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Abstract 
 

 
This paper investigates the effects of the domestic and foreign R&D weighted by bilateral imports 
on productivity accounting for the heterogeneous impact of unobserved micro and macroeconomic 
common shocks, which are modeled in a multifactor error structure. Using a panel of 50 
economies from 1970-2011, I find that when unobserved common shocks are not regarded, as has 
been done by the literature in this area, estimates of domestic R&D and foreign R&D might be 
biased and inconsistent. Once unobserved common shocks are accounted for, by allowing for 
heterogeneous technology coefficients, significant estimates become more sizable, consistent and 
not seriously biased in most cases. However, these estimates might be capturing not only returns 
to domestic R&D and trade-related knowledge spillovers, but also unobserved common spillovers 
and other effects. This indicates that knowledge spillovers and effects of unknown form cannot be 
easily separated. Therefore, unobserved common shocks should be considered when estimating 
returns to domestic R&D and international R&D spillovers. 
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1. Introduction 
 
In the past three decades there has been a great deal of research into international R&D spillovers. 
A large number of these studies are mainly based on the endogenous economic growth theory, 
which states that technological evolution and productivity growth can be determined by 
technology diffusion through international trade relations directed by profit-seeking firms (Romer 
1990; Grossman and Helpman 1991; Aghion and Howitt 1992). Since these models suggest that 
there should be public policies to adopt R&D capital stock through international economic 
channels, the study of the effects of the technological knowledge flows on the economic 
performance across countries has become relevant for the economic science. Keller (2010) states 
that it is imperative to identify which part of the transfer represents genuine knowledge spillovers 
in order to assess the case for economic policy intervention. This is because public policy rests on 
this type of spillovers rather than other sorts of spillovers and effects. The literature on 
international R&D spillovers has therefore focused on studying how productivity is explained by 
international R&D spillovers in the global economy by examining the impact of domestic 
cumulative R&D and the world R&D capital stock that diffuses according to the bilateral 
economic relations between economies. 

A seminal work that empirically corroborates how international R&D spillovers might spread 
in the world through trade and have an effect on productivity across countries is by Coe and 
Helpman (1995) (hereafter CH), who used aggregate data from 21 OECD countries plus Israel 
from 1971-19901. Their aim is to see how countries may benefit from imports, in accordance with 
the level of technology knowledge of their trade partners and their degree of openness. Towards 
that end, CH  introduce a domestic and a foreign R&D capital stock variables in a Total factor 
productivity (TFP) 2 function in a separable fashion, so that the country-specific foreign R&D 
capital stock measure takes into account technology transfers through trade from all the countries 
of the sample. This measurement is based on the weighted average of the domestic R&D from 
country partners where bilateral imports are used as weights, and eventually it is multiplied by the 
share of imports in the GDP because such weights are fractions which add up to one and cannot 
accurately measure the role of imports.  

Employing pooled cointegrated equations to study the long run relationship of covariates, 
they find significant returns to domestic R&D and knowledge spillovers; the more open the 
economy, the larger the effect of knowledge spillovers; and the returns to domestic R&D are 
larger for the G7 countries, whereas the knowledge spillovers are larger for the smaller advanced 
countries. Coe et al. (1997) implement the CH framework (although without including a domestic 
foreign R&D variable) to study the effect of the foreign R&D, openness and human capital stock 
on productivity across 77 developing countries between 1971 and 1990. They find that these 
variables affect the TFP of developing countries as long as foreign R&D is interacted with 
openness, and that North-South spillovers are important even though they might differ across 
countries.  

Although the CH work has been fundamental for several studies, three aspects of it have 
generated a considerable degree of debate: the weighting scheme used for a foreign R&D variable, 
its econometric implementation, and its inclusion of other determinants of productivity and other 
weighted R&D variables which could diminish the significance or the magnitude of spillovers 
captured by a CH weighted foreign R&D variable. 

The CH weighting scheme has been used to construct foreign R&D variables based on trade, 
foreign direct investment (FDI) and others. However, this methodology has not been widely 
accepted in the literature on international R&D spillovers. Keller (1998), for example, casts doubt 

                                                           
1 For studies that are based on industry or sectorial data see Hall et al. (2009). 
2 In the context of the present work, the term “total factor productivity” is tantamount to “productivity.”  
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on the CH weighting scheme. In Keller’s approach, which uses counterfactual estimates by Monte 
Carlo experiments, CH regressions are repeated by including foreign R&D variables which are 
computed with random bilateral import weights. Based on OLS models, similar results for true 
and counterfactual trade patterns are obtained; therefore, it is inferred that the pattern of trade 
might not be important to capture R&D spillovers. This is supported by larger spillovers obtained 
from a proposed foreign R&D variable constructed with the sum of foreign R&D stocks.  

Edmond (2001) supports these findings by allowing for heterogeneous technology slopes and 
using cointegration techniques and the CH sample. However, Coe and Hoffmaister (1999) 
demonstrate that when alternative random weights are used, spillovers are small, when compared 
with the original weights from CH. Funk (2001) also criticizes Keller (1998) for using OLS on 
nonstationary panel data, so his estimates might be biased and provide inadequate information 
about the randomly weighted foreign R&D stocks. When new cointegration techniques are 
employed, he finds that the choice of weights might yield information on R&D spillovers. 
Moreover, Xu and Wang (1999) have shown that Keller’s criticism does not apply when a 
spillover variable based on capital goods imports data is constructed because the inclusion of this 
variable improves the goodness of fit of the model, so that the weighted variables may yield 
information on knowledge spillovers. 

Another major criticism of the CH weighing procedure is set forth by Lichtenberg and van 
Pottelsberghe de la Potterie (1998) (hereafter LP), who find that the CH weighted foreign R&D 
variable suffers from an aggregation and an indexation biases. To deal with these problems, LP 
formulate a new weighted foreign R&D variable which is shown to outperform the CH R&D 
variable. As a response to LP, Coe et al. (2009) expand the CH sample, without indexing the R&D 
variables, to show that a CH and a LP variables perform equally well when human capital or 
institutional variables are included; in fact, when a LP and a CH variable are included in the same 
regression with the human capital, the CH variable performs better.  

Other studies which have adopted the LP weighted foreign R&D variable, have found 
significant knowledge spillovers and that a LP variable does better than a CH variable. This is the 
case of Xu and Wang (1999), who employ capital and non-capital goods imports in a CH 
framework; Falvey et al. (2002), who use per capita GDP instead of TFP to analyze the impact of 
foreign R&D which can be a public or a private good in a donor country and in recipient 
developing countries; and Madsen (2007), who follows the CH specification and uses patent data 
and a panel for 16 OECD countries over 135 years to analyze knowledge spillovers and TFP 
convergence. Further, van Pottelsberghe de la Potterie and Lichtenberg (2001) use the LP 
procedure to study R&D spillovers embodied in imports and outward and inward FDI finding that 
only inward FDI is not significant. Other studies, such as that by Guellec and van Pottelsberghe de 
la Potterie (2004), argue that a foreign R&D variable based on bilateral technology proximity 
should be preferred because technology may spread without an exchange of goods. 

CH ‘s work sheds light on the proper use of cointegrating regressions without differentiating 
the data and in the presence of nonstationary covariates which exhibit a time trend. However, Kao 
et al. (1999) states that since robust panel cointegration techniques were not available at the time 
of the CH study, CH could not address econometric issues, such as the characterization of the 
asymptotic distribution of the estimated cointegrating vector in a panel data model and the 
efficiency of estimates based on a small sample data set. Therefore, Kao et al. (1999) use dynamic 
OLS (DOLS) models and new cointegration tests to compare their results with those of CH. They 
show that the CH estimates are biased and foreign R&D spillovers are not significant. However, 
Zhu and Jeon (2007) and Coe et al. (2009), show that it is possible to find significant and positive 
trade-related knowledge spillovers when one employs Dynamic OLS models.  

Edmond (2001) uses panel cointegration tests in a CH setup which allows for cross-section 
heterogeneity. He shows that foreign R&D estimates become negative. Moreover, for a sample of 
10 OECD countries from 1965-1999 and using multivariate VAR methods under a CH 
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specification, Luintel and Kahn (2004) find heterogeneity in the R&D dynamics so that data 
cannot be pooled, and normalization of the relationship on TFP for some countries is not valid 
because there could be reverse causality. By contrast, Coe et al. (2009) show that when allowing 
for heterogeneity in slopes, the results do not differ from those of the DOLS models. In a more 
recent study, for a sample of 65 countries over a 40 year period and using Granger causality tests 
to address simultaneity problems, Bravo-Ortega and Garcia Marin (2011) show that with the 
inclusion of other covariates such as R&D expenditure, non-linear R&D, openness, scale 
economies, institutional and cyclical variables, R&D expenditure per capita is significant and that 
foreign R&D spillovers are insignificant.  

Other studies have shown that the significance or the magnitude of international R&D 
spillovers captured by a CH weighted R&D variable may vary across countries when other 
determinants of TFP and other weighted foreign R&D variables are incorporated. Engelbrecht 
(1997) broadens the CH study by including a human capital variable and subsequently adds an 
interaction between a human capital variable and a catch-up regressor. His findings show that 
while the fact that coefficients of domestic and foreign R&D remain statistically significant, 
overall estimates shrink when human capital is incorporated. Funk (2001), employing the CH 
framework and data, cointegration techniques and dynamic OLS panel data models, shows that the 
international R&D spillovers capture by a CH weighted variable are statistically significant while 
spillovers diffused by bilateral imports are statistically insignificant3.  

Another study by Park (2004) who follows the basic CH specification and weighting scheme, 
and employs cointegration techniques, shows that domestic R&D and knowledge spillovers 
through student migration are significant, whereas knowledge flows through trade are 
insignificant. Lee (2006), who follows the CH framework and uses dynamic OLS for a panel of 16 
OECD countries from 1981-2000, shows that knowledge spillovers embodied in inward FDI and 
disembodied in patent citation and technological proximity are significant, while outward FDI, 
and CH imports of intermediate goods are insignificant. More recently, Zhu and Jeon (2007) 
basing themselves on the CH framework, weighting scheme and sample from 1981-1998, and 
using OLS and DOLS models, demonstrate that international trade, inward and outward stock-
based FDI and information technology are significant and positive channels of knowledge 
diffusion when they interact with their respective measure of openness (except outward FDI in 
DOLS models), but trade-related spillovers shrink. Coe et al. (2009) show that when the human 
capital is accounted for, R&D spillovers shrink. However, when openness and foreign R&D are 
interacted, they rise. Also, when institutional variables are added (without human capital), the 
spillovers tend to increase; conversely, they fall when patent protection and human capital are 
incorporated. 

As can be seen, there has been a vast literature that has followed the CH framework and 
clearly spotlighted the economic importance of analyzing the international knowledge spillovers at 
the aggregate level. These articles have found that international R&D flows determine 
productivity across countries adopting different methodological perspectives. However, due to 
some restrictions on the econometric modeling, which were difficult to address at the time of these 
studies, the impact of unobserved common shocks4 on the R&D variables and productivity, and its 
implications on the estimation of knowledge spillovers and domestic R&D returns were not taken 
into account by this literature. I will thoroughly explain the implications of this.  

Building on Andrews (2005), Pesaran (2006), Coakley et al. (2006), Moscone and Tosetti 
(2009) and other investigations on macroeconometric panel time series models, we can define 

                                                           
3 However, Falvey et al. (2004), using weighting schemes similar to those of CH and LP find that spillovers 
through imports are significant (either as a public or a private good) while the evidence of spillovers through 
exports (which is more likely to be a public good) was less convincing.  
4 Hereafter I will use the terms “unobserved common shocks,” “unobserved common factors,” “unobserved 
common effects” and “unobservables” interchangeably. 
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cross-section dependence as the contemporaneous correlation among individual units (such as 
countries) that remains after conditioning for features which are exclusively individual. Such 
dependence is detected in the error term and may arise from the presence of unobserved common 
shocks or idiosyncratic correlations. Focusing on the former, we can identify two main categories 
of  these unobserved common shocks: i) common shocks at the macroeconomic level,  such as 
aggregate financial shocks, real shocks (for example, world demand and supply shocks), global 
technology effects or structural changes; and ii) common shocks at the microeconomic level, such 
as local spillovers5 which arise from industrial activity and domestic technology development, 
local consumption and income effects, socioeconomic networks, domestic regulation, institutions, 
law, environment, sociological patterns, cultural and linguistic heritage, and geographic proximity.  

The reason why those shocks are common is because they affect all the cross-section 
observations. The impact of these unobserved commons effects, however, is not the same across 
units of the whole population. In fact, in extreme cases, they may either affect all units with a 
strong heterogeneous impact, or have a weak effect (or no effect at all) on a subset of 
observations. On the other hand, idiosyncratic correlations are those which are not explained by 
the common shocks and they are represented in the rest of the residuals. If unobserved common 
effects are accounted for in a common factor framework, then they may affect population units 
differently, in a way that brings about a contemporaneous correlation across units. If the effect of 
those shocks is weak across cross-section units, the estimates are not seriously biased and the 
inference is not affected at all, but if their effect is sufficiently strong, then the error cross-section 
dependence may lead to biased and inconsistent estimation and mistaken inference, which also 
could be the case if shocks are not regarded.  

Since the common factor model was not available for the papers above, contemporaneous 
correlation across countries caused by unobserved common effects was not studied; therefore, it 
was necessary to assume cross-section independence of errors (i.e. no contemporaneous 
correlation among observations is caused by unobservables) in order to estimate the knowledge 
spillovers. However, thanks to the recent development of a common factor framework in applied 
econometrics, it enables us to analyze how the cross-section dependence present in the data, which 
arises due to the effect of unobservable common shocks, may affect the estimates of the 
knowledge covariates.  

One study in the field of the returns to R&D measurement that has tried to address the issues 
mentioned above is by Eberhardt et al. (2013) who analyze the private returns to R&D in the 
presence of unobservables using a panel of twelve manufacturing industries across ten advanced 
countries from 1980-2005. They study whether ignoring unobserved common spillovers and 
effects leads to biased estimates of the private returns to R&D by allowing for heterogeneous 
technology coefficients across industries and counties in both a static and a dynamic setup, and 
comparing results from a common factor framework (which accounts for unobserved common 
effects and does not rely on ad hoc assumptions about the structure of spillovers since that 
approach may not capture all the cross-section dependence present in the data) with estimates 
from the approach suggested by Griliches (1979) (where the presence of unobservables is 
neglected).  

Their findings suggest that cross-section dependence is present in the data, which indicates 
the presence of knowledge and other unobserved spillovers and effects. The Griliches approach, 
which does not account for unobserved common shocks, is thus seriously misspecified due to 
cross-section correlation or nonstationarity of the residuals. It also yields sizable and significant 
private returns to R&D. Conversely, when unobserved common effects are accounted for, the 
magnitude of private returns to R&D falls and the estimates become statistically insignificant. 

                                                           
5 In the spirit of Bailey et al. (2014), (local) spillovers might be thought of as positive or negative within a 
spatial analysis.  
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From their viewpoint these findings amount to categorical evidence that R&D and unobserved 
spillovers are not divisible since such estimates do not distinguish between the effect of R&D and 
that of unobserved spillovers; therefore, the Griliches framework does not accurately capture 
returns to domestic R&D. Their findings also suggest that weighted R&D spillover variables fail 
to capture genuine knowledge spillovers alone and instead reflect data dependencies due to a host 
of other common factors.  

The study by Eberhardt et al. (2013) provides important insights into the real nature of the 
estimates of the domestic returns to R&D at the sectorial level when unobserved common effects 
are present, and has motivated other studies, as in the case of the present paper, to employ a 
common factor framework to analyze the knowledge flows in the presence of other unobserved 
common effects. However, it seems that they do not empirically demonstrate that the commonly 
used weighted R&D spillover variables do not capture genuine knowledge spillovers alone but 
rather other cross-section dependencies when factors are accounted. To study a spillover variable 
within a common factor model may only indicate how rigid those variables could be when trying 
to capture knowledge spillovers in the presence of weak or strong error cross-section dependence.  

