been included in the base model. 
     
Let B  be a binary variable.  Assume independence between x  and z , and independence 
between Bx |  and  Bz | .  

 
Then we have: 
 

          
)|()|()|,(

),()(),(

BzPBxPBzxP

zPxPzxP




  

Thus,  
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P( B |x, z) = 
),(

),,(

zxP

zxBP
 

                     
),(

)|,()(

zxP

BzxPBP
  

                     
),(

)|()|()(

zxP

BzPBxPBP
  

 
)(),(

)|()|()()(

BPzxP

zBPxBPzPxP
  

 
)(

)|()|(

BP

zBPxBP
   

This means P(B |x) * P(B |z) differs from P(B |x, z) only by a constant )(/1 BP .  Because 

P(B |x, z) carries more information than P(B |x) or P(B |z) individually, we conclude that 
)(zwptrend  , which is an estimate for P(B |x) * P(B |z), is more likely to be more 

predictive than ptrend and )(zw  individually. 

 
 
8. Model Performance Comparison     
 
In this section we present the model performance results.  The following models 
were trained using either SAS procedures or our own software implementation: 
 

Logit Raw - Logistic model by SAS using variables with no WOE  
transformation 
HL Logit - Combination of high and low logit models by SAS using 
 WOE transformed variables  
Logit - Logistic model by SAS using WOE transformed variables  
LS Logit - Least Square Logit model by our own software implementation using 
WOE transformed variables  
Naïve Bayes -Naïve Bayesian model by our own software implementation using  
WOE transformed variables  
Mixture - 3-component mixture model by our own software implementation 
 using WOE transformed variables  
Neural Net - 3-component single layer neural network by our own software 

             implementation using WOE transformed variables   
 
We focused on EAD Factor modelling and similar results were obtained for the LGD  
case. 
   
We first applied the WOE transformation to all independent variables following Section 
4.2. example B (WOE transformations for the following 8 variables were verified and 
confirmed with business partners), and selected only those variables, using the Naïve 
Bayesian model selection methodology, that demonstrated significant incremental 
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performance lift.  Below is a list of variables selected from this stepwise selection 
procedure: 
 

1. Borrower level utilization 
2. Facility level primary collateral value percentage 
3. Facility authorized amount 
4. Ratio of limit increase to undrawn 
5. Total assets value 
6. Industry code 
7. Facility level utilization 
8. Total facility collateral value percentage  

 
As we are working on facility level EAD (not borrower level), both borrower and facility 
level utilization and collateral percentage are relevant. Authorized amount acts as a 
potential exposure, and total assets value measures the size of the entity. We know both 
entity size and industry segment are important risk drivers. We did not include any 
macroeconomic variables. 
 
For the above 7 models, we used the same 8 variables.  Except for the Logit Raw, which  
uses the raw form of these 8 variables, all other models were trained using the same 8 
WOE transformed variables.  We dropped a variable unless its corresponding coefficient  
in the model was positive (according to our interpretation of WOE definition). This was 
done essentially to avoid the potential risk of including noise effect in the model as 
mentioned before, making the model simpler and robust. 
 

The table below shows the summary performance statistics for each of the listed 
7 models (MAD=mean absolute deviation (error), RMSE=root mean square error, 
RSQ=R-square, KSD= Kolmogorov–Smirnov statistic):   

      
          (Inset Table 8.1 here) 

 
Here, the number of parameters of HL Logit is 18 (last column) because each 
High and Low model uses 9 parameters including the intercept.  For the Mixture 
model we would have used 29 parameters ( 293  ) but we used only 17 after 
dropping those variables with negative parameter values. Similarly, for Neural 
Net we would have used 30 parameters ( 393  ), but we used only 17 after 
dropping those variables with negative parameter values (dropped one more than 
that for the Mixture model). 

 
From this table, we see that all other 6 models are significantly better than the 
Logit Raw model. This shows the value of the WOE transformation.  Even for a 
simple model like the Naïve Bayesian model WOE provided decent 
improvements.  It turns out that Mixture model or Neural Net of 3-components is 
particularly a good candidate for EAD Factor or LGD modelling.  
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Performance usually lifts up significantly when the predicted EAD Factor is 
translated into a prediction of an EAD dollar amount or the EAD dollar amount as 
a fraction of the current authorized limit using the following formulas:  

 

             
.

,

0

00
1

00

Auth

UndrawnFactorEADBal
Util

UndrawnFactorEADBalEAD





 

 
For example, for the LS Logit model, we have 27.0RSQ .  But when it is 

converted into a prediction of the EAD dollar amount, we have 91.0RSQ .     

 
Finally, we present the performance results for the boost methodologies, boosting 
the LS Logit model built previously (the base model): 

 
Scalar - Boosting by a scalar 
Linear Reg – Boosting by a linear regression 

 
For the Scalar boost, we cut the base model score ptrend  into 8 score bands, 

using a decision tree software, and trained a scalar boost model as described in 
Section 7.1 using our own software implementation. 

 
For the Linear Reg, we divided the sample into H  and L  segments using the 
base score ptrend , as described in Section 7.2, with the cutting point given by: 

 
                       sampletheoveryaveragec     

 
The table below shows the summary performance statistics:   
 
         (Insert Table 8.2 here) 

 
Performances for both models have slightly improved compared to the base 
model.   

 
The above results are based on a sample of 500 commercial borrowers, which is 
relatively small compared to the retail case, where we usually have a much larger sample, 
depending on products we are working with. With retail EAD and LGD, industry code is 
replaced by product type, while collateral percentage and total assets value are simply not 
there in the data for retail revolving products. Utilization, credit bureau report, recent 
delinquency records, and the activeness of looking for more credits, are among the 
important drivers. With large retail samples, the risk patterns fitted from the sample for 
variable bins, through WOE transformation, are usually much stable, resulting in better 
model performance eventually.  
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