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Abstract

This paper studies the diffusion of knowledge and its consequences for local innovation production. In a
common framework, we analyze the geographic reach of different channels of knowledge flows that thus
far have been studied separately in the literature. To jointly estimate these flows, we develop and apply
novel econometric techniques appropriate to the nature of the data. We find that geographic along with
technological proximity to be more essential to the operation of market than to non-market channels of
knowledge flows. External accessible disembodied knowledge has a strong positive effect on local innova-
tion production as large as that of homegrown knowledge.
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1. Introduction

Economic growth is driven by innovation activity carried out locally as well as by the ability of a region
to learn from external technological achievements (Romer, 1986; Grossman and Helpman, 1991).

The contribution of knowledge flows on the shape of the geographical distribution of innovative and
economic activities and consequently on inequality among regions and countries (Saxenian, 1994; Swann
et al., 1998; Verspagen, 1999), has motivated scholars to document them and study their boundaries. A
voluminous literature has progressed on separate avenues, however, depending on how knowledge flows
are inferred.

Most notably, the patent-citation literature, initiated by the seminal work of Jaffe et al. (1993) and fol-
lowed by numerous subsequent studies (Branstetter, 2001; Peri, 2005; Mancusi, 2008), traces-out techno-
logical learning via citations of patents.1 The principal assumption there is that a citation from a patent to
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1A parallel literature infers knowledge flows via citations of research papers (Belenzon and Schankerman, 2013). The later chan-

nel, however, captures knowledge diffusion mostly within academia. Furthermore, citation of papers reflect scientific rather than
commercial aspects of technological knowledge.
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another indicates that inventors of the latter patent knew and used the former.2

Knowledge flows can be also mediated by market mechanisms. A rich research avenue, the trade-
growth literature, infers technological learning by analyzing trade flows (Coe and Helpman, 1995; Keller,
2002). According to this literature, importing a foreign intermediate good allows a recipient country to
learn from the R&D-, or ‘technology’-content embodied in the traded good. Consequently, merchandise
trade acts as an important conduit of market-based knowledge flows across regions. The trade-growth
literature, however, has been reluctant to incorporate information on patent citations and technological
space of the interaction units.

Another strand of research studies trade of patented ideas, instead, as a vehicle of market-generated
knowledge flows (Spulber, 2008). Technology transfer from a firm to another can take place via the market
of intellectual property.3 Businesses, for example, buy patents to use the technology covered by the patent,
which could be vital for their production and the buyer’s willingness-to-pay depends on the technological
knowledge contained in the patent (Anton and Yao, 1994). Further, the buyer of a patent can develop con-
nections with the seller in order to acquire the "how-to" knowledge to implement the patented technology.4

Research in this field, has documented evidence on national and international transfers of intellectual prop-
erty rights and spread of technological knowledge in a number of countries using historical data (Nicholas,
2010; Moser, 2011; Burhop and Wolf, 2013). A recent stream of research by Serrano (2010, 2011) develops
models of costly technology transfer and renewal in the market for innovation to quantify possible gains
from trading patents as well as costs of adopting technology in the market for patents, while a strand of
research infers knowledge flows by studying the flows of academic licensed patents using proprietary data
of a (small) number of US universities (Mowery and Ziedonis, 2001).

Finally, a separate branch of literature documents evidence on learning via the mobility of highly skilled
personnel. The focus on job moves of patent inventors is based on the assumption that ideas and knowl-
edge are embodied in the minds of individuals (Feldman, 2000) and, consequently, job movements enable
an inventor to take advantage of knowledge - not only codified, but also tacit - accumulated by other
inventors in inventor’s past jobs and share it in later jobs. A number of studies, in this literature, have
extensively investigated the migration of inventors as a potential channel of market-generated knowledge
diffusion. For example, Kim and Marschke (2005) explore the linkages between inventors’ mobility and
knowledge flows in the nanotechnology sector confirming that the mobility of inventors enhances the ci-
tations across patents of firms that the inventor was previously employed. Similar conclusions are also
drawn by Agrawal et al. (2006), who document knowledge flows to an inventor’s prior location are ap-
proximately 50% greater than if the inventor had never lived there, suggesting that social relationships,
not just physical proximity, are important for determining flow patterns.5 Rather than studying citations
exchanged between inventors, Giuri and Mariani (2013) focus on the interactions between inventors that
were important for the development of a patent using survey data for european patent inventors.

This paper aims to jointly study the relative mobility of most notable channels of knowledge flows,
which thus far have been studied by separate literature avenues, in one common framework and assess
their individual consequences for local innovation production in the US. In doing so, we use newly con-

2The awareness of the citing patent inventor about the cited patent (i.e., the amount of information about the content of the cited
patent actually reached the possible unaware citing inventor) has raised criticisms about how much actual knowledge patent citation
flows indeed capture (Alcacer and Gittelman, 2006; Harhoff et al., 2008). A crucial factor is that citations in patents are the results of
a highly mediated process, which involves the patent inventor, the patent attorney and the patent examiner. Despite the limitations,
studies (Jaffe et al., 2000) have shown that patent citations can be used as a proxy of knowledge flows as about 40% of the inventors
surveyed indicated that they learned about the cited invention either before or during the development of their invention.

3In addition to increasing the rate of innovation - the inventor can just sell the patent to a specialized producer and focus his own
efforts on the next invention - patent transactions improve the allocation of technology in an economy. As knowledge production is
highly concentrated in space (Audretsch and Stephan, 1996), the market of patents facilitates the stretch of patented ideas in space as
potential buyers can purchase innovations without having to re-invent them.

4A concern, however, in using patent trades, as a potential channel of technological knowledge flows, is that companies could also
buy patents for strategic, e.g., defensive - to help defend the patents the company already owns by acquiring similar technology -
negotiating and blocking purposes. Disentailing, however, the reason of a patent transaction, whether its technology acquisition or
pure strategy, is not easy as there is no available information.

5See Miguelez et al. (2010) for an excellent survey of the literature.
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structed data, and develop and apply appropriate estimation techniques.
More specifically, in this paper, we jointly study the geographic diffusion of knowledge via four chan-

nels namely, patent citations, trade of goods, trade of patents, and inventors’ mobility, in order to assess
the importance of each channel in the diffusion of knowledge and on local innovation production. With
our approach, we are able to contribute to important discussions in the literature, for instance, whether the
generation mechanism of knowledge flows, i.e., market-based flows (traded patents, inventors’ mobility,
trade of goods) versus non-market spillovers (citations), matters for the geographic stretch of knowledge
diffusion (Audretsch and Stephan, 1996). We are also able to quantify and compare the importance of dis-
embodied knowledge that operate via trade of patents and citation exchange versus embodied knowledge
in inventors and goods for local innovation production (Grossman and Helpman, 1991; Rivera-Batiz and
Romer, 1991). The study of different channels of knowledge diffusion within a simple, common framework
of analysis, compatible with different literature traditions, consists the first contribution of this paper.

So far, in comparing the geographic mobility of different types of knowledge flows one had to resort in
borrowing estimates from different research branches of the literature. Cross-study comparisons, however,
are not always easy due to different model specifications and level of analyses. Further, possible inter-
dependencies across different channels and omitted factors (e.g. technology shocks) when estimating single
equations of knowledge flows could hamper the efficiency of the estimates (Zellner, 1962).6 To perform
proper comparisons, one needs to jointly estimate knowledge flows that operate via different channels as
a system. In doing so, two challenges emerge. First, the potential existence of (unobserved) heterogeneity
and second, the different nature of the dependent variables as some flows are count data (traded patent
flows, citation flows and inventor flows), whereas some others (trade of goods) are continuous. Existing
econometric studies (Winkelmann, 2000) develop non-linear system estimation techniques only for count
data, without accounting for unobserved heterogeneity in the data or for different types of responses such
as count and continuous.

In this paper, we consider these challenges and develop multivariate system estimation techniques.
We first extend the work of Winkelmann (2000) to account for potential unobserved heterogeneity in the
data. Second, to account for the different nature of the data, we propose, for the first time in the literature,
estimation techniques for systems of mixed count and continuous responses. We, therefore, estimate a
system of gravity-like equations, where the dependent variables, citation flows, trade of goods, patent
trade flows, and inventor flows, are explained by geographic and technological factors. The development
and application of novel and appropriate econometric techniques consists the second contribution of this
paper.

The study of different channels of knowledge flows across states of the US and the effect of each channel
on a state’s innovation production, constitutes our third and last contribution. The US is one of the most
prolific nations as far as innovation activity is concerned. The geographic structure of the US, the contigu-
ous states, the fairly high degree of institutional homogeneity, the common currency, the large number of
states, make the US an excellent candidate to sharp our understanding on the mechanisms of knowledge
diffusion and the acclaimed influence of border and distance in shaping knowledge flows.

Our paper relates to and complements a number of important works in the literature. For example, the
seminal study of Jaffe et al. (1993) examines the role of geographic distance as the major resistance factor
of citation flows in the US. Subsequent studies of Peri (2005), Thompson (2006), and Alcacer and Gittelman
(2006) extend the work of Jaffe et al. (1993) in various aspects. Among these studies, we mostly relate to the
work of Peri (2005), who examines the determinants of citation flows and their effect on innovate activity
across world’s regions. We are also conceptually close to the work of Mowery and Ziedonis (2001), which
examines knowledge flows via two channels, the channel of market of intellectual property (patent licenses)
and the channel of non-market spillovers (citations), showing that formal knowledge flows, operating by
academic licensing, are more bounded by geographic distance compared to informal flows exemplified by
patent citations. However, as the authors state, their sample is small, consisting of four US universities,
and focuses only on academic patents.

6For instance, rapid technological change reflected in higher patent trade and citation exchange and expanding trade of goods
could become a unified force affecting labor markets, including the market of inventors (Autor et al., 2013).
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We apply our modeling approach to the states of the US over the period 1993-2006 with two key ques-
tions in mind: (i) How important is proximity for knowledge mobility? (ii) Does available knowledge
contribute to local production of innovation?

The evidence we provide is straightforward: Proximity, even within the same country, matters for
knowledge flows. Gravity emerges everywhere, in the embodied knowledge flows as well as in the world
of ideas. We find, however, that disembodied knowledge, generated from patented ideas, which are traded
and cited, is less geographically restricted and, therefore, its effective reach is beyond that of knowledge
embodied in traded goods or inventor flows, as the latter involve movements of goods and people, re-
spectively. Further, non-market knowledge flows are more far-reached than market-based flows, with
inventor flows to be the most geographically confined among the market-based flows. As our estimates
show, market-generated flows are much more information intensive than non-market flows and, therefore,
proximity there plays a pronounced role. The very significant impact of border and distance especially on
ideas exchange (traded patent and citation flows) across states of the US most probably reflects information
frictions as state border and distance act as barriers to social interactions and connectedness of economic
agents. In addition, technological proximity, in terms of technological effort of states and technological spe-
cialization similarities, appears to be also very important. Similarity of technological efforts (e.g. spending
on R&D and number of scientists) benefits knowledge diffusion mostly via inventors’ mobility, while pro-
duction structure closeness matters most for knowledge flows via patent trade. Overall, results remain
robust for different variable definitions, sub-samples, and alternative specifications.

