A theory of compliance with minimum wage law

Asongu, Simplice and Jellal, Mohamed

Al Makrîzi Institut D’économie , Rabat, Morocco

15 July 2014
A Theory of Compliance with Minimum Wage Law

Simplice Asongu    Mohamed Jellal

Al Makrîzi Institut D'économie, Rabat

July 2014
Abstract

In this paper, we introduce firm heterogeneity in the context of a model of non-compliance with minimum wage legislation. The introduction of heterogeneity in the ease with which firms can be monitored for non-compliance allows us to show that non-compliance will persist in sectors which are relatively difficult to monitor, despite the government implementing non-stochastic monitoring. Moreover, we show that the incentive not to comply is an increasing function of the level of the minimum wage and increasing function of the gap between the minimum wage and the competitive wage rate.

Key Words: Minimum wage legislation, Compliance, Incentives informal sector, LDC.

JEL: H26, O17
1. Introduction

Received economic theory tells us increase in the minimum wage leads to an increase to all wages and thus to unemployment (Jones 1987, Brown 1988). The new growth theory, for its part, has shown, in certain context, that inequality can be harmful to growth (Alesina and Rodrik, 1994, Persson and Tabellini, 1992), in that the presence of low income individuals increases the incentive to tax productive capital. Murphy, Shleifer and Vishny (1989), for their part, argue that a low level of demand, in conjunction with low levels of remuneration can be an impediment to the adoption of new, and more productive, technologies. Calhuc and Michel (1996) construct an endogenous growth model in which higher salaries can be stimulant to growth in that they encourage the accumulation of human capital, which in the framework of Lucas-type model of growth leads to higher growth rate.

At microeconomic level, it has been shown by Azam (1992) that a increase in the minimum wage in moroccan agriculture leads to a positive effect on agricultural output, when one uses an efficiency wage model which takes into account the institutional characteristics of a family which shares revenues in order to finance consumption.
While minimum wage legislation may, through the reduction in inequality it entails; have a positive effect on growth, it is not at all certain that firms will respect such legislation. Non-compliance of firms with minimum wage law, has been studied in a number of environments. Ashenfelter and Smith (1979) conclude that (i) the enforcement of minimum wage legislation is incomplete despite the government’s inspection efforts not being stochastic, and (ii) the incentives not to comply are increasing in the absolute value of elasticity of the demand of labor. Grenier (1982) finds the opposite result. Chang and Ihrlich (1985) shows that both of the preceding results are partially incorrect because the methodological stance they adopt is not appropriate.

Finally, all of the above mentioned studies do not account for the heterogeneity in compliance with minimum wage legislation actually observed in the empirical data. That is, they fail to explain why certain sectors comply while others do not.

The purpose of the present paper is to take this sectoral heterogeneity into account, in the sens that certain sectors are easier
to monitor than others. This in turn allows us to show why non
compliance persists in certain sectors of activity despite frequent
inspection by the government agencies.

2. The Model

Consider an economy constituted by two sectors: a formal sector
which respects minimum wage legislation and informal sector which
does not respect the legislation and which is competitive. Firms share
common production technology, where labor is the only input, given
by:

\[ y = F(l), F'(\cdot) > 0, F''(\cdot) < 0 \]  \hspace{1cm} (1)

Labor market is regulation is given by a minimum wage \( \bar{w} \) for the
formal sector. In the informal sector, on the other hand, the
competitive wage is given by \( w_c < \bar{w} \). In order to insure compliance
with minimum wage legislation, firms are subject to inspection. They
may be detected as not being in compliance with the minimum wage
legislation with probability:

\[ q(\zeta) = q\zeta, \quad q \in [0,1], \zeta \in [0,1] \] \hspace{1cm} (2)

where \( q \) is the frequency of inspection, and \( \zeta \) parameterizes the
success of this inspection; we assume that the detection technology is
uncertain, it depends upon the observability of the activity, the type of evidence available, etc. A firm, which is found to be guilty of paying a wage $w < \bar{w}$ is assumed to have to pay a fine:

$$P = (1 + f)(\bar{w} - w)l$$

where $l$ is the size of labor who were hired at the below minimum wage, and $f$ is the penalty rate.

