
Munich Personal RePEc Archive

On Infinite Dimensional

Linear-Quadratic Problem with Fixed

Endpoints. Continuity Question

Przyłuski, K. Maciej

2014

Online at https://mpra.ub.uni-muenchen.de/57430/

MPRA Paper No. 57430, posted 20 Jul 2014 23:36 UTC



On Infinite Dimensional Linear-Quadratic Problem
with Fixed Endpoints. Continuity Question

K. Maciej Przyłuski
e-mail: k.m.przyluski@gmail.com

To appear in
Internationa Journal of Applied Mathematics and Computer Science

Abstract
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1 Introduction

The existing theory of linear-quadratic problem has been successfully applied to the design
of many industrial and military control systems (see e. g. Athans 1971). A stochastic ver-
sion of this problem plays today an important role in macroeconomics, where the so-called
linear-quadratic economies are considered (see e. g. Ljungqvist and Sargent 2004, Sent 1998).
These (dynamic stochastic) optimizing models had to have linear constraints with quadratic
objective functions to get a linear decision rule (see e. g. Chow 1976, Kendrick 1981). How-
ever, such stochastic problems are frequently infinite dimensional; see e. g. (Federico 2011),
and the references cited therein.

We will consider infinite dimensional linear control systems which can be represented
by two linear continuous operators describing the influence of control, and the constraints
imposed on all system’s trajectories by given initial and final conditions. The minimum en-
ergy and linear-quadratic problem for such systems will be developed. These problems can
be studied in an appropriate Hilbert space setting. Then (as it is well known) the existence
and uniqueness of optimal solution to the above problems can be easily established, under
rather mild assumptions.

The purpose of our paper is to explore the conditions under which the solution to the
above described optimization problems is continuously depending on initial and final con-
ditions. Not surprisingly, these continuity (or discontinuity) conditions are strongly related
to some concepts of controllability of infinite dimensional (linear) systems. The importance
of continuous dependence of optimal solution upon the imposed initial and final conditions
is obvious, in particular when developing numerical methods for the minimum energy or
linear quadratic problem. For infinite dimensional linear control systems, the continuous
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dependence of optimal solutions on constraints on values of admissible controls has been
considered in (Przyłuski 1981). A much more general approach to such problems is pre-
sented in (Kandilakis and Papageorgiou 1992, Papageorgiou 1991).

The paper is organized as follows. In Sections 2 and 3 we consider quite general mini-
mum norm problems. The obtained results are next applied (in Section 4) to study a linear-
quadratic problem. In the last sections (Sections 5 and 6) the minimum energy problem with
fixed endpoints for some classes of linear infinite dimensional (discrete-time and continuous-
time) control systems is considered.

The notation used in the paper is standard (see e. g. Aubin 2000, Laurent 1972, Luenberger
1969, Corless and Frazho 2003). In particular, for any Hilbert space H and x, y ∈ H, by (x |y)

we usually denote the inner product of x and y. Let us recall that the norm ‖x‖ of any x ∈ H

is defined to be equal to the square root of (x |x). When M is a subset of a Hilbert space, M

denotes the closure of M. For any linear subspace S of H, we denote by S⊥ the orthogonal
complement of S. For arbitrary Hilbert spaces H1 and H2, we write H1 ⊕ H2 for the Hilbert

sum of these spaces. For h := (h1, h2) ∈ H1 ⊕ H2, the norm ‖h‖ :=
(
‖h1‖

2 + ‖h2‖
2
)1/2

.
We shall write L(H1,H2) for the (naturally normed) Banach space of all continuous linear
operators H1 → H2. When H1 = H2, the symbol L(H1) is used instead of L(H1,H2). For
any operator A ∈ L(H1,H2), ‖A‖ denotes its (operator) norm, Ker A denotes its kernel, and
Im A is its image. The (Hilbert space) adjoint of A is denoted by A⋆. For any Hilbert space H

we write ℓ2
τ(H) for the Hilbert space of all H-valued sequences h = (hk)

τ−1
k=0, the space being

normed by the norm |·|2 defined (as usual) by the formula |h|2 :=
(∑τ−1

k=0‖hk‖
2
)1/2

.

2 Minimum norm problem

Let Hu , Hv and Hz be real Hilbert spaces. Let S ∈ L(Hu,Hv) and R ∈ L(Hz,Hv) be fixed
operators. We consider the following minimum norm problem.

For a given z ∈ Hz, find û ∈ Hu such that

Sû = Rz (1a)

and

‖û‖ = inf
u

{‖u‖ | Su = Rz} . (1b)

We summarize below some well known results concerning the above described optimiza-
tion problem. We first define the space Z of admissible values of z in the following way:

Z := {z ∈ Hz | ∃u ∈ Hu: Su = Rz} . (2)

Of course, Z = R−1(Im S) (the inverse image of Im S under R). Let P denote the orthogonal
projection of Hu onto (Ker S)⊥. Assume z ∈ Z is fixed, and let u′ and u′′ be such that Su′ =

Su′′ = Rz. Then SPu′ = SPu′′ = Rz. In particular, Pu′ − Pu′′ ∈ Ker S and therefore Pu′ = Pu′′.
It follows that Pu is the same for all u ∈ Hu satisfying the constraint Su = Rz, with fixed
z ∈ Z. For any z ∈ Z, we denote such Pu by û(z). Observe that, for any u satisfying Su = Rz,
we have u = û(z) + (I − P)u, where I denotes the identity operator on Hu. It follows that

‖u‖2 = ‖û(z)‖2 + ‖(I − P)u‖2 ≥ ‖û(z)‖2.