The implications of our findings for the growth literature are potentially relevant. Although theoretical
studies (Grossman and Helpman, 1991; Rivera-Batiz and Romer, 1991) emphasize the important conse-
quences of disembodied knowledge flows over knowledge embodied in the trade of goods, there has been
little effort, on the empirical side, to thoroughly explore this issue. Along with other important studies,
this paper makes an effort toward analyzing knowledge diffusion via different channels and their effect
on local innovation activity. We find that knowledge flows are relevant to a state’s innovation produc-
tion, as external accessible R&D gained through different flows has a strong positive effect on a state’s
innovation activity, which is as large as that of state’s own R&D stock. Further, the effective reach of disem-
bodied knowledge flows, exemplified via citation and traded patent flows, is larger than that of knowledge
embodied in goods and inventors, confirming thus the importance of disembodied flows for technology
transfer and economic growth.

The remainder of the paper proceeds as follows. Section 2 introduces the framework for analyzing
knowledge flows and the estimation techniques. Section 3 discusses the data. Section 4 presents the results.
Section 5 summarizes the findings and concludes.

2. A Framework of Analysis

2.1. Modeling Knowledge Flows

We begin by describing the production of innovation activity of a region (state, in our case). The inno-
vation output of a region is determined by the homegrown technological knowledge of the region as well
as by the external, but accessible (or ‘borrowed’) to the region technological knowledge of other regions
(Griliches, 1992). In its simple form, the production function of innovation of a region can be expressed as
follows:

Qit = (Ait)
γ(Aα

it)
µ (1)

where Q is the innovative output, proxied by the number of patents produced in state i; A is own,
homegrown knowledge stock, proxied by R&D stock accumulated from past and current R&D investments
in state i; and Aα is the stock of external and accessible (hence the α superscript) to state i knowledge stock,
proxied by R&D accumulated in states other than i at time t.

Knowledge flows take place when an idea, generated in region, country or institution, is learned by
another region, country or institution. If knowledge flows manage to perfectly and completely spill over,
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then the amount of external knowledge that eventually reaches state i is simply the summation of all bor-
rowed knowledge that comes from all other states. In reality, however, the diffusion of knowledge flows
across states may be less than complete; only a share of research results from other states reaches state i.
Therefore, the external accessible to state i R&D activity can be described by:

Aα
it = ∑

j 6=i

fij Ajt (2)

where fij is the share of knowledge learned in state i.
Substituting equation (2) into equation (1) and by taking logs, equation (1) yields:

lnQit = γlnAit + µln(∑
j 6=i

fij Ajt) (3)

To denote the relative importance of external knowledge flows to in-state knowledge, fijt is standard-

ized as fijt=Fijt/Sjt

/

Fiit/Sit where F is knowledge flows between the state of origin j and destination state,

i (Fijt) or flows within destination state (Fiit), while S is the in-state level of knowledge of the origin (Sjt)
or destination (Sit) state. As we consider four channels through which knowledge is diffused, F is either
traded patent flows, citation flows, inventor flows, or trade of goods, and S is in-state: innovation (proxied
by number of patents) for the case of traded patent and citation flows, number of inventors for inventor
flows, and gross domestic product (GDP) for trade of goods.

The empirical task of this paper is twofold. First, to estimate the determinants of knowledge flows
(Fijt) across the states of the US, and second, to assess the contribution of each flow on state’s innovation
production, as described by equation (3).

We use a gravity-like equation to model each type of flow. We indicate as Fij the flows of knowledge
generated in region j and learned in region i. Therefore, knowledge mobility across space depends on
geographic and technological characteristics of the regional couple (i, j) as follows:

Fijt = δi + δj + δ1State Borderij + δ2Nearby States [500 miles]ij+

δ3Distance [500 − 1, 000 miles]ij + δ4Distance [1, 000 − 1, 500 miles]ij+

δ5Distance [1, 500 − 2, 000 miles]ij + δ6Distance [2, 000 − 2, 500 miles]ij + δ7Zijt + ǫijt

(4)

where Fijt is (one of the four) type of flows exchanged between two states i (destination) and state
j (origin) at year t; δi and δj is origin and destination, respectively, state fixed effects; State Border takes
the value of 1 for flows exchanged between states i and j that share a common border and 0 otherwise;
Nearby States [500 miles] takes the value of 1 for flows exchanged between states that do not share a com-
mon border and their geographical centers are located within a distance of 500 miles, and 0 otherwise;
the generic term Distance [ ] denotes various distance classes of 500 miles each and takes the value of 1
for flows exchanged between states i and j that are located within a certain 500 mile distance class, and 0
otherwise; vector Z contains controls relevant to technological proximity, and ǫ is an iid error term.

The coefficients δ1 to δ6 provide a characterization of how geographic factors shape flows exchanged
across states. By model construction, each geographic coefficient captures the difference between knowl-
edge flows diffused in geographic space to knowledge flows within a state. Consequently, the coefficient of
the first dummy, State Border, captures how much less (more) knowledge exchange takes places between
states that share a state border compared to in-state knowledge. For example, in the case of patent trade
flows, δ1 represents the difference between the flows of patents traded between two bordered states and
patents traded within a state i. The second dummy, Nearby States [500 miles] captures the effect of geo-
graphic nearness of states, which do not share common borders, but are located in a vicinity of 500 miles,
compared to in-state flows. Finally, each one of the coefficients of the rest of the distance dummies, exam-
ines whether states, located at a specific distance class, exchange less (more) flows in comparison to in-state

5



interactions.7 One would expect that increasing geographic distance would reduce exchange among states,
signaling that knowledge flows are bounded in space and characterized by spatial declining effect.8 The
state border, additionally, tests the hypothesis that physical proximity between states that share a common
border may affect knowledge flows irrespective of the distance.

States, however, located near each other may exchange more knowledge with each other simply be-
cause they have similar technological efforts and/or technology specialization of production structures.
Not accounting for technological differences may lead to an overestimation of the geography effect. There-
fore, we also consider, along with the geographic proximity, technological and structural proximities be-
tween states - both included in the vector Z of equation (4). More specifically, technological distance,
TechnologicalDistance, between two states i and j for a given year, t, is proxied as9:

TechnologicalDistance =| ln R&Di
Scientistsi

− ln
R&Dj

Scientistsj
|

One would expect regions with high technological activity are also those with most intense knowledge
flows.

The similarity in the technological specialization of production sectors, StructuralCloseness, between
two states i and j for a given year t is proxied by the (uncentered) correlation of their patent profiles and
calculated as:10:

StructuralCloseness =
shi

′
shj

√

∑
37
s=1 sh2

is ∑
37
s=1 sh2

js

where, sh are shares of patents issued in a technology field (out of 37, in total, fields) in states i and j.
The constructed index ranges from zero (minimum similarity), which implies that the production struc-

tures are orthogonal, to one (maximum similarity), which denotes identical sectoral structure (patenting in
exactly the same sectors) in two states. Researchers are expected to benefit more from other researchers who
work in the same or related sectors (Bode, 2004). Consequently, one expects to find a positive association
between intensity of knowledge flows between two states specialized in similar sectors.

2.2. Estimation Strategy

Our estimation strategy develops as follows: We jointly estimate, in a common system, patent trade
flows, citation flows, inventor flows, and merchandise trade flows. As each flow is described by equation
(4), we estimate a four-variate system of gravity-like equations. In doing so, we develop, for the first time in
the literature, econometric techniques for multivariate non-linear seemingly unrelated regressions (SUR)
for mixed count (citation, patent trade, and inventor flows) and continuous (trade of goods) responses,
accounting for potential heterogeneity in the data. We apply Bayesian analysis and Markov Chain Monte
Carlo (MCMC) methods for inference.

7We opted for this distance taxonomy, i.e., batches of 500 miles, because the longest distance between two neighboring states is
approximately 500 (517,705 miles to be precise), which is the distance between the centers of Colorado and Oklahoma. We proceed
with the pace of 500 miles till we exhaust the distance between East and West Coast (approximately 2,500 miles). The proposed
classification allocates about equal number of states in each distance class, meanwhile keeping the number of classes as low as
possible. Alternative division of geographic space is not expected to modify results in any significant way.

8The localization of knowledge flows has been considerably tested in the spillover literature, which has unanimously documented
the geographic confinement of knowledge diffusion (Jaffe et al., 1993; Peri, 2005; Thompson, 2006; Alcacer and Gittelman, 2006;
Belenzon and Schankerman, 2013).

9The level of technological capability of a region is often proxied in the literature (Peri, 2005) by the level of R&D activity and
human capital (number of researchers). According to innovation-driven models of growth (Grossman and Helpman, 1991; Aghion
and Howitt, 1997), R&D stimulates innovation and facilitates the imitation of others’ discoveries. Apart from contributing directly to
invention, human capital also accounts for aspects of innovation not captured by the R&D sector, including ‘learning-by-doing’ and
‘on-the-job-training’ (Romer, 1989; Redding, 1996).

10Structural proximity between two states is measured as in Jaffe (1986). We first classify each patent, according to their primary
US Classification, in one of the 37 technology fields. Hall et al. (2001) had categorized US classifications in 36 broad technology fields;
however, in the 2006 NBER update, there was an addition of a 37th technology field in the area of Computers and Communication
Technologies. Then, for each state, we create a patent profile by taking the vector of shares of patents issued in technology field,
Shi = (shi1, shi2, ..., shi37), for a given year.
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Merchandise trade data are available, however, for limited number of years. For robustness purposes,
we estimate in a common system only the count variables - patent trade flows, citation flows and inven-
tor flows. A first candidate model to jointly estimate these flows is the non-linear seemingly unrelated
(SUR) Poisson model, introduced by King (1989). A serious limitation of this model, however, is its in-
ability to account for over-dispersion or extra-Poisson variation in the data. Winkelmann (2000) proposes
an alternative model, which does not abandon the basic convolution structure of the seemingly unrelated
Poisson, but rather generalizes some of its assumption to allow for over-dispersion in count data. The pro-
posed model has negative binomial marginals and is referred to as seemingly unrelated negative binomial
model. We extend the work of Winkelmann (2000) and apply Bayesian analysis and MCMC techniques
as developed in Tsionas (1999, 2001) to further account for potential unobserved heterogeneity in the data.
We, therefore, estimate a tri-variate system of seemingly unrelated negative binomial regressions allowing
for unobserved heterogeneity.

As an exercise and in comparison to the literature, we also estimate single (univariate) equations for
each channel of knowledge flows: for traded patent, citation, inventor, and trade flows. We use negative
binomial estimation techniques for the first three flows and OLS with state and year fixed effects for the
trade of goods.11

Finally, having estimated knowledge flows that operate via our different channels, we are able to assess
the importance of each channel of knowledge diffusion in the production of local innovation as described
by equation (3).

The next two sub-sections describe the SUR methodologies.