We assume that firms which decide not to comply with the minimum wage legislation pay a cost $c$ in order to do so. This cost is assumed to have cumulative density $H(c)$ over the interval $c \in [\underline{c}, \overline{c}]$. Thus, the number of firms which decide not to comply with the minimum wage legislation is given by those firms whose cost of non-compliance satisfied the following weak inequality (4):

$$(1 - q)(pF(l) - wl - c) + q(1 - \zeta)(pF(l) - wl - c) + q\zeta(pF(l) - wl - c - (1 + f)(\bar{w} - w)l) \geq pF(l) - \bar{w}l$$

where $p$ is the market price of the good sold by the firm. It follows that the proportion of firms which do not comply with the minimum wage law is given by:

$$E = \text{Prob}(c \leq (1 - q\zeta(1 + f))(\bar{w} - w)l) = H((1 - q\zeta(1 + f))(\bar{w} - w)l)$$

(5)
Lemma 1:

We have the following statics comparatives:

\[
\frac{\partial E}{\partial (\bar{w} - w)} = (1 - q \zeta (1 + f) \bar{h}(.)) > 0
\]

\[
\frac{\partial E}{\partial q \zeta} = -(1 + f)(\bar{w} - w) \bar{h}(.)) < 0
\]

\[
\frac{\partial E}{\partial \ell} = (1 - q \zeta (1 + f))(\bar{w} - w) \bar{h}(.)) > 0
\]

3. Wages and Employment Under Non Compliance

In contrast to the existing literature, we assume that wage rate in the sector where the minimum wage law is not respected is determined by a lateral contract between workers and the non compliant firms. Suppose that the workers in the informal sector who are paid a wage \( w_o < \bar{w} \) know the distribution of firms that do not apply the minimum wage law and are able to offer them a lateral contract which specifies the wage rate at which they are willing to work for them. The worker offers the contract; the firm may either take it or leave it. The following result characterizes the optimal contract for a simple functional form of the density of non-compliance costs.
Proposition 1:

Suppose that $H(c) = c^\delta, \delta \in [0,1]$ and $c \in [0,1]$. Then the optimal contract is given by:

$$w = \frac{\delta}{1 + \delta} w_o + \frac{1}{1 + \delta} \bar{w}$$

Proof:

The informal sector worker offers a wage contract to the firm which maximizes his expected rent, whence she solves:

$$\text{Max } E,(w - w_o) = H((1 - q\zeta(1 + f))(\bar{w} - w)l)(w - w_o)$$

The first order condition yields:

$$w = w_o + \frac{1}{1 - q\zeta(1 + f)} \left( \frac{H((1 - q\zeta(1 + f))(\bar{w} - w)l)}{h((1 - q\zeta(1 + f))(\bar{w} - w)l)} \right)$$

which, combined with the assumption on the functional of the distribution, yields the desired result:

$$w = \frac{\delta}{1 + \delta} w_o + \frac{1}{1 + \delta} \bar{w} \quad \text{(Q.E.D)}$$
Proposition 1 shows that the wage offered by the worker to the firms is a weighted combination of the competitive wage and the minimum wage. It is independent of the government policy $\langle q, f \rangle$.

Given the lateral contract, employment in the informal sector firms is given by the solution to the following optimization problem:

$$\text{Max } pF(l_n) - \left( \frac{\delta}{1 + \delta} w_o + \frac{\bar{w}}{1 + \delta} \right) l_n$$

(7)

This yields the employment:

$$l_n = F^{-1} \left( \frac{\delta w_o + \bar{w}}{p(1 + \delta)} \right)$$

(8)

Let $l_o$ be the level of hiring in the competitive sector, and $l_c$ be the level of hiring in the formal sector which respects the minimum wage legislation; Then we have the following result.