Hence, for any z ∈ Z, û(z) is the (unique) solution to our minimum norm problem.
The considerations presented above show that one can define a mapping Z → Hu, which

maps z ∈ Z to the minimum norm solution û(z) to the equation Su = Rz. We denote this
mapping by K. The following result is well-known (see e. g. Aubin 2000, Laurent 1972).
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Proposition 1. The mapping K : Z → Hu is linear, i. e. K (α1z1 + α2z2) = α1Kz1 + α2Kz2.

Proof. Let z1, z2 ∈ Z, α1, α2 ∈ R, and z = α1z1 + α2z2. Since Z is a linear subspace of Hz,
z ∈ Z. To justify that K is linear we should prove that û (α1z1 + α2z2) = α1û(z1) + α2û(z2).
For this, let us observe that

S (α1û(z1) + α2û(z2)) = α1Sû(z1) + α2Sû(z2)

= α1Rz1 + α2Rz2 = R(α1z1 + α2z2) = Rz.

Since
α1û(z1) + α2û(z2) ∈ (Ker S)⊥,

we conclude that
û(z) = α1û(z1) + α2û(z2).

The main result of this section is the following theorem.

Theorem 1. K is continuous if and only if the space Z of admissible values of z is closed in Hz.

Proof. Necessity. Let z ∈ Z, the closure of Z. Then there exists a sequence (zn)∞
n=1 such that

zn ∈ Z and lim zn = z. Let un = Kzn. Of course, Sun = Rzn. Then

‖un − um‖ ≤ ‖K‖‖zn − zm‖,

and (since (zn)∞
n=1 is convergent), (un)∞

n=1 is a Cauchy sequence, and therefore the sequence
(un)∞

n=1 is also convergent. Let u = lim un. If we take the limits of both sides of the equality
Sun = Rzn as n → ∞, we find that Su = Rz. It means that z ∈ Z.

(Sufficiency.) Let Z be closed. Then Z is a Hilbert space with respect to the inner product

induced from Hz. Let R̃ denote the restriction of the operator R to the Hilbert space Z.

Observe that Im S ⊃ Im R̃. Using the Douglas Factorization Theorem (see e. g. Douglas 1966,

Rolewicz 1987) we conclude that there exists an operator K̃ ∈ L(Z,Hu) such that SK̃ = R̃.
Let P denote (as usual) the orthogonal projection of Hu onto (Ker S)⊥. Then, for z ∈ Z,

S(PK̃)z = SK̃z = R̃z = Rz. Since PK̃z ∈ (Ker S)⊥, K := PK̃ is the mapping which assigns
to any z ∈ Z the minimum norm solution û(z) to the equation Su = Rz. It is obvious that
K ∈ L(Z,Hu). In particular, K is continuous.

Remark 1. The existing proofs of the Douglas Factorization Theorem are usually based on
the Closed Graph Theorem (see e. g. Douglas 1966, Rolewicz 1987). So it is not surprising
that to prove the sufficiency part of Theorem 1 we could have used (instead of the Douglas
Factorization Theorem) the Closed Graph Theorem.

Using Theorem 1 one can prove1 the following remarkable characterization of closedness
of the space Z of admissible values of z.

Corollary 1. The following statements are equivalent.

(i) The space Z of admissible values of z is closed in Hz.

(ii) There exists α ≥ 0 such that, for every z ∈ Z, one can find u ∈ Hu satisfying Su = Rz and
the inequality ‖u‖ ≤ α‖z‖.

1Since we shall not need this result, its proof is omitted.
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(iii) For every ε > 0, z ∈ Z, and u ∈ Hu satisfying Su = Rz, there exists δ > 0 such that for every
z′ satisfying the inequality ‖z − z′‖ ≤ δ and belonging to Z, one can find u′ ∈ Hu such that
Su′ = Rz′ and ‖u − u′‖ ≤ ε.

We see that it is important to know when the space Z is closed. We collect below a few
simple results in this direction.

Proposition 2. Im S ⊃ Im R if and only if Z = Hz. .

In particular, if Im S ⊃ Im R, the space Z of admissible values of z is closed in Hz.
Before formulating our next result we recall that a linear continuous operator acting be-

tween Hilbert spaces possesses a linear continuous right inverse if and only if this operator
is surjective (employ the Douglas Factorization Theorem, or see e. g. Aubin 2000). Let us re-
call also that for any mapping L and any subset M of its domain, L−1(M) denotes the inverse
image of M under the mapping L.

Proposition 3. Let R be right invertible. Assume that Z is closed. Then Im S is also closed.

Proof. Let J be a right inverse of R, so that RJ = I, the identity operator on Hv. Then Im S =

(RJ)−1(Im S) = J−1
[
R−1(Im S)

]
= J−1(Z). Since J is continuous, J−1(Z) (being equal to Im S) is

closed.

Remark 2. The above proposition says that when R is right invertible and Im S 6= Im S, the space
Z of admissible values of z cannot be closed, and therefore the corresponding linear mapping K is
discontinuous.

Proposition 4. Assume that Im S is closed. Then Z is closed.

Let us note that the space Z of admissible values of z is always closed, when Im S is finite
dimensional (or finite codimensional).