2.2.1. Multivariate Negative Binomial Regressions

We introduce multivariate negative binomial regressions along with techniques for statistical infer-
ence. Our point of departure is Winkelmann (2000). To summarise Winkelmann’s approach suppose
yi = [yi1, ..., yiM]′ is an M × 1 vector of count variables, for a particular observation, i = 1, ..., n. For a
single count variable, say yi, is well-known that the negative binomial (NB) specification arises from the
Poisson if we assume: yi|vi ∼ Po(λvi) and vi ∼ Ga(α, α), where "Po" denotes the Poisson and "Ga" the
Gamma distribution. Then, it can be shown that yi follows a NB distribution with mean λ and variance
λ + α−1λ2. In the multivariate context, Winkelmann (2000) proposes the following model:

yi = y∗i + uiιM (5)

where the scalar random variable ui follows a NB, ιM is a vector of ones in ℜM and:

y∗im|vim ∼ Po (λimvim) , vim ∼ Ga (α, α) , m = 1, ..., M

For ui, the NB assumption leads to the formulation:

ui|vio ∼ Po (λiovio) , vio ∼ Ga (γ, γ)

One can introduce covariates by assuming:

λim = exp
(

x′i βm

)

, m = 1, ..., M

where xi is a k × 1 vector and λ is the mean of the data and latent variable. Using the re-parametrization
µim = λim/σ, the mean remains the same and the variance becomes Var

(

y∗im
)

= λim (1 + σ) . The covari-
ance matrix of yi is Cov (yi) = (Λi + γιι′) (1 + σ), where Λi = diag[λi1, ..., λim].

Relative to the multivariate Poisson distribution there is an over-dispersion parameter given by 1 + σ
and as σ → 0 the distribution approaches the multivariate Poisson.

Unlike Winkelmann (2000), we introduce further unobserved heterogeneity in the following form:

11Negative Binomial estimation is also used in similar to ours contexts (Peri, 2005; Perkins and Neumayer, 2011; Furman and Stern,
2011).
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log λim = x′i βm + ǫim, m = 1, ..., M (6)

where ǫi ∼ NM(0, Σ).
Parameter estimation in multivariate count data models can be complicated using standard classical

analysis. In Bayesian approach, the unknown parameters are assumed to be random variables. Data
augmentation techniques can estimate both parameters of interest and nontrivial variables such as latent.
The likelihood functions of count models may contain many integrals, which often makes frequentist ap-
proaches difficult or even unfeasible. An advantage of the Bayesian approach using MCMC is that one only
has to consider the likelihood function conditional on the unobserved variables, which, in many cases, im-
plies that Bayesian parameter estimation is faster than classical maximum likelihood estimation.12

Coupled with a prior p(β), the augmented likelihood is a Bayesian posterior (kernel) density. Contrary,
for example, to Winkelmann’s likelihood functions for negative binomial models, our posterior is not avail-
able in closed form, as it involves integrals with respect to the unobserved latent variables (e.g., λ and error
terms) that cannot be computed in closed form.13 The reason is that we allow for unobserved heterogeneity
in λ, which is not the case in Winkelmann (2000). We feel that this is an important generalization, because
unobserved heterogeneity is commonly encountered in count data models and also leads to more flexible
models by allowing (statistical) mixing, which is not possible when only observed heterogeneity is taken
into account.

We write the augmented likelihood function of yi conditional on all latent variables Ui = (vi, ui, λi) and
parameters, θ = (β, λ, σ), of the model as follows:

p(yi|Ui, θ) = ααM

Γ(α)M ∏
M
m=1

{

exp (−λimvim)
(λimvim)yim+ui

(yim+ui)!
vα−1

im exp (−αvim)
}

γγ

Γ(γ)
exp (−λiovio)

(λiovio)
ui

ui !
v

γ−1
io exp (−γvio)

(2π)−m/2 |Σ|−1/2
{

∏
M
m=1 λ−1

im

}

exp
{

− 1
2 (log λi − Xiβ)

′
Σ−1 (log λi − Xiβ)

}

(7)

where Xi = IM ⊗ x′i , β =
[

β′
1, ..., β′

M

]′
and λ =

[

λ′
1, ..., λ′

M

]′
.

The first line is the joint distribution of λim and vim (m = 1, ..., M ) conditional on ui, the second line
provides the distribution of ui, while the third line gives the distribution of λi conditional on the observed
covariates.

The posterior distribution of the parameters is given by:

p (θ|y) = ∏
n
i=1

∫

p (yi|Ui, θ) dλi = ∏
n
i=1

∫

{ ααM

Γ(α)M ∏
M
m=1

{

exp (−λimvim)
(λimvim)yim+ui

(yim+ui)!
vα−1

im exp (−αvim)
}

γγ

Γ(γ)
exp (−λiovio)

(λiovio)
ui

ui !
v

γ−1
io exp (−γvio)

(2π)−m/2 |Σ|−1/2
{

∏
M
m=1 λ−1

im

}

exp
{

− 1
2 (log λi − Xiβ)

′
Σ−1 (log λi − Xiβ)

}

}dλi

(8)
Before proceeding it is perhaps worthwhile to explain the basics of our estimation and inference tech-

niques. Properly defined and implemented, MCMC methods enable the user to successively sample
values from a convergent Markov chain, the limiting distribution of which is the true joint posterior
of the model unobservables (steady-state of the chain). Given a posterior distribution of parameters θ,
p(θ|y) ∝ L(θ; y)p(θ), where y is the data, L(θ; y) is the likelihood and p(θ) is the prior, we draw a large

(non-random) sample S so that
{

θ(s)
}S

s=1
→ p(θ|y) in distribution. It is perhaps important to mention that

12In standard classical approach, the likelihood function has to be transformed into unconditional distributions by integrating out
the non-trivial variables (such as latent); a task which can be complicated and hard in the case of multidimentional integrals. MCMC
simulation techniques can be powerful in estimating such models.

13A technical Appendix can be provided upon request.
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the conditional posterior distribution of λ is log-concave to efficient numerical procedures can be used to
generate random drawings from the distribution. This requires finding the mode and numerical Hessian
at each MCMC iteration. In practice, this is quite easy by application of a simple quasi-Newton algorithm

(Wild and Gilks, 1993). The draws for θ(s) are generated sequentially so the optimization problem can
be reduced to a series of rather simple univariate optimization problems. Conditional posteriors for β
and covariance matrix are in standard families (multivariate normal and Wishart, respectively) so random
number generation is straightforward.14

We take as parameter estimates the posterior mean β̄ = E(β|y) ≃ S−1 ∑
S
s=1 β(s). Standard errors are

computed from a Newey-West type autocorrelation-consistent covariance matrix of
{

β(s)
}S

s=1
(using 10

lags) to deal with inherent autocorrelation of the posterior draws induced by MCMC methods.
Priors are defined as follows. For regression parameters, we assume the prior of β is diffuse, that is

p(β) ∝ const. For the M× M covariance matrix Σ we assume a non-informative, improper, prior of the form

p(Σ) ∝ |Σ|−(M+1)/2. These priors are "uninformative" in the sense that they let the likelihood dominate
the prior and, therefore, our results are not driven by the prior specification. In initial experimentations,
we imposed normal but relatively flat priors of the form β ∼ N(0, h2 I), with 0 and I vector of zeros and
matrix, respectively, and h ranging from 1 to 100, but did not notice any significant different in the final
posterior results.

To implement the MCMC algorithm, we use a total of 500,000 iterations and use the first B as a burn-in
period; that is the first B samples,

{

θ0, θ1, ..., θB
}

, are discarded. The value of B is decided based on Geweke
(1992) convergence diagnostic and ranged from 15,000 to 35,000 iterations in our applications. Due to the
large sample size, the effect of the prior is negligible.

Therefore, we estimate equation (6) for the case of three count variables, i.e., patent trade, citation, and
inventor flows (tri-variate seemingly unrelated negative binomial regressions):

log λim = x′i βm + εim, m = 1, 2, and 3 (9)

where x′i is the vector of geographic and technological factors as defined in equation (4), β the vector of
the corresponding coefficients, and ǫ the error term.

2.2.2. Mixed Count and Continuous Responses

Suppose that we have an additional R × 1 vector of responses, yir, r = M + 1, ..., M + R. The most
reasonable way to handle the matter in the multivariate situation is to extend (6) in the following form:

log λim = x′i βm + εim, m = 1, ..., M
yir = x′i βr + εir, r = M + 1, ..., M + R

(10)

We redefine ǫi = [ǫi1, ..., ǫiM, ǫi,M+1, ..., ǫi,M+R]
′ and assume:

ǫi ∼ NM+R(0, Σ)

where Σ is an (M + R)× (M + R) covariance matrix.
The major change in the distribution of observables p(yi|Ui, θ) is in the third line of equation (7), which

should now be:

(2π)−m/2 |Σ|−1/2

{

M

∏
m=1

λ−1
im

}

exp
{

− 1
2 (Ψi − Xiβ)

′
Σ−1 (Ψi − Xiβ)

}

where Ψi =
[

log λ′
i, yi,M+1, ..., yi,M+R

]′
.

14The exact details of the algorithm are very similar to the ones reported in Tsionas (2001) for the case of multivariate Poisson
regression with unobserved heterogeneity and, thus, are not reported here.
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The posterior distribution of the parameters is given by:

p (θ|y) = ∏
n
i=1

∫

p (yi|Ui, θ) dλi = ∏
n
i=1

∫

{ ααM

Γ(α)M ∏
M
m=1

{

exp (−λimvim)
(λimvim)yim+ui

(yim+ui)!
vα−1

im exp (−αvim)
}

γγ

Γ(γ)
exp (−λiovio)

(λiovio)
ui

ui !
v

γ−1
io exp (−γvio)

(2π)−m/2 |Σ|−1/2
{

∏
M
m=1 λ−1

im

}

exp
{

− 1
2 (Ψi − Xiβ)

′
Σ−1 (Ψi − Xiβ)

}

}dλi

(11)
Bayesian analysis for the multivariate Poisson regression model, developed by Tsionas (2001) can be

applied in this case, as well. The analysis is organized around MCMC methods for inference, as outlined
above.

We, therefore, estimate equation (10) for three count variables, patent, citation and inventors’ mobility
flows, and one continuous, trade flows (four-variate mixed system of count and continuous responses):

log λim = x′i βm + εim, m = 1, 2, 3
yir = x′i βr + εir, r = 1

(12)

where x′i is the vector of geographic and technological factors as defined in equation (4), β the vector of
the corresponding coefficients, and ǫ the error term.

3. Data Description and Analysis

Our empirical analysis is based on 48 states of the US for the period 1993 to 2006.15 Data are obtained
from a range of sources.

Patent trade data come from a newly compiled dataset, kindly offered to us, by the office of the Chief
Economist of the United States Patent and Trademark Office (USPTO) referred as Patent Assignment
Dataset. The latter, contains assignments (transactions) of US issued patents between entities registered
at the USPTO.16 A typical assignment is characterized by a unique identifier (i.e., reel frame), the names
of the buyer (i.e., assignee) and seller (i.e., assignor), the date that the transaction agreement was signed
(execution date), and the patent numbers or patent applications that are traded per assignment.17 Employ-
ing assignment data to construct a patent dataset, we faced two main challenges. The first relates to the
fact that entities are not required to disclose transactions to the USPTO. However, for legal and perhaps
accounting reasons, they have incentives to do so.18 A challenge associated with assignment data is that
it is still likely that a number of transactions have not been disclosed to the USPTO due to negligence or
to strategic behavior. However, we do not expect this to be systematic for aggregated transactions across
geographical areas. An additional challenge is associated with excluding ’routine’ transactions. In the US,
only an individual can file for a patent application. Subsequently, this individual may re-assign the patent
to her firm or institution where she is employed. These transactions are also included to the dataset. Thus,
the challenge here is to isolate the economically meaningful re-assignments and discard otherwise.

