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Abstract

How can a decision-maker assess the potential of environmental policies when a group of ex-

perts provides divergent estimates on their effectiveness? To address this question, we propose

and analyze a variant of the well-studied α-maxmin model in decision theory. In our framework,

and consistent to the paper’s empirical focus on renewable-energy R&D investment, experts’

subjective probability distributions are allowed to be action-dependent. In addition, the deci-

sion maker constrains the sets of priors to be considered via a parsimonious measure of their

distance to a benchmark “average” distribution that grants equal weight to all experts. While

our model is formally rooted in the decision-theoretic framework of Olszewski [37], it may also

be viewed as a structured form of sensitivity analysis. We apply our framework to original

data from a recent expert elicitation survey on solar energy. The analysis suggests that more

aggressive investment in solar energy R&D is likely to yield significant dividends even, or rather

especially, after taking expert ambiguity into account.
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1 Introduction

Environmental policy makers must often come to grips with considerable uncertainty. The inher-

ent complexity of many environmental problems, combined with a lack of reliable data, impose

significant challenges for the analysis of different policy options. In such situations, guidance can

be sought by directly consulting a group of knowledgeable experts.

The field of structured expert judgment (also known as “expert elicitation”) has been developed

to add scientific rigor to the process of expert consultation. Expert elicitation derives probabilistic

input for decision problems through the quantification of experts’ subjective uncertainties (Morgan

and Henrion [31], Cooke [13], O’Hagan et al. [36]). Subjective probability distributions are derived

via transparent protocols and treated as scientific data (Cooke [13]). The employed techniques

involve recognizing and removing, as much as possible, known psychological biases in judgment

(Tversky and Kahneman [42, 43]). Consistency checks are incorporated throughout, and ques-

tionnaires are designed to elicit clear, unequivocal answers. Recognizing the value-added that it

brings to the decision making process, expert elicitation is used in a wide variety of settings and

the interested reader may consult [31, 13, 36, 44] for a comprehensive account.

Expert elicitation studies are being increasingly pursued in the assessment of environmental

policy. In the United States, they have become part of the government’s analytic toolkit (U.S.

EPA [44]) in the development of environmental regulation. Their acceptance by policy makers no

doubt reflects their growing popularity in academic circles. In the academic literature on climate

change policy, numerous expert elicitations have been performed to provide estimates of criti-

cal climate-model parameters (e.g., climate sensitivity) as well as climate-related impacts (Nord-

haus [34], Morgan et al. [32, 33], Vaughn and Spouge [46], Zickfeld et al. [49, 50]). Furthermore,

and related to the empirical focus of the present paper, a number of recent studies have applied

expert elicitation techniques to assess the potential of investment in renewable-energy R&D. Baker

et al. [6, 7], Baker and Keisler [8], Curtright et al. [14], Bosetti et al. [10] and Fiorese et al. [16]

collected and interpreted expert opinions to investigate the uncertain effects of R&D investments

on the prospect of success of carbon capture and storage, hybrid electric vehicles, cellulosic biofuels,

and solar PV technologies.

Despite its compelling features, expert elicitation often generates divergent opinions across

experts, resulting in ambiguous recommendations. To address this inconclusiveness, researchers
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typically aggregate over expert estimates in some fashion and consider the resulting weighted

average in their subsequent assessment. Indeed, there is a rich, primarily management-science,

literature that studies the many different ways such aggregations may be performed (Clemen and

Winkler [11, 12]).

Yet, we can imagine settings in which the quest for a unique probability distribution summa-

rizing expert opinion is either infeasible or undesirable. This is particularly true when the issue

on which expert opinion is sought is unprecedented and/or exceedingly complex, implying an ex-

tremely wide range of estimates. In such instances, aggregating over experts and making decisions

based on the resulting average probability distribution may lead to suboptimal policy. In environ-

mental applications, this point has been forcefully made with regard to climate change (Knutti et

al. [25], Millner et al. [30], Woodward and Bishop [47]) and ecosystem management (Ludwig et

al. [27], Vardas and Xepapadeas [45]). In such cases, the decision maker may arguably be better

off simultaneously exploring the consequences of many different weighting schemes in a systematic

fashion.

A modeling framework for addressing such situations can be found in the literature on decision

making under ambiguity.1 In contrast to the traditional Bayesian setting, in which probabilities

are assigned to events via a unique Bayesian prior, decision-theoretic models of ambiguity are

designed to address situations in which a decision maker is unable to assign precise probabilistic

structure to the problem she is trying to address. In such situations, the traditional expected

utility paradigm (based on a unique prior summarizing all problem uncertainty) fails on both

normative and descriptive grounds (Gilboa and Marinacci [21]). On normative grounds it clashes

with appealing axioms of rational choice, while from a descriptive standpoint it is often in conflict

with observed patterns of behavior.2 Given the complexity of many environmental phenomena,

it is unsurprising that models of ambiguity aversion are increasingly being employed to address

policy under conflicting expert opinion (Woodward and Bishop [47], Millner et al. [30], Asano [3],

Athanassoglou and Xepapadeas [4]).3

1See Gilboa and Marinacci [21] for a comprehensive recent survey.
2Indeed, there seems to be experimental evidence suggesting that lab subjects actually reason in a way that is

consistent to models of ambiguity aversion when confronted with inconclusive expert judgments (Baillon et al. [5]).
3An important additional concern that some authors have raised is that probabilistic estimates elicited from

experts may not always represent probabilities in the actuarial sense (see, e.g., Millner et al. [29] and Kriegler et

al. [26]). This concern seems to apply to the empirical application of this paper as well, at least in part (see Appendix
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Our contribution. In this paper we further the literature on environmental decision-making

under conflicting expert opinion. To fix ideas and prepare the ground for the paper’s empirical

exercise, let us suppose that a decision maker elicits the judgment of a set of experts on the effect

of R&D investment on the future cost of a promising green technology.4 Levels of R&D investment

affect the decision maker’s problem in two ways: (a) they alter experts’ subjective probability

distributions on the technology’s future cost and (b) they are arguments of a utility function that

measures the investment’s cost-effectiveness as a function of R&D expenditure and the resulting

technological improvement.