We end this section with the following two general remarks.

Remark 3. Let us recall (see e. g. Luenberger 1969) that the Moore-Penrose pseudoinverse S† of
S exists if and only if the image of S is closed. The assumption that Im S = Im S significantly
simplifies the minimum norm problem since then the mapping K which maps z ∈ Z to
the minimum norm solution û(z) to the equation Su = Rz is equal to the restriction of the
continuous linear operator S†R to the (closed) subspace Z of Hz.

Remark 4. Consider the special case where Hz = Hv and R = I, the identity operator.
Assume that Im S is a proper dense subspace of Hz (i. e. Im S = Hv 6= Im S). Then, only for
v ∈ Im S, there exists a (unique) solution to our minimum norm problem. When v /∈ Im S,
one can consider a relaxation of this problem. One of possible approaches is to solve the
(unconstrained) problem of minimizing ‖u‖2 + ρ‖Su − v‖2, for large positive ρ. Another
possibility is to study the (constrained) minimization problem of finding u ∈ Hu of minimal
norm and such that ‖Su − v‖ ≤ η, for small positive η. These approaches are closely related.
For details, the interested reader should consult (Kobayashi 1978), or (Emirsajłow 1989).

3 Extended minimum norm problem

Let H0 be a real Hilbert spaces and R0 ∈ L(H0,Hv) be a given operator. We consider below
the following extended minimum norm problem.

For given z0 ∈ H0 and zv ∈ Hv, find û ∈ Hu such that

Sû = R0z0 + zv (3a)
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and

‖û‖ = inf
u

{‖u‖ | Su = R0z0 + zv} . (3b)

One can reduce the above problem to the minimum norm problem defined by relations
(1). For this, let I denote the identity operator on Hv and Hz := H0 ⊕ Hv (as usual, ⊕
denotes the direct sum of Hilbert spaces). Let z = (z0, zv) and R =

[
R0 I

]
, so that Rz =

R0z0 + zv, and R ∈ L(Hz,Hv). We see at once that relations (3) can be rewritten in the form
used to define our standard minimum norm problem, with R as above. Note that for the
extended minimum norm problem, by the space of admissible values of z we should mean
the following subspace of H0 ⊕ Hv:

Z = {(z0, zv) ∈ H0 ⊕ Hv | ∃u ∈ Hu: Su = Rz0 + zv} .

Proposition 5. The space Z described above is closed if and only if Im S is closed.

Proof. We know from Proposition 4 that Z is closed, if Im S is closed. Assume now that Im S

is closed. Since R =
[
R0 I

]
is right invertible, one can use Proposition 3 to deduce that Z is

closed.

Proposition 6. Let R =
[
R0 I

]
. Assume Im S ⊃ Im R0. Then (z0, zv) ∈ Z if and only if zv ∈ Im S.

Proof. Let zv ∈ Im S. Then zv = Suv, for some uv ∈ Hu. Let z0 ∈ H0. Since Im S ⊃ Im R0, one
can find u0 ∈ Hu such that R0z0 = Su0. Hence S(u0 + uv) = R0z0 + zv. It follows that any
z = (z0, zv) with zv ∈ Im S belongs to Z.

Conversely, let (z0, zv) ∈ Z so that Su = R0z0 + zv, for some u ∈ Hu. Since Im S ⊃ Im R0,
one can find u0 ∈ Hu such that R0z0 = Su0. Then S(u − u0) = zv, i. e. zv ∈ Im S.

Corollary 2. Let R =
[
R0 I

]
. Then Im S ⊃ Im R0 if and only if Z = H0 ⊕ Im S. In particular,

Z = H0 ⊕ Hv if and only if S is surjective.

We know that, for any z ∈ Z, there exists a (uniquely defined) solution û(z) to the considered
extended minimum norm problem. Since z = (z0, zv), we also write û(z0, zv) instead of û(z).
In virtue of Proposition 1, the mapping (z0, zv) 7→ û(z0, zv) is linear. It is a consequence of
Theorem 1 and Proposition 5 that this mapping is continuous if and only if Im S is closed.

Unfortunately, the assumption that Im S is closed is rather restrictive. Our next result is
dealing with the extended minimum norm problem for S which image is not closed.

Theorem 2. Assume that
Im S ⊃ Im R0 and Im S 6= Im S.

Let û(z0, zv) be the solution to the extended norm minimization problem. Then

û(z0, zv) = K0z0 + Kvzv,

where K0 is linear and continuous (i. e. K0 ∈ L(H0,Hu)), and Kv : Im S → Hu is linear, but it
cannot be continuous.

Proof. In view of Corollary 2, û(z0, zv) is well-defined for all pairs (z0, zv) such that z0 ∈ H0

and zv ∈ Im S. In particular, (z0, 0) and (0, zv) are in Z. Observe that û(z0, 0) is the minimum
norm solution to the equation Su = R0z0, whereas û(0, zv) is the minimum norm solution to
the equation Su = zv. Since û(z0, 0) and û(0, zv) belong to (Ker S)⊥, and

S (û(z0, 0) + û(0, zv)) = R0z0 + zv,

we have the equality û(z0, 0) + û(0, zv) = û(z0, zv). It means that

K0z0 = û(z0, 0), and Kvzv = û(0, zv).

The inclusion Im S ⊃ Im R0 implies (see Proposition 2) that R−1
0 (Im S) = H0, and therefore

K0 is continuous. On the other hand, since Im S 6= Im S, Kv is discontinuous, in view of
Remark 2.