Two articles by Belitz and Molders (2013) and Ertur and Musolesi (2013) have analyzed the 
role of spillover variables at the aggregate level into a common factor framework by comparing 
their results with those of a CH approach, which does not account for unobserved common shocks 
(results from a spatial error model are also compared in Ertur and Musolesi (2013)). Belitz and 
Molders (2013) use the LP weighting scheme and data on the number of patent applications for 77 
countries from 1990-2008 to study the knowledge transfer via trade, FDI, internationalization of 
business R&D, imports of high tech goods and R&D of foreign owned companies; whereas Ertur 
and Musolesi (2013), using the CH dataset, study the international knowledge transfer as a 
decreasing function of geographical distance from foreign economies. Both papers have provided 
evidence of significant international knowledge spillovers in common factor models, so that claim 
that international knowledge flows determine TFP in accordance with the findings of the literature 
on international R&D spillovers, even when unobserved common shocks are accounted for. 
However, despite their efforts to study the knowledge spillovers in a common factor framework, it 
seems that more information from their common factor models would be needed in order to know: 
i) to what extent their estimates are consistent and not seriously biased depending on the degree of 
cross-section dependence of the errors, which might be associated to the coefficients of the 
spillover variables; and ii) if in reality those coefficients are capturing knowledge spillovers alone 
rather than other effects.  

Unlike the previous studies on international R&D spillovers, this article seeks to contribute to 
the existing literature on this area by analyzing the effect of the domestic R&D and trade-related 
foreign R&D on productivity where the presence of unobserved common shocks is accounted for 
in both static and dynamic common factor frameworks, and heterogeneity of the technology 
parameters is allowed. This approach has been adopted for two main reasons: first, it is suitable to 
study how the cross-section dependence present in the data, which may arise in a weak or strong 
way due to the effect of unobservables, could play a key role in the economic and statistical 
reliability of the estimates of the domestic and the foreign R&D variables; and second, it allows us 
to analyze how rigid the weighted spillover variables defined by CH and LP could be when trying 
to capture knowledge spillovers in the presence of different sources of error cross-section 
dependence. I study these issues by comparing the results from a CH framework (where 
unobserved common shocks are not taken into account) with those of a multifactor framework (so 
that shocks are present and might affect the productivity and domestic and foreign R&D of each 
economy in a heterogeneous fashion). With the purpose of gauging the reliability of the estimates 
at the global level, I use a sample of aggregate data across 50 advanced and emerging countries 
from 1970-2011, which represents more than the 90% of the global GDP, contains a large variety 
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of economies and therefore account for several heterogeneous unobserved common shocks across 
the world. 

Using static panel data models, I find that the CH model might be seriously misspecified due 
to pervasive cross-section dependence of residuals, and in some cases due to nonstationary 
residuals. Hence, it may yield biased and inconsistent estimates of domestic and foreign R&D 
variables when factors are not accounted and therefore might not be informative at all to assess 
appropriate economic policy measures on R&D adoption. This is also the case when factors are 
accounted for and technology parameters are homogeneous. In contrast, when unobserved 
common factors are regarded and technology parameters are allowed to be heterogeneous, I find 
consistent, positive and statistically significant estimates of the domestic and foreign R&D capital 
stocks in the majority of cases. However, these results are subject to the presence of weak residual 
cross-section correlation, which means that even if estimates are significant, what the coefficients 
have captured are not necessarily pure returns to domestic R&D and knowledge spillovers, but 
rather a combination of these, unobserved local spillovers and other effects that might characterize 
the data.  

This supports the fact that knowledge spillovers and other types of spillovers cannot be easily 
separated in a CH framework, and that weighted foreign R&D variables are rigid in the sense that 
they may not capture all the cross-sectional dependence present in the data, which in the literature 
is assumed to arise only from international knowledge spillovers. Therefore, unobserved common 
effects and spillovers matter to estimate the returns to domestic R&D and international knowledge 
spillovers, and may be relevant to the purpose of assessing economic policy intervention on R&D 
investment. The fact that statistically significant estimates of the domestic and foreign R&D are in 
the majority of cases more sizable than those obtained from models which do not account for 
shocks corroborates these conclusions. These findings also hold when estimating dynamic panel 
data models6, which account for possible feedback effects and lagged values of the covariates and 
the unobserved common effects7, for either the main sample or alternative two subsamples which 

                                                           
6 In this respect, I mainly rely on long-run estimates. 
7 Griliches (1979) supports the inclusion of lagged values of R&D in a dynamic setup because, first, it takes 
time for current and lagged values of R&D to result in productivity. We can further assume that the spread 
of unobserved common local spillovers and global shocks through cross-sectional units and time may be 
delayed, depending on the characteristics of the units; therefore, they might emerge with lags; and second, 
there could be a possible causal link between past values of output or other covariates and the R&D capital 
stock. Another reason why lagged values of R&D investment should be accounted could be that uncertainty 
may cause fluctuations in R&D. According to Bloom (2007), the adjustment costs of changing the R&D 
capital stock might be a response to uncertainty caused by recessions, and economic and political shocks. 
Such a response is associated with “caution effects” (firms postpone activity since higher uncertainty 
increases the chances of making a costly mistake; therefore, responsiveness becomes moderate) and “delay 
effects” (as firms postpone activity at high levels of uncertainty, then uncertainty appears to cause 
fluctuations in aggregates and therefore productivity growth as reallocation of factors of production at the 
firm level slows) which could have an impact on R&D investment and shape its dynamics through the 
business cycle. This implies that R&D only may change slowly over time which is coherent with a dynamic 
link between past and current R&D rates, and thus makes R&D more persistent over time. However, Cesa-
Bianchi et al. (2014), assuming that both uncertainty and economic activity are driven by a set of country-
specific and unobserved common factors, have found that future output growth has an impact on current 
uncertainty and that uncertainty shocks have little or no effect on GDP. This is not interpreted as saying that 
uncertainty has no effect on economic activity but rather it seems to be more a symptom than a cause of 
economic instability. This could provide evidence that uncertainty may not cause fluctuations in aggregates 
and therefore has no effect on R&D investment, as the concept of delay effects suggests; hence, more 
research would be needed to see whether uncertainty leads to changes in R&D investment in the presence of 
unobserved common shocks so that a dynamic link between past and current R&D rates in this context 
could be justified. 
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have been drawn from the main sample (one which excludes eleven small emerging economies 
and another which does not include G78 and BRIC9 countries). I believe that all these findings 
provide an alternative analysis of the international R&D spillovers realm since they take into 
account effects of an unknown form that could alter the dynamics of the world productivity and 
domestic and foreign R&D investment. 

The rest of this work is organized as follows. Section 2 presents a brief theoretical 
explanation of the econometric multifactor error structure and its econometric relevance. In 
section 3 I introduce the static and dynamic panel data models that I study here and which relate 
total factor productivity to domestic and the foreign R&D in the presence of unobserved common 
shocks. Section 4 describes the data and section 5 gives the unit root and cross-section dependence 
tests. Section 6 discusses the results of the analysis for the original sample. Section 7 presents the 
empirical findings of the study of two subsamples and section 8 concludes.   

 

2. Econometric Framework
10

 
 

2.1 Multifactor Error Structure and Its Implications 
 
One of the ways to deal with the error cross-section dependence is the multifactor error model in 
which sources of cross-section dependence are assumed to be represented by a few unobserved 
common factors that affect all the observations with different degrees. Let us write a multifactor 
error model as follows: 
                (1) 
 
where     is a       vector of regressors specific to cross-section unit   at time  , and: 
 
                         (2) 
 
For        , and        ; where each     is a single unobserved common factor (all of 
them are fixed relative to  ), its     factor loading is    (each of them can be random or fixed), 
where        , and     are the idiosyncratic errors. According to the time frame that is studied 
in the present paper, each     represents positive or negative unobserved common shocks such as 
such as the oil crisis of the 70s, the lost decade of the 80s for Latin America, the standardization of 
the Internet Protocol Suite (TCP/IP) in the 80s, the downfall of communism at the end of the 80s, 
the financial and economic crisis that several countries experienced during the 90s, the global 
financial crisis of 2008, the emergence of China and India as key world economies during the 21th 
century, productivity spillovers between neighboring countries or regions, among others which 
might belong to the type of macro or microeconomic shocks mentioned above. Observed common 
factors such as the prices of commodities or deterministics (intercepts or seasonal dummies for 
instance) are omitted in (2) for the purpose of brevity, even though they may be easily included. 
When we replace (2) in (1) yields: 
 
                                (3) 
 

                                                           
8 United States, United Kingdom, Canada, Germany, Japan, France and Italy. 
9 Brazil, Russia, India and China. 
10 I will mention only the main features of the econometric framework that I use here. To see further details, 
I encourage the reader to take a look at the studies I mention in the following lines. 
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Let us model the correlation between the individual specific regressors,    , and    , where it is 
assumed that the former can be correlated with factors as follows: 
 
 
 

              (4) 

where    is a       matrix of factor loadings and     is the individual component of     which is 
assumed to be distributed independently of the innovations    . Based on Chudik et al. (2011), 
factor loadings from (3) can be described as: 
 

       
   ∑      

        (5) 

 
where   is a fixed positive constant that does not depend on  . Given (5), factors in (3) are said to 
be weak if    , semi-weak if        , and semi-strong if        . For these sorts of 
factors (which may be microeconomic shocks or local spillovers) we can say that the factor error 
structure is cross-sectionally weakly dependent at a given point in time    , where   is an 
ordered time set, if    . In this case, weak, semi-weak and semi-strong factors may produce 
estimates of    which are not seriously biased and whose consistency and asymptotic normality 
are not affected. These factors may affect only a subset of units of the whole sample and the 
number of affected units rises less than the total units of the sample. On the other hand, factors in 
(3) are strong if     in (5), so that the factor error structure is cross-sectionally strongly 
dependent at a given point in time     if and only if there exists at least one strong factor (which 
might belong to the class of macroeconomic or global shocks)11. In that case, the factors might be 
possibly correlated with     yielding seriously biased and inconsistent estimates of   . Chudik and 
Pesaran (2013b) characterize the strong factors as the pervasive effect of cross section in the sense 
that they affect all units in the sample and their effect is persistent even if   tends to infinite. 
 

2.2. Econometric Estimators of Interest 
 
To define a multifactor framework in different sorts of panel data models to deal with error cross-
section dependence, let us follow Chudik et al. (2013) by writing the autoregressive distributed 
lagged model ARDL(    ,     ) which describes     with the      and      lag orders12 as follows: 

 

     ∑             
    ∑              

        (6) 

 
 
               (7) 
 
for        ;        , and  =0,...,1; where (7) resembles (3) so long as    is a       factor 
loadings matrix, and    is a       matrix of unobserved factors. Once again, to illustrate this 
point, I do not include deterministics or observed common factors for a purpose of illustration. 
Now, for different configurations of equation (6) and taking (7) we can deduce different 
multifactor models, which can be estimated for the present study through three different 

                                                           
11 According to Chudik and Pesaran (2013b) the overall exponent α, which establishes the degree of the 
impact of factors can be defined as               . 
12The lag orders are chosen for     to be a process that becomes serially uncorrelated for all i. 
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approaches: (i) the Pesaran (2006) common correlated effects (CCE) estimator in a static panel 
data model with strictly exogenous regressors; (ii) a CCE approach in a dynamic ARDL panel 
data model (for convenience it has been transformed into an Error Correction Model (ECM) 
representation) with weakly exogenous regressors, which has been formulated by Chudik and 
Pesaran (2013a), and (iii) a CCE estimation procedure in a distributed lagged (DL) model which 
does not include lags for the dependent variable, in line with by Chudik et al. (2013). 

Assuming that              and following Chudik and Pesaran (2013a), we obtain the 

next linear dynamic heterogeneous panel data model, which is covariance stationary: 
 

                                                                                 (8) 

 

                                                                                                                                 (9) 

 

                                                    [      ]                      (10) 

 
for        ;        , where     is a        vector of regressors specific to unit   at time  ,     is       vector of covariates specific to unit i,        ,    is a       vector of unknown 
coefficients aka the feedback coefficients, individual fixed effects on     are omitted, lags of    ,     and additional lags of the dependent variable are not included, and the regressors are allowed 
to be correlated with the unobserved common factors. Equation (10) has been introduced in order 
to explain the difference between strict and weak exogenous regressors, accounting for   . If we 
assume that |     , and replace (9) and the restriction           , into (8) we obtain: 
 
                         (11) 
 
where                  , and     represents a new set of unobserved common factors. 

Pesaran (2006) has formally established the estimation of (11) as the CCE estimator13 for a static 
setup by including strictly exogenous regressors, i.e.     , which means that estimations are 
free from feedback effects14.  

The CCE estimation procedure adds cross section averages of the dependent and independent 
variables as proxies of unobserved common effects15 where heterogeneous slopes follow a random 
coefficient model and     can be serially correlated and cross-sectionally weakly correlated. 
Cross-section averages are defined as: 

                                                           
13In fact, equation (6) for       and        resembles the model in (11) which can be estimated by the 
static CCE approach in a similar fashion. 
14Based on Engle et al. (1983), a process that is weakly exogenous is characterized by (i) a 
reparametrization of the parameters of interest and (ii) a (classical) sequential cut condition. This validates 
making inference conditional on the regressors; however, it is worth noting that Granger causal feedback 
effects may implicitly arise in some point. A process that is strictly exogenous, on the other hand, is 
characterized by weak exogeneity plus Granger noncausality from a dependent variable onto the regressors 
(the latter is essential to validate forecasting the independent variables and then forecasting the dependent 
variable conditional on leads of regressors), i.e. there are no Granger causal feedbacks.  
15This is because cross-section averages pool information on markets, i.e. they pool the past and current 
views of economic agents on the constitution of covariates. Further, Pesaran and Tosetti (2011) state that the 
effects of temporal and spatial correlations due to spatial and/or unobserved common factors are eliminated 
by the addition of cross-section averages. 
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  ̅     ̅    ̅      ∑           (12) 

 
where the weights of  ̅  ,            , are a N X 1 vector of weights which satisfies certain 
granularity and normalization conditions.  

The CCE approach has several advantages. First, it does not require prior knowledge of the 
number of unobserved common factors (Pesaran 2006); second, CCE estimates are consistent 
even when there is serial correlation in errors (Coakley et al. 2006); third, it is consistent and 
asymptotically normal when the idiosyncratic errors are characterized by a spatial process 
(Pesaran and Tosetti 2011) and when errors are subject to a finite number of unobserved strong 
effects and an infinite number of weak and/or semi-strong unobserved common effects given that 
certain conditions on the factor loadings are satisfied (Chudik et al. 2011); fourth, the CCE 
estimator with either stationary or nonstationary factors have a similar asymptotic distribution 
when they are cointegrated, and even the latter could be noncointegrated (Kapetanios et al. 2011); 
and fifth, it can be extended to unbalanced panels (Chudik and Pesaran 2013b).  

However, if the restriction            does not hold, according to Chudik and Pesaran 
(2013a) CCE estimations in static panel data models may be seriously biased. As a solution to this 
inconvenience, they demonstrate that the ARDL model defined by the equations (8), (9) and (10) 
can be estimated by a dynamic approach of the CCE estimator when i) the aforementioned 
restriction does not hold, ii)     , i.e. feedback effects may arise, and iii) the slopes are allowed 
to be heterogeneous in (8). In addition, other issues are taken into account such as time series bias, 
the necessary full rank condition of the factor loadings and the existence of infinite lag order 
relationships between unobserved common effects and cross-sectional averages of the dependent 
and independent variables. 