As experts will frequently provide divergent estimates on the potential of green R&D, the

decision maker wishes to systematically explore the implications of many different ways of weighting

their estimates. We propose a parsimonious parametric framework to facilitate this process. As

an initial benchmark, our model posits equal-weight linear aggregation over experts’ divergent

probability distributions. Subsequently, it considers enlargements of the set of possible linear

aggregation schemes by parameterizing over their maximum distance, measured via the Euclidean

norm, with respect to the benchmark equal-weight aggregation. This distance is referred to as

aggregation ambiguity and can be naturally interpreted as setting a bound on the total weight that

can be assigned to any group of experts. Guaranteeing a bound of this sort may be a normative or

operational desideratum, in the sense that it provides a check on the influence of any single group

of experts, and guards against outlier opinions. Next, our model computes the best-and worst-case

expected outcomes of a given level of R&D investment, subject to the feasible set of distributions

that is implied by assigned levels of aggregation ambiguity. Finally, the decision maker’s preferences

are captured by a convex combination of the best and worst-case expected outcomes. The weights

placed on the worst and best cases reflect her ambiguity attitude.

The above framework is a variation of the α-maxmin model that has been studied extensively

in the economic-theory literature beginning with Arrow and Hurwicz [2]. Later contributions by

Gilboa and Schmeidler [22] (whose seminal paper dealt with the pure maxmin model), Ghirardato

A1). The decision-theoretic literature has begun to address such imprecise probabilities (see, e.g., Gajdos et al. [17]

and Gajdos and Vergnaud [18]) in the context of decision making under ambiguity. Extending our framework to

account for expert imprecision would be a very interesting avenue of future research.
4Note, however, that our formal model generalizes to many alternative contexts of decision making under uncer-

tainty.
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et al. [20], and Eichberger et al. [15] provided axiomatic treatments of similar models. The model we

adopt in this paper is not a strict application of this framework. This is because its decision variables

enter the value function as arguments of both (a) a utility function measuring the technology’s payoff

as well as (b) the set of priors that the decision-maker is taking into account when performing

her best- and worst-case analysis. This latter element of action-dependent subjective beliefs is

non-standard in the formal decision-theoretic literature going back to the work of Savage [40].5

Jaffray [23] had first introduced a similar notion with an α-maxmin model based on non-additive

belief functions, while later Ghirardato [19] analyzed a model in which acts map from states to sets

of consequences.

Recently, Olszewski [37] studied the α-maxmin model in a setting in which decision makers

are called to choose between sets of lotteries, i.e., probability distributions over outcomes. This is

the α-maxmin framework that most fits our context, since levels of R&D directly affect experts’

probability distributions –and thus can be seen as defining sets of lotteries over the technology’s

future payoff. Olszewski showed that when choosing between sets of lotteries the α-maxmin rule

uniquely satisfies a set of axioms that generalize their counterparts in settings of single probability

distributions.

Our paper aims to operationalize the model axiomatized by Olszewski in an applied setting of

expert elicitation. Indeed, our work is an outgrowth of the need to develop a tractable theoretical

framework to accommodate expert opinions gathered by a recent elicitation [10]. Still, it is im-

portant to note that our framework is open to legitimate criticism. First, not everyone may agree

with our consideration of aggregation ambiguity via the Euclidean norm. Second, the axiomatic

underpinnings of the Olszewski α-maxmin model, though clear, will not, in general, be universally

accepted as a means of characterizing the “right” decision maker preferences under ambiguity.

Thus, even for researchers who espouse models of ambiguity aversion, our framework may not be

entirely satisfactory.

On a more general level, a number of scholars are skeptical of using models of ambiguity aversion

as a foundation for rational decision making. The application area of expert elicitation only serves

to heighten these concerns, as specialized researchers have developed a variety of methods in order

to arrive to a unique distribution representing expert beliefs (as discussed in the extensive survey

5Note, however, that endogenous probabilities are common in Decision Analysis and dynamic programming.
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papers by Clemen and Winkler). We do not take a strong stand on this issue, not least because

we ourselves are not philosophers of science, nor specialists in expert elicitation. Still, what we can

constructively say is that for scholars who are unconvinced by models of ambiguity aversion, our

framework may be interpreted as a kind of structured sensitivity analysis. The logic would run

along the following lines:6 It is resource-intensive and perhaps politically sensitive to determine an

optimal weighting of the experts. Thus, it is preferable to assume equal weights and then apply the

machinery of the proposed model to test the robustness of the resulting recommendations. If we

see that optimal R&D levels are highly sensitive to small changes in the model parameters, then

we can conclude that assigning equal weights to experts may lead to non-robust policy and that

more careful deliberation regarding expert weighting is called for.

The paper’s empirical section applies our model to original data from the ICARUS project

(Bosetti et al. [10]), a recent expert elicitation on the potential of European Union R&D investment

in renewable energy technologies (for more information see www.icarus-project.org). As an initial

step, we used the collected data of the ICARUS survey to construct experts’ subjective probability

distributions on the future cost of solar energy conditional on R&D investment. Subsequently,

we employed an integrated assessment model (Bosetti et al. [9]) to calculate the benefits of R&D

investment (via the future solar-electricity costs that R&D may bring about). The application of

our theoretical model to these data suggested that expert ambiguity plays an important role in

assessing the potential of solar technology. Our analysis allowed us to (cautiously) draw two policy

implications: (1) that a 100% increase of EU investment in solar technology R&D is likely to yield

significant rewards, even after taking expert ambiguity into account, (2) that a 50% increase in

investment will likely always be less preferred to either a 100% increase, or maintaining the status

quo.