5



4 Linear-quadratic problem

Let Hw, Hy be real Hilbert space, and W ∈ L(Hu,Hw), L1 ∈ L(Hu,Hy), L2 ∈ L(Hz,Hy)

be given operators. We always assume that W is an injection with closed image. For Hilbert
spaces, such operators are characterized (see e. g. Aubin 2000) by the existence of a positive
constant γ such that ‖Wu‖ ≥ γ‖u‖, for all u. This inequality is equivalent to positive defi-
niteness (also called coerciveness) of the self-adjoint operator W⋆W. It follows that W is an
injection with closed image if and only if W⋆W is positive definite. Since W⋆W is always
nonnegative definite, W⋆W is positive definite if and only if the operator is invertible.

In this section we consider the following linear quadratic problem.
For a given z ∈ Hz, find û ∈ Hu such that

Sû = Rz (4a)

and

‖Wû‖2 + ‖L1û + L2z‖
2

= inf
u

{
‖Wu‖2 + ‖L1u + L2z‖

2 | Su = Rz
}

. (4b)

Let us observe that for any u ∈ Hu and z ∈ Hz,

‖Wu‖2 + ‖L1u + L2z‖
2

=
(
u | (W⋆W + L⋆

1L1)u
)

+ 2
(
u |L⋆

1L2z
)

+ ‖L2z‖
2. (5)

Let
Q := W⋆W + L⋆

1L1.

Of course, Q ∈ L(Hu,Hu). Since W is an injection with closed image, the operator Q above
defined is always (i. e. independently of L1) positive definite, hence invertible. Moreover,
there exists a unique positive definite square root Q1/2 of Q. Observe that the first term on
the right-hand side of (5) can be written as ‖Q1/2u‖2. Since Q1/2 is positive definite, it is also
invertible. The inverse of Q1/2 will be denoted by Q−1/2.

Our purpose is to reduce the considered linear quadratic problem into a norm mini-
mization problem. For this, let us compute the norm of Q1/2(u + Q−1L⋆

1L2z). After easy
calculations we obtain the following equality:

‖Q1/2(u + Q−1L⋆

1L2z)‖
2

= ‖Q1/2u‖2 + 2
(
u |L⋆

1L2z
)

+ ‖Q−1/2L⋆

1L2z‖
2. (6)

It follows (compare equations (5) and (6)) that

(
‖Wu‖2 + ‖L1u + L2z‖

2
)

− ‖Q1/2(u + Q−1L⋆

1L2z)‖
2

= ‖L2z‖
2 − ‖Q−1/2L⋆

1L2z‖
2

We see that the difference between ‖Wu‖2 + ‖L1u + L2z‖
2 and ‖Q1/2(u + Q−1L⋆

1L2z)‖
2 is inde-

pendent of u. It means that instead of the linear-quadratic problem defined by (4), one can
consider the problem in which (for fixed z) we are minimizing with respect to u (for u ∈ Hu

satisfying Su = Rz) the norm
‖Q1/2(u + Q−1L⋆

1L2z)‖. (7)

Let
q := u + Q−1L⋆

1L2z. (8)
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Then (7) takes the form ‖Q1/2q‖, and the constraint Su = Rz should be replaced by the
equality Sq = (R − Q−1L⋆

1L2)z. Now, let us define on Hu a new inner product (· | ·)Q by the
formula (x |y)Q := (x |Qy), where x, y ∈ Hu, and (· | ·) is the original inner product of Hu.
Since Q is a positive definite operator, (x |y)Q is a well-defined inner product on Hu. For

the induced by this inner product norm ‖·‖Q, we have ‖q‖Q = ‖Q1/2q‖, for all q ∈ Hu.
Since Q is positive definite, the norms ‖·‖Q and ‖·‖ (i. e. the original norm of Hu) are equivalent.
Let us recall that continuity of functions defined on Hu and closedness of subsets of Hu are
independent of the assumed norms on Hu, if these norms are equivalent.

On account of the considerations presented above, one can formulate a minimum norm
problem reflecting all properties of the studied in this section linear quadratic problem as
follows.

For a given z ∈ Hz, find q̂ ∈ Hu such that

Sq̂ = (R − SQ−1L⋆

1L2)z (9a)

and

‖q̂‖Q = inf
q

{
‖q‖Q | Sq = (R − SQ−1L⋆

1L2)z
}

, (9b)

where Q = W⋆W + L⋆

1L1, and W is an injection with closed image.
It is immediate that, for a given z, the above minimum norm problem has a solution if and only

if our original linear-quadratic problem defined by relations (4) is solvable. Then, the solutions q̂

and û to these problems are related by (8).
Let, for the minimum norm problem defined by (9), Zq denote the counterpart of the

space Z of admissible values of z, defined in Section 1 by (2), i. e.

Zq :=
{
z ∈ Hz | ∃q ∈ Hu: Sq = (R − SQ−1L⋆

1L2)z
}

.

It follows from our considerations of Section 1 that, for every z ∈ Zq, there exists a uniquely
defined solution q̂ to the minimum norm problem (9), and q̂ is a linear function of z. This function, to
be denoted by Kq, is a continuous function Zq → Hu if and only if Zq is closed in Hz (see Theorem
1).