In the present work I emphasize the importance of the long-run relation among the studied 
variables in order to obtain a steady-state solution of a particular structural economic model. 
These long-run relations are analyzed with no restrictions on the short-run dynamics on the 
assumption that there is a single long-run relation between the dependent variable and the 
independent variables. In addition, heterogeneous technology coefficients and cross-section 
dependence of errors are taken into account.  Therefore, it is important to define the long-run 
coefficients of interest from the ARDL model defined in (6) by stating, for the sake of simplicity, 
that        and        as is Chudik et al. (2013), so we can write the next model: 

 

                                                                                (13) 

 
               (14) 
 
               (15) 
 
The objective is to estimate the mean long-run coefficients of the variables of interest through the 

estimate of the short-run coefficients    and   16. This can be done by estimating the vector: 
 

           (16) 

                                                           
16

Short-run coefficients will not be reported; however, they are available upon request. 
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Here this coefficient is estimated through the ECM approach which can be easily derived by 
subtracting        from both sides of (13) , by adding and subtracting          from the right hand 
side (RHS) of (13), and by replacing (14) into (13) such that: 

                                                                           (17) 

 
where    is defined according to (16) and can be estimated by the CCE procedure in a dynamic 
setup. The advantage of the ECM approach is that the mean of the coefficients of the error 
correction term, denoted by        , measures the speed of convergence towards the long-run 
equilibrium of steady state and can be consistently estimated under the conditions specified for the 
ARDL model. 

A second approach to estimating    can be derived from the ARDL model in (13). This is the 
recently developed DL model, by Chudik et al. (2013). If we replace (14) into (13), subtract          from both sides of (13), factorize         and then divide the whole expression by the 
latter we can obtain: 
 
                          ̃     ̃  (18) 
 

where               ,       ∑                      ,  ̃               and   ̃              . As can be seen,    can be consistently estimated directly by the CCE estimation 
procedure through a least squares regression of     on the independent variables, where the lag 
truncation of order   can be chosen appropriately as an increasing function of the sample size. The 
consistency of the estimates does not require strict exogeneity since correlations in    are allowed. 
However, a consistent estimation of    is subject to the absence of the feedback effects shown in 
(10) and the roots of       have to fall strictly outside the unit circle, otherwise the DL approach 
is not consistent. Furthermore, the DL structure does not incorporate lags of the dependent 
variable. 

Estimates of    through the ARDL or the DL models can be averaged across   in order to 

estimate the average long-run effects of regressors by  ̅     ∑  ̂   .In addition, cross section 
averages can be added to the ARDL and DL models as proxies of unobservable common effects, 
so that the average    can be estimated by the CCE procedure in a dynamic approach. In this case, 
those models become the cross-sectional ARDL (CS-ARDL) and the cross-sectional DL (CS-DL). 
Based on Chudik and Pesaran (2013) and Chudik and Pesaran (2013a), cross-section averages for 
the CS-ARDL model can be defined as: 
 

  ̅     ̅    ̅            ̅             (19) 

 

where  ̅          ,      is the decay rate of the matrix coefficients, and           represents 

the cross-section averages of     from the equation (6) defined in Chudik and Pesaran (2013a). 
Cross-section averages for the CS-DL model can be defined as: 
 

  ̅         ̅      ∑           (20) 

 
The lags of the cross-section averages to be added to the multifactor model are chosen on the basis 
of the rule of thumb      and that these cross-section averages must be at least as large as the 
number of unobserved common factors minus one. As the number of unobserved common factors 
is unknown, a maximum number of unobserved factors (which might be small) is assumed.   
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3. Econometric Model and Estimation Methodology 
 
The basic econometric model that has been used in literature on international R&D spillovers and 
was initially formulated by CH is as follows 17: 
 
                     (21) 
 
where       is the logarithmic total factor productivity,                  is the vector of 
regressors, where      is the logarithmic domestic R&D capital stock and      is the logarithmic 
foreign R&D capital stock weighted by bilateral imports. In principle, TFP in equation (21) should 
be explained by both domestic and foreign R&D, which have been introduced into a productivity 
function in an additively separable way in order to estimate the coefficients of these variables. As 
I said above, if unobservables are not included in (21), but if in reality they are correlated with the 
R&D variables to a considerable degree, then the estimates may be biased and inconsistent. This 
would imply that the magnitude and significance of the coefficients of the R&D variables may not 
be informative of knowledge spillovers. Now, to see if this occurs, I employ the following models 
where I also examine the case where shocks are modeled in common factor framework. 
 

3.1. Static Econometric Models 
 
Equation (21) is estimated by employing static models. Here, I use two sorts of estimators. First, I 
use estimators that restrict homogeneity in the technology parameters and i) assume error cross-
section independence, such as pooled OLS (POLS), first difference (FD), and two-way fixed 
effects (2FE); or (ii) allow for error cross-section dependence, such as the CCE pooled estimator 
(CCEP). Second, I estimate (21) by allowing for heterogeneity of slopes. Therefore, I use 
estimators which (i) assume error cross-section independence such as the mean group (MG) 
estimator and the cross-sectionally demeaned MG (CDMG) estimator; or (ii) that allow for error 
cross-section dependence such as the heterogeneous CCE (CCEMG). CCE estimators include 
cross-section averages of variables as proxies of unobserved common factors18. In this case, (21) 
becomes: 
 
                      ̅      (22) 
 
where  ̅      ̅̅ ̅̅̅    ̅    
 

3.2. Dynamic Econometric Models 
 
Three dynamic models are employed to estimate (21). The first model is the traditional ARDL 
approach (represented as an error correction model (ECM)), where the main purpose is to obtain 
the long-run estimates of the domestic and foreign R&D variables. The model is defined as 
follows:  

                                                           
17 As can be seen, openness does not interact with the foreign R&D variable. Instead, I follow the basic 
framework found in the majority of works on international R&D spillovers because this will be sufficient to 
show the implications of the effects of unobserved common shocks on a particular CH specification. 
18 In the current study I do not deal with the nature of those unobserved factors. 
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          ∑            
    ∑           

        (23) 

 
I consider     to 3 lags for the ARDL model in order to include sufficiently long lags given the 
time period of the sample, and to fully account for the short-run dynamics so as to derive the long-
run coefficients. Lags are the same across variables and countries. As stated in Chudik et al. 
(2013), this helps to reduce the adverse effects of the selection of data which may be subject to the 
use of lag order selection procedures, such as Akaike or Schwarz criteria. I carry out estimations 
of the ARDL model in (23) by employing the POLS estimator, the 2FE estimator and the MG 
estimator (all models assume error cross-section independence).  

As reported by the same authors, the ARDL structure is valid regardless of whether the 
independent variables are exogenous or endogenous, or characterized as order one, I(1), or order 
zero, I(0), processes. In fact, long-run estimates may be consistent when common factors are 
serially uncorrelated and when they are uncorrelated with the regressors. This favors consistent 
estimation, especially to reverse causality, i.e. past values for productivity may determine current 
domestic and foreign R&D capital stocks. It is worth noting this approach has some drawbacks. 
There could be a large sampling uncertainty due to the restricted time dimension of the panel and 
the slow speed of convergence towards the long-run. Pesaran and Smith (1995) prove that under a 
random coefficient model which characterizes heterogeneous dynamic panel data models, pooled 
OLS estimators are no longer consistent. Also, the ARDL model requires an appropriate choice of 
lag orders to obtain proper long-run estimates.  

The second econometric dynamic panel data model which is employed here is the 
heterogeneous cross-sectional ARDL (CS-ARDL) approach (aka dynamic CCEMG, which is 
represented by an ECM specification). This is characterized by the following equation: 
 

          ∑            
    ∑           

    ∑     ̅    
        (24) 

where 
  ̅      ̅̅ ̅̅̅    ̅    
 
and where     is defined by Chudik and Pesaran (2013b) in terms of three aspects: i)    , which is 
the idiosyncratic term, ii) an error component due to the approximation of unobserved common 
factors, and iii) an error component that is explained by the truncation of possible infinite 
polynomial distributed lags of      . The CS-ARDL is augmented with contemporaneous and 
lagged cross-section averages of the dependent and independent variables. I allow for up to              lagged cross-section averages of each variable independently of the number of 
the lags of the variables of (24) for which I include for       and 3 lags. As can be seen, this 
ARDL model allows for the possibility that unobserved common shocks react with lags. In 
addition, contrary to the traditional ARDL model, cross-section averages are included in the CS-
ARDL model as proxies of unobserved common global effects and local spillovers in order to 
account for cross-section dependencies. To ignore the effect of these shocks, as the ARDL 
approach does, could lead to severely biased estimates if in effect the unobserved factors are 
highly correlated with the regressors. However, this approach has been formulated only for 
stationary panels and is subject to sampling uncertainty when the time period is not large enough.  

The third dynamic panel data model is the CS-DL mean group (CS-DLMG) approach 
proposed by Chudik et al. (2013), which can be written in the following way: 
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                 ∑              
         ̅̅ ̅̅̅  ∑       ̅    

        (25) 

 
where:   ̅         ̅     
 
Here I estimate CS-DLMG models by adding 3 lagged cross-section averages. I take advantage of 
the fact that it only requires a selection of a truncation lag, in contrast with the ARDL approach, 
which depends on a correct specification of the lags order. I choose to include       and 3 lags 
of the regressors. Once cross-section averages are included into the model, it is possible to obtain 
robust estimations even when the time period is short. It is also robust to the presence of 
nonstationary variables and factors, regardless of the number of unobserved factors, the presence 
of weak cross-section dependence, serial correlation or breaks in the idiosyncratic errors, serial 
correlation in unobserved factors, and heterogeneous or homogeneous short and long-run 
coefficients. However, the CS-DLMG does not properly tackle the problem of the feedback 
effects from lagged values of the TFP onto the domestic and foreign R&D, so long-run estimates 
are consistent only in the absence of this problem. Furthermore, estimations done for small 
samples are only consistent so long as the eigenvalues of      are not close to the unit circle. 

I stress that I have followed Chudik et al. (2013) in the sense that I use different dynamic 
panel data approaches to deal with several types of econometric problems and to obtain robust 
results. According to them, although the CS-DLMG estimator produces less biased estimates than 
the CS-ARDL estimator, the two approaches should be regarded as complementary when dealing 
with several econometric questions. However, I mainly rely on the CS-ARDL model in a ECM 
specification, because the cointegration of variables in the long run can be easily observed and this 
model deals with a variety of problems which are inherent in R&D investment and unobserved 
common effects: the lagged effects of domestic R&D, foreign R&D and unobserved common 
shocks, and the feedback effects of past productivity values onto the R&D covariates. 
 

4. Data 
 
The data set contains aggregate data from 1970 to 2011 for 50 advanced and emerging countries 
for an unbalanced panel with         and        . Information on the data set is reported in 
Table 1. There are 2042 observations for total factor productivity (TFP), 1873 for the domestic 
R&D capital stock and 2056 for the foreign R&D capital stock. The methodologies employed to 
construct the variables and sources are reported in appendix B. The main results of the present 
work include a weighted foreign R&D capital stock variable defined by LP, whose weights allow 
for knowledge transmission from all the countries of the sample. In the appendix A, I include 
results based on two setups of LP weights that contain information on knowledge transmission 
from i) 23 OECD countries19 plus BRICs and ii) all the OECD countries of the sample plus 
BRICs. In addition, results based on a weighted foreign R&D capital stock variable defined by CH 
are also included in the appendix A in accordance with the three abovementioned weighting 
configurations. Table 2 presents descriptive statistics for the variables of interest. Here the foreign 
R&D capital stock exhibits the highest average growth rate, whereas the total factor productivity 
growth shows the lowest.  

Data for 7 countries are illustrated in Figures 1 to 3. Figure 1 shows that the Chinese TFP 
registered the largest growth between 1970 and 2011 (3% on average), with a shift in 1980. In 
contrast, the Brazilian TFP registered a negative growth, at an average rate of 0.5% and coincided 

                                                           
19All OECD countries from Coe et al. (2009) except Belgium, which is not included here. 
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with Latin America’s “lost decade” in the 1980´s. Thailand, the US, the UK and India show a 
similar TFP growth rate (0.7%) and increase at an identical rate over time. Although the Russian 
TFP also grows by 0.7% on average over time, its dynamic is different from that of the other six 
countries. It falls in the 90s due to a structural change of its political and economic regime, but 
then it rises steadily from 1999. Moreover, the TFP falls for all countries (except China) in 2008, 
and later TFP recovers. Figure 2 displays a positive trend for the domestic R&D capital stock, 
except for Russia which exhibits a slight U shape evolution. Chinese domestic R&D grows 
quickly from 2000, while the growth of Brazilian and the Indian domestic R&D accelerate from 
the mid 80s (with an average growth of 4% from 1970 to 2011). Conversely, the UK domestic 
R&D registers the smallest growth rate (2%) after Russia, whose growth rate is negative (-0.4%). 
As seen in Figure 3, foreign R&D capital stock presents a monotonic upward trend, falls for all 
countries in 2008 and is more volatile across countries than the domestic R&D capital stock and 
the TFP. The foreign R&D for China, Russia, Thailand and India grow faster than the other 
countries (15.6%, 13.5%, 9.8% and 7.2% in average respectively). Meanwhile, the UK and the US 
register the lowest growth rates (which rose about 4%).   
 

5. Unit Root and Cross-Section Dependence Tests 
 

5.1. Unit Root Tests and Stationarity Properties of Variables 
 
In this section I investigate the stationarity of variables in order to understand their time series 
features before carrying out empirical analysis.  To this end, I use the first and the second 
generation panel unit root tests by Maddala and Wu (1999) and Pesaran (2007) 20, respectively. 
The disadvantage of the former is that it assumes independently-distributed cross-sectional time 
series individuals. This is overcome by the latter allowing cross-section dependence across time 
series observations. This makes an important difference since the first generation panel unit root 
tests may present substantial size distortions if cross-section dependence is not regarded (Baltagi 
et al. 2007). Further, the null hypothesis for both tests is that all panels contain unit roots across 
the observations, which is tested at 5% level of significance. Later in this work I will only use the 
Pesaran (2007) unit root test to analyze the time series properties of residuals from each static 
model21. Table 3 presents the results of these tests according to two panels, one with logarithmic 
variables in levels, and other with logarithmic variables in first differences. As can be seen, the 
Maddala and Wu (1999) unit root test, in which I include a constant, yields unit root in all 
variables, and when a time trend is added, the only stationary variable is the domestic R&D. 
However, when one examines the results of the Pesaran (2007) unit root test, whether it has only a 
constant or both a constant and a time trend, all variables are nonstationary. In panel 2 all 
variables in first differences are integrated of order zero (i.e. I(0)), which means that at least from 
the viewpoint of the Pesaran (2007) unit root test results, all variables are I(1) when they are in 
levels. 
 
 

                                                           
20 Pesaran et al. (2013) have demonstrated that the Pesaran (2007) unit root test shows size distortions if 
there is more than one common factor. Consequently, it would be desirable in future empirical studies to 
implement either of the next second generation unit root tests proposed by Pesaran et al. (2013) which have 
been designed to account for multiple unobserved common factors but for which there has not been 
developed any stata routine yet: the CIPS unit root test in the presence of multifactor error structure, or 
alternatively, the CSB Sargan-Bhargava, augmented with cross-sectional averages which has better a 
performance for smaller samples in T.  
21 The results are available upon request. 
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5.2. Cross-Section Dependence Test 
 
The test that I implement to analyze the cross-section dependence of residuals is the cross-section 
dependence (CD) test by Pesaran (2004), which is based on estimates of pair-wise error 
correlations. The null of this test is that the average pair-wise error correlations are equal to zero 
or that there is a cross-section non-correlation of errors. This can be expressed as: 
     (      )                               
 

Therefore, cross-section correlations of errors are present when  (      )   . However, as the 

null hypothesis of the CD test may be restrictive for large panels, Pesaran (2013) redefined it as 
weak cross section dependence22. According to Chudik and Pesaran (2013b), the CD test is valid 
in the presence of strictly or weakly exogenous regressors, even including lagged covariates. 
 

6. Results 
 

6.1. Estimates of Static Econometric Models 
 
Table 4 contains the results of the static pooled and mean group estimations. Across models the 
coefficients of domestic R&D are larger than those of the foreign R&D (except for the CCEMG 
(i) estimates). More important, all the models with homogeneous slopes (except POLS) yield 
positive and statistically significant estimates of the domestic R&D at the 1% level, which range 
between -0.015 and 0.075, whereas the domestic R&D estimates from the MG and CDMG models 
vary between 0.039-0.061, all being statistically significant at the 10% level. Homogeneous (or 
Pooled) estimates of the foreign R&D fall between 0.000-0.060, all being statistically significant 
at the 1% except for the estimate from the first difference model, while the MG and CDMG 
estimations of foreign R&D range from 0.025-0.031, where the foreign R&D estimate from the 
MG model is significant at the 10% level.  

Even though the majority of the previous estimates where unobservables are not modeled (or 
where unobserved common effects are accounted for, but technology coefficients are restricted to 
be homogeneous) seem economically reliable and may be in line with the literature on 
international R&D spillovers, they are seriously misspecified for two different reasons. First, all 
models have nonstationary residuals; and second, the large CD statistic reflects the fact that the 
degree of residual cross-section dependence is very high that R&D estimates may be seriously 
biased and inconsistent (except for the POLS model). This indicates that there may be substantial 
error cross-section dependence due to unobserved common micro and macro effects which cannot 
be captured by the basic CH model since it does not model shocks, so those effects might be 
strongly correlated with the regressors. As a result, this model, which has been fundamental in the 
study of international R&D spillovers so far, might not be suitable for capturing all the cross-
section dependence in the data, because it assumes that all the cross-section dependence is 
represented by knowledge spillovers, which can lead to seriously biased and inconsistent foreign 
and domestic R&D estimates.  

CCEMG estimates are also reported in Table 4, employing two different setups: (i) a 
specification without a time trend; and (ii) a model in which a time trend is included. As can be 
seen, all coefficients of the domestic and foreign R&D variables are statistically significant and 
range from 0.054-0.090 and 0.057-0.061 respectively. CCEMG models are not misspecified, since 

                                                           
22 This test is based on the α exponent of cross-section dependence, introduced by Bailey et al. (2012), and 
can be used in balanced and unbalanced panels.  
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they have stationary and not strongly cross-section dependent residuals. Moreover, estimates of 
the domestic and foreign R&D from the second CCEMG model and foreign R&D coefficients 
from the first CCEMG model are more sizable when compared with the misspecified pooled and 
MG models traditionally used in works on R&D spillovers. According to these results, even if I 
choose the second over the first CCEMG because the former yields larger significant domestic 
and foreign R&D coefficients, given that the RMSE is lower, it does not mean that those 
coefficients merely capture pure returns to R&D and international knowledge spillovers. This is 
because those coefficients are subject to low degrees of cross-section dependence of residuals, 
which means that such estimates are capturing additional spillovers and other effects which are 
not observed. In other words, this shows that international R&D spillovers cannot easily be 
separated from either unobserved local spillovers or non-observed common shocks, even if the 
coefficient of the weighted knowledge variable is consistent and not seriously biased. Therefore, 
the coefficient of the foreign R&D variable, which is assumed to only capture knowledge 
spillovers in a rigid fashion, in reality does not achieve this purpose. At the same time, the slope of 
the domestic R&D might be capturing other effects rather than to returns to R&D alone. 

Table A1 reports results which include other sorts of weighted foreign R&D variables. 
Similar conclusions hold for specifications that include a LP foreign R&D variable according to 
other weighting configurations, because they are characterized by stationarity and low degrees of 
cross-section correlation of the residuals and yield significant foreign and domestic R&D 
estimates. This also applies only to the specifications with a CH weighted foreign R&D variable, 
which allows for knowledge dissemination from all OECD countries plus BRICs and from 23 
OECD countries plus BRICs. Conversely, four specifications that include a foreign R&D variable 
based on CH weights are misspecified, due to strong cross-section dependence of the residuals, 
despite the fact that all domestic and foreign R&D coefficients are positive and significant at the 
1% level. This means that these specifications yield seriously biased and inconsistent estimates, 
even when unobserved common factors have been accounted for; therefore, a CH weighted 
variable becomes even more rigid and less explanatory of knowledge spillovers in the presence of 
common non-observed global shocks and local spillovers.  
 

6.2. Estimates of Dynamic Econometric Models 
 

6.2.1. Dynamic Models That Assume Cross-Section 

Independence of Errors 
 
Table 5 reports the results of the dynamic ARDL-POLS, 2FE and MG models which assume error 
cross-section independence. Each model has been estimated with p=1,2 and 3 lags. Coefficients of 
domestic R&D from the dynamic POLS range from -0.013 to 0.008 and the foreign R&D slopes 
vary between -0.003 and 0.022. All of these estimates are statistically insignificant and some of 
them are, indeed, negative. Estimates of the domestic and foreign R&D from the dynamic 2FE fall 
from -0114-0.005 and 0.031-0.077 respectively, and are significant only for the specification with 
one lag. Meanwhile, the MG-ARDL estimates of the domestic R&D range from 0.054-0.090 and 
the coefficients of the foreign R&D fall between 0.057-0.061 where the domestic R&D 
coefficients are statistically significant to one and two lags. Variables are cointegrated in the long-
run in all models at 1%; however, these models are seriously misspecified because residuals are 
characterized by strong cross-section dependence. In consequence, none of the models has been 
chosen. Therefore, we can state that these findings and those from static models provide tentative 
evidence that the CH framework which does not model unobserved common shocks may not take 
account of strong error cross-section dependence which may be correlated with the domestic and 
foreign R&D, and that leads to biased and inconsistent estimates. 
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6.2.2. Dynamic Models That Account For Error Cross-Section 

Dependence 
 
The results of the CS-ARDL models to p=1, 2 and 3 lags, including a time trend, are reported in 
Table 6 column (i). Estimates of the domestic and foreign R&D variables range from 0.023-0.055 
and 0.070-0.082 respectively. Foreign R&D estimates are statistically significant at the 5% level, 
while the only domestic R&D estimate that is significant (at the 10% level) is that from the model 
with two lags. None of these models is misspecified, thanks to the fact that there are low degrees 
of cross-section correlation of residuals and variables are cointegrated in the long-run at the 1% 
level. However, only the CS-ARDL specification, which includes two lags, obtains significant 
coefficients for both domestic R&D and foreign R&D. It may be possible that the CS-ARDL 
models with one and three lags do not capture statistically significant domestic R&D estimates 
because of limitations on the time data, especially in the case of countries for which the data does 
not stretch beyond thirty years.  

A more flexible CS-ARDL specification which incorporates a time trend has been estimated. 
The CS-ARDL (ii) model with 1 and 2 lags includes only two lagged cross-section averages. As 
can be seen, domestic and foreign R&D coefficients, which range from 0.066-0.085 and 0.065-
0.079 respectively, are significant at 5%. Moreover, models with 1 and 2 lags are not 
missspecified, thanks to a low degree of cross-section dependence of residuals and cointegration 
at the 1%. These results indicate that if there were more observations or more flexibility in the CS-
ARDL model, then it might be more feasible to it to yield positive and significant domestic and 
foreign R&D estimates. However, this flexibility has been introduced at a cost, since only two 
lagged cross-section averages may not be a suitable way to deal with the problem of reverse 
causality which may arise in a dynamic model.  

The results of the CS-DLMG models which include 1, 2 and 3 lags of the dependent variable 
and a time trend suggest that all the domestic R&D estimates, which vary between 0.071-0.109, 
are significant at the 1% level, while the foreign R&D slopes are only significant at 1% for the 
specification with 2 and 3 lags and at 5% for one lag, falling between 0.052 and 0.080. CS-DLMG 
models are not misspecified, thanks to low levels of the residual cross-section dependence and 
cointegration at the 1% level. Therefore, they do not show seriously biased and inconsistent 
domestic R&D and foreign R&D estimates so long as feedback effects are not present. Although 
the RMSE of the CS-DLMG models is larger, compared to the CS-ARDL results, the Monte Carlo 
experiments in Tables 4 and 8 of Chudik et al. (2013b) show that for samples fewer than 100 
cross-section and time observations, and in the absence of feedback effects, the CS-DLMG 
estimator is more efficient and has more power than the CS-ARDL model even when the RMSE 
of the former is larger.  

However, due to the characteristics of the R&D capital stock, it will be necessary to give 
priority to those dynamic models that account for feedback effects. Given these characteristics, 
both models might yield complementary results. The CS-ARDL model may indicate that it is 
possible to obtain consistent, not seriously biased, positive and significant estimates of domestic 
and foreign R&D, while the CS-DLMG models show that, with more complete data, these results 
may be more significant and the magnitude larger. Further, long-run cointegration is achieved at 
the 1% level across CS-ARDL models and the speed of cointegration is higher, compared to the 
traditional ARDL models from Table 5, even though it is still not very high. The majority of 
significant domestic and foreign R&D coefficients from Table 6 are more sizable than estimates 
from the ARDL models, in which error cross-section independence is assumed.  

Notwithstanding the fact that all these features describe favorable results for the domestic and 
foreign R&D coefficients in dynamic models, the presence of weak residual cross-section 
dependence provides information on the real nature of those estimates. In fact, those coefficients 
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may not capture pure returns to domestic R&D and knowledge spillovers. Instead, they might be 
capturing these plus unobserved local spillovers and other effects, where both might react with 
lags. Once again, we can see that a rigid foreign R&D variable may not capture knowledge 
spillovers as a unique source of cross-section dependence in the data; the same would apply to the 
domestic R&D variable. Thus, this confirms that the effect of unobservables cannot be easily 
separated from returns to domestic R&D and international knowledge spillovers, and shows that 
the CH specification might not be suitable for studying the effect of spillovers on productivity 
across all the countries in the sample when unobserved common effects are present. Hence, results 
from this approach might not be informative at all to assess appropriate economic policy measures 
on R&D adoption. The fact that, in most cases, domestic and foreign R&D estimates from the 
static and dynamic models where unobserved common effects are accounted for are more sizable 
compared to those from a CH specification, indicates that coefficients are capturing more cross-
section dependencies than those postulated by the literature on international R&D spillovers; this 
empirical finding strengthens the abovementioned conclusions.  

Tables A2 to A5 show similar findings for models that include different sorts of LP and CH 
weighted foreign R&D variables. It seems that when the models include a CH foreign R&D 
variable, the coefficient of this variable is larger than that obtained from models which include LP 
foreign R&D variables. Further, the coefficient of domestic R&D is significant in most cases, 
long-run cointegration is significant at the 1% level for CS-ARDL models, and at least three CS-
ARDL and all CS-DLMG models yield low degrees of the cross-section dependence of residuals 
and significant and positive domestic and foreign R&D coefficients, which confirms what was 
found above. A different situation is presented in Table A6 where a CH weighted foreign R&D 
variable with information on knowledge transmission from all countries has been incorporated.  

Although all CS-DLMG models have low degrees of the cross-section dependence of the 
residuals, positive and significant estimates for the domestic and foreign R&D variables, and large 
foreign R&D estimates, only one of the five CS-ARDL models achieves all of this. The other four 
CS-ARDL models manage to have all these features, but, strangely, none of their domestic R&D 
coefficients are significant and all are very small compared to the estimates from Tables A4 and 
A5. This unusual change does not happen when a LP weighted foreign R&D variable is 
introduced under any of the three knowledge diffusion configurations. As a result, the CS-ARDL 
and CS-DLMG models from Table A6 are not as complementary as the models in Tables A2 to 
A5. This might indicate that results of dynamic models which account for feedback effects and 
unobserved common effects are sensitive to the inclusion of a CH weighted foreign R&D variable 
which incorporates the global dissemination of knowledge from all countries (including most of 
the emerging economies of the sample), which is in line with what I found in the static models. 
This therefore supports the fact that a CH weighted R&D variable may be too rigid in trying to 
capture the cross-section dependence which is merely explained by knowledge spillovers, and its 
inclusion into the model may affect the estimate of the domestic R&D.  
 

7. Comparison between Two Subsamples 
 
In this section I use models such as the CS-ARDL and CS-DLMG (with a time trend) for the 
estimates of two different subsample sets drawn from the original sample. My aim is to see 
whether the conclusions from the previous section apply to those subsamples. The first subsample 
does not include 11 small emerging economies (Colombia, Costa Rica, Ecuador, Egypt, Indonesia, 
Malaysia, Panama, Peru, Philippines, Uruguay and Venezuela) from the original sample, and the 
second subsample excludes G7 countries and BRICs. Cross-section averages are based on the 
original sample. Foreign R&D is based on LP and allows for the transmission of knowledge from 
all countries of the sample. The results for other configurations of the weighted foreign R&D 
variable are included in the appendix A. Table 7 shows the results when 11 small emerging 
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countries are excluded. It can be seen that seven of the eight dynamic models yield not seriously 
biased, consistent, positive as well as significant domestic and foreign R&D coefficients, although 
with low degrees of residual cross-section dependence. The estimated CS-ARDL (i) model with 
two lags is the only model that suffers from a high degree of cross-section dependence of residuals 
at the 5% level. According to these results, the conclusions of the previous section still apply to 
the analysis of the first subsample.  

Table 8 shows that, when G7 countries and BRICs are excluded, none of the foreign R&D 
estimates from the CS-ARDL models are significant and only two of five CS-ARDL models yield 
significant estimates of the domestic R&D in models which are not misspecified. In addition, 
some of the domestic R&D slopes and all of the foreign R&D estimates are lower compared to the 
estimates in Table 7. The CS-DLMG model, on the other hand, yield positive and statistically 
significant estimates of both foreign and domestic R&D variables, even though the significance 
and magnitude of the foreign R&D coefficients are lower than those coefficients in Table 7. Still, 
those not misspecified models are subject to low degrees of residual cross-section dependence. It 
is clear that the CS-ARDL and CS-DLMG estimates from Table 8 are not complementary at all, 
since the former do not yield at least one model in which both domestic and foreign R&D 
estimates are statistically significant, as happens with the latter.  

Hence, the results of the CS-ARDL model (which from the viewpoint of this study is the 
most suitable approach to model R&D) for the second subsample suggest that unobserved 
common local spillovers and other effects could play a relatively more important role in 
determining the productivity of these economies than the international R&D spillovers alone, 
subject to the fact that one kind of spillover or effect cannot be separated from the other. 
Therefore, the role of a weighted foreign R&D variable may be less effective at capturing R&D 
spillovers in this case. It is worth noting that this subsample comprises a larger proportion of 
emerging economies than that in the first subsample23. Similar conclusions, although with 
different results, can be found in Tables A7 to A1024. 

I have also estimated models by incorporating CH weighted foreign R&D variables. The 
results for the first subsample are reported in Tables A11 and A13, which account for international 
knowledge flows from 23 advanced OECD plus BRIC economies and transmission from all 
OECD plus BRIC countries respectively. These findings agree with those obtained when I 
included LP weighted foreign R&D variables. Next, Tables A12 and A14, where I exclude G7 
plus BRIC countries from the main sample and employ the same CH foreign R&D variables, 
show that it is possible to obtain positive, consistent, not seriously biased and statistically 
significant coefficients for both domestic and foreign R&D coefficients from two of the CS-
ARDL models and all the CS-DLMG models, so that there is complementarity of results from 

                                                           
23 A possible explanation for these results may be the fact that the amount of NXT observations in the 
second subsample was reduced, so the CS-ARDL models may present data constraints which affect R&D 
estimates. However, results from Table 7 are favorable even though there are fewer observations than those 
observed from Table 6, and models from Table 8 have almost the same amount of observations as those 
from the models of Table 7. Then, a reasonable explanation for these results might be the fact that more 
advanced countries and BRICs in the recent years do more R&D than many of the small advanced countries 
and emerging economies (see: UNESCO Institute for Statistics 2014), so the impact of the domestic and 
foreign R&D on productivity is larger and more statistically significant when more advanced countries and 
BRICs are included in the sample either if 11 of all the emerging economies from the main sample are 
excluded or not. However, it is clear that when the 11 small emerging economies are included and G7 plus 
BRICs are excluded, then the formers have a larger share in the sample and that could affect the statistical 
significance of domestic and foreign R&D estimates from the CS-ARDL models.  
24 Tables A7 and A8 report results for similar setups from Table 7 and 8 respectively but including a LP 
weighted foreign R&D variable allowing for R&D transmission from 23 OECD advanced economies from 
the main sample plus BRICs; and Tables A9 and A10 include a LP weighted foreign R&D variable allowing 
for R&D transmission from all the OECD countries from the original sample plus BRICs. 
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these models. This outcome differs from what I previously found when LP foreign R&D variables 
were included, although both results are subject to low degrees of residual cross-section 
dependence, which indicates that slopes might be not be capturing pure knowledge spillovers.  

However, if we look at Table A15 (which excludes 11 emerging economies) and Table A16 
(which excludes G7 and BRIC countries) - both of which incorporate a CH weighted R&D 
variable that allows for knowledge transmission from all the countries of the original sample - the 
results substantially differ from those in Tables A11 to A14, because now none of the CS-ARDL 
models yields consistent and significant coefficients of domestic R&D and only some of the CS-
DLMG models do. This atypical change does not arise when LP foreign R&D variables are 
included. If we go by the findings from dynamic models where feedback effects and unobserved 
common factors are accounted, it would seem that the estimates of the domestic R&D are 
sensitive to the inclusion of a CH foreign R&D variable, particularly when a large number of the 
emerging economies are added to the weights. Hence, CH weighted variables might be more rigid 
than the LP variable, and also do not capture all the cross-section dependence that exists in the 
data, whether in static and dynamic models. 
 

8. Conclusion 
 
A vast literature on international R&D spillovers, based on the CH framework, has studied how 
knowledge spillovers and domestic returns to R&D explain productivity based on the CH 
framework. The present study contributes to this literature by studying these effects in a common 
factor error structure. It shows that even if the main purpose is estimating returns to R&D and 
knowledge spillovers with the purpose of assessing economic policy measures on R&D adoption, 
unobserved common effects and spillovers should be accounted for. If these are not modeled, as in 
the CH specification, and if they are also correlated with the regressors, estimates may be biased 
and inconsistent. These statements are supported by the results of the present work. Conversely, if 
we allow for heterogeneous technology parameters and unobserved common shocks are accounted 
for, we find that statistically significant coefficients of the foreign and domestic R&D capital 
stock variables are normally asymptotic, consistent , not seriously biased and even more sizable in 
the majority of cases than the coefficients obtained from the CH framework. However, those 
coefficients are subject to low degrees of error cross-section dependence which indicates that 
international spillovers might not be the only sort of spillovers that are captured by the coefficient 
of the foreign R&D variable. Instead, this coefficient might capture international spillovers plus 
unobserved spillovers and other common effects; the same applies to the coefficient of the 
domestic R&D variable.  

This clearly explains that returns to R&D and knowledge spillovers cannot be easily 
separated from unobservables and thus should not be solely estimated by employing rigid LP or 
CH weighted foreign R&D variables in a CH framework where domestic and foreign R&D are 
introduced into a TFP function in an additively separable fashion. This approach may not 
determine which part of the technology transfer can be considered as a R&D spillover. In fact, one 
may doubt if weighted foreign R&D variables capture at least some knowledge spillovers in a 
common factor structure. They could instead capture other aspects rather than knowledge flows, 
which could affect the results of the model when shocks are present. As a result, economic 
policies on international technology transfer should be assessed by relying on the results from a 
more adequate quantitative framework which can account for international technology diffusion 
spillovers as well as common micro and macro effects of unknown form which might be either 
related or not related to the cross-country R&D capital stock. 
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Sample Description

# Country TFP Coverage Rd Coverage Rf Coverage # Country TFP Coverage Rd Coverage Rf Coverage

1 Argentina 42 1970-2011 42 1970-2011 42 1970-2011 26 Italy 42 1970-2011 42 1970-2011 42 1970-2011

2 Australia 42 1970-2011 38 1973-2010 42 1970-2011 27 Japan 42 1970-2011 42 1970-2011 42 1970-2011

3 Austria 42 1970-2011 42 1970-2011 42 1970-2011 28 Korea 42 1970-2011 42 1970-2011 42 1970-2011

4 Brazil 42 1970-2011 38 1973-2010 42 1970-2011 29 Malaysia 42 1970-2011 24 1988-2011 42 1970-2011

5 Bulgaria 42 1970-2011 32 1980-2011 42 1970-2011 30 Mexico 42 1970-2011 42 1970-2011 42 1970-2011

6 Canada 42 1970-2011 42 1970-2011 42 1970-2011 31 Netherlands 42 1970-2011 42 1970-2011 42 1970-2011

7 Chile 42 1970-2011 32 1979-2010 42 1970-2011 32 New Zealand 42 1970-2011 40 1972-2011 42 1970-2011

8 China 42 1970-2011 24 1988-2011 42 1970-2011 33 Norway 42 1970-2011 42 1970-2011 42 1970-2011

9 Colombia 42 1970-2011 41 1971-2011 42 1970-2011 34 Panama 42 1970-2011 25 1986-2010 42 1970-2011

10 Costa Rica 42 1970-2011 38 1974-2011 42 1970-2011 35 Peru 42 1970-2011 34 1971-2004 42 1970-2011

11 Cyprus 42 1970-2011 32 1980-2011 42 1970-2011 36 Philippines 42 1970-2011 38 1970-2007 42 1970-2011

12 Denmark 42 1970-2011 39 1973-2011 42 1970-2011 37 Poland 42 1970-2011 27 1985-2011 42 1970-2011

13 Ecuador 42 1970-2011 39 1970-2008 42 1970-2011 38 Portugal 42 1970-2011 42 1970-2011 42 1970-2011

14 Egypt 42 1970-2011 39 1973-2011 42 1970-2011 39 Romania 24 1988-2011 23 1989-2011 42 1970-2011

15 Estonia 22 1990-2011 20 1992-2011 20 1992-2011 40 Russia 22 1990-2011 22 1990-2011 20 1992-2011

16 Finland 42 1970-2011 42 1970-2011 42 1970-2011 41 Singapore 42 1970-2011 42 1970-2011 42 1970-2011

17 France 42 1970-2011 42 1970-2011 42 1970-2011 42 Spain 42 1970-2011 42 1970-2011 42 1970-2011

18 Germany 42 1970-2011 41 1971-2011 42 1970-2011 43 Sweden 42 1970-2011 42 1970-2011 42 1970-2011

19 Greece 42 1970-2011 38 1970-2007 42 1970-2011 44 Switzerland 42 1970-2011 39 1970-2008 42 1970-2011

20 Hungary 42 1970-2011 42 1970-2011 42 1970-2011 45 Thailand 42 1970-2011 40 1970-2009 42 1970-2011

21 Iceland 42 1970-2011 40 1970-2009 42 1970-2011 46 Turkey 42 1970-2011 42 1970-2011 42 1970-2011

22 India 42 1970-2011 38 1970-2007 42 1970-2011 47 United Kingdom 42 1970-2011 42 1970-2011 42 1970-2011

23 Indonesia 42 1970-2011 38 1972-2009 42 1970-2011 48 United States 42 1970-2011 42 1970-2011 42 1970-2011

24 Ireland 42 1970-2011 42 1970-2011 42 1970-2011 49 Uruguay 42 1970-2011 41 1970-2010 42 1970-2011

25 Israel 42 1970-2011 42 1970-2011 42 1970-2011 50 Venezuela 42 1970-2011 31 1970-2000 42 1970-2011

2042 1873 2056Total Obs

Table 1

Notes: Variables: Total Factor Productivity (TFP), Domestic R&D (Rd) and Foreign R&D (Rf) capital stocks. All monetary variables are expressed in constant 

millions of US dollars of 2005 based on purchasing power parity (PPP). Definitions of these variables in the appendix.
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Summary Statistics

VARIABLES Mean Median SD Minimum Maximum

Levels

Total Factor Productivity 0.96 0.97 0.14 0.57 1.60

Domestic R&D Capital Stock (million PPP 

constant 2005 dollars) 70858.70 9109.51 218128.50 48.66 2220345.00

Foreign R&D Capital Stock (million PPP 

constant 2005 dollars) 9325.21 3062.48 16401.86 4.45 174997.40

Logarithms

Log Total Factor Productivity -0.05 -0.03 0.14 -0.56 0.47

Log Domestic R&D Capital Stock (million 

PPP constant 2005 dollars) 9.20 9.12 2.06 3.88 14.61

Log Foreign R&D Capital Stock (million 

PPP constant 2005 dollars) 7.99 8.03 1.63 1.49 12.07

Growth

Δ Total Factor Productivity 0.00 0.01 0.03 -0.25 0.19

Δ Domestic R&D Capital Stock (million 
PPP constant 2005 dollars) 0.04 0.04 0.06 -0.16 0.34

Δ Foreign R&D Capital Stock (million PPP 
constant 2005 dollars) 0.07 0.06 0.17 -1.09 3.09

Table 2 

Notes: These descriptive statistics refer to the sample of N = 50 countries from 1970 to 2011.
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Time Series Properties

Lags Lags

Chi sq p-value Chi sq p-value Chi sq p-value Chi sq p-value Chi sq p-value Chi sq p-value

0 79.370 0.936 72.305 0.983 148.420 0.001 0 4.666 1.000 9.486 1.000 -0.669 0.252

1 100.283 0.473 162.193 0.000 48.548 1.000 1 2.164 0.985 -1.369 0.085 1.787 0.963

2 82.956 0.891 111.186 0.209 52.938 1.000 2 3.556 1.000 1.335 0.909 4.514 1.000

3 72.667 0.982 103.621 0.382 39.330 1.000 3 3.777 1.000 2.860 0.998 4.076 1.000

Lags Lags

Chi sq p-value Chi sq p-value Chi sq p-value Chi sq p-value Chi sq p-value Chi sq p-value

0 75.757 0.966 670.225 0.000 376.862 0.000 0 2.272 0.988 3.296 1.000 -2.317 0.010

1 115.222 0.142 198.434 0.000 156.051 0.000 1 -0.820 0.206 -3.239 0.001 -0.291 0.386

2 86.270 0.834 153.087 0.001 113.769 0.164 2 0.274 0.608 0.319 0.625 1.729 0.958

3 79.221 0.938 152.661 0.001 105.055 0.345 3 1.278 0.899 1.986 0.976 0.933 0.825

Lags Lags

Chi sq p-value Chi sq p-value Chi sq p-value Chi sq p-value Chi sq p-value Chi sq p-value

0 1027.519 0.000 249.408 0.000 1950.501 0.000 0 -20.802 0.000 -3.462 0.000 -26.145 0.000

1 698.378 0.000 211.822 0.000 1132.085 0.000 1 -14.246 0.000 -3.954 0.000 -17.144 0.000

2 466.193 0.000 200.903 0.000 636.864 0.000 2 -9.186 0.000 -2.829 0.002 -10.203 0.000

3 358.109 0.000 205.921 0.000 593.990 0.000 3 -6.377 0.000 -1.734 0.041 -7.710 0.000

Table 3 

MW Fisher Test (Including a Constant and a Time Trend)

tfp rd rf

tfp rd rf

Pesaran (2007) CIPS test (Including a Constant)

tfp rd rf

Maddala and Wu (1999) (MW) Fisher Test (Including a Constant)

Panel 1: Logarithmic Variables in Levels

Notes:  The Maddala and Wu (1999) test registers the Fisher statistic results and their associated p-values. Pesaran (2007) tests presents a 

standardized Z-tbar statistic and its respective p-value. The null hypotheses for both tests refers to all series are nonstationary at the 5% level 

of significance. Zero to three lags augmentation in the performed Dickey Fuller regressions are included. Panel 1 displays the Dickey Fuller 

regression for logarithmic variables in levels, including a constant, on the one hand, and, on the other,  a constant and a trend. Panel 2 

contains the variables in first differences including a drift (constant). 

MW (1999) Fisher Test (Including a Drift)

Δ rf

Pesaran (2007) CIPS test (Including a Constant and a Time Trend)

tfp rd rf

Panel 2: Logarithmic Variables in First Differences

Pesaran (2007) CIPS test (Including a Drift)

Δ tfp Δ rd Δ rfΔ tfp Δ rd
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Static Panel Data Models

Estimators POLS 2FE FD CCEP MG CDMG

(i) (ii)

tfp dependent variable

Independent variables

rd -0.015*** 0.075*** 0.060*** 0.071*** 0.039* 0.061* 0.054** 0.090***

std errors (0.003) (0.005) (0.015) (0.009) (0.020) (0.036) (0.023) (0.021)

rf 0.021*** 0.060*** 0.000 0.037*** 0.031* 0.025 0.057*** 0.061***

std errors (0.005) (0.008) (0.010) (0.009) (0.017) (0.026) (0.016) (0.016)

CD-test -0.28 119.82† 183.45† 28.1† 13.00† 3.63† -0.21 -0.59

Order of Integration I(1) I(1) I(1) I(1) I(1) I(1) I(0) I(0)

RMSE 0.142 0.094 0.029 0.045 0.058 0.066 0.035 0.032

NXT 1871 1871 1821 1871 1871 1871 1871 1871

N 50 50 50 50 50 50 50 50

CCEMG

Table 4

Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D 

capital stock defined by Lichtenberg and van Pottelsberghe de la Potterie (1998) (rf) (allowing for knowledge diffusion from all 

countries of the sample) are the independent variables. Constant term is included but not reported. Estimators: 1) POLS Pooled 

OLS (augmented with T-1 year dummies). 2) 2FE: Two-way fixed effects (augmented with T-1 year dummies and N-1 country 

dummies). 3) FD: First Differences (augmented with T-2 year dummies because when differencing, a year dummy is dropped to 

avoid perfect multicollinearity). 4) CCEP: Pooled Pesaran (2006) augmented with common country dummies and cross-section 

averages, 5) MG: Mean Group. 6) CDMG: Cross-sectionally demeaned MG. 7) CMG: Common Correlated Effects MG Pesaran 

(2006) augmented with cross-section averages is presented in two versions: (i) without a time trend, and (ii) including a time 

trend. . White heteroskedasticity-robust standard errors are reported in parentheses. Levels of significance are represented by * 

10%, ** 5% and *** 1%. Diagnostics: (evaluated at the 5% level of significance, full results of the next tests are available on 

request): 1) CD test: Pesaran (2004) test which is redefined by Pesaran (2013), for which Ho: Cross-section weak dependence of 

the residuals. 2) CIPS test: Pesaran (2007) test evaluates the order of integration of the residuals where I(0): stationary, I(1): 

nonstationary. Root mean squared error (RMSE), NXT number of country-time observations and N number of countries are also 

included. † indicates that null hypothesis of weak cross-section dependence of the residuals at the 5% level is rejected.                                                                                                                                                                                          
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Dynamic ARDL Panel Data Models Assuming Cross-Section Independence of Errors, in a ECM Representation

Estimators POLS 2FE MG

1 lag 2 lags 3 lags 1 lag 2 lags 3 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd -0.013 -0.001 0.008 -0.114*** -0.015 0.005 0.025 0.059** 0.060*

std errors (0.011) (0.011) (0.010) (0.043) (0.036) (0.036) (0.030) (0.029) (0.032)

rf 0.022 0.007 -0.003 0.077* 0.053 0.031 0.024 -0.004 -0.007

std errors (0.014) (0.014) (0.013) (0.045) (0.037) (0.034) (0.028) (0.029) (0.031)

Cointegration coefficients -0.058*** -0.054*** -0.056*** -0.057*** -0.069*** -0.070*** -0.235*** -0.298*** -0.345***

std errors (0.005) (0.005) (0.005) (0.008) (0.008) (0.008) (0.020) (0.025) (0.033)

CD-test 156.35† 122.15† 122.02† 148.78† 115.62† 117.05† 19.26† 16.52† 14.49†
RMSE 0.028 0.027 0.026 0.028 0.027 0.026 0.023 0.021 0.019

NXT 1821 1771 1721 1821 1771 1721 1821 1771 1721

N 50 50 50 50 50 50 50 50 50

Table 5

Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock defined by 

Lichtenberg and van Pottelsberghe de la Potterie (1998) (rf) (allowing for knowledge flows from all the countries of the sample) are the independent 

variables. Constant term is included but not reported. Long run estimates and cointegration coefficients are reported. Estimators for autoregressive 

distributed lagged (ARDL) panel data specifications, which are represented by a Error Correction Model (ECM), are the following: 1) Dynamic ARDL 

POLS Pooled OLS (augmented with T-1 year dummies). 2) Dynamic ARDL 2FE: Two-way fixed effects (augmented with T-1 year dummies and N-1 

country dummies). 3) Dynamic ARDL MG: Mean Group. White heteroskedasticity-robust standard errors are reported in parentheses. POLS, 2FE and MG 

models are augmented with p=1, 2 and 3 lagged covariates. Levels of significance are represented by * 10%, ** 5% and *** 1%. Diagnostics: (evaluated 

at the 5% level of significance, full results of the next tests are available on request): CD test by Pesaran (2004) which is redefined by Pesaran (2013), for 

which Ho: Cross-section weak dependence of the residuals. Root mean squared error (RMSE), NXT number of country-time observations and N number 

of countries are also included. † indicates that null hypothesis of weak cross-section dependence of the residuals at the 5% level is rejected.                                                                                                                                                                                          
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Estimators CS-ARDL (ECM) CS-DLMG

(i)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd 0.023 0.055* 0.050 0.066** 0.085** 0.071*** 0.096*** 0.109***

std errors (0.029) (0.029) (0.037) (0.032) (0.035) (0.018) (0.028) (0.035)

rf 0.083** 0.070** 0.082** 0.079** 0.065** 0.052** 0.068*** 0.080***

std errors (0.033) (0.031) (0.037) (0.033) (0.033) (0.021) (0.024) (0.028)

Cointegration coefficients -0.436*** -0.528*** -0.626*** -0.395*** -0.469***

std errors (0.040) (0.057) (0.077) (0.032) (0.046)

CD-test -1.61 0.35 0.70 -1.34 0.34 -1.64 -0.90 -0.30

RMSE 0.013 0.011 0.013 0.015 0.013 0.021 0.018 0.017

NXT 1720 1640 1579 1791 1735 1758 1741 1687

N 48 45 43 50 48 50 50 48
Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock 

defined by Lichtenberg and van Pottelsberghe de la Potterie (1998) (rf) (allowing for R&D transmission from all the countries of the sample) 

are the independent variables. Constant term is included but not reported. Long run estimates and cointegration coefficients are reported. 

Estimators for autoregressive distributed lagged (ARDL) panel data specifications, which are represented by a Error Correction Model 

(ECM), are the following: 1) Dynamic cross-sectional ARDL (CS-ARDL-i) (augmented with lagged cross-sectional averages of the 

dependent and independent variables with three lags of these cross-sectional averages). 2) Dynamic cross-sectional ARDL (CS-ARDL-ii) 

(augmented with lagged cross-sectional averages of the dependent and independent variables with two lags of these cross-sectional 

averages).  3) Cross-sectional DL Mean Group: CS-DLMG. White heteroskedasticity-robust standard errors are reported in parentheses. All 

models include a time trend. CS-ARDL (i) and CS-DLMG models are augmented with p=1, 2 and 3 lagged covariates. CS-ARDL (ii) model 2 

is augmented with p=1 and 2 lags. Levels of significance are represented by * 10%, ** 5% and *** 1%. Diagnostics: (evaluated at the 5% 

level of significance, full results of the next tests are available on request): CD test by Pesaran (2004) which is redefined by Pesaran (2013), 

for which Ho: Cross-section weak dependence of the residuals. Root mean squared error (RMSE), NXT number of country-time 

observations and N number of countries are also included. † indicates that null hypothesis of weak cross-section dependence of the residuals 

Table 6

(ii)

Dynamic Panel Data Models Accounting for Cross-Section Dependence of Errors, in a ECM Representation
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Estimators CS-ARDL (ECM)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd 0.018 0.087** 0.107** 0.089** 0.121*** 0.062*** 0.102*** 0.133***

std errors (0.040) (0.037) (0.042) (0.038) (0.034) (0.023) (0.035) (0.036)

rf 0.090** 0.089** 0.086** 0.098*** 0.063* 0.057*** 0.074*** 0.081***

std errors (0.039) (0.038) (0.041) (0.037) (0.033) (0.022) (0.024) (0.030)

Cointegration coefficients -0.401*** -0.483*** -0.587*** -0.377*** -0.474***

std errors (0.048) (0.065) (0.087) (0.040) (0.057)

CD-test 0.4 2.1† 1.22 1.04 1.92 -0.32 0.19 1.11

RMSE 0.012 0.019 0.009 0.014 0.012 0.018 0.016 0.015

NXT 1353 1300 1267 1418 1369 1391 1379 1332

N 37 35 34 39 37 39 39 37

Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock 

defined by Lichtenberg and van Pottelsberghe de la Potterie (1998) (rf) (allowing for R&D transmission from all the countries of the sample) 

are the independent variables. See also the notes to Table 6.                                                                                                                        

Table 7

CS-DLMG

(i) (ii)

Dynamic Panel Data Models Accounting for Cross-Section Dependence of Errors, in a ECM Representation and Excluding 11 Middle 

Income Countries (MICs)
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Estimators CS-ARDL (ECM)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd 0.025 0.059* 0.042 0.070** 0.078** 0.083*** 0.111*** 0.125***

std errors (0.028) (0.031) (0.034) (0.032) (0.035) (0.024) (0.031) (0.041)

rf 0.054 0.041 0.033 0.056 0.033 0.051** 0.053** 0.058**

std errors (0.033) (0.033) (0.037) (0.035) (0.036) (0.023) (0.025) (0.030)

Cointegration coefficients -0.484*** -0.578*** -0.692*** -0.426*** -0.516***

std errors (0.040) (0.060) (0.084) (0.033) (0.051)

CD-test -2.72† -0.78 -0.44 -2.69† -1.46 -1.88 -1.02 -0.73

RMSE 0.014 0.012 0.011 0.017 0.014 0.021 0.021 0.018

NXT 1352 1296 1237 1396 1362 1371 1357 1324

N 38 36 34 39 38 39 39 38

Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock 

defined by Lichtenberg and van Pottelsberghe de la Potterie (1998) (rf) (allowing for R&D transmission from all the countries of the sample) 

are the independent variables. See also the notes to Table 6.                                                                                                                       

Table 8 

CS-DLMG

(i) (ii)

Dynamic Panel Data Models Accounting for Cross-Section Dependence of Errors, in a ECM Representation and Excluding G7 

Countries and BRICS
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Appendix A: Additional Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Other Results for Static CCEMG Models

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x)

tfp dependent variable

Independent variables

rd 0.056** 0.090*** 0.056** 0.094*** 0.061*** 0.063*** 0.066*** 0.062*** 0.068*** 0.065***

std errors (0.022) (0.022) (0.023) (0.021) (0.018) (0.024) (0.020) (0.021) (0.018) (0.021)

rf 0.055*** 0.060*** 0.057*** 0.060*** 0.048*** 0.057*** 0.045*** 0.057*** 0.043*** 0.051***

std errors (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.015)

CD-test 0.06 -0.39 -0.29 -0.64 1.77 2.06† 1.78 2.11† 2.12† 2.44†
Order of Integration I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)

RMSE 0.034 0.031 0.035 0.032 0.034 0.036 0.035 0.029 0.035 0.029

NXT 1871 1871 1871 1871 1871 1871 1871 1871 1871 1871

N 50 50 50 50 50 50 50 50 50 50

Time Trend NO YES NO YES NO YES NO YES NO YES

TableA1

Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D (rd)  and log foreign R&D (rf) are the independent variables. Constant 

term is included but not reported. Estimator: CMG, Common Correlated Effects MG Pesaran (2006) augmented with cross-section averages is employed in 

ten different setups: (i) and (ii) include a rf variable defined by Lichtenberg and van Pottelsberghe de la Potterie (1998) (henceforth LP) which allows for 

knowledge transmission from 23 OECD countries plus BRICs, (iii) and (iv) incorporate a LP-rf variable allowing for knowledge diffusion from all OECD 

countries of the sample plus BRICs, (v) and (vi) include a rf variable defined by Coe and Helpman (1995) which allows for knowledge flows from 23 OECD 

countries plus BRICs,  (vii) and (viii) incorporate a CH-rf variable allowing for knowledge dissemination from all OECD countries plus BRICs, (ix) and (x) 

include a CH-rf variable allowing for knowledge diffusion from all the countries of the sample. White heteroskedasticity-robust standard errors are reported in 

parentheses. Levels of significance are represented by * 10%, ** 5% and *** 1%.  Diagnostics: (evaluated at the 5% level of significance, full results of the 

next tests are available on request): 1) CD test: Pesaran (2004) test which is redefined by Pesaran (2013), for which Ho: Cross-section weak dependence of 

the residuals. 2) CIPS test: Pesaran (2007) test evaluates the order of integration of the residuals where I(0): stationary, I(1): nonstationary. Root mean 

squared error (RMSE), NXT number of country-time observations and N number of countries are also included. † indicates that null hypothesis of weak 
cross-section dependence of the residuals at the 5% level is rejected.                                                                                                                                 
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Estimators CS-ARDL (ECM)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd 0.035 0.067** 0.064* 0.075** 0.086** 0.077*** 0.102*** 0.115***

std errors (0.029) (0.031) (0.035) (0.035) (0.033) (0.017) (0.027) (0.037)

rf 0.083*** 0.064** 0.073* 0.073** 0.059* 0.050** 0.062** 0.082***

std errors (0.030) (0.029) (0.039) (0.033) (0.034) (0.021) (0.025) (0.030)

Cointegration coefficients -0.433*** -0.526*** -0.623*** -0.394*** -0.469***

std errors (0.040) (0.055) (0.075) (0.034) (0.047)

CD-test -1.75 -0.06 -0.04 -1.31 0.02 -1.60 -1.04 -0.16

RMSE 0.013 0.011 0.014 0.015 0.013 0.026 0.018 0.017

NXT 1720 1640 1579 1791 1735 1758 1741 1687

N 48 45 43 50 48 50 50 48
Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock 

defined by Lichtenberg and van Pottelsberghe de la Potterie (1998) (rf) (allowing for R&D transmission from 23 OECD countries of the 

sample) are the independent variables. Constant term is included but not reported. Long run estimates and cointegration coefficients are 

reported. Estimators for autoregressive distributed lagged (ARDL) panel data specifications, which are represented by a Error Correction 

Model (ECM), are the following: 1) Dynamic cross-sectional ARDL (CS-ARDL-i) (augmented with lagged cross-sectional averages of the 

dependent and independent variables with three lags of these cross-sectional averages). 2) Dynamic cross-sectional ARDL (CS-ARDL-ii) 

(augmented with lagged cross-sectional averages of the dependent and independent variables with two lags of these cross-sectional 

averages).  3) Cross-sectional DL Mean Group: CS-DLMG. White heteroskedasticity-robust standard errors are reported in parentheses. All 

models include a time trend. CS-ARDL (i) and CS-DLMG models are augmented with p=1, 2 and 3 lagged covariates. CS-ARDL (ii) model 2 

is augmented with p=1 and 2 lags. Levels of significance are represented by * 10%, ** 5% and *** 1%. Diagnostics: (evaluated at the 5% 

level of significance, full results of the next tests are available on request): CD test by Pesaran (2004) which is redefined by Pesaran (2013), 

for which Ho: Cross-section weak dependence of the residuals. Root mean squared error (RMSE), NXT number of country-time 

observations and N number of countries are also included. † indicates that null hypothesis of weak cross-section dependence of the residuals 

Table A2 

CS-DLMG

(i) (ii)

Dynamic Panel Data Models in a ECM Representation Accounting for Cross-Section Dependence of Errors and LP Knowledge 

Diffusion from 23 OECD Countries Plus BRICS
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Estimators CS-ARDL (ECM)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd 0.041 0.063** 0.057 0.059* 0.092** 0.077*** 0.096*** 0.112***

std errors (0.030) (0.031) (0.037) (0.033) (0.037) (0.018) (0.025) (0.034)

rf 0.084*** 0.065** 0.054 0.076** 0.067** 0.057*** 0.063** 0.084***

std errors (0.030) (0.029) (0.036) (0.032) (0.031) (0.020) (0.024) (0.028)

Cointegration coefficients -0.441*** -0.538*** -0.632*** -0.402*** -0.471***

std errors (0.040) (0.056) (0.079) (0.034) (0.048)

CD-test -1.95 0.03 -0.11 -1.51 0.09 -1.88 -1.29 -0.41

RMSE 0.013 0.011 0.013 0.015 0.013 0.025 0.018 0.017

NXT 1720 1640 1579 1791 1735 1758 1741 1687

N 48 45 43 50 48 50 50 48
Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock 

defined by Lichtenberg and van Pottelsberghe de la Potterie (1998) (rf) (allowing for R&D transmission from all OECD countries of the 

sample) are the independent variables. See also the notes to Table A2.                                                                                    

Table A3 

CS-DLMG

(i) (ii)

Dynamic Panel Data Models in a ECM Representation Accounting for Cross-Section Dependence of Errors and LP Knowledge 

Diffusion from All OECD Countries Plus BRICS
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Estimators CS-ARDL (ECM)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd 0.072** 0.072* 0.084** 0.067* 0.092** 0.124*** 0.110*** 0.082***

std errors (0.033) (0.041) (0.040) (0.037) (0.038) (0.024) (0.023) (0.023)

rf 0.094*** 0.066*** 0.057** 0.110*** 0.082*** 0.067*** 0.073*** 0.091***

std errors (0.028) (0.024) (0.027) (0.030) (0.028) (0.021) (0.024) (0.028)

Cointegration coefficients -0.537*** -0.701*** -0.820*** -0.490*** -0.602***

std errors (0.052) (0.066) (0.084) (0.036) (0.051)

CD-test -2.42† -0.32 -1.15 -0.65 2.08† -1.16 -1.08 -1.12

RMSE 0.013 0.018 0.009 0.015 0.013 0.019 0.017 0.015

NXT 1720 1640 1579 1791 1735 1758 1741 1687

N 48 45 43 50 48 50 50 48

Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock 

defined by Coe and Helpman (1995) (rf) (allowing for R&D transmission from 23 OECD countries of the sample) are the independent 

variables. See also the notes to Table A2.                                                                                    

Table A4

CS-DLMG

(i) (ii)

Dynamic Panel Data Models in a ECM Representation Accounting for Cross-Section Dependence of Errors and CH Knowledge 

Diffusion from 23 OECD Countries Plus BRICS
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Estimators CS-ARDL (ECM)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd 0.094** 0.056 0.068* 0.075* 0.071* 0.108*** 0.092*** 0.086***

std errors (0.044) (0.042) (0.039) (0.039) (0.039) (0.030) (0.030) (0.032)

rf 0.099*** 0.087*** 0.092*** 0.128*** 0.104*** 0.067*** 0.086*** 0.096***

std errors (0.029) (0.022) (0.028) (0.033) (0.028) (0.021) (0.030) (0.031)

Cointegration coefficients -0.573*** -0.736*** -0.885*** -0.507*** -0.633***

std errors (0.051) (0.060) (0.090) (0.035) (0.051)

CD-test -1.59 0.19 -0.66 -0.44 1.98† -0.8 -0.12 -0.75

RMSE 0.013 0.011 0.009 0.015 0.013 0.019 0.017 0.015

NXT 1720 1640 1579 1791 1735 1758 1741 1687

N 48 45 43 50 48 50 50 48

Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock 

defined by Coe and Helpman (1995) (rf) (allowing for R&D transmission from all OECD countries of the sample) are the independent 

variables. See also the notes to Table A2.                                                                                    

Table A5

CS-DLMG

(i) (ii)

Dynamic Panel Data Models in a ECM Representation Accounting for Cross-Section Dependence of Errors and CH Knowledge 

Diffusion from All OECD Countries Plus BRICS



 
4

4
 

 

 

 

Estimators CS-ARDL (ECM)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd 0.082* 0.026 0.031 0.059 0.037 0.108*** 0.070** 0.061*

std errors (0.046) (0.041) (0.043) (0.042) (0.035) (0.036) (0.033) (0.032)

rf 0.092*** 0.083*** 0.087*** 0.107*** 0.091*** 0.068*** 0.081*** 0.102***

std errors (0.029) (0.026) (0.029) (0.032) (0.028) (0.024) (0.031) (0.033)

Cointegration coefficients -0.587*** -0.751*** -0.899*** -0.523*** -0.666***

std errors (0.051) (0.069) (0.083) (0.035) (0.052)

CD-test -1.71 0.38 -0.62 -0.34 1.55 -0.67 -0.15 -0.53

RMSE 0.013 0.019 0.009 0.015 0.012 0.019 0.017 0.015

NXT 1720 1640 1579 1791 1735 1758 1741 1687

N 48 45 43 50 48 50 50 48

Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock 

defined by Coe and Helpman (1995) (rf) (allowing for R&D transmission from all countries of the sample) are the independent variables. See 

also the notes to Table A2.    

Table A6 

CS-DLMG

(i) (ii)

Dynamic Panel Data Models in a ECM Representation Accounting for Cross-Section Dependence of Errors and CH Knowledge 

Diffusion from All Countries



 
4

5
 

 

 

 

Estimators CS-ARDL (ECM)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd 0.040 0.100*** 0.122*** 0.102** 0.127*** 0.079*** 0.111*** 0.142***

std errors (0.042) (0.036) (0.041) (0.040) (0.032) (0.023) (0.034) (0.039)

rf 0.095** 0.085*** 0.083* 0.086** 0.059* 0.053** 0.064** 0.081**

std errors (0.037) (0.033) (0.045) (0.038) (0.035) (0.023) (0.025) (0.033)

Cointegration coefficients -0.393*** -0.490*** -0.590*** -0.381*** -0.471***

std errors (0.046) (0.065) (0.089) (0.041) (0.058)

CD-test 0.20 1.27 0.55 1.22 1.76 -0.10 0.14 1.27

RMSE 0.012 0.019 0.009 0.014 0.012 0.018 0.016 0.015

NXT 1353 1300 1267 1418 1369 1391 1379 1332

N 37 35 34 39 37 39 39 37

Table A7 

Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock 

defined by Lichtenberg and van Pottelsberghe de la Potterie (1998) (rf) (allowing for R&D transmission from 23 OECD countries of the 

sample) are the independent variables. See also the notes to Table A2.                                                                                    

CS-DLMG

(i) (ii)

Dynamic Panel Data Models in a ECM Representation Accounting for Cross-Section Dependence of Errors and LP Knowledge 

Diffusion from 23 OECD Countries Plus BRICS. 11 Emerging Countries are Excluded from the Main Sample



 
4

6
 

 

 

 

Estimators CS-ARDL (ECM)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd 0.042 0.073** 0.060* 0.081** 0.088** 0.086*** 0.116*** 0.136***

std errors (0.027) (0.032) (0.034) (0.036) (0.035) (0.021) (0.031) (0.044)

rf 0.057* 0.036 0.019 0.053 0.025 0.053** 0.049* 0.061*

std errors (0.030) (0.030) (0.038) (0.034) (0.037) (0.023) (0.027) (0.033)

Cointegration coefficients -0.484*** -0.572*** -0.685*** -0.419*** -0.512***

std errors (0.040) (0.057) (0.082) (0.034) (0.053)

CD-test -2.91† -1.41 -0.92 -2.85† -1.58 -2.03† -1.24 -0.39

RMSE 0.014 0.012 0.011 0.017 0.014 0.021 0.020 0.018

NXT 1352 1296 1237 1396 1362 1371 1357 1324

N 38 36 34 39 38 39 39 38

Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock 

defined by Lichtenberg and van Pottelsberghe de la Potterie (1998) (rf) (allowing for R&D transmission from 23 OECD countries of the 

sample) are the independent variables. See also the notes to Table A2.                                                                                    

Table A8

CS-DLMG

(i) (ii)

Dynamic Panel Data Models in a ECM Representation Accounting for Cross-Section Dependence of Errors and LP Knowledge 

Diffusion from 23 OECD Countries Plus BRICS. G7 Countries and BRICS are Excluded from the Main Sample



 
4

7
 

 

 

 

Estimators CS-ARDL (ECM)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd 0.045 0.098** 0.126*** 0.091** 0.133*** 0.075*** 0.108*** 0.132***

std errors (0.042) (0.039) (0.047) (0.040) (0.037) (0.023) (0.032) (0.036)

rf 0.095** 0.093*** 0.062 0.087** 0.066** 0.062*** 0.067** 0.084***

std errors (0.037) (0.033) (0.040) (0.036) (0.031) (0.021) (0.026) (0.031)

Cointegration coefficients -0.400*** -0.493*** -0.580*** -0.387*** -0.474***

std errors (0.046) (0.067) (0.093) (0.043) (0.059)

CD-test 0.02 1.22 0.29 1.12 1.84 -0.34 -0.09 0.99

RMSE 0.012 0.019 0.009 0.014 0.012 0.018 0.016 0.015

NXT 1353 1300 1267 1418 1369 1391 1379 1332

N 37 35 34 39 37 39 39 37

Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock 

defined by Lichtenberg and van Pottelsberghe de la Potterie (1998) (rf) (allowing for R&D transmission from all OECD countries of the 

sample) are the independent variables. See also the notes to Table A2.                                                                                    

Table A9

CS-DLMG

(i) (ii)

Dynamic Panel Data Models in a ECM Representation Accounting for Cross-Section Dependence of Errors and LP Knowledge 

Diffusion from All OECD Countries Plus BRICS. 11 Emerging Countries are Excluded from the Main Sample



 
4

8
 

 

 

 

Estimators CS-ARDL (ECM)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd 0.044 0.062* 0.051 0.062* 0.087** 0.085*** 0.110*** 0.124***

std errors (0.028) (0.033) (0.035) (0.034) (0.038) (0.022) (0.028) (0.039)

rf 0.058* 0.037 0.011 0.053 0.029 0.053** 0.048* 0.061**

std errors (0.030) (0.030) (0.035) (0.034) (0.034) (0.024) (0.027) (0.030)

Cointegration coefficients -0.493*** -0.589*** -0.699*** -0.430*** -0.517***

std errors (0.039) (0.059) (0.088) (0.035) (0.054)

CD-test -2.93† -1.18 -0.77 -2.89 † -1.53 -2.12† -1.27 -0.68

RMSE 0.014 0.012 0.011 0.017 0.014 0.021 0.020 0.018

NXT 1352 1296 1237 1396 1362 1371 1357 1324

N 38 36 34 39 38 39 39 38

Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock 

defined by Lichtenberg and van Pottelsberghe de la Potterie (1998) (rf) (allowing for R&D transmission from all OECD countries of the 

sample) are the independent variables. See also the notes to Table A2.                                                                                    

Table A10

CS-DLMG

(i) (ii)

Dynamic Panel Data Models in a ECM Representation Accounting for Cross-Section Dependence of Errors and LP Knowledge 

Diffusion from All OECD Countries Plus BRICS. G7 Countries and BRICS are Excluded from the Main Sample



 
4

9
 

 

 

 

Estimators CS-ARDL (ECM)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd 0.082* 0.098* 0.075* 0.079* 0.130*** 0.126*** 0.119*** 0.084***

std errors (0.048) (0.053) (0.043) (0.041) (0.047) (0.029) (0.028) (0.026)

rf 0.114*** 0.090*** 0.083** 0.129*** 0.086** 0.085*** 0.099*** 0.106***

std errors (0.035) (0.034) (0.038) (0.036) (0.035) (0.024) (0.028) (0.033)

Cointegration coefficients -0.496*** -0.648*** -0.741*** -0.479*** -0.572***

std errors (0.059) (0.076) (0.088) (0.048) (0.063)

CD-test -1.21 0.03 0.62 1.85 3.83† -1.06 -1.14 -0.21

RMSE 0.012 0.012 0.009 0.014 0.012 0.017 0.016 0.014

NXT 1353 1300 1267 1418 1369 1391 1379 1332

N 37 35 34 39 37 39 39 37

Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock 

defined by Coe and Helpman (1995) (rf) (allowing for R&D transmission from 23 OECD countries of the sample) are the independent 

variables. See also the notes to Table A2.                                                                                    

Table A11

CS-DLMG

(i) (ii)

Dynamic Panel Data Models in a ECM Representation Accounting for Cross-Section Dependence of Errors and CH Knowledge 

Diffusion from 23 OECD Countries Plus BRICS. 11 Emerging Countries are Excluded from the Main Sample



 
5

0
 

 

 

 

Estimators CS-ARDL (ECM)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd 0.069** 0.067* 0.096** 0.063* 0.099*** 0.101*** 0.100*** 0.080***

std errors (0.028) (0.038) (0.037) (0.035) (0.035) (0.026) (0.023) (0.028)

rf 0.076*** 0.047** 0.018 0.079*** 0.064** 0.051** 0.051** 0.058**

std errors (0.028) (0.024) (0.019) (0.029) (0.027) (0.022) (0.024) (0.025)

Cointegration coefficients -0.591*** -0.767*** -0.908*** -0.513*** -0.648***

std errors (0.060) (0.074) (0.095) (0.038) (0.058)

CD-test -2.55† -1.48 -2.08† -2.02† 0.24 -0.21 -0.74 -0.92

RMSE 0.014 0.011 0.011 0.016 0.014 0.021 0.019 0.017

NXT 1352 1296 1237 1396 1362 1371 1357 1324

N 38 36 34 39 38 39 39 38

Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock 

defined by Coe and Helpman (1995) (rf) (allowing for R&D transmission from 23 OECD countries of the sample) are the independent 

variables. See also the notes to Table A2.                                                                                    

Table A12

CS-DLMG

(i) (ii)

Dynamic Panel Data Models in a ECM Representation Accounting for Cross-Section Dependence of Errors and CH Knowledge 

Diffusion from 23 OECD Countries Plus BRICS. G7 Countries and BRICS are Excluded from the Main Sample



 
5

1
 

 

 

 

Estimators CS-ARDL (ECM)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd 0.095* 0.089* 0.064 0.089* 0.106** 0.101*** 0.081** 0.081**

std errors (0.051) (0.053) (0.048) (0.046) (0.049) (0.036) (0.034) (0.031)

rf 0.119*** 0.114*** 0.124*** 0.160*** 0.124*** 0.085*** 0.115*** 0.115***

std errors (0.034) (0.033) (0.040) (0.038) (0.036) (0.021) (0.033) (0.034)

Cointegration coefficients -0.531*** -0.668*** -0.770*** -0.481*** -0.584***

std errors (0.056) (0.070) (0.091) (0.045) (0.062)

CD-test 0.18 0.30 0.82 1.53 3.35† -0.89 -0.12 0.31

RMSE 0.012 0.015 0.009 0.014 0.012 0.018 0.016 0.014

NXT 1353 1300 1267 1418 1369 1391 1379 1332

N 37 35 34 39 37 39 39 37

Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock 

defined by Coe and Helpman (1995) (rf) (allowing for R&D transmission from all OECD countries of the sample) are the independent 

variables. See also the notes to Table A2.                                                                                    

Table A13

CS-DLMG

(i) (ii)

Dynamic Panel Data Models in a ECM Representation Accounting for Cross-Section Dependence of Errors and CH Knowledge 

Diffusion from All OECD Countries Plus BRICS. 11 Emerging Countries are Excluded from the Main Sample



 
5

2
 

 

 

 

Estimators CS-ARDL (ECM)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd 0.071* 0.048 0.080** 0.052 0.065* 0.091*** 0.071** 0.080**

std errors (0.037) (0.041) (0.037) (0.034) (0.036) (0.031) (0.031) (0.038)

rf 0.091*** 0.078*** 0.073*** 0.101*** 0.091*** 0.051** 0.059* 0.068**

std errors (0.030) (0.024) (0.028) (0.033) (0.028) (0.023) (0.032) (0.032)

Cointegration coefficients -0.625*** -0.805*** -0.977*** -0.551*** -0.682***

std errors (0.054) (0.066) (0.100) (0.037) (0.054)

CD-test -2.49† -1.2 -1.49 -1.97† -0.04 0.15 0.09 -0.65

RMSE 0.014 0.017 0.011 0.016 0.013 0.029 0.019 0.016

NXT 1352 1296 1237 1396 1362 1371 1357 1324

N 38 36 34 39 38 39 39 38

Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock 

defined by Coe and Helpman (1995) (rf) (allowing for R&D transmission from all OECD countries of the sample) are the independent 

variables. See also the notes to Table A2.                                                                                    

Table A14

CS-DLMG

(i) (ii)

Dynamic Panel Data Models in a ECM Representation Accounting for Cross-Section Dependence of Errors and CH Knowledge 

Diffusion from All OECD Countries Plus BRICS. G7 Countries and BRICS are Excluded from the Main Sample



 
5

3
 

 

 

 

Estimators CS-ARDL (ECM)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd 0.072 0.035 0.024 0.068 0.077 0.114*** 0.074* 0.052

std errors (0.056) (0.054) (0.052) (0.049) (0.050) (0.044) (0.040) (0.031)

rf 0.121*** 0.110*** 0.120*** 0.137*** 0.110*** 0.090*** 0.103*** 0.119***

std errors (0.034) (0.036) (0.037) (0.036) (0.036) (0.026) (0.036) (0.037)

Cointegration coefficients -0.543*** -0.690*** -0.820*** -0.501*** -0.618***

std errors (0.055) (0.082) (0.082) (0.043) (0.063)

CD-test -0.50 0.61 0.76 1.57 2.86† -0.41 -0.02 0.38

RMSE 0.012 0.013 0.009 0.013 0.012 0.017 0.015 0.014

NXT 1353 1300 1267 1418 1369 1391 1379 1332

N 37 35 34 39 37 39 39 37

Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock 

defined by Coe and Helpman (1995) (rf) (allowing for R&D transmission from all countries of the sample) are the independent variables. See 

also the notes to Table A2.                                                                                    

Table A15

CS-DLMG

(i) (ii)

Dynamic Panel Data Models in a ECM Representation Accounting for Cross-Section Dependence of Errors and CH Knowledge 

Diffusion from All Countries. 11 Emerging Countries are Excluded from the Main Sample



 
5

4
 

 

 

 

Estimators CS-ARDL (ECM)

1 lag 2 lags 3 lags 1 lag 2 lags 1 lag 2 lags 3 lags

tfp dependent variable

Independent variables

rd 0.045 0.018 0.046 0.041 0.032 0.076** 0.047 0.050

std errors (0.037) (0.040) (0.043) (0.038) (0.031) (0.034) (0.033) (0.038)

rf 0.079** 0.070*** 0.067** 0.081** 0.067** 0.059** 0.057* 0.089**

std errors (0.031) (0.027) (0.027) (0.032) (0.027) (0.027) (0.033) (0.036)

Cointegration coefficients -0.620*** -0.807*** -0.971*** -0.553*** -0.721***

std errors (0.058) (0.075) (0.095) (0.038) (0.060)

CD-test -2.13† -0.99 -1.48 -1.55 -0.33 -0.08 -0.29 -0.90

RMSE 0.014 0.011 0.012 0.016 0.013 0.027 0.019 0.016

NXT 1352 1296 1237 1396 1362 1371 1357 1324

N 38 36 34 36 38 39 39 38

Notes: log total factor productivity (tfp) is the dependent variable. log domestic R&D capital stock (rd)  and log foreign R&D capital stock 

defined by Coe and Helpman (1995) (rf) (allowing for R&D transmission from all countries of the sample) are the independent variables. See 

also the notes to Table A2.                                                                                    

Table A16

CS-DLMG

(i) (ii)

Dynamic Panel Data Models in a ECM Representation Accounting for Cross-Section Dependence of Errors and CH Knowledge 

Diffusion from All Countries. G7 Countries and BRICS are Excluded from the Main Sample
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Appendix B: Definitions, Data Sources and Stata Routines 
 

B.1. Total Factor Productivity (TFP) 
 
Data for TFP at constant national prices (2005=1) have been taken from the Penn World Table 
(PWT) 8.0 and is defined in terms of the following criteria of Inklaar and Timmer (2013): a 
general production function, for which output Y is defined by the combination of capital K, labor 
input L and the productivity level A, is represented as follows: 
 
                        (B1) 
 
where E is the number of workers in the economy, hc is the average human capital25, α is the 
output elasticity of capital and the share that is not earned by labor, and α-1 makes explicit that 
there are constant returns to scale. A second-order approach of   can be established by the 
Törnqvist quantity index of factor inputs    which can be used for a given country as: 
 

                        (       )  [             ]   (       ) (B2) 

 
Therefore, TFP can be approached as a measure of productivity growth in the following: 
 

                                    ⁄  (B3) 

 
where RTFP and RGDP are the Total Factor Productivity and the GDP, respectively, both based 
on constant national prices. RTF is constructed by taking data from PWT8.0 on real GDP at 
constant national prices, capital stock at constant 2005 national prices (in millions of 2005 US 
dollars), number of persons engaged, index of human capital per person based on years of 
schooling and returns to education26. Feenstra et al. (2013) mention that there are differences 
between growth rates of real GDP at constant national prices and those from other measures of 
GDP included in PWT8.0 which arise from discrepancies in the measurement of GDP adjusted to 
inflation and PPPs. Therefore, in order to distinguish between those measures of GDP and their 
functionality, the change in real GDP at constant national prices from national accounts in effect 
measures economic growth. Since it is used taken to construct TFP, then TFP is the best measure 
of economic growth.   

According to Inklaar and Timmer (2013), there are two advantages to following this 
approach: the first advantage is that labor shares are not forced to be tantamount to 0.7 across 
countries and over time, as in some studies on economic growth, but rather, labor shares account 
for labor income of the self-employed and therefore exhibit important variations across countries 
and over time; and second, capital stock accounts for differences in asset composition across 
countries and over time, instead of the assumption that investment is an homogeneous asset; as a 
result, depreciation rates vary across countries and over time rather than being constant. In 
addition, initial capital stock starts from a capital/input ratio instead of a steady-state setup. 

                                                           
25 Average human capital can be comparable to the average ‘quality’ per worker (Griliches 1979) which 
multiplied by the total number of workers, gives the labor input. 
26 For specific details about the introduction of these data into the RTFP function and the data sources of the 
returns to education and the index of human capital, see: Inklaar and Timmer (2013). 
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Capital stock at constant national prices is constructed as a Törnqvist aggregate of the growth of 
individual assets.  
 

B.2. Domestic R&D Capital Stock (  ) 
      is the domestic R&D capital stock at constant PPPs of 2005 in millions of US dollars. This is 
constructed with the perpetual inventory method proposed by Klenow and Rodriguez-Clare 
(1997), where the initial observation starts in the same way as the capital/input ratio. This is as 
follows: 
 

      ⁄          ⁄     ⁄       (B4) 

 
where      ⁄    is the ratio of the domestic R&D capital stock to GDP in the initial period 0 in 

country i,       ⁄  is the average Gross Expenditure on R&D (GERD) to GDP, divided by the 
domestic R&D capital stock rate of depreciation     which I set as 0.15, following Griliches 
(1998);    is an estimate of the average growth rate of the GDP of country   from 1981-1990 (for 
a country whose GDP series begins in 1990 onwards, and average growth is measured by starting 
at some point between 1990 and 2000). To find the initial domestic R&D capital stock, the right 
hand side of the last equation is multiplied by the initial GDP27. Next, the following equation is 
used to complete the rest of the series:   
 

                          (B5) 

 

where      is the domestic R&D capital stock and       the GERD. 
To construct these series, I take data on GERD as a percentage of GDP from four different 

sources in the following order: the first source is the UNESCO Institute for Statistics on Science, 
Technology and Innovation (IS) Database from 1996-2010. Second, data from 1980-1995 (and for 
some countries to 1996) were taken from the 1999 UNESCO Statistical Yearbook. This source 
defines GERD as a percentage of GNP. Therefore, to convert it to a percentage of GDP, it has 
been multiplied by the Ratio of GNP to GDP (divided by 100) from the PWT 7.128. Third, I have 
taken data from the OECD Main Science and Technology Indicators Statistics database from 1980 
to 2011. The fourth source is the data set from Lederman and Saenz (2005), which includes 
information on GERD as a percentage of GDP from different series of the UNESCO Statistical 
Yearbook. I take data from this source between 1970 and 2005. Some data for the period before 
1970, taken from the latter source have been interpolated with data post-1970 data to complete the 
data series from 1970 onwards29. Once this was done, pre-1970 observations were dropped. The 
data collection is summarized in Table B1 and B2. Missing data in Table B1 have been 
interpolated according to the data availability of each country. Since data on GERD as a 
percentage of GDP were scarce for some economies, I had to interpolate even for time frames 

                                                           
27 This calculation differs from Klenow and Rodriguez-Clare (1997) because they use per capita GDP in 
their calculations and the population growth has to be considered to construct the base year of capital stock. 
28 Although this ratio is not reported in PWT8.0, it is still useful and can be adapted to the present work 
because it has been calculated based on national accounts data. 
29 This is the case of countries such as Finland (1969-1971), Greece (1969-1976), Iceland (1966-1971), 
Ireland (1969-1971), Portugal (1967-1971), Singapore (1965-1978), Sweden (1969-1971), Thailand (1968-
1979), United Kingdom (1961-1972) and Uruguay (1967-1971). 
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without data of seven years or more30. Despite those interpolations, data for these economies are 
essential to capture cross-section dependencies of emerging economies and small advanced 
economies. 

Initial data on GERD as a percentage of GDP were used to obtain the first observations for 
Domestic R&D capital stock. I multiplied this by the output-side real GDP at chained 2005 PPPs 
in millions of US dollars, a measure of the production possibilities of an economy, from the PWT 
8.0. With this I obtained the PPP Converted Expenditure on R&D (GERD) at 2005 constant prices 
in millions of US dollars, and I used it to construct the rest of the Domestic R&D capital stock 
series at constant PPP prices in millions of US dollars. The reason why I have used the output-side 
real GDP at chained 2005 PPPs to compute domestic R&D is because I want to address three 
important considerations that are mentioned by Feenstra et al. (2013) when deriving this GDP 
measure: the first is that it is important to ensure that the GDP is comparable across countries by 
PPPs; the second is that, instead of deflating all final goods, imports and exports by the PPP over 
final goods, they are deflated by their respective reference prices; and the third is that, to compare 
GDP over time, it is necessary to account for changes in explicit reference prices for each country.   
 

B.3. Foreign R&D Capital Stock (  ) 
 
It is the weighted foreign R&D capital stock defined by Lichtenberg and van Pottelsberghe de la 
Potterie (1998), which is: 
 

      ∑ (     ⁄ )          (B6) 

 
where     is country i’s imports of goods and services from country j,    is the GDP in country j 

and      is the domestic R&D capital stock. Data for     were taken from the bilateral imports on a 

c.i.f. basis in US current dollars from the IMF Direction of Trade Statistics (DOTS). To get data 
for   , I multiplied the GDP at current national prices in local currency times the exchange rate of 

national currency per USD at the market value, both from the PWT8.0. As a result, the foreign 
R&D capital stock is defined at constant PPPs of 2005 in millions of US dollars31. 

An alternative measure of foreign R&D capital stock proposed by Coe and Helpman (1995) 
is also employed here. It is defined as: 
 

         ∑             (B7) 

 
where         ∑        and ∑         . 

 

 

 

                                                           
30 This is the case of Bulgaria (1982-1988), Colombia (1983-1994), Ecuador (1980-1989), Egypt (1983-
1989), Indonesia (2002-2008), Mexico (1975-1983), Philippines (1993-2001), Singapore (1965-1978), and 
Uruguay (1973-1989). 
31

 Countries such as Belgium and South Africa have been excluded because there is no data for bilateral 
imports for these countries before 1997 and 1998, respectively. According to DOTS, prior to 1997 trade 
data for Belgium are recorded as trade for the Belgium-Luxembourg Economic Union (BLEU). Belgium 
and BLEU trade data are not comparable due to the employment of different compilation methodologies.  
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B.4. Stata Routines 
 
I carried out the empirical study in Stata 12 by using the following econometric routines: 
 
Multipurt by Eberhardt (2011a), Xtcd, by Eberhardt (2011b), Xtmg, by Eberhardt (2012) updated 
by Eberhardt (2013) (I use this command to carry out all regressions where I allow for 
heterogeneity in technology parameters), and Xtfisher by Merryman (2005). 
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Data Collection of Gross Expenditure on R&D (GERD) as a Percentage of GDP Part 1

Country UNESCO Institute for Statistics on Science UNESCO 1999 Sstatistical Yearbook

Argentina 1996-2010 1995

Australia 1996-2010 (even years) 1981, 1984-1988, 1990, 1992, 1994

Austria 1996-2011 1981-1995

Brazil 2000-2010 1994-1996

Bulgaria 1996-2011 1992-1994

Canada 1996-2011 1981-1995

Chile 2007-2010 1993-1996

China 1996-2011 1988-1995

Colombia 1996-1997, 2000-2011 1982

Costa Rica 1996-2000, 2003-2004, 2006-2011 1989-1991

Cyprus 1998-2011 1991-1992

Denmark 1996-1999, 2001-2011 1981-1993, 1995

Ecuador 1996-1998, 2001-2003, 2006-2008 1993-1995

Egypt 1996-2000, 2004-2011 1992-1995

Estonia 1998-2011 1993-1997

Finland 1996-2011 1984-1995

France 1996-2011 1981-1995

Germany 1996-2011 1991-1995

Greece 1997, 1999, 2001, 2003-2007 1981, 1986, 1988-1989, 1991, 1993

Hungary 1996-2011 1981-1995

Iceland 1996-2003, 2005-2008 1981, 1983-1987, 1989-1996

India 1996-2007 1980-1994

Indonesia 2000, 2001, 2009 1980-1988, 1994

Ireland 1996-2011 1981-1995

Israel 1996-2011 1989-1995 (except 1991)

Italy 1996-2011 1980-1995

Japan 1996-2010 1980-1995 (except 1992)

Korea 1996-2010 1980-1995 (except 1987-1988)

Malaysia 1996-2008 (even years), 2009-2011 1992, 1994

Mexico 1996-2011 1984-1995 (except 1989-1992)

Netherlands 1996-2011 1980-1995

New Zealand 1997-2009 (odd years) 1989-1995 (except 1994)

Norway 1997, 1999, 2001-2011 1980-1987, 1989-1995 (odd years)

Panama 1996-2010 1986

Peru 1997-2004 1981-1984

Philippines 2002, 2003, 2005, 2007 1981-1984 (except 1982), 1992

Poland 1996-2011 1985-1995 (except 1987, 1993)

Portugal 1996-2011 1980-1992 (even years), 1995

Romania 1996-2011 1991, 1995

Russia 1996-2011 1994, 1995

Singapore 1996-2010 1981, 1984, 1987, 1990, 1995

Spain 1996-2011 1981-1995

Sweden 1997, 1999, 2001, 2003-2011 1981-1995 (even years)

Switzerland 1996, 2000, 2004, 2008 1981, 1983, 1992

Thailand 1996, 1997, 1999-2007, 2009 1980, 1982-1985, 1987, 1989-1991, 1993, 1995

Turkey 1996-2010 1984-1985, 1990-1995

United Kindom 1996-2011 1981, 1983, 1985-1995

United States 1996-2011 1980-1995

Uruguay 1996-2000, 2002, 2006-2010 -

Venezuela - 1980-1992

Table B1
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Data Collection of Gross Expenditure on R&D (GERD) as a Percentage of GDP Part 2

Country OECD Main Science and Technology Lederman and Saenz (2005)

Argentina 2011 1970-1980 (even years), 1981-1982, 1988, 1990-1994

Australia - 1973, 1976, 1978

Austria - 1970, 1972, 1975, 1978

Brazil - 1973-1978, 1980, 1982, 1985, 1990-1993, 1999

Bulgaria - 1980-1981, 1989-1991, 1995

Canada - 1970-1980

Chile - 1979-2004 (except 1981-1982, 1993-1996)

China - -

Colombia - 1971, 1978, 1995, 1998-1999

Costa Rica - 1974-1979, 1983, 1985-1986, 1988

Cyprus - 1980-1984

Denmark - 1973, 1976-1977, 1979

Ecuador - 1970, 1973, 1976, 1979, 1990

Egypt - 1973, 1976,  1982, 1990

Estonia - 1992

Finland 1981, 1983 1971-1979 (even years) (interpolation 1969-1971 to cover 1970)

France - 1970-1980

Germany 1981-1990 1971, 1974-1975, 1977, 1979-1980

Greece 1995 1976, 1979-1980, 1982-1983 (interpolation 1969-1976 to cover 1970-1975)

Hungary - 1970-1971, 1974-1980

Iceland 2009 1971-1979 (even years) (interpolation 1966-1971 to cover 1970)

India - 1970-1978 (except 1973), 1995

Indonesia - 1972-1979, 1995

Ireland - 1971, 1974-1975, 1977, 1979 (interpolation 1969-1971 to cover 1970)

Israel 1991 1970-1978,  1981-1983, 1985-1986

Italy - 1970-1979

Japan 1992, 2011 1970-1979

Korea 2011 1970-1971, 1974-1979, 1988

Malaysia - 1988-1989

Mexico - 1970-1974 (except 1972), 1989

Netherlands - 1970-1979

New Zealand 1981, 1983, 2011 1972-1979 (except 1973, 1978)

Norway - 1970-1979 (except 1973, 1975-1976)

Panama - 1990-1995

Peru - 1971, 1973, 1976, 1985, 1987-1989, 1993-1996

Philippines - 1970-1975, 1979-1980, 1982, 1989-1991

Poland 1993 -

Portugal 1983-1993 (odd years), 1994 1971-1972, 1976, 1978 (interpolation 1967-1971 to cover 1970)

Romania 1992-1994 1989

Russia 1989-1993 -

Singapore 1994, 2011 1978 (interpolation 1965-1978 to cover 1970-1977)

Spain - 1970-1976 (except 1975)

Sweden - 1971-1979 (odd years) (interpolation 1969-1971 to cover 1970)

Switzerland 1986, 1989 1970-1979

Thailand - 1979 (interpolation 1968-1979 to cover 1970-1978)

Turkey 2011 1970-1972, 1975, 1977-1980, 1983

United Kindom - 1972, 1975, 1978 (interpolation 1961-1972 to cover 1970-1971)

United States - 1970-1979

Uruguay - 1971-1972, 1990-1995 (interpolation 1967-1971 to cover 1970)

Venezuela - 1970, 1973, 1977, 1993-2000

Table B2