Proposition 2:

The optimal hiring policies are such be that: $l_o > l_n > l_c$.

Proof:

The result follows directly from the concavity of the production function and the fact that:
\[
\bar{w} > \frac{\delta}{1 + \delta} w_o + \frac{1}{1 + \delta} \bar{w} > w_o
\]

(9) (Q.E.D)

4. Government Compliance Policy

The government can affect compliance with the minimum wage law by choosing its instruments \( \langle q, f \rangle \), that is, the frequency of inspection and the penalty rate. Note that, given the contract offered and accepted by informal sectors, the proportion of firms which operate in the informal sector is given by:

\[
E = \text{Prob}(c \leq (1 - q\zeta(1 + f))[\bar{w} - w]l) = H((1 - q\zeta(1 + f))(\bar{w} - w)l) = H\left(\frac{1 - q\zeta(1 + f)}{1 + \delta}\right)\delta(\bar{w} - w_o)F^{-1}\left(\frac{\delta w_o + \bar{w}}{p(1 + \delta)}\right)
\]

(10)

Hence it follows the following corollary:
Corollary 1:

i) The higher the minimum wage, the greater the degree of non-compliance with law

ii) The smaller the wedge dividing the competitive wage and the minimum wage, the lesser is the incentive not to comply with the legislation e.g:

\[
\frac{\partial E}{\partial \bar{w}}(\cdot) > 0 \quad \text{and} \quad \frac{\partial E}{\partial \omega}(\cdot) < 0
\]

(11)

Proposition 3:

\[\exists \zeta^* \in [0,1[\quad \text{such that the compliance inspection strategy by the government is given by:} \quad q = 1 \text{ if } \zeta \leq \zeta^* \quad \text{and} \quad q = \frac{1}{\zeta (1+f)} \quad \text{otherwise} \]

Proof:

Note that:

\[
E = H \left( \frac{1-q\zeta (1+f)}{1+\delta} \left( \delta (\bar{w} - \omega) F^{-1} \left( \frac{\delta \omega + \bar{w}}{p(1+\delta)} \right) \right) \right) = 0 \Rightarrow
\]

\[1-q\zeta (1+f) = 0 \Rightarrow q = \text{Min} \left( 1, \frac{1}{\zeta (1+f)} \right) \]

one obtain the desired result \quad (Q.E.D).
The proposition 3 shows that in order to obtain full compliance, the policy for the government is to carry out inspection more frequently in those sectors which are more prone to evasion of the minimum wage law.

Corollary 2:

Given the inspection effect, the proportion of firms which do not comply with the minimum wage legislation is given:

\[ E_{\zeta} = H\left(\frac{1 - \zeta(1 + f)}{1 + \delta}\right)\delta(\bar{w} - w_0)F^{-1}\left(\frac{\delta w_o + \bar{w}}{p(1 + \delta)}\right), \forall \zeta \leq \zeta^o \]

\[ E_{\zeta} = 0, \quad \forall \zeta > \zeta^o \]

The corollary confirms the conclusion reached by Ashenfelter and Smith (1979) according to whom non-compliance with the minimum wage law persists in spite of non-stochastic inspection policy. The preceding result gives theoretical backing for their conclusion. For a penalty rate \( f < \frac{1 - \zeta}{\zeta} = f^o \), there will always be non-compliance with the minimum wage law, which lends credence to a penalty of the form suggested by Becker (1968).
4. Conclusion

In this paper we have analyzed the issue of non-compliance with minimum wage legislation in the context of a model which allows for heterogeneity in inspection stemming from the heterogeneity of the activities under monitoring. This uncertainty leads us to our main result which holds that non-compliance persists in a number of sectors, a result which appears to be broadly consistent with available empirical evidence.

References