It happens that Zq is closed in Hz if and only if Z = R−1(Im S) is closed. More precisely, we
can prove the following elementary result, saying in particular that Zq = Z.

Proposition 7. For any linear mapping F : Hz → Hu,

R−1(Im S) =
(
R + SF

)−1
(Im S

)
.

Proof. Of course, z ∈ R−1(Im S) if and only if there exist u such that Su = Rz. Then Su+SFz =

Rz + SFz, and S(u + Fz) = (R + SF)z. Now it is obvious that z ∈
(
R + SF

)−1
(Im S

)
.

Conversely, assume that z ∈
(
R + SF

)−1
(Im S

)
. Then there exists u such that Su = (R +

SF)z, for some z. Then S(u − Fz) = Rz, and therefore z ∈ R−1(Im S).

It should be clear now that the linear-quadratic problem studied in this section possesses
a solution if and only if z ∈ Z = R−1(Im S). The solution is uniquely determined by z, and
will be denoted (as usual) by û(z). Let K : Z :→ Hu be the mapping z 7→ û(z). From (8) we
conclude that

K = Kq − Q−1L⋆

1L2,

and linearity of K is obvious. Moreover, we are thus led to the following strengthening of
Theorem 1
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Theorem 3. Consider the linear quadratic problem defined by relations (4). Assume that W is an
injection with closed image. Then the linear mapping K : Z → Hu above defined is (well-defined
and) continuous if and only if Z = R−1(Im S) is closed in Hz.

One can also generalize Theorem 2.

Theorem 4. Consider the linear quadratic problem defined by relations (4), with R =
[
R0 I

]
(see

Section 3). Let W be an injection with closed image. Assume also that

Im S ⊃ Im R0 and Im S 6= Im S.

Let û(z0, zv) be the solution to the considered linear quadratic problem. Then (as in Theorem 2)

û(z0, zv) = K0z0 + Kvzv,

where K0 is linear and continuous (i. e. K0 ∈ L(H0,Hu)), and Kv : Im S → Hu is linear, but it
cannot be continuous.

We end this section with the following remark.

Remark 5. The fact that any linear-quadratic problem can be reduced to an appropriate min-
imum norm problem is well known for control systems described by differential equations. This
reduction requires solving a Riccati-type differential or integral equation (for finite dimen-
sional systems, see e. g. Brockett (1970); for infinite dimensional systems consult e. g. Curtain
(1984)). A bit more general treatment of this topic is presented in (Chap. 4 of Porter 1966).
Our approach to this reduction seems to be new.

5 Minimum energy control problem for infinite dimensional

discrete-time control systems

Consider a linear discrete-time control system defined by the difference equation

xk+1 = Axk + Buk, (10)

where k runs through the set of non-negative integers. We assume that A ∈ L(X), B ∈
L(U, X), where the state space X as well as the control space U are real Hilbert spaces. Let
x0 ∈ X be an initial state and u := (uk)

τ−1
k=0 be a controlling sequence, where τ denotes a fixed

positive integer (“final time”). Then

xτ = Aτx0 +

τ−1∑

k=0

Aτ−k−1Buk.

For discrete-time systems, we formulate the following fixed endpoints minimum energy con-
trol problem.2

For given x0 ∈ X, xfinal ∈ X, and τ being a fixed positive integer, find a controlling sequence
û := (ûk)

τ−1
k=0 such that

xfinal = Aτx0 +

τ−1∑

k=0

Aτ−k−1Bûk (11a)

2In view of our results of Section 4 there is no need to consider explicitly a more general linear quadratic
problem.
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and

( τ∑

k=0

‖ûk‖
2
)1/2

≤
( τ∑

k=0

‖uk‖
2
)1/2

, (11b)

for any controlling sequence u = (uk)
τ−1
k=0 satisfying

xfinal = Aτx0 +

τ−1∑

k=0

Aτ−k−1Buk. (11c)

In order to reformulate the fixed endpoints minimum energy control problem defined by
(11) as an extended minimum norm problem discussed in Section 3, we put Hu := ℓ2

τ(U) so
that the norm of u ∈ Hu will be |u|2. We also assume that H0 := X, Hv := X, Hz := X ⊕ X.
Let

R0 := −Aτ, (12)

S :=
[
Aτ−1B, Aτ−2B, . . . , AB, B

]
. (13)

Let us note that R0 ∈ L(H0,Hv), S ∈ L(Hu,Hv), and

Su =

τ−1∑

k=0

Aτ−k−1Buk,

for any u = (uk)
τ−1
k=0 ∈ Hu = ℓ2

τ(U). Of course, the operators R0 and S are depending on τ.
The image of S is known as the τ-controllable subspace.

It is clear that the considered fixed endpoints minimum energy control problem for sys-
tem (10) takes the following form.

For given x0 ∈ H0 = X and xfinal ∈ Hv = X, find (if it is possible) û = (ûk)
τ−1
k=0 ∈ Hu = ℓ2

τ(U)

such that
Sû = R0x0 + xfinal,

and |û|2 is not greater than the norm |u|2, for any u = (uk)
τ−1
k=0 ∈ Hu satisfying Su = R0x0 + xfinal,

where R0 and S are defined by (12) and (13), respectively.
There is no doubt that one can employ the results of Section 3 when studying the fixed

endpoints minimum energy control problem for system (10). For this, let us note that, for
the considered discrete-time system, the space Z = R−1(Im S) (as defined in Section 3) is as
follows:

Z =
{
(x0, xfinal) ∈ X ⊕ X | ∃u = (uk)

τ−1
k=0 ∈ ℓ2

τ(U) :

xfinal = Aτx0 +

τ−1∑

k=0

Aτ−k−1Buk

}
. (14)

This space is depending on τ.
Let us observe that the minimum energy control problem specified by relations (11) is

well-defined if and only if (x0, xfinal) ∈ Z, with Z given by (14). Let K (see Proposition 1)
denote the linear mapping which maps (x0, xfinal) ∈ Z to û(x0, xfinal) ∈ Hu = ℓ2

τ(U), the
(unique) solution to the considered fixed endpoints minimum energy problem.