Related work. There is a long and growing literature of applications of models of ambiguity

aversion to environmental economics (see [45, 3, 41, 4, 30] among others). Most of these papers

deal with different, dynamic models of ambiguity aversion, which do not have action-dependent

subjective probabilities. Moreover, with the exception of Millner et al. [30], these papers do not

engage directly with the issue of expert aggregation. Perhaps the closest parallel to our work can

be found in Woodward and Bishop [47]. There, the authors applied a much simplified version of

6We thank an anonymous referee for suggesting this alternative interpretation of our work.
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our α-maxmin framework to William Nordhaus’ DICE integrated assessment model [35]. There

were two stylized “experts” in the analysis, reflecting different views on the model’s damage func-

tion parameters.7 The first expert held that damages will be relatively moderate (in line with

Nordhaus’ “base-case scenario”), while the second was much more pessimistic (in line with Nord-

haus’ “catastrophic” scenario). In this binary setting, the authors argued that a rational decision

maker would seek to maximize the worst-case payoff, in the Gilboa and Schmeidler [22] sense, and

adopt an emissions trajectory that is optimal under the catastrophic scenario. This finding was

reinforced by the possibility of learning the true damage parameters at a later stage. While the

analysis was quite simplified, the main policy implication was that it pays to follow a policy of

aggressive abatement from the outset, even if the future is not quite as catastrophic as one might

fear.

Paper outline. The structure of the paper is as follows. Section 2 discusses an example of our

setting to motivate the introduction of the formal model, which follows in Section 3. Section 4

applies the theoretical model to original data from the ICARUS expert elicitation survey on solar

technology and discusses possible policy implications. Section 5 provides brief concluding remarks

and directions for future research. An Appendix collects non-essential supplementary information,

as well as tables and figures not appearing in the main text.

2 Model description

Consider a set N of experts indexed by n = 1, 2, ..., N . R&D investment is denoted by a variable

r ∈ R and the technology’s cost by c ∈ C, where R and C are subsets of real numbers. To make

our framework completely consistent with the model of Olszewki [37] we assume the sets R and C

are finite. An expert n’s probability distribution of the future cost of technology given investment

r is captured by a random variable having a probability distribution function (pdf)

πn(c|r). (1)

How do we make sense of divergence in the pdfs (π1(·|r), π2(·|r), ..., πN (·|r)) when studying

optimal R&D investment? In the absence of data that could lend greater credibility to one expert

7In contrast to the more general setting of our paper, these uncertain parameters were exogenous to the choice of

policy.
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over another, one straightforward way would be to simply aggregate over all pdfs πn as given by

Eq. (1), so that we obtain an “aggregate” pdf π̄, where

π̄(·|r) =

N∑

n=1

1

N
πn(·|r). (2)

This approach inherently assumes that each and every expert is equally likely to represent reality,

and makes use of simple linear aggregation. However, this way of aggregating expert pdfs may not

always result in robust recommendations.

We thus move beyond simple averaging. In our framework each expert n’s pdf πn(c|r) is

weighted by the decision maker through a second-order probability pn. The set of admissible

second-order distributions p depends on the amount of ambiguity the decision maker is willing to

take into account when aggregating across experts, and in particular on how “far” she is prepared to

stray from equal-weight aggregation. Specifically, we consider the set of second-order distributions

P(b) over a set of N experts, parametrized by b ∈
[
0, N−1

N

]
where

P(b) =




p ∈ ℜN : p ≥ 0,
N∑

n=1

pn = 1,

[
N∑

n=1

(
pn −

1

N

)2
] 1

2

≤ b




 . (3)

Here, the set P(b) captures the ambiguity of the decision-maker’s aggregation scheme in a parsi-

monious parametric manner; as such, we refer to parameter b as aggregation ambiguity.8 It can be

naturally interpreted as setting a bound on the total weight that can be assigned to any group of

experts (see following discussion on page 10). Guaranteeing a bound of this sort may be a norma-

tive or operational desideratum, in the sense that it provides a check on the influence of any single

group of experts, and guards against outlier opinions. Letting eN denote a unit vector of dimension

N , we see that distributions p belonging to P(b) satisfy
∣∣|p − eN

N

∣∣|
2
≤ b, where || · ||2 denotes the

Euclidean norm. Setting b = 0 implies the unique consideration of equal second-order probabilities,

while b =
√

N−1
N

consideration of the entire simplex ∆N−1 =
{
p ∈ ℜN : p ≥ 0,

∑N
n=1 pn = 1

}
.9

8Note that, despite the term “ambiguity”, the parameter b does not characterize a state or amount of knowledge.

Knowledge, as represented by the set of experts’ pdfs, remains fixed.

9The latter statement holds in light of the fact that values of b >

q

N−1
N

cannot enlarge the feasible set. This is

because the maximizers of
h

PN

n=1

`

pn − 1
N

´2
i 1

2

over the set of probability vectors concentrate all probability mass

on one expert, leading to an aggregation ambiguity of
h

`

1 − 1
N

´2
+ (N − 1) ·

`

1
N

´2
i 1

2

=
q

N−1
N

.
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Fixing a level of R&D r and weighting the expert pdfs (1) under all linear aggregation schemes

belonging in P(b) induces the following set of probability distributions

Π(b, r) =

{
N∑

n=1

pnπn(·|r) : p ∈ P(b)