Taking these two challenges into consideration, we end up having 128,578 patents, issued between 1988
and 2006 and traded from 1993 to 2006 between US located entities. These patents are associated with
65,558 transactions for which we have address information for both the assignor and assignee. However,
transactions may contain more than one patents and a patent may be transacted more than once as there is
a many-to-many relationship between patents and transactions. To construct the flows of patent trades, we
aggregate the number of patents that have been traded from entities located in the origin state to entities

15The states of D.C., Alaska, and Hawaii are not included in our analysis due to limited data information.
16In the US, when entities transfer US issued patents to other entities, they disclose such transactions to the USPTO. The latter are

called assignments.
17There is also a field in the assignment data in which entities can disclose the justification for the transfer. However, the justification,

in most cases, is a generic one (i.e. assignment of assignor’s interest) and it is rather difficult to extract information from that field.
18For instance, in a potential litigation the courts will need to know clearly which firm or organization holds the intellectual property

in question. Thus, parties that are involved in such transactions have incentives to disclose such information to the USPTO.
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located in destination state for every year. For patents, which are traded more than once, each transaction
is registered as a new transaction and, therefore, counted accordingly.19

Patents contain references to prior patents and the scientific literature.20 Patent citation data originate
from the National Bureau of Economics Research (NBER) Patent Data Project, which is publicly available
and described in detail by Hall et al. (2001).21 The database contains citations of all US issued patents up
to 2006. We construct citation flows for the period 1993-2006 by counting citations made from 1993 to 2006
to all US patents issued from 1988 to 2006.22 In constructing citation flows across states, we consider the
location of the patent owner, which is written on the patent document wrapper for both (citing and cited)
patents.

Information on inventors’ mobility, defined as the number of firms or states a patent inventor changes
during his lifetime every time he files for a new patent, is obtained from the Disambiguation and Co-
authorship Networks of the U.S. Patent Inventor Database, which is publicly available and described in
detail by Lai et al. (2011).23 An occurrence of inventor mobility is counted only if an inventor files for a
patent either under a different owner (firm) or under the same owner but in different state. We construct
inventors’ mobility flows by counting the number of occurrences in every year.

Merchandise trade flows at the state level are extracted from the Bureau of Transportation Services
Commodity Flow Surveys. Data are available only for the years 1993, 1997, and 2002.24

Finally, data on geographic characteristics of the states as well as data to construct technological and
structural closeness are obtained from the following sources. The geographic distance (in miles) between
two states is the distance between each state’s geographical center as the crow flies. This information is
obtained from Google Maps.25 Information on a state’s R&D expenditure and number of scientists (science,
engineering, and health researchers) to construct the technological effort of a state, is extracted from the
National Science Foundation Science and Engineering State Profiles. Using state-level R&D spending and
the perpetual inventory method as in Guellec and van Pottelsberghe de la Potterie (2004), we construct
R&D stocks, using a 10% depreciation rate, to estimate elasticities in the innovation function.26 Further, to
construct the index of structural proximity, we need to allocate patents into different technological fields.
Patents’ primary US Classifications are retrieved from the NBER.

Table 1 below provides summary statistics of the variables in our model:

19For patents traded more than once, and for robustness purposes, we construct two alternative measures of traded patent flows.
The first is called, ’first flow’ and considers, for each patent, only its first assignment, ignoring the rest of its transactions. The second
measure is called ’last flow’ and for each patent excludes all the intermediate transactions and records only the assignment between
the first and last entity. For example, for a certain patent which is sold from California to New York state and then from New York
state to Texas, the measure ’all flows’ registers both transactions, while the other two measures register only one transaction: ’first
flow’ registers the transaction between California to New York state, and ’last flow’ registers the one between California to Texas.

20The USPTO patents report citations in the front page of the patent document. There may be citations to patents and non-patent
literature embedded in the text of the patent document.

21The database is available at: http://sites.google.com/site/patentdataproject.
22We also distinguish citations into citations of traded patents and citations of non-traded patents and, accordingly, construct

citation flows of traded patents and citation flows of non-traded patents. Information about the nature of a patent, i.e., whether it is
traded or not, is retrieved from the USPTO.

23Information on the data is provided at http://hdl.handle.net/1902.1/15705 UNF:5:9kQaFvALs6qcuoy9Yd8uOw== V1.
24What is only available is the value of state’s total imports; there is no information, however, by type of (imported) good.
25See http://www.freemaptools.com.
26Following the literature, we have tried different depreciation percentages, e.g., 15%, and 20%. The resulted R&D stocks are highly

correlated.
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Table 1: Summary Statistics

variables Observations Mean St. Dev. Min Max

Patent Trade Flows 32,256 4.71 41.63 0 3,262
Citation Flows 32,256 210.76 1,316.56 0 85,287
Inventor Flows 32,256 13.07 174.01 0 10,669
Trade Flows 6,227 3,396.93 16,467.95 0.96 535,263
State Border 2,256 0.10 0.29 0 1
Nearby States [500 miles] 2,256 0.12 0.32 0 1
Distance [500 − 1, 000 miles] 2,256 0.32 0.47 0 1
Distance [1, 000 − 1, 500 miles] 2,256 0.25 0.43 0 1
Distance [1, 500 − 2, 000 miles] 2,256 0.13 0.34 0 1
Distance [2, 000 − 2, 500 miles] 2,256 0.08 0.27 0 1
TechnologicalDistance 32,256 0.63 0.50 0 3
StructuralCloseness 32,256 0.70 0.18 0.05 1

Note: Patent Trade Flows, Citation Flows (of traded and non-traded patents), and Inventor Flows are oc-
currences (non-negative integers); merchandise Trade Flows are in millions of constant (2000) US dollars,
State Border is dummy (1 if states for common border, 0 otherwise), the generic term Distance [ ] refers to
different distance classes of 500 miles each and is a dummy (1 if states are located within the class, 0 other-
wise); TechnologicalDistance ranges from 0 (similar) to 3 (dissimilar), and StructuralCloseness ranges from 0
(dissimilar) to 1 (similar).

According to Table 1, states, on average, trade about 5 patents per year and exchange about 211 cita-
tions, with citation flows associated with traded patents to comprise 17% of total citation flows. On average,
states trade, per year, goods of 3.4 billion dollars value. For every pair of states, in a given year, there are,
on average, 13 occurrences of inventors’ mobility. Each pair of states is, on average, 10% likely to be neigh-
boring with each other. Furthermore, 12% of all possible pairs of states are closer than 500 miles and do not
share common state border, 32% are located in a distance of 500 to 1,000 miles, 25% in a distance of 1,000 to
1,500 miles, 13% between 1,500 and 2,000 miles and 8% within a range of 2,000 to 2,500 miles. In terms of
technological effort, states, on average, appear to be less distant than the maximum potential distance that
they could have and also quite close in terms of technological specialization in their productions.

Below, Figure 1 shows the production of innovation (number of patents) in the US for the period 1993-
2006.

Figure 1: Patent Production in the US

(27050,228780]
(8347,27050]
(3122,8347]
[0,3122]

CA: 228,780 Patents, NY: 114,378 Patents, TX: 67,527 Patents  
 

Number of Patents per State 1993−2006

As Figure 1 shows, intense patenting activity is concentrated in few states in the US, mainly in East
and West Coasts along with some states around the Great Lakes. Specifically, more than 60% of total
production of patents takes place in five states: California (CA), New York (NY), Texas (TX), Illinois (IL),
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and New Jersey (NJ). The least involved states in producing innovation are Alaska (AK), Hawaii (HI), the
Dakotas (ND & SD), and Wyoming (WY).

Summary statistics per state, reported in Table A.1 in the Appendix, reveal a large variety of patterns.
However, a consistent finding that emerges is that states, which are top ranked in producing patents, are
also high performers in terms of trading patents and goods, exchanging citations, and mobility of inventors,
with California (CA) to be by far an outstanding performer.

4. Empirical Results

This section presents our results. First, we examine whether proximity shapes the mobility of knowl-
edge flows and, second, whether knowledge flows have an effect on local innovation production.

4.1. How Important is Proximity for Knowledge Mobility?

Table 2 reports the results. Columns (i) to (iv) report univariate (single-equation) estimates of equation
(4) for traded patent (PatentFlows), citation (CitationFlows), mobility of inventors (InventorFlows), and
trade (GoodsFlows) flows, respectively. Then, column (v) reports Negative Binomial estimates of jointly
estimated count flows as described by the tri-variate SUR in equation (9). Lastly, column (vi) reports es-
timated coefficients of the joint estimation of all four flows as described by the SUR of mixed count and
continuous responses in equation (12) for the years 1993, 1997, and 2002. Standard errors are reported in
parentheses.

As one notes, single equation estimates are, in most cases, similar to their SUR counterparts. How-
ever, the standard errors of both SUR models are smaller than those of the single equations for almost all
parameter estimates, which is a clear indication of increased efficiency of the system over single equation
estimates. Our discussion, therefore, is based on SUR estimates.27

Each geographic coefficient in Table 2 captures the difference between knowledge flows diffused in
geographic space to knowledge flows within a state, which is the benchmark flow by model construction.
To convert each value to percentage change, we use the exponential formula. Beginning with column (v),
the coefficient of State Border for the case of patent citation flows implies that states which share common
border exchange about 76% (= e−1.42) less citations to what they would exchange within their borders. In
other words, on crossing a state border, knowledge based on citation flows diminishes to about 24% (=
1 − e−1.42). Irrespective of border, distance also shapes knowledge flows that operate via patent citations.
Knowledge on crossing nearby but not adjacent states diminishes to 21% (= e−1.55) to its in-state level as the
coefficient of Nearby States [500miles] indicates. On average, an additional reduction of 1.75% takes place
for each 500 miles traveled; however, when distance becomes larger than 2,000 miles, knowledge flows
increase, compared to the flows exchanged in previous distance intervals, by almost 8%. This seemingly
controversial finding is due to large citation exchange between East and West (’California effect’) Coast
as states in these coasts are among the top innovation performers in the US. Overall, results show that
knowledge spillovers based on citation flows are restricted by state border and geographic distance.

27Before embarking on discussing our findings, we perform a number of tests. First, we test whether single-equation coefficients in
each type of flow (i-iv) are all simultaneously zero. The value of the Wald test (χ2(115)) is 10,928.76 for trade patent flows, 272,080.70
for citation flows, and 69,083.07 for inventor flows. For the trade of goods, the value of the statistic F(104, 6122) is 750.7. We, therefore,
reject the null hypothesis of all coefficients in each equation (i-iv) to be simultaneously all zero. Second, we test whether coefficients
across different flows in each SUR model are all equal to each other and to zero. Tests support that they are different from zero
in both SUR models. The value of χ2(104) for the tri-variate is 4,590 and for the four-variate χ2(115) is 5,790; therefore, we reject
the null hypothesis of coefficients equality to zero. Lastly, we test for equality of coefficients between single and multivariate (SUR)
approaches. Test results support that univariate estimated coefficients are different from their multivariate counterparts. To test for
the equality of the coefficients between single equation and SUR, we let p to be a set of coefficients from SUR and p0 the counterpart set
from the single equation estimates. Then, we define d to be equal to p − p0. Suppose V to be the covariance of d, then d′(V)−1d ∼ χ2.
The values of χ2(115) = 88.91 and χ2(104) = 117.67 of tri-variate and four-variate SUR, respectively, indicate that univariate estimates
are different from their multivariate counterparts.
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Table 2: Determinants of Knowledge Flows in the US

Sigle Equation Estimates(I) Tri-variate SUR Estimates(II) Four-variate SUR Estimates(III)

Citation Patent Inventor Trade Citation Patent Inventor Citation Patent Inventor Trade

f lowsa f lowsb f lowsc f lowsd f lowsa f lowsb f lowsc f lowsa f lowsb f lowsc f lowsd

(i) (ii) (iii) (iv) (v) (vi)

State Border -1.66*** -3.01*** -4.42*** -2.26*** -1.42*** -2.31*** -3.71*** -1.31*** -2.25*** -3.77*** -2.25***
(0.043) (0.122) (0.038) (0.083) (0.001) (0.002) (0.004) (0.001) (0.008) (0.010) (0.010)

Nearby States [500 miles] -1.76*** -3.59*** -5.13*** -3.25*** -1.55*** -2.58*** -4.07*** -1.48*** -2.45*** -4.27*** -3.23***
(0.043) (0.122) (0.037) (0.080) (0.001) (0.003) (0.006) (0.001) (0.009) (0.016) (0.016)

Distance [500 − 1, 000 miles] -1.87*** -3.75*** -5.41*** -3.96*** -1.59*** -2.66*** -4.19*** -1.46*** -2.52*** -4.60*** -3.94***
(0.043) (0.125) (0.036) (0.079) (0.001) (0.002) (0.004) (0.001) (0.006) (0.010) (0.011)

Distance [1, 000 − 1, 500 miles] -1.99*** -4.05*** -5.65*** -4.58*** -1.67*** -2.74*** -4.26*** -1.52*** -2.59*** -4.55*** -4.57***
(0.043) (0.142) (0.040) (0.081) (0.002) (0.003) (0.004) (0.001) (0.010) (0.009) (0.009)

Distance [1, 500 − 2, 000 miles] -2.06*** -4.06*** -5.73*** -4.91*** -1.77*** -2.76*** -4.32*** -1.64*** -2.62*** -4.51*** -4.89***
(0.044) (0.134) (0.041) (0.083) (0.001) (0.003) (0.006) (0.001) (0.011) (0.013) (0.012)

Distance [2, 000 − 2, 500 miles] -1.88*** -4.24*** -5.64*** -4.98*** -1.45*** -2.74*** -4.30*** -1.29*** -2.64*** -4.30*** -4.97***
(0.044) (0.134) (0.043) (0.088) (0.001) (0.002) (0.003) (0.001) (0.006) (0.008) (0.008)

TechnologicalDistance -0.14*** -0.29*** -0.33*** -0.13*** -0.04*** -0.25*** -0.33*** 0.09*** -0.22*** -0.84*** -0.13***
(0.012) (0.078) (0.019) (0.023) (0.001) (0.002) (0.004) (0.001) (0.008) (0.010) (0.010)

StructuralCloseness 1.19*** 1.07*** 0.60*** 0.03 0.25*** 0.78*** 0.11*** 1.02*** 0.76*** 0.82*** 0.05***
(0.048) (0.195) (0.063) (0.093) (0.000) (0.006) (0.011) (0.001) (0.024) (0.029) (0.030)

Observations 32,256 32,256 32,256 6,227 32,256 32,256 32,256 6,227 6,227 6,227 6,227

All regressions include time dummies and origin and destination state fixed effects. Standard errors are reported in parentheses (heteroskedastic robust standard errors
only for the single equation estimates); Coefficients of Constant term are omitted; State Border takes the value of 1 for flows exchanged between neighbor states (share
common border) i and j and 0 otherwise; Nearby States [500 miles] takes the value of 1 for flows exchanged between states that do not share a common border and their geo-
graphical centers are located within a distance of 500 miles, and 0 otherwise; Distance [500 − 1, 000 miles], Distance [1, 000 − 1, 500 miles], Distance [1, 500 − 2, 000 miles], and
Distance [2, 000 − 2, 500 miles] are distance classes of 500 miles each and take the value of 1 for flows exchanged between states i and j that are located within 500 to 1,000,
1,000-1,500, 1,500-2,000, and 2,000-2,500 miles, respectively, and 0 otherwise; TechnologicalDistance is the degree of proximity of the technological effort (R&D/Scientists) of
states i and j; StructuralCloseness is the degree of technological similarity of technological specialization in production sectors of states i and j; (***): significance at 1% level.
I Specification (I) reports single-equation (univariate) negative binomial (columns i, ii, and iii) and OLS (column iv) estimates.
II : Specification (II) reports negative binomial estimates of tri-variate SUR (column v).
III : Specification (III) reports estimates of four-variate SUR of mix count and continuous responses (column vi) for the years 1993, 1997, and 2002.
a CitationFlows are citation flows.
b PatentFlows are patent trade flows.
c InventorFlows are inventor flows.
d TradeFlows are merchandise trade (imports) flows.
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The effect of geography is even more pronounced on the flows of traded patents. Compared to citation
flows, the volume of patent trades which transcends a state border is 1.5 times smaller and 3 times more
constrained in space. Specifically, when knowledge, based on patent trade flows, crosses a state border, is
reduced to 10% (= 1 − e−2.31) compared to in-state knowledge exchange. Significant flow reduction takes
place already within a distance of 500 miles as only 7.6% (= 1 − e−2.58) of its in-state level crosses that
distance and any further increase of distance decreases knowledge flows by 0.5%. As in the case of citation
flows, when distance becomes larger than 2,000 miles, there is a slight increase of patent trade flows of 0.4%,
compared to the average effect of all previous distance intervals, due to East-West Coast patent trade. In
sum, the decay of knowledge flows, based on patent trade flows is sharper than that of citation flows. The
potential need for the patent buyer to acquire information or keep some contact with the patent owner
attaches a pronounced role to geography in shaping patent trade than patent citation flows.

Geography, however, appears to exert the heaviest toll on inventors’ migration flows. Indicative of the
strong border effect on this type of flows is the last set of estimates of column (v), which reveal that only
2.4% (= 1− e−3.71) of knowledge carried by inventors crosses a state border. Moreover, 1.7% (= 1− e−4.07) of
knowledge embodied in inventors crosses the vicinity of 500 miles and this percentage remains unaltered
for any farther traveled distance implying that the die-out effect is large and sharp. There is an increase
of inventor migration flows after a distance of 2,000 miles, as the research-facilitating environments of
California and East Coast act as attractors of high quality scientists; nevertheless the effect is diminutive.

In sum, geographic proximity plays an important role in shaping flows, in particular, flows that are
generated from market mechanisms. Nevertheless, states located close to each other may exchange more
knowledge with each other simply due to the technological effort they pour and/or technological spe-
cialization in their production structure. As our results show, a one unit decrease in technological effort
distance, TechnologicalDistance, between states, increases the exchange of flows between states from 4%
(citation flows) up to 28% (inventor flows) indicating that technological proximity between states is more
essential to the market-based knowledge flows, particularly to inventor flows. As the literature stresses,
investment in R&D and human capital makes a region attractive to talented individuals Lucas (1988). Fur-
thermore, a state receives more flows from a state with technological sector specialization as itself than from
a state with completely dissimilar technological specialization production structure. Specifically, a unit in-
crease in structural similarity, StructuralSimilarity, between states, increases the exchange of flows from
12% (inventor flows) up to 118% (patent trade flows). It appears that technological specialization matters
more for disembodied knowledge flows that operate via traded patents and patent citations, as researchers
are expected to benefit more from other researchers who work in the same or related technologies (Bode,
2004; Peri, 2005).

We now extend our analysis to including one more market-based channel of knowledge flows, that
of merchandise trade. Results are remarkably stable, as estimates of the four-variate SUR reported in
column (vi) of Table 2 are similar to their counterparts, reported in column (v), despite of the large sample
reduction. On crossing a state border, knowledge flows, embodied in physical trade, diminishes to 10% (=
1− e−2.26) to in-state trade. Irrespective of border, distance, on average, diminishes trade flows to about 2%
(= 1 − e−4.32, where -4.32 is the mean of the five distance classes). The California effect, while discernible
to all flows, is absent for the trade of goods. Other types of proximities, such as technological effort and
production specialization similarities, continue to also shape this type of flow. Through the channel of
goods trade, a unit increase of technological effort similarity between two states increases trade by 12%.
In addition, a state receives 5% more knowledge from a state with the same technological specialization as
itself, than from a state with dissimilar technological specialization.28

28A large volume of literature has documented the negative impact of geographic distance and borders on the flows of physical
trade (McCallum, 1995; Wolf, 2000; Chen, 2004). To compare with the trade literature, we drop technological proximity from the four-
variate system. The geographic effect, in this case, becomes, as expected, somewhat stronger by approximately 0.3% (trade estimates
of State Border, Nearby States[500miles], Distance[500 − 1, 000miles], Distance[1, 000 − 1, 500miles], Distance[1, 500 − 2, 000miles], and
Distance[2, 000 − 2, 500miles] are: -2.33 (0.008), -3.33 (0.015), -4.04 (0.007), -4.67 (0.005), -4.99 (0.011), and -5.05 (0.005), respectively.
Number in parentheses are standard errors). Our estimates, although not directly comparable, corroborate with evidence provided
in the trade literature about the home bias effect within the US states (Wolf, 2000).
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Taken together with our earlier results, localization bias on the state level appears to be quite sturdy
for all kinds of knowledge flows. Therefore, the general finding of geographic localization of flows doc-
umented in the literature also finds support in this study. However, the very significant impact of border
and distance on knowledge flows based on ideas (traded patent and citation flows) across states of the US
is at first sight quite surprising and puzzling: unlike goods and inventors, ideas are weightless, and dis-
tance cannot just proxy transportation costs. Instead, distance and border could be seen as informational
barriers, and serve as proxies for all types of informational frictions. Agents within a state tend to know
much more about each other and each other’s business and technologies, either because of direct interac-
tions between their citizens or because of better media coverage. Consequently, distance and border act
as barriers to social connectedness, micro-cultural affinities and networking of economic agents. As our
estimates show, market-generated flows are much more information intensive than non-market flows.29

Nevertheless, our results show that disembodied knowledge, generated via patent trade and citation
flows, are less geographically restricted and, therefore, their effective reach is beyond that of knowledge
embodied in goods and inventors, as the latter channels involve movements of goods and people, respec-
tively. The generation mechanism of knowledge diffusion plays important role. We find that non-market
channel knowledge spillovers (citation flows) are more far-reached than market-based flows, with knowl-
edge flows via inventors’ mobility to be the most geographically confined among the market-based flows.
Specifically, ideas based on citation flows are 10 (or 4 based on traded patent flows) times less restricted by
a state border than knowledge flows based on inventors’ migration and 2.5 (or equal to, based on traded
patent flows) times less restricted than knowledge flows based on trade of goods. In addition, the geo-
graphic scope of knowledge based on citation flows is about 13 (or 5 based on traded patent flows) times
larger than knowledge flows based on inventors’ mobility and 10 (or 4 based on traded patent flows) times
bigger to knowledge flows based on trade of goods.

To get a better sense of the size of our coefficients, we compare our findings with prior evidence re-
ported in the literature. A study which is conceptually close to ours is that of Mowery and Ziedonis
(2001). In their analysis of university-generated knowledge flows, Mowery and Ziedonis (2001) find that
geographic distance matters more for the channel of market of contracts (patent licenses) to non-market
channels (citations) and the geographic stretch of the latter is about 3 times bigger than that of the former;
a relationship which also finds support by our estimates. Contrary to some arguments expressed in the
literature (Audretsch and Stephan, 1996, p.651), we also concur that geographic proximity is more essential
to the operation of market contracts compared to the operation of informal, non-market flows based on
citation flows.30

Another study that discusses estimates from two different channels of knowledge flows is the study of
Peri (2005), which consists the first attempt in the literature to perform a comparison between disembodied
knowledge flows (citations) and embodied knowledge in trade of goods. However, rather than jointly esti-
mating the effect of geography on citation and trade flows, Peri (2005, p.317) borrows distance and border
trade estimates from the studies of Anderson and Van Wincoop (2003) and Feenstra (2003) to conclude that
border and distance reduce physical trade 4 to 5 times more than they reduce citation flows. By jointly
estimating the effect of geographic characteristics on different channels of knowledge flows, we find that
on crossing a state border, knowledge based on citation flows is about 2 to 3 times larger than knowledge
based on trade flows. In addition, the geographic stretch of citation flows is 10 times larger than that of
trade flows. Our distance effects are bigger compared to those reported in Peri (2005), but reasonable, if one
considers that we investigate flows within a country and not across word regions as the aforementioned
study does.

We further compare our findings with other strands of research that have analyzed knowledge flows.
We first turn our attention to the patent-citation literature. Although cross-study comparisons are not

29Such social proximities have been identified in the literature (Saxenian, 1994) as important factors for knowledge exchange. For
example, Breschi and Lissoni (2009) apply a social network analysis to derive maps of social connectedness among patent inventors.
The authors find that the probability to observe a citation is positively influenced by social proximity of the inventors.

30Audretsch and Stephan (1996) studied interactions between university-based scientists and biotechnology firms based on disclo-
sures in firms’ initial public offering documents about academic researchers’ roles in the firms.
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always easy due to different measures of distance, omissions of border, and different level of analyses
employed, we can still recover some effects that can be compared with ours. Note that we can only compare
our citation estimates with those reported in the patent-citation literature. We begin with the seminal
study of Jaffe et al. (1993), which reports a drop of 50% to 60% in the citation flows when they transcend a
state’s border in the US. Based on our citation estimates, the drop on learning when crossing a state border
ranges from 73% to 76%. Our estimates are also not widely different from those documented in studies
which examine knowledge flows across world’s regions. Maurseth and Verspagen (2002), for example,
use citations between European-granted patents across 122 European regions and find that the effect of
distance ranges from -29% to -38%, while the border effect varies from 53% to 56%. Peri (2005) examines
knowledge flows across 144 regions from different countries of the world and reports a reduction of 21%
when knowledge flows cross a region border and a 3% drop for each 1,000 km traveled. We find a reduction
of about 24% on crossing a state border and a 0.5% drop for every 500 miles traveled within the US.

Finally, the localization robustness of weightless ideas documented in our study, corroborates with
findings from less related strands of research. For example, studies in the financial trade literature, using
‘gravity-like’ models, examine whether geographic distance imposes a hurdle on financial asset transac-
tions, which are, compared to goods, weightless. In fact, Portes et al. (2001) and Portes and Rey (2005)
examine the determinants of cross-border assets (corporate bonds equities and treasury bonds) and show
that geographic distance reduces financial asset trade approximately up to 80%.

From the exposition of related evidence from various strands of literature, it is reassuring to conclude
that that size of our system estimates is comparable to prior studies and reasonable. Our estimates show,
from different angles, the relative importance of proximity across all channels in a rather reasonable and co-
herent way. The evidence provided in the literature from a single channel of knowledge flows (for instance,
patent citations) is enforced in our study by the joint evidence of other channels.

Concerns, however, expressed in the literature for potential caveats in each channel proxing knowledge
flows still pertain in the present study. For example, the origin of citations, i.e., whether they are added by
inventors or examiners on the patent document may have different implications for the geographic stretch
of citation flows. A more proper treatment of citation flows and, consequently, of their geographic stretch, it
would require the distinction into inventor- versus examiner-origin citations. The USPTO has allowed such
distinguish only very recently, since 2001 (Alcacer and Gittelman, 2006; Thompson, 2006).31 Performing
such analysis, however, considerably restricts the data set and scope of this paper and, therefore, is left
for future investigation. Patent trades, as a vehicle of knowledge flows, is not without flaws either. The
reason is that patent transactions do not always relate to technological acquisition, but they could also serve
strategic purposes. Consequently, this channel is a rough proxy of knowledge diffusion as it contains some
‘noise’, too. Unfolding, however, the reason behind the patent transaction, and consequently the extent
of technological knowledge patent trades carry has not been easy so far, as it requires information across
different databases (e.g., citations a patent receives from the perspective buyer before the transaction - firms
that acquire a patent could also previously cite the patent - and the size of a firm, as small-sized firms tend
to buy patents for technology purposes, while large ones for strategic reasons), which are not matched
yet, or survey data that are not available. Licenses of patents, instead of patent trades, could alleviate
some worries as licensing involves more contacts and potential knowledge exchange between the seller
and buyer, but such data are generally proprietary. Further, instead of using inventors’ job moves, one
could use a more refine measure such as informal meetings and exchange of ideas of inventors during the
inventive process (or probability to enter into local/international networks of research based on inventors’
characteristics during the inventive process) as the study of Giuri and Mariani (2013) does. The latter,
relies on survey data by interviewing european patent inventors about interactions that were important
for the development of a patent. Such data, although very useful, is not yet available for the US. Lastly,
disaggregation of imports into different categories (e.g., technological capital goods) would be a more

31A study by Criscuolo and Verspagen (2008) examines patents from the European Patent Office (EPO) and exploits such distinction
the EPO provides about the source of patent citations since 1979. The authors find that inventor-origin citations are more geographi-
cally localised than their examiner-origin counterparts as inventors tend to choose their citations from within a narrower geographical
space than examiners do.
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insightful proxy of knowledge flows that operate via trade. Instead, we relied on value of state’s total
imports as it is the only available piece of information at the state level.

At this point, we can visualize some of our results with the use of a graph. Figure 2 below depicts
the estimated (dashed line) along with the actual values (bold line) of geographic resistance factors on all
four types of knowledge flows. Specifically, it shows the actual and estimated decay of knowledge flows
moving out of a state, nearby area (about 500 miles), and out by steps of 500 miles.

Figure 2: Decay of Knowledge Flows Due to Geographical Barriers
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The graphical evidence confirms the significant drop in knowledge flows when they transcend a state
border. Distance further decreases their mobility. The geographic reach of non-market knowledge spillovers,
based on citations, is far more stretched in space than any other type of flow. Followed by traded patent
flows, disembodied knowledge flows are less geographically confined in space compared to embodied
knowledge in goods and patent inventor flows. The latter, exhibit the sharpest decay. All flows shoot up
for geographic distances between 500 and 1,000 miles due to interactions of a typical state with Illinois,
Texas, and Michigan, which are located in the middle of the country and are among the most innovative
states of the US. The "California effect" is pronounced for idea flows, slightly apparent for inventor flows
and completely absent for trade of goods. Finally, we can also appreciate from the figure that actual and
estimated values are very close to each other indicating a good fit of our model.

Robustness

We have performed several checks to sharp the robustness of our results. We examined whether the
geographic scope of flows from top innovator states differs (e.g., is wider) from the ‘average’ state flows.
Relevant ideas are generated only by few institutions in states closer at the frontier of technological de-
velopment, while other states are receivers of these ideas and apply adjustments to them. To explore this
aspect, we re-estimate the tri-variate and four-variate SUR systems considering knowledge flows originat-
ing only from the top innovator states.32 Table A.2 in the Appendix presents the results for the top 10

32We select the top innovators to be the states with high total R&D spending which, combined, accounts for approximately 70%
of the total US R&D activity in our sample. Accordingly, the states of California (CA), Massachusetts (MA), Michigan (MI), New
Jersey (NJ), New York (NY), Texas (TX), Illinois (IL), Pennsylvania (PA), Maryland (MD), Washington (WA), and Ohio (OH) may act
as innovation leaders.
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innovator states. Our results confirm the broader reach of leaders’ flows only for two out of four channels.
Specifically, estimates show that top leaders’ knowledge flows based, on citations and trade flows, are ap-
proximately 1.5 and 1.2, respectively, less geographic localized, both in terms of state border and distance,
than average state flows, while for the rest of the channels the geographic scope of the leaders’ flows is
similar to the average state flows. As before, similarities in technological effort and technological special-
ization still play an important role. The analysis of leaders’ flows confirms that regardless of the origin, i.e.,
whether flows come from an average or innovator state, citation flows exhibit the largest spatial mobility.

We proceeded with further robustness analysis, which is briefly described here and available upon
request. To control for outliers, we excluded California, which is a top performer in terms of innovation.33

Results mildly changed, but overall conclusions drawn from Table 2 still hold. A notable change is that the
very long distance (larger than 2,000 miles) effect disappears due to the drop of California.

We split our sample in two sub-periods and estimate knowledge flows for the periods, 1993-1999 and
2000-2006, in order to examine whether the importance of proximity, either geographic or technological,
has changed over time. Unlike the geographic distance effect, which remains virtually unaltered for all
types of flows, technological distance appeared to matter slightly more, over time and only for traded
patent flows. Geographic distance may still matter, if face-to-face interaction is important, even in high-
tech sectors, as knowledge is tacit and hard to codify (Evans and Harrigan, 2005; Peri, 2005; Disdier and
Head, 2008).

We also split the sample by the importance of patented inventions. We define ‘valuable’ patented inven-
tion a patent that receives 50 or more citations and divide our patents into high-cited and low-cited patents.
The former group, accounts for 4% of the total patents.34 We replaced Patent Flows with low- and high-
cited patents instead, and re-estimated the tri-variate and four-variate SUR systems, each one for high-
and low-cited patents. Results did not not alter significantly. The only notable difference is that high-cited
patents, as expected, are slightly less geographically restricted than low-cited ones.

We, further, classified patent citations into citations of traded patents and citations of non-traded patents,
and replicate the analysis. All previously drawn conclusions hold. Additionally, the citations of the former
are found to be more geographically bounded than those of the latter. Even within the same channel such
as citation flows, there is some differentiation in the spatial reach.

Moreover, we tried to jointly estimate knowledge flows at a finer disaggregation level, for example,
for six technological sectors, namely commuters, electronics, chemicals, drugs, mechanical and others.
Data limitations allowed us to explore only two channels, traded patents and citation flows, out of four.
Sector level estimates were not that different from state-level estimates and there was little variation across
sectors. Localization of knowledge was evident in all sectors, with computer and electronic sectors to
slightly exhibit the most extensive geographic diffusion of knowledge, whereas, chemical and drugs the
least.

Finally, we employed alternative definitions of traded patent flows, for example, ‘first flow’ and ‘last
flow’, as defined in the Data section, instead of (all) traded patent flows and re-produce the same analysis.
Results remain robust.

Ideally, we would also like to consider foreign direct invest (FDI) flows as an additional channel of
(disembodied) knowledge. Lack of state level data, prevented us from doing so.

Overall, results do not change in any significant way across different specifications, sub-samples and
alternative definitions.

33See Table A.1 in the Appendix for states’ statistics.
34We choose the 50-citation threshold in order to have a clear split between valuable and less valuable patented inventions. Ac-

cording to the statistics, highly cited patented inventions in our sample amount to approximately 5,000 patents and receive 949,000
citations, while low-cited to 120,000 patents and receive 26,000 citations.
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4.2. Does Available Knowledge Contribute to Local Innovation Production?

We have established that knowledge flows across states depend on the geographic and technological
proximity of the states. The existence of these flows, however, does not necessarily support existence of
externalities of knowledge on local (state) innovation. Available knowledge originating in other states may
bring, along with new ideas, a reduction in innovation possibilities, thus generating a zero or even negative
net effect on the productivity of researchers in innovation. Consequently, no clear prior exists on the sign
and magnitude of innovation elasticities.

Therefore, the second task of this paper is to assess the effect of external available knowledge on states’
innovation activity. In doing so, we estimate a function of innovation production, as described in equation
(3), and assess the individual effect of each channel of knowledge flows on local production of innovation.

The dependent variable of equation (3) is the innovation output Q, which is the log of number of patents
granted to a state in year t weighted by patent citations, taking into account the grant year and the technol-
ogy field of the patent.35 We estimate equation (3) with OLS controlling for time effects.

Table 3 reports estimated elasticities of state’s own R&D stock and external accessible to a state flow-
weighted R&D stock gained via the four channels. Column (i) shows innovation elasticities of all states,
when the weights, fij, in equation (3) are standardized by actual (raw) flows, Fij, and column (ii) when fitted

values, F̂ij are used for the standarisation. Columns (iii) and (iv) report innovation elasticities, in similar
fashion, but when external accessible flow-weighted R&D stock originates only from the top 10 innovator
states in the US. In fact, the last two columns include the top 10 states in the regressions only as senders
of knowledge flows and the remaining states as receivers. Consequently, Aα

ij in equation (3) is defined as

Aα
ij=∑j∈Top 10( fij Aij). This allows us to minimize potential endogeneity in estimating the coefficient µ of

Aα
ij.

As Table 3 shows that estimates of actual flows reported in column (i) and fitted flows in column (ii) are
very close to each other. Similar evidence emerges from columns (iii) and (iv). This alleviates concerns that
our results rely too much on the modeling of the knowledge flows and, therefore, are susceptible to model
criticism. Using a more direct measure, that of raw flows, we find similar estimates. Furthermore, despite
of the potential worsening of the endogeneity problem when external accessible R&D stock originates from
all states, estimates are overall quite close across different specifications.

More specifically, results strongly support that state’s own (lnR&Down) as well as external accessible
R&D stocks are significant contributors to states’ innovation production. We find that a one percent increase
of state’s own R&D is associated with an increase in the local production of innovation by 0.40% (column
i) to 0.44% (column ii). This effect drops by half, when top innovator states are the only source of relevant
knowledge flows. Apparently, only a number of states - the most innovative ones - invest heavily on
home-produced technological knowledge. The majority of the states appear to produce innovation by
relying more on external accessible rather than on homegrown knowledge. The latter, contributes from
19% (column iii) to 22% (column iv).

35More specifically, every patent is assigned to an issue year and technology field. We have 14 years and 37 technology groups;
therefore, every patent is classified in one out of 14x37=518 groups. Each patent in every group is then weighted by the number
of citations it has in the group’s distribution. The weighting scheme is the following one: w1 = 0.1, if citation belongs to the first,
w2 = 0.2 for the second, w3 = 0.3 for the third, and w4 = 0.4 for the fourth quantile. We then sum these values up for every state and
for every year t and calculate our weighted measure of innovation output.
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Table 3: Elasticities of Innovation Production Function

Flows f rom All Statesa Flows f rom Top 10 Statesb

Actual Fitted Actual Fitted

(i) (ii) (iii) (iv)

lnR&Down 0.40*** 0.44*** 0.19* 0.22**

(0.091) (0.087) (0.109) (0.111)

lnR&Dcitations 0.42*** 0.43*** 0.50*** 0.49***

(0.104) (0.104) (0.102) (0.105)

lnR&Dpatents 0.11** 0.15*** 0.11** 0.12**

(0.048) (0.049) (0.048) (0.046)

lnR&Dinventors 0.03 -0.00001 0.09 0.09

(0.087) (0.085) (0.086) (0.083)

lnR&Dtrade 0.16 0.12 0.17** 0.15*

(0.114) (0.098) (0.087) (0.083)

Constant 1.46*** 1.33*** 1.73*** 1.71***

(0.362) (0.330) (0.294) (0.303)

Observations 134 134 97 97

R2 0.87 0.88 0.81 0.81

All regressions include time dummies. All variables are in logs. Standard errors reported in

parentheses; Coefficients of Constant term are omitted; lnR&Down is state’s own R&D stock;

lnR&Dcitations, lnR&Dpatents, lnR&Dinventors, and lnR&Dtrade are external available to a state

citation-, patent-, inventor-, and trade-weighted external R&D stocks, respectively; (***), (**), and

(*): significance at 1%, 5%, and 10% level, respectively.
a All states were included as senders (origin) of knowledge flows. All states were included as

receivers (destination) of knowledge flows.
b Only the top 10 innovators were included as senders (origin) of knowledge flows. Only the re-

maining 38 states were included as receivers (destination) of knowledge flows. Top 10 innovator

states: California (CA), Massachusetts (MA), Michigan (MI), New Jersey (NJ), and New York,

(NY), Texas (TX), Illinois (IL), Pennsylvania (PA), Maryland (MD), Washington (WA), and Ohio

(OH).

Other states’ R&D effort has also a positive and statistically significant effect on local production of
patents and, in some cases, is greater then state’s own R&D effect. This is particularly true for specifications
(iii) and (iv). The non-market channel of citation flows is the channel that largely shapes local innovation
production, as a one percent increase of external accessible citation-weighted R&D (lnR&Dcitations) is asso-
ciated with an increases in the production of innovation from 0.42% (column i) up to 0.50% (column iii). The
combined effect of the market-based channels is about half of that of citation flows. A one percent increase
of external accessible traded patent-weighted R&D (lnR&Dpatents) relates to 0.11% (column i) to 0.15% (col-
umn ii) increase in state’s innovation. Similarly, a one percent increase of trade-weighted available R&D
stock (lnR&Dtrade) enhances patent production by 0.12% (column ii) to 0.17% (column iii); however, the
effect is not always statistical significant. Finally, a mixed picture emerges for external inventor-weighted
R&D (lnR&Dinventors), which is negatively associated with state’s innovation production, when all states
flows are considered, and positively, for flows that originate only from the top innovator states. However,
in both cases, estimates are statistically insignificant and close to zero.

Summing up, we find that knowledge flows are relevant to local innovation production as external
accessible R&D, gained through different channels, has a strong positive effect on a state’s innovation ac-
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tivity and the effect is as large, for some cases, as state’s homegrown R&D stock. Second, the effective
reach of disembodied knowledge, exemplified by citations and patent trades, is larger than that of embod-
ied knowledge in goods and inventors. Such finding corroborates with theoretical studies of endogenous
growth (Grossman and Helpman, 1991; Rivera-Batiz and Romer, 1991), which have emphasized the im-
portant consequences of disembodied knowledge flows for technology transfer and economic growth, but
have not offered any empirical documentation. Lastly, external available flows that operate via market
mechanisms have smaller effect on local patent production compared to non-market generated flows. This
finding is in line with conclusions drawn in previous section, where formal, market-based flows are found
to be less far-reached in space compared to informal, non-market flows, as the former require movements
of goods, inventors, or some degree of geographic proximity between the seller and the buyer of a good or
patent.

As a further check, we run all regressions in Table 3 lagging all variables on the right-hand side by one
period to overcome potential immediate feedback effect. Results did not change in any significant way.

Overall, our estimates of own R&D elasticity for all states (40%-44%) are in the vicinity of estimates
reported in the international spillover literature, and in particular in the studies of Peri (2005) (60%-80%),
Branstetter (2001) (72%), Pakes and Griliches (1980) (61%), Bottazzi and Peri (2007) (78%), and in several
other studies. Similarly, our estimates of external accessible R&D gained mainly through citations (42%-
50%) are close to what the literature reports, Peri (2005) (40%-50%) and Bottazzi and Peri (2007) (55%).

5. Conclusion

This paper offers novel insights in knowledge diffusion across states of the US and its consequences for
local innovation activity. We use a simple, common framework to jointly analyze and learn more about the
relative mobility of four different channels of knowledge flows that operate via (i) citations of patents, (ii)
traded patents, (iii) inventors’ mobility, and (iv) trade of goods. Thus far, these flows been studied sepa-
rately from different avenues in the literature. To jointly evaluate these flows, we develop novel economet-
ric techniques appropriate to the nature of the data. In a second stage, we assess the individual effect of
these jointly estimated flows on local production of innovation.

Using newly developed data for the states of the US, our findings support that geographic proximity, in
terms of distance and contiguity, matters for the spread of knowledge, as it has been massively documented
in the literature. Our findings further confirm that disembodied knowledge is less geographically restricted
and, therefore, its effective reach is beyond that of knowledge embodied in trade or inventors, as the latter
involve movements of goods and people, respectively. Furthermore, non-market channel knowledge flows
are more far-reached than market-based flows, with inventors’ mobility flows to be the most geographically
confined. Finally, with respect to other types of closeness, technological effort proximity of states and
technological production structure similarities greatly enhance knowledge interactions across states.

The implications of our findings for the literature are potentially relevant. Although theoretical trade-
growth studies (Grossman and Helpman, 1991; Rivera-Batiz and Romer, 1991) emphasize the important
consequences of disembodied knowledge flows for technology transfer and economic growth, there has
been little effort, on the empirical side, to thoroughly explore this issue. Along with other important stud-
ies, this paper makes an effort toward this direction and empirically confirms the important geographic
scope of disembodied knowledge flows. Knowledge, especially disembodied, is significantly relevant to
local innovation production, as external accessible R&D gained through citation and traded patent flows
has a strong positive effect on a state’s innovation activity as large as that of state’s own R&D stock.

An issue deserving further inquiry is the role of another type of proximity, that of social proximity, on
state-level localization of knowledge diffusion. Learning more about the causes of home bias is needed
before an assessment of welfare consequences can be undertaken.
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Table A.1: Summary Statistics per State

State Traded Patents Citations Inventors’ Mobility Traded Goods Scientists R&D spending

mean Std. mean Std. mean Std. mean Std. mean Std. mean Std.

AL 120.21 50.39 2,698.21 1,708.61 151.43 81.19 136,742.80 14,813.17 7.11 1.19 2.15 0.33
AR 37.21 19.01 1,444.86 877.01 59.07 36.61 102,072.50 4,198.25 3.13 0.43 0.40 0.06
AZ 195.36 73.67 8,837.00 5,110.42 572.21 319.18 106,381.90 15,401.81 7.74 1.20 3.07 1.05
CA 3,295.79 1,395.30 196,683.50 128,920.90 7,808.07 4,499.69 609,102.80 63,047.66 84.56 10.10 48.14 7.72
CO 388.50 147.68 14,088.14 8,643.05 813.14 443.91 94,217.51 9,185.09 13.12 1.66 4.14 0.78
CT 439.50 101.38 23,682.86 13,361.11 855.00 428.61 110,648.00 5,636.09 10.26 1.15 5.12 1.68
DE 616.93 236.85 18,913.21 10,836.44 214.07 118.12 32,635.48 2,642.04 3.92 0.44 1.50 0.40
FL 537.21 186.50 24,397.36 15,597.80 938.29 471.25 240,354.50 21,688.26 17.48 2.12 4.81 0.61
GA 279.71 117.16 10,802.79 6,667.95 561.71 304.58 311,019.70 5,926.84 12.18 1.71 2.81 0.73
IA 118.14 64.38 4,088.86 2,351.09 236.29 129.34 124,773.90 16,114.45 4.92 0.29 1.22 0.21
ID 120.00 162.19 14,418.21 10,980.25 251.14 129.99 28,709.28 3,891.09 2.50 0.36 1.01 0.31
IL 843.00 259.04 49,023.36 27,972.70 1,486.86 755.91 477,459.10 28,034.33 23.69 1.45 9.70 1.56
IN 230.36 65.77 10,971.21 6,294.65 596.36 341.86 295,413.40 48,487.71 9.66 0.85 3.61 0.78
KS 84.50 38.41 2,948.93 1,790.36 145.50 74.67 108,231.60 8,599.44 4.31 0.37 1.40 0.58
KY 56.43 23.31 3,515.93 2,554.01 158.57 84.85 188,553.80 40,155.48 4.91 0.52 0.81 0.23
LA 84.43 31.58 3,182.07 1,715.27 153.00 80.46 128,699.20 12,328.39 5.94 0.23 0.66 0.16
MA 864.86 324.21 44,793.21 27,329.66 2,093.86 1,162.75 183,286.00 9,336.05 29.14 3.81 13.11 2.07
MD 269.64 111.28 10,664.07 6,672.65 753.07 421.15 145,223.30 17,471.29 25.26 3.30 9.26 1.88
ME 27.14 23.28 1,133.64 771.53 54.21 29.92 31,311.10 4,395.33 2.46 0.13 0.28 0.11
MI 730.79 413.72 32,637.21 19,022.82 1,475.93 785.10 364,852.50 45,548.45 17.65 1.54 15.26 2.35
MN 592.79 267.34 38,575.50 25,748.62 1,041.79 603.92 164,072.20 20,179.74 11.42 1.36 4.40 1.06
MO 217.36 64.73 8,520.64 4,745.15 445.00 247.34 218,572.90 15,572.51 9.80 0.53 2.43 0.41
MS 50.00 31.41 1,320.50 1,092.70 59.57 30.82 89,770.17 10,231.12 3.38 0.23 0.55 0.28
MT 24.07 13.76 1,092.57 788.20 40.64 22.70 16,141.39 1,686.00 1.98 0.19 0.18 0.06
NC 280.21 117.20 12,178.07 7,484.07 778.64 432.56 280,150.30 21,377.07 17.31 2.47 4.79 1.23
ND 16.50 9.10 409.79 222.38 22.07 12.38 18,522.55 3,788.67 1.63 0.46 0.20 0.12
NE 67.00 28.11 1,803.93 1,029.49 69.50 34.96 65,771.58 7,101.39 2.97 0.11 0.48 0.16
NH 126.21 96.43 4,717.07 3,065.47 313.86 171.22 38,112.65 7,528.93 2.66 0.36 1.11 0.46
NJ 824.36 359.10 47,549.36 28,250.40 1,930.14 1,082.08 340,518.00 6,643.18 23.38 1.92 11.59 1.18
NM 81.43 134.75 2,547.21 1,697.45 180.29 98.31 28,924.74 1,935.51 8.44 0.79 3.75 0.74
NV 230.50 231.23 5,551.64 4,078.32 114.64 67.09 47,653.47 9,687.69 2.11 0.33 0.46 0.14
NY 1,106.86 630.08 81,310.00 49,068.60 2,162.43 1,115.42 400,433.90 17,918.45 45.88 2.40 12.86 0.89
OH 625.64 196.06 31,767.50 18,167.59 1,372.29 718.46 463,485.00 57,176.91 21.68 1.76 7.39 0.65
OK 91.21 40.04 4,933.93 2,583.87 190.21 90.30 88,464.96 8,744.00 4.96 0.24 0.67 0.10
OR 174.93 78.53 8,521.36 5,138.81 469.64 252.54 98,741.59 15,711.60 8.12 1.13 2.14 1.00
PA 685.57 175.40 28,777.71 16,437.27 1,578.14 848.62 387,158.10 33,121.79 28.08 2.48 9.58 0.92
RI 72.57 32.57 2,199.57 1,282.51 149.14 78.35 25,858.19 2,106.39 2.87 0.32 1.35 0.48
SC 82.86 45.09 4,171.50 2,422.89 234.07 113.53 150,595.30 20,641.18 5.50 0.48 1.22 0.37
SD 8.57 6.80 560.79 370.08 14.86 9.73 19,459.47 3,205.89 1.14 0.06 0.09 0.04
TN 186.71 58.57 6,514.93 4,057.05 363.43 186.72 274,214.60 60,689.53 9.61 0.69 2.18 0.57
TX 842.07 234.75 56,455.14 35,821.14 2,164.93 1,225.83 494,561.20 51,263.84 34.72 3.51 11.39 2.42
UT 159.64 95.54 7,832.50 5,084.13 317.07 167.58 56,557.52 8,069.14 5.33 0.45 1.34 0.29
VA 359.79 70.78 12,316.00 7,838.49 488.71 253.71 193,182.50 9,789.51 19.47 2.85 5.35 1.60
VT 19.21 11.49 816.86 495.21 116.93 58.96 19,019.74 4,182.37 1.91 0.20 0.39 0.08
WA 348.86 167.55 20,755.07 13,582.13 788.36 436.76 137,307.80 15,197.25 15.55 2.21 8.67 2.01
WI 273.21 76.57 17,289.79 11,354.52 740.79 374.79 215,328.20 27,417.95 9.23 0.87 2.77 0.54
WV 15.79 13.00 605.29 369.56 55.64 29.29 51,474.45 1,367.96 2.28 0.19 0.44 0.07
WY 13.21 7.21 379.00 251.87 21.14 12.70 11,545.84 1,760.98 0.89 0.09 0.08 0.02

State’s two-letter abbreviation reported in first column; Traded Patents, Citations, and Inventors′Mobility are occurrences (non-negative integers); Traded Goods are in millions of
constant (2000) US dollars; Scientists (science, engineering, and health researchers) are in thousands; and R&D spending in millions of constant (2000) US dollars.
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Table A.2: Determinants of Knowledge Flows in the US (Top Innovator States)

Tri-variate SUR Estimates(I) Four-variate SUR Estimates(II)

Citation Patent Inventor Citation Patent Inventor Trade

f lowa f lowb f lowc f lowa f lowb f lowc f lowd

(i) (ii)

State Border -0.67 -2.42 -3.53 -0.54*** -2.34*** -3.55*** -1.27***
(0.001) (0.001) (0.010) (0.001) (0.013) (0.016) (0.016)

Nearby States [500 miles] -0.87 -2.90 -4.11 -0.75*** -2.85*** -4.10*** -2.31***
(0.001) (0.001) (0.010) (0.001) (0.016) (0.027) (0.027)

Distance [500 − 1, 000 miles] -0.91 -2.99 -4.32 -0.75*** -2.82*** -4.31*** -2.89***
(0.001) (0.001) (0.010) (0.001) (0.010) (0.017) (0.017)

Distance [1, 000 − 1, 500 miles] -0.96 -3.09 -4.42 -0.78*** -2.95*** -4.43*** -3.36***
(0.001) (0.001) (0.010) (0.001) (0.019) (0.014) (0.014)

Distance [1, 500 − 2, 000 miles] -1.05 -3.10 -4.50 -0.88*** -3.00*** -4.54*** -3.62***
(0.001) (0.002) (0.011) (0.001) (0.016) (0.021) (0.021)

Distance [2, 000 − 2, 500 miles] -0.74 -3.10 -4.49 -0.64*** -2.94*** -4.45*** -3.73***
(0.001) (0.001) (0.012) (0.001) (0.010) (0.012) (0.012)

TechnologicalDistance 0.01 -0.03 -0.20 0.09*** -0.05*** 0.09*** -0.10***
(0.001) (0.001) (0.011) (0.001) (0.016) (0.019) (0.019)

StructuralCloseness 0.63 0.53 -0.34 1.28*** 0.77*** 0.44*** -0.10***
(0.001) (0.010) (0.030) (0.001) (0.042) (0.053) (0.053)

Observations 6,720 6,720 6,720 1,341 1,341 1,341 1,341

All regressions include time dummies and origin and destination state fixed effects. Standard errors are reported in parentheses (heteroskedastic
robust standard errors only for the single equation estimates); Coefficients of Constant term are omitted; State Border takes the value of 1 for flows
exchanged between neighbor states (share a common border) i and j and 0 otherwise; Nearby States [500 miles] takes the value of 1 for flows ex-
changed between states that do not share a common border and their geographical centers are located within a distance of 500 miles, and 0 otherwise;
Distance [500 − 1, 000 miles], Distance [1, 000 − 1, 500 miles], Distance [1, 500 − 2, 000 miles], and Distance [2, 000 − 2, 500 miles] are distance classes of
500 miles each and take the value of 1 for flows exchanged between states i and j that are located within 500 to 1,000, 1,000-1,500, 1,500-2,000, and
2,000-2,500 miles, respectively, and 0 otherwise; TechnologicalDistance is the degree of proximity of the technological effort (R&D/Scientists) of states
i and j; StructuralCloseness is the degree of technological similarity of technological specialization in production sectors of states i and j; (***): signifi-
cance at 1% level.
I : Specification (I) reports negative binomial estimates of tri-variate SUR (column i).
II : Specification (II) reports estimates of four-variate mix count and continuous SUR (column ii) for the years 1993, 1997, and 2002.
a CitationFlows are citation flows originating from the top 10 most innovative states (all states are included as receivers).
b PatentFlows are traded patent flows originating from the top 10 most innovative states (all states are included as receivers).
c InventorFlows are inventor flows originating from the top 10 most innovative states (all states are included as receivers).
d TradeFlows are trade (imports) of goods flows originating from the top 10 most innovative states (all states are included as receivers) .
Top 10 most innovative states are: California (CA), Massachusetts (MA), Michigan (MI), New Jersey (NJ), New York (NY), Texas (TX), Illinois (IL),
Pennsylvania (PA), Maryland (MD), Washington (WA), and Ohio (OH).
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