The following theorem is a direct consequence of Theorem 1 and Proposition 5.
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Theorem 5. Consider the fixed endpoints minimum energy control problem specified by relations
(11), and the linear mapping K : (x0, xfinal) 7→ û(x0, xfinal). Then K is continuous if and only if the
τ-controllable subspace Im S is closed.

Let us recall (see e. g. Fuhrmann 1972) that a linear discrete-time system is said to be
exactly controllable in τ steps, if for any xfinal ∈ X, one can find a controlling sequence
u = (uk)

τ−1
k=0 such that

xfinal =

τ−1∑

k=0

Aτ−k−1Buk,

so that when x0 = 0, xfinal = xτ, for some u. In other words, the considered discrete-time
system is exactly controllable in τ steps if and only if Im S = X.

Corollary 3. The domain of K is equal to X ⊕ X if and only if system (10) is τ-exactly controllable.
Then K is continuous.

Proof. In view of Corollary 2 and Theorem 5, it is sufficient to observe that the space Z (see
(14)) coincides with X ⊕ X if and only the τ-controllable subspace is equal to X.

The assumption that a system is exactly controllable (or this that its τ-controllable sub-
space is closed) may be too demanding for some infinite dimensional control systems. One
can relax this assumption using Theorem 2 of Section 3. To formulate some results in this
direction we introduce below two additional concepts of controllability; they are weaker
than that of exact controllability. These concepts are well known; see e. g. Fuhrmann (1972)
or Curtain and Zwart (1995).

We say that system (10) is approximately controllable in τ steps if for each xfinal ∈ X and
any ε > 0, there exists a controlling sequence u = (uk)

τ−1
k=0 such that

‖xfinal −

τ−1∑

k=0

Aτ−k−1Buk‖ ≤ ε,

so that when x0 = 0, the norm ‖xfinal − xτ‖ does not exceed ε, for some u. It means that the
considered system is approximately controllable in τ steps if and only if its τ-controllable subspace
is dense in X.

We also need the concept of null-controllability. It is said that system (10) is null-controllable
in τ steps if for every x0 ∈ X there exists a controlling sequence u = (uk)

τ−1
k=0 such that

Aτx0 +

τ−1∑

k=0

Aτ−k−1Buk = 0,

so that, for each x0 one can find u steering x0 to the origin. In other words, the considered
system is null-controllable in τ steps if and only if Im R0 ⊂ Im S, i. e.

Im Aτ ⊂
[
Aτ−1B, Aτ−2B, . . . , AB, B

]
.

Let (as usual) K denote the linear mapping which maps (x0, xfinal) ∈ Z to û(x0, xfinal) ∈
Hu = ℓ2

τ(U). Since K is linear, we have

û(x0, xfinal) = K(x0, xfinal) = K0x0 + Kfinalxfinal,

for appropriate linear mappings K, K0 and Kfinal.
The following result is merely a rephrasing of Theorem 2.
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Theorem 6. Consider the fixed endpoints minimum energy control problem specified by relations
(11). Assume that the considered system is null-controllable in τ-steps, and that its τ-controllable
subspace (i. e. Im S) is not closed. Let K0 and Kfinal be as above. Then K0 is continuous, i. e. K0 ∈
L

(
X, ℓ2

τ(U)
)
, and Kfinal : Im S → ℓ2

τ(U)
)

is linear, but discontinuous.

We have also the following.

Corollary 4. Assume that system (10) is null-controllable in τ-steps. Let the system be approxi-
mately controllable in τ steps, but not exactly controllable. Then the conclusion of Theorem 6 is valid,
i. e. K0 is continuous, and Kfinal is discontinuous.

6 Minimum energy control problem for infinite dimensional

continuous-time control systems

We will consider continuous-time systems. In what follows, we denote by T a fixed positive
real number. Let a linear continuous-time control system be described by the differential
equation

ẋ(t) = Ax(t) + Bu(t), (15)

where t runs through the set of non-negative real numbers. We assume that A is is the
infinitesimal generator of a strongly continuous semigroup of continuous linear operators(
Φ(t)

)
t≥0

, B ∈ L(U, X), where the state space X as well as the control space U are real Hilbert

spaces. We write L2((0, T);U) for the Hilbert space of all (equivalent classes of) square-
integrable functions [0, T ] → U, normed in the usual way. Let x0 ∈ X be an initial state and
u(·) ∈ L2((0, T);U) be a controlling function. Then we say that

x(t) = Φ(t)x0 +

∫ t

0

Φ(t − s)Bu(s)ds (16)

is a mild solution of equation (15) on [0, T ]. The above formula makes sense for all x0 ∈ X and
u(·) ∈ L2((0, T);U), and it can be shown that x(·) ∈ L2((0, T);X). At this point we refer the
reader to Balakrishnan (1981) or Curtain and Pritchard (1978), for details and the very clear
exposition of various properties of mild (and weak) solutions of differential equations.

For continuous-time systems, we will consider the following fixed endpoints minimum
energy control problem.3

For given x0 ∈ X, xfinal ∈ X, and T being a fixed positive real number, find a controlling function
û(·) ∈ L2((0, T);U) such that

xfinal = Φ(t)x0 +

∫T

0

Φ(T − s)Bû(s)ds (17a)

and

(∫T

0

‖û(s)‖ds

)1/2

≤

(∫T

0

‖u(s)‖ds

)1/2

, (17b)

for any controlling function u(·) satisfying

xfinal = Φ(t)x0 +

∫T

0

Φ(T − s)Bu(s)ds. (17c)

3Of course, we know that there is no need to consider a more general linear quadratic problem.
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Like in the case of problem (11), the above fixed endpoints minimum energy control
problem can be rewritten as an extended minimum norm problem of Section 3. For this, it
sufficient to put Hu := L2((0, T);U), H0 := X, Hv := X, Hz := X ⊕ X. Let

R0 := −Φ(T)x0, (18)

Su(·) :=

∫T

0

Φ(T − s)Bu(s)ds, (19)

for any u(·) ∈ L2((0, T);U). Then, for the considered continuous-time system, the space
Z = R−1(Im S) (as defined in Section 3) is as follows:

Z =
{
(x0, xfinal) ∈ X ⊕ X | ∃u(·) ∈ L2((0, T);U) :

xfinal = Φ(t)x0 +

∫T

0

Φ(T − s)Bu(s)ds
}
. (20)

Let us note that R0 ∈ L(H0,Hv), and S ∈ L(Hu,Hv). In this section we assume that R0, S

and Z are given by formulas (18), (19) and (20), respectively. It is clear that the operators R0,
S, and the space Z are depending on T .

The image of the above defined operator S is named the T-controllable subspace. For
a broad class of infinite dimensional continuous-time systems, the T -controllable subspace (i. e.
Im S) cannot be closed, and therefore Im S is a proper subspace of X. It takes place when B is
compact, or Φ(·) is a compact semigroup. Then the operator S is compact and has (usually)
infinite dimensional image. This important fact is well known (see Balakrishnan (1981),
Curtain and Pritchard (1978), Kobayashi (1978), or Triggiani (1975a)).

In a similar manner like for discrete-time systems, one can define (see e. g. Curtain and
Pritchard 1978, Curtain and Zwart 1995) the concepts of exact controllability, approximate
controllability, and null-controllability for a continuous-time system.

Let us recall that a linear continuous-time system is exactly controllable on [0, T ], if for
every xfinal ∈ X, one can find a controlling function u(·) ∈ L2((0, T);U), such that

xfinal =

∫T

0

Φ(T − s)Bu(s)ds,

so that when x0 = 0, xfinal = x(T), for some u(·). In other words, the considered continuous-
time system is exactly controllable on [0, T ] if and only if Im S = X.

System (15) is said to be approximately controllable on [0, T ], if for each xfinal ∈ X and
any ε > 0 there exists a controlling function u(·) ∈ L2((0, T);U) such that

‖xfinal −

∫T

0

Φ(T − s)Bu(s)ds‖ ≤ ε,

so that when x0 = 0, the norm ‖xfinal − x(T)‖ does not exceed ε, for some u(·). It means
that the considered system is approximately controllable on [0, T ] if and only if its T -controllable
subspace is dense in X.

The important concept of null-controllability for continuous-time systems is defined as
follows. We say that system (15) is null-controllable on [0, T ] if for every x0 ∈ X, there exists
a controlling function u(·) ∈ L2((0, T);U) such that

Φ(t)x0 +

∫T

0

Φ(T − s)Bu(s)ds = 0,
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so that, for each x0 one can find u(·) steering x0 to the origin. In other words, the considered
system is null-controllable on [0, T ] if and only if Im R0 ⊂ Im S.

Various important results concerning the above introduced concepts of controllability
have been obtained by Triggiani (1975a, 1975b, 1976).

We know that the minimum energy control problem described by relations (17) is well-
defined if and only if (x0, xfinal) ∈ Z, with Z given by (20). Then (see Proposition 1) there
exists a linear mapping K which maps each (x0, xfinal) ∈ Z to û(x0, xfinal) ∈ Hu = L2((0, T);U),
the (unique) solution to the considered fixed endpoints minimum energy problem, so that
û(x0, xfinal) = K0x0 + Kfinalxfinal, for suitable linear mappings. It is obvious that the results
analogous to those obtained for our discrete-time problem (11) remain true, mutatis mutandis,
for the continuous-time fixed endpoints minimum energy problem defined by relations (17).
We record only the following result.

Proposition 8. Consider the fixed endpoints minimum energy control problem given by relations
(17). Assume that system (15) is null-controllable on [0, T ]. Let the system be approximately control-
lable on [0, T ], but not exactly controllable on [0, T ]. Let K0 and Kfinal be defined as usual, so that the
optimal solution û to (17) can be written as û(x0, xfinal) = K0x0+Kfinalxfinal. Then K0 is continuous,
i. e. K0 ∈ L

(
X, L2((0, T);U)

)
, and Kfinal : Im S → L2((0, T);U) is linear, but discontinuous.

We end this section with the following example of a distributed parameter system.4

Example 1 (nosign). We consider, for t ∈ [0, T ] and ξ ∈ [0, 1], the (one-dimensional) heat
equation

∂θ

∂t
(ξ, t) =

∂2θ

∂ξ2
(ξ, t) + h(ξ, t), (21a)

subject to the boundary condition

∂θ

∂ξ
(0, t) =

∂θ

∂ξ
(1, t) = 0; (21b)

here θ(ξ, t) denotes the temperature at time t at position ξ. Then relations (21) describe
a (thin homogeneous) metal rod of length one, with (perfectly) insulated endpoints, with
some additional heat source that can increases (or decreases) the temperature at each point
ξ along the rod, at a given rate h(ξ, t), known also as the heat source density.

Our aim it to find a heat source density h such that the initial temperature distribution
θ(ξ, 0) will be changed to a given (desired) temperature distribution θ(ξ, T), at time T , and the
energy used for this, i. e.

∫T

0

∫1

0

(
h(ξ, t)

)2
dξdt, (22)

will be as low as possible.
It is well known (see e. g. Balakrishnan 1981, Curtain and Zwart 1995) that equations (21)

can be rewritten as a differential equation of form (15), with suitable A and B. For this, let
X = U = L2((0, 1); R). Let x(t) := θ(·, t), and u(t) := h(·, t), so that (for each t ∈ [0, T ]), x(t)

and u(t) are real-valued functions of the (spatial) variable ξ ∈ [0, 1]. Observe that

x(0) = θ(·, 0) and x(T) = θ(·, T)

are representing the initial temperature distribution and its desired (final) distribution at
t = T , respectively. For that reason, x(0) will play the role of x0, and x(T) will be our xfinal; see
relations (17).

4Distributed parameter systems are usually described by partial differential equations. For basic theory of
such equations, see e. g. (Evans 2010).
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The left-hand side of the considered heat equation (i. e. equation (21a)) can be identified
with ẋ(t), the derivative of x with respect to t. The second term of the right-hand side of
equation (21a) can be represented by u(t). It follows that when expressing relations (21)
as a differential equation ẋ(t) = Ax(t) + Bu(t), we should assume that B = I, the identity
operator U → X (= U).

To describe the operator A, let us consider any x ∈ X. Such x is a function of the spa-
tial variable ξ ∈ [0, 1]. The right-hand side of (21a) contains the term (∂2θ/∂ξ2)(ξ, t), i. e.
the second derivative of x with respect to ξ. It follows that A is an ordinary second order
differential operator, i. e. the operator defined by the formula

Ax =
d2x

dξ2
.

The domain dom A of A should reflect differentiability conditions, and also the boundary
condition imposed by (21b). It is known (and not very difficult to check) that the appropriate
domain of A coincides with the linear subspace of X = L2((0, 1); R) containing all absolutely
continuous functions x of the (spatial) variable ξ, which first derivative (with respect to ξ) is
absolutely continuous, the second derivative belongs to L2((0, 1); R), and such that bound-
ary condition (21b) is satisfied, i. e. (dx/dξ)(0) = (dx/dξ)(1) = 0. One can check that the
above described linear operator A : dom A → X is the infinitesimal generator of a strongly
continuous semigroup. Moreover, A belongs to the class of Riesz-spectral operators, and
the semigroup

(
Φ(t)

)
t≥0

generated by A can be written in an explicit form. For details, the

interested reader should consult Theorem 2.3.5 and Examples 2.1.1, 2.3.7 in (Curtain and
Zwart 1995).

We see that the considered heat equation (21) can be represented as a linear continuous-
time control system described by a differential equation ẋ(t) = Ax(t)+Bu(t), with X, U and
A, B described above. Therefore one can reformulate the problem of minimizing energy (22)
as a fixed endpoints minimum energy control problem (17). Then Hu = L2

(
(0, T);L2((0, 1); R)

)
.

Since u(t) := h(·, t)) , for any u ∈ Hu, we have

‖u‖2 =

∫T

0

∫1

0

(
h(ξ, t)

)2
dξdt,

the norm ‖u‖ of u being evaluated in Hu. Hence, the problem of minimizing energy (22)
falls into the framework we know from the beginning of this section.

It remains to check whether or not the linear continuous-time control system ẋ(t) =

Ax(t)+Bu(t) representing heat equation (21) is exactly controllable, approximately control-
lable, or null-controllable. It happens that (for arbitrary positive T ) the considered continuous-
time system is approximately controllable on [0, T ], null-controllable on [0, T ], but it is never exactly
controllable. These facts are well known, and can be justified with the aid of various argu-
ments. The simplest way to prove them is to use controllability criteria presented in (Chap. 4
of Curtain and Zwart 1995). It has been done in the existing literature. In particular, Example
4.1.10 of (Curtain and Zwart 1995) proves that this system is never exactly controllable on
[0, T ], but it is null-controllable. To prove that this system is approximately controllable on
[0, T ], one can use the duality between observation and control. Example 4.1.15 of (Curtain
and Zwart 1995) contains all necessary details.

Now, one can use our Proposition 8. Since we know that the considered heat equation
is approximately controllable, null-controllable, but it is never exactly controllable, we con-
clude that the solution to the minimum norm problem for system (21) will depend continuously on
initial state x(0) = θ(·, t), but it cannot be continuously depending on final condition x(T) = θ(·, T).
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