}
, (4)

governing the future cost of the technology, conditional on R&D investment r. Thus, the set of

distributions Π(b, r) is identical to the set of mixtures of {π1(·|r), π2(·|r), ..., πN (·|r)}, where the

weights of the mixture distributions are constrained to lie in set P(b). Consequently, holding r

fixed, an increase in b implies an expansion of the set of priors a decision maker is willing to

consider.10

Now, define the real-valued function

u (c, r) : C ×R 7→ ℜ,

as representing the utility of R&D investment r, under cost realization c. Given choices for r and

b, we can calculate the best- and worst-case expected utilities associated with r, given the set of

induced prior distributions Π(b, r). This provides a measure of the spread between the worst- and

best-cases, given a “willingness” to stray from the benchmark equal-weight distribution (2) that is

constrained by an aggregation ambiguity of b. More formally, we consider the functions

Vmin(r|b) = min
π∈Π(b,r)

∫

C
u (c, r) dπ(c) (5)

Vmax(r|b) = max
π∈Π(b,r)

∫

C
u (c, r) dπ(c). (6)

Plotting functions (5) and (6) over b ∈ [0,
√

(N − 1)/N ] gives decision makers a comprehensive

picture of the expected payoff of R&D investment r.

10It is important to note that the parameterization (4) may, in some cases, obscure important information. For

instance, suppose one wishes to make a decision on the basis of a water container’s temperature. There are two

experts, one of which provides a pdf suggesting that the water is freezing and the other that it is boiling hot.

Suppose, further, that we know that one of the two experts must be correct. Then it is clear that if we consider the

set of pdfs (4) for some small value of b, we will be taking into account a whole set of pdfs implying that the water is

tepid and none that it is either freezing or boiling. Clearly, in such cases, our framework will likely lead to suboptimal

decisions. To avoid this from happening, we should either (a) set b ≈
q

1
2

that allows for the unmixed consideration

of both expert pdfs, or (b) consider a different parametric framework altogether. We thank an anonymous referee for

bringing this issue to our attention.
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Thus, given a level of aggregation ambiguity b, the functions (5)-(6) focus on the worst- and

best-case expected utility associated with an investment r. As such they capture extreme attitudes

towards uncertainty in expert aggregation. To express more nuanced decision-maker preferences

we consider the following value function

V (r|b, α) = α · Vmin(r|b) + (1 − α) · Vmax(r|b) α ∈ [0, 1], (7)

representing a convex combination of the worst- and best-case expected utility. The parameter α

above captures the decision maker’s ambiguity attitude. It measures her degree of pessimism given

aggregation ambiguity b: the greater (smaller) α is, the more (less) weight is placed on the worst-

case scenario. In Section 3, we explain more formally the sense in which parameter α captures the

decision maker’s attitude towards ambiguity.

As mentioned in the introduction, Eq. (7) is a variation of the well-studied α-maxmin model in

decision theory. Given values for b and α, Eq. (7) operates as an objective function when searching

for optimal R&D investment r.

What do different choices of b imply? We offer some brief remarks on the interpretation

of different levels of aggregation ambiguity b. Consider the benchmark equal-weight aggregation

1
N

eN . Now take any subset of experts N̂ of cardinality N̂ and begin increasing the collective

second-order probability attached to their pdfs. The convex structure of the feasible set P(b)

enables us to provide a tight upper bound on the maximum total second-order probability that can

be placed on this set of experts, as a function of b and N̂ (we denote
∣∣∣N̂

∣∣∣ = N̂):

max
p∈P(b)

∑

n∈ bN

pn = min





N̂

N
+ bN̂

√
N − N̂

N̂N
, 1




 . (8)

Extending this logic to any subset of experts, we have the following holding:

p ∈ P(b) ⇔




p ≥ 0,
N∑

n=1

pn = 1,
∑

n∈ bN

pn ≤ min





N̂

N
+ bN̂

√
N − N̂

N̂N
, 1




 , for all N̂ ⊆ N




 .

(9)

Figure 1 provides a graphical visualization of the above algebraic arguments for the case of

N = 3 experts. Consider two levels of aggregation ambiguity b1 and b2. Assume that b1 is such

that 2
3 + b1 ∗ 2

√
3−2
2∗3 < 1 ⇔ b1 <

√
1
6 . In this case, by Eq. (8) we know that no pair of experts can
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b1 

b2 

(1/3,1/3,1/3) 

(1,0,0) 

(0,0,1) 

(0,1,0) 

p1 

p2 

p3 

P(b1) 

P(b2) 

Figure 1: The set P(b) for N = 3 and two levels of aggregation ambiguity b1 <
√

1

6
< b2 <

√
2

3
. P(b1) is

the inner circle of radius b1, while P(b2) is the oval-shaped triangular figure subsuming P(b1).

be assigned weight of 1, implying that all experts must be assigned positive weight. Hence, the set

P(b1) is just a circle of radius b1 that is embedded in the simplex ∆2 and centered at the equal-

weight benchmark (1/3,1/3,1/3). This circle does not touch the simplex’s boundary. Conversely,

when b = b2 such that b2 >
√

1
6 and 1

3 + b2

√
3−1
1∗3 < 1 ⇔ b2 <

√
2
3 , the decision maker (a) allows for

a weight of 1 to be placed on sets of pairs of experts (and thus 0 for sets of single experts), while

(b) setting an upper bound of 1
3 + b2

√
2
3 < 1 on the weight than a single expert can receive. In this

case, the set P(b2) has a triangular oval-like shape, with parts of it intersecting the boundary of

∆2. Moreover, the closer b2 is to
√

2
3 , the closer the curved segments of P(b2) are to becoming two

intersecting straight lines. When b =
√

2
3 , this transformation is complete and we have P(b) = ∆2.

On a final note we recognize that, when applying the framework of Eq. (7), there may not be

one single objectively “correct” value for b and α. Thus, we believe it is preferable to examine

Eq. (7) over a reasonable range of b (guided by the insights of Eq. (9)) and α, that is deemed

appropriate for the context at hand. Such an investigation will allow the decision maker to explore

the implications of different (b, α)-combinations in a systematic fashion, and ultimately arrive at a

11



choice of r that she considers justified.11

3 Decision-theoretic foundations

In this section we provide an exposition of the axiomatic underpinnings of the decision-theoretic

model we adopt in Eq. (7). In doing so, we use the analytic framework of Olszewski [37], which

is the most appropriate for our context. Olszewski axiomatized a version of the α-maxmin model

in a setting in which decision makers are called to choose between sets of lotteries, i.e., probability

distributions over outcomes. This fits our R&D setting since, in our model, levels of R&D directly

affect experts’ probability distributions, as per Eq. (1), and thus can be seen as defining a set of

lotteries over the technology’s future payoff.

Readers familiar with models of ambiguity aversion may wonder why we do not draw on

Ghirardato et al. [20] to discuss the axiomatic foundations of our α-maxmin model. More broadly,

they might also ask why we do not adopt different models of ambiguity aversion such as the smooth

ambiguity model of Klibanoff et al. [24]. The short answer to these questions is that the endogeneity

of expert probabilities of Eq. (1) distinguishes our framework from the decision-theoretic setting

of Savage [40], on which the previous contributions are grounded. In particular, the preferences

analyzed in [20, 24] operate in settings where ambiguous probabilistic information is independent

of a decision maker’s actions, and are thus not directly applicable to our context.12

To further highlight the above point, it is instructive to compare our setting to that of Millner

et al. [30]. The starting point of Millner et al.’s analysis is that different climate models (repre-

senting different “expert” groups of climate scientists) provide widely divergent estimates of the

probability distribution of climate sensitivity, a key physical parameter linking greenhouse gases

and temperature increase (see Meinshausen et al. [28]). The scientific community has not reached

an agreement on how best to aggregate these divergent estimates and arrive to a single pdf of

climate sensitivity. Acknowledging this lack of scientific consensus on the “correct” pdf of climate

sensitivity, Millner et al. [30] adopted the smooth ambiguity model of Klibanoff et al. [24] to study

optimal abatement policy. However, a key aspect of their modeling framework is that nothing a

11The empirical example of Section 4 (especially Figure 4) suggests the logic of such an exercise.
12On a related note, the theoretical machinery of the Savage framework (involving state spaces, consequence spaces,

and acts) seems overwrought for our context (to this effect, see also the discussion in the introduction of Ahn [1]).
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decision maker does can alter ambiguous scientific information; no decision on abatement can affect

scientists’ probabilistic estimates of climate sensitivity. Climate sensitivity is a physical quantity

that is simply unaffected by human action. This is clearly in contrast to the setting of the present

paper in which decisions on R&D investment do affect experts’ probabilistic estimates on the future

cost of the green technology via Eq. (1).

In what follows, we adopt the notational conventions of Olszewski [37]. Suppose X = {x1, x2, ..., xn}

is a finite set of outcomes, and let ∆ = ∆(X) be the set of all lotteries (i.e., probability distri-

butions) on X. Moreover, let A denote the set of all closed and non-empty subsets of ∆. Given

a utility function u : X 7→ ℜ and a lottery l = (q1, q2, ..., qn), where qi denotes the probability of

outcome xi, let

U(l) =
n∑

i=1

qiu(xi)

denote the expected utility of the lottery l. Consider now a complete and transitive preference

relation � over A. For the rest of this chapter the following assumption is assumed to hold.

Assumption 1 The preferences � restricted to single lotteries admit an expected utility represen-

tation. That is, there exists a utility function u : X 7→ ℜ such that for any two lotteries l1, l2 ∈ ∆,

l1 � l2 ⇔ U(l1) ≤ U(l2).

As usual, the utility function u captures the decision maker’s attitude towards risk in an

expected utility framework. Now, consider the α-maxmin rule

Hu,α(A) = α

(
min
l∈A

U(l)

)
+ (1 − α)

(
max
l∈A

U(l)

)
, (10)

where α ∈ [0, 1], and define the corresponding preferences �Hu,α on A, whereby

A1 �Hu,α A2 ⇔ Hu,α(A1) ≤ Hu,α(A2).

Evidently, the value function we consider in Eq. (7) reduces to a special case of the preferences

defined in Eq. (10). We briefly explain how. In the setting of Section 2, the relevant outcome space

equals the cross product of the cost and R&D domains, i.e. C × R. For an expert n, a choice of

r can be viewed as defining a pdf πn on C × R, such that πn(·, r) ≡ πn(·|r) (where the latter is

given by Eq. 1) and πn(·, r̃) ≡ 0 for all r̃ 6= r.13 Consequently, given a (fixed) value of aggregation

13Note that the presence of r as an argument of utility function u compels us to consider this broader outcome

space (instead of just C) and somewhat awkward reframing of pdfs πn, even though there is no direct randomness

associated with r (once the decision maker chooses it, it is fixed).
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ambiguity b, choosing a value of r is equivalent to choosing a set of lotteries Π(b, r) ∈ A, over which

the minimum and maximum expected utilities will be computed.

Olszewski’s article performed a rigorous and comprehensive theoretical analysis of preferences

�Hu,α . In what follows we selectively present what is necessary for our purposes. We are primarily

interested in shedding light on two main issues: (i) the axiomatic foundations of rule Hu,α(A), and

(ii) the interpretation of comparative attitudes towards ambiguity.

Axiom 1 [Set S-Solvability]. For all triplets of sets A, A1, A2 such that one of the sets A1, A2

is a singleton, if A1 � A � A2, then there exists a p ∈ [0, 1] such that A ∼ pA1 + (1 − p)A2.

As we can see, Set S-Solvability operates as an analog of the intermediate value theorem of calculus

on preferences over sets of lotteries. As such, it imposes a sort of continuity property on preferences

so that no “jumps” are allowed.

A stronger, and more mathematically involved, version of preference continuity is given by the

following axiom.

Axiom 2 [Set Continuity]. For every set of lotteries A1, sets {A2 : A2 ≺ A1} and {A2 : A1 ≺

A2} are open in the space of all closed subsets of ∆ equipped with the Hausdorff distance.14

Set Continuity implies Set S-Solvability, and generalizes the traditional notion of continuity to sets

of lotteries. Among its consequences is the fact that a decision-maker will be indifferent between a

set of lotteries A and A∪ l, where l 6∈ A is a “middle-of-the-line” lottery that we know will never be

among the argmins or the argmaxs in Eq. (10). This is a strong, and not uncontroversial, axiom.

See Chapter 4 in Olszewski [37] for more information on how Set Continuity may, in some cases,

be violated by decision makers.

Axiom 3 [Set S-Independence]. If A1 � A2 and l is a single lottery, then pA1 + (1 − p)l �

pA2 + (1 − p)l for all p ∈ [0, 1].

14Skipping some of the formal details, the Hausdorff distance of two lotteries A and B is given by

dH(A, B) = max



max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)

ff

.
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Set S-Independence generalizes the traditional notion of weak independence for single lotteries.

Essentially, what it says is that the decision maker’s preferences over two sets A1 and A2 cannot

be reversed by randomizing over these sets and a single lottery l.

Axiom 4 [Disjoint Set Betweeness (DSB)]

(a) For any disjoint sets A1 and A2, if A1 � A2, then A1 � A1 ∪ A2 � A2.

(b) If l1 ≺ l2 for all l1 ∈ A1 and l2 ∈ A2, then A1 ≺ A1 ∪ A2 ≺ A2.

Part (a) of DSB captures what seems like an intuitive property: if two sets of lotteries A1 and A2 are

disjoint and A2 is preferred to A1, then their union, in terms of the decision maker’s preferences,

will lie somewhere inbetween A1 and A2. That is, one cannot gain by incorporating the “bad”

lotteries of A1 to A2, in the same way as one cannot lose by incorporating the “good” lotteries of

A2 to A1. Part (b) restates (a) for the case of disjoint sets of lotteries in which the lotteries of one

set uniformly dominate the lotteries of the other.

Theorem 1 (Olszewski [37]) A preference � defined on A satisfies Set Continuity, Set S-Independence,

and DSB if and only if there exists a unique α ∈ (0, 1) such that

� = �Hu,α .

The parameter α is unaltered under positive affine transformations of u. As a corollary, preferences

�Hu,α satisfy Set S-Solvability, Set S-Independence, and DSB for any α ∈ (0, 1).

Having presented the characterization result of Theorem 1, we now discuss comparative atti-

tudes towards ambiguity. Given preferences �1 and �2, let B be a set of lotteries such that �1

and �2 coincide on single lotteries from the set B. Then B is called congruent with respect to

preferences �1 and �2. More formally, B is congruent with respect to �1 and �2 if for all l1, l2 ∈ B,

l1 �1 l2 ⇔ l1 �2 l2.

Definition 1 Consider two preferences �1 and �2. If, for any congruent set B,

B �2 A ⇒ B �1 A and B ≺2 A ⇒ B ≺1 A,

for all A ⊂ B, then a decision maker with preferences �1 is more ambiguity averse than one with

�2.
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The intuition behind the above definition is the following. Preferences �1 are more ambiguity

averse than �2 if, given any congruent set B, whenever �2 prefers a set of lotteries A to its bigger

superset B ⊃ A, then so does �1 (while the other side of the relation may not always be true). This

definition of relative ambiguity aversion is reminiscent of similar concepts in the literature of risk

aversion (see, e.g., Yaari [48]). It leads to the following corollary, which identifies α as a measure

of comparative ambiguity aversion.

Corollary 1 Suppose that �1 and �2 defined on A satisfy Set Continuity, Set S-Independence,

and DSB. Then preferences �1 are more ambiguity averse than �2 if and only if α1 ≥ α2.

In closing this Section, we wish to note that Olszewski proved a variant of Theorem 1 and

Corollary 1 for the restricted domain of convex polyhedral lotteries. This alternative characteriza-

tion uses a different set of axioms (e.g., replacing Set Continuity), which may be useful for future

analyses focusing on convex-polyhedral sets of lotteries.

4 Empirical application to solar-technology R&D

We base the empirical application of our model on original data collected by the ICARUS survey,

an expert elicitation on the potential of solar technologies. During the course of 2010-2011, the

ICARUS survey collected expert judgments on future costs and technological barriers of different

Photovoltaic (PV) and Concentrated Solar Power (CSP) technologies.15 Sixteen leading European

experts from academia, the private sector, and international institutions took part in the survey.

The elicitation collected probabilistic information on (1) the year-2030 expected cost of the tech-

nologies; (2) the role of public European Union R&D investments in affecting those costs; and (3)

the potential for the deployment of these technologies (both in OECD and non-OECD countries).

We refer readers interested in the general findings of the survey to Bosetti et al. [10] and we focus

here on the data on future costs as they form the basis of our analysis.

Current 5-year EU R&D investment in solar technology is estimated at 165 million US dollars.

The ICARUS study elicited the probabilistic estimates of the 16 experts on the 2030 solar electricity

15The survey is part of a 3-year ERC-funded project on innovation in carbon-free technologies (ICARUS - Innovation

for Climate chAnge mitigation: a study of energy R&D, its Uncertain effectiveness and Spillovers www.icarus-

project.org).
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cost (2005 c$/kWh) under three future Scenarios: (1) keeping current levels of R&D constant until

2030, (2) increasing them by 50%, and (3) increasing them by 100%. Coherent responses were

obtained from 14 out of the 16 experts so the analysis that follows focuses solely on them.16 We used

linear interpolation of the survey’s collected data (generally 3-6 points of each expert’s cumulative

distribution function(cdf) conditional on R&D investment) to compute a pdf for each expert n ∈

{1, 2, ..., 14}, given the three relevant levels of R&D investment denoted by r ∈ {r1, r2, r3} (here

ri refers to Scenario i).17 These pdfs represent experts’ subjective probability distributions of the

cost of technology as denoted in Eq. (1). Figure 3 plots the corresponding cdfs as well as the cdf

that the aggregate pdf (2) leads to, under all three Scenarios.

[FIGURE 2 here]

As one can see in Figure 2 there is considerable disagreement between experts over the potential

of solar technology. This disagreement is particularly acute under Scenario 1, and diminishes

as R&D levels increase. Nonetheless, the breakthrough nature of innovation and the need to

cross certain firm cost thresholds, means that ambiguity in expert estimates remains an important

concern, even under Scenario 3. This will become apparent in the analysis to follow.

We measure the utility of an investment via its net payoff. Denoting the benefit associated to

a technology cost c by the function B(c) and the opportunity cost of an investment r by O(r), this

is given by the following utility function:

u(c, r) = B(c) − O(r). (11)

The next section describes how we provide numerical values for B(·) and O(·).

Quantifying benefits and opportunity costs of solar technology R&D. Expected benefits

of solar technology R&D investments are quantified via a general equilibrium intertemporal model

16By “coherent” we mean non-contradictory responses which do not violate the laws of probability. In particular,

2 out of the 16 elicited experts provided probabilistic estimates implying non-monotonic cumulative distribution

functions, which is clearly in conflict with probability theory and thus unusable for our purposes. As mentioned in

the introduction, such incoherent expert estimates have been discussed in the literature (Millner et al. [29], Kriegler

et al. [26]), and addressing them in the context of expert elicitations is deserving of further study.
17Please refer to the Appendix for more information on how expert pdfs were constructed from the ICARUS survey

data.
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(Bosetti et al. [9]) that can account for a range of macro-economic feedbacks and interactions. These

include the effects of energy and climate change policies, the competition for innovation resources

with other power technologies, the effect of growth, as well as a number of other factors.18 To

capture the long-term nature of such investments, the integrated assessment model is run over

the time horizon 2005-2100 in 5-year time periods for the whole range of exogenously-imposed

possible 2030-costs of solar power that we are considering. Subsequently, simulation results are

compared to the benchmark case in which the cost of solar power is so high that the technology is

not competitive with alternative production modes. For each possible 2030 solar-power cost, the

benefit to the European Union is quantified by the discounted EU-consumption improvement over

the entire time-horizon 2005-2100 with respect to the case where solar technology is not competitive.

Table 1 summarizes the results.

[TABLE 1 here]

Three important assumptions are at the basis of the numbers reported in Table 2. First, as the

survey concentrated on public EU R&D investment and the effects of increasing it, we disregard

spillovers and technological transfers to the rest of the world and consider only the consumption

improvement for Europe. Second, we evaluate the benefit of alternative 2030 costs of solar power

assuming that no carbon policy is in place and that no special constraints on other technologies

are imposed (e.g., a partial ban on nuclear technology). Third, we discount cash flows using a 3%

discount rate. Although our choice is well in the range of discount rates adopted for large scale

public projects, it is important to note that the cost threshold for positive payoffs is robust for

a wide range of more myopic discount rate values. Our assumptions all err on the side of being

conservative about the potential payoffs of solar-technology R&D.

We now explain how we calculate the costs of solar R&D investment. Given an R&D investment

r, we assume that actual R&D spending is fixed at r during the period 2005-2030, in line with the

survey questions. After 2030 we assume that spending drops to half its initial value, i.e. r/2,

and remains at that level until 2100. This drop occurs because we assume that post-2030 funds

represent the government’s commitment to maintain the technological gains achieved by 2030. We

18The analysis is carried out using the World Induced Technical Change Hybrid (WITCH) model (Bosetti et al. [9]),

an energy-economy-climate model that has been used extensively for economic analysis of climate change policies.

See www.witchmodel.org for a list of applications and papers.
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now derive the discounted opportunity cost of such expenditure streams of solar-technology R&D

spending. In doing so we follow Popp [38] and assume that, at every time period, this opportunity

cost is equal to 4 times the original investment. Thus, in our model the opportunity cost of a level

of R&D investment r is given by the net present value of the stream O(t) where O(t) = 4 · r for

t = 1, 2, ..., 6 and 2 ·r for t = 7, 8, ..., 20 (once again we use a 3% discount rate). Table 2 summarizes

these results for the three R&D Scenarios that the ICARUS survey focused on.

[TABLE 2 here]

Application of the decision-theoretic framework. We now extend our analysis to explicitly

account for aggregation ambiguity and adopt the decision-theoretic model introduced in Section

3.19 Our objective is to compare the three R&D Scenarios, and we do not consider optimizing

over a wider R&D domain R. We make this choice primarily because we wish to keep the applied

section brief and pursue more in-depth empirical analysis in future work.20

Figure 3 plots Vmax (r|b) and Vmin (r|b) over b ∈
[
0,

√
13
14

]
≈ [0, .96] for the three Scenarios.

[FIGURE 3 here]

Focusing first on Scenario 1, we note that equal-weight aggregation of expert opinion (corre-

sponding to b = 0) yields an expected payoff of approximately $1.36 × 109. We observe that the

worst-case expected payoff drops to about $ − 3.4 × 109 at b ≈ .25 at which point it largely stops

being sensitive to changes in b, slowly asymptoting to its minimum value of $− 3.67× 109; in con-

trast, the best-case one increases steadily to a maximum value of $22.7×109 at the maximum level

of b = .96. Under Scenario 2, the expected payoff for b = 0 is equal to $7.8 × 109. Subsequently,

we see that the worst-case payoff drops to 0 at b = 0.15, at which point it keeps decreasing at a

smaller rate until it practically reaches its minimum value of $ − 5.5 × 109 at b ≈ .55. Conversely,

the best-case payoff rises steadily to about $32 × 109 for b ≈ .55 at which point it continues to

19All simulations are performed in Mathematica. The optimizations are facilitated by the fact that right-

hand-side of Eqs. (5) and (6) can be rewritten as Vmin(r|b) = minp∈P(b)

PN

n=1 pnun(r) and Vmax(r|b) =

maxp∈P(b)

PN

n=1 pnun(r), where un(r) ≡
R

C
u(c, r)dπn(c|r). These equalities are valid by the linearity of the ex-

pectation operator under mixtures of distributions.
20Indeed, constructing plausible approximations of experts’ un(r) functions over an interesting range of r will likely

require further engagement with the experts.
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rise at a much smaller rate until it reaches a maximum value of $33.3 × 109 at b = .96. Thus for

Scenario 2, aggregation uncertainty becomes largely unimportant once b reaches the threshold of

0.55. Under Scenario 3 the unambiguous payoff is around $20× 109, significantly higher than both

other Scenarios. The worst-case expected payoff drops relatively smoothly to a minimum value of

$−7.35×109 for b = .96, while the best-case one rises at a comparatively higher rate to $70.9×109.

It is clear that aggregation ambiguity is important under Scenario 3, for both the worst-

and best-case expected payoffs, resulting in a wider spread than Scenarios 1 and 2. This fact is

interesting in light of Figure 2, which shows that experts’ pdfs are much more dispersed under

Scenarios 1 and 2 than they are under 3. The reason behind this seemingly unexpected result is

straightforward. As Table 2 suggests, expected payoffs of R&D investment are very sensitive at low

cost values, i.e., less than 8c$/kWh. The more aggressive investment of Scenario 3 has a greater

effect on these lower cost values, and therefore its best- and worst-case payoffs are in turn more

sensitive to changes in b.

Figure 4 goes a step further and compares the three R&D Scenarios for all possible combinations

of b and α. Following the color scheme of Figure 3, a region’s color corresponds to the Scenario

that performs the best within it, while the bold numbers within regions denote the ranking of the

three Scenarios within this range of (b, α) (e.g., an expression “321” means Scenario 2 dominates

1, and Scenario 3 dominates both 2 and 1).

[FIGURE 4 here]

Figure 4 makes clear that Scenario 3 dominates 1 and 2 for an extremely wide range of com-

binations of b and α. Conversely, Scenario 1 is the best option for a combination of very high b

and α. Somewhat surprisingly, we see that Scenario 2 is dominated by either 1 or 3 for all possible

combinations of b and α and thus will never be chosen by a decision maker whose preferences

are captured by Eq. (7). Thus, on the basis of the presented data, it is clear that policy makers

should opt for the most aggressive R&D investment, unless they are both (a) open to ignoring

a very large set of surveyed experts (b) extremely concerned about the possibility of worst-case

failure. Moreover, assuming all three options are readily implementable, they can safely disregard

the middle-range R&D investment implied by Scenario 2.

We end this section by noting that the result of Figure 4 is quite robust to the application of

the model to different subsets of experts. This is due to, in large part, the fact that a significant
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majority of experts agree that doubling current R&D has a good chance of pushing the cost of

solar below 7.5, which, according to WITCH and our assumption regarding opportunity costs, is

the threshold point for large gains to be realized. That being said, it also should be mentioned that

the views of Experts 4, 6, and 9, are at complete odds with this picture, so that applying the model

on their pdfs alone results in completely different ranking of the three scenarios in (b, α)-space. In

particular, Scenario 2 predominantly dominates 1 and 3, and where that is not the case Scenario 1

is preferred (Scenario 3 is dominated everywhere by either 1 or 2). This suggests that the pattern of

Figure 4 is not solely driven by assumptions embedded into the WITCH model and the calculation

of opportunity costs.

5 Conclusions

Expert elicitation studies can play an important role in informing environmental policy. If designed

well, they may be able to capture in a transparent and objective way subjective probabilities that

can subsequently be used as scientific data in the decision maker’s deliberations.

When there is significant variation in expert estimates, condensing all of the problem’s uncer-

tainty into a single probability distribution reflecting equal weights across experts may yield policy

recommendations that are not robust, especially when the issue on which expert opinion is sought

is unprecedented or highly complex. To address such concerns, we proposed and analyzed a variant

of the well-studied α-maxmin model due to Olszewski [37]. In line with the paper’s focus on R&D

investment, decision variables in our model affect experts’ subjective probability distributions of

the future cost-effectiveness of an investment. We applied our framework to original data from a

recent expert elicitation survey on solar technology. The analysis suggested that more aggressive

investment in solar technology R&D is likely to yield substantial benefits even after ambiguity over

expert opinion has been taken into account.

It should be mentioned that our work, while formally rooted in the literature of decision making

under ambiguity, may also be interpreted as a structured form of sensitivity analysis in a purely

Bayesian setting. Thus, it may be of interest also to scholars who are skeptical of models of

ambiguity aversion as a foundation of rational decision making.

Our work suggests several fruitful avenues for future research. A particularly challenging one

would be to extend the α-maxmin model to take into account higher moments or quantiles (see,
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e.g., the quantile-based decision-theoretic framework of Rostek [39]) of the considered mixture

distributions of Eq. (4). This change would introduce nonlinearities that significantly complicate

the analysis, both theoretically and computationally. Alternatively, we could consider making

expert weights quantile-specific, to reflect varying degrees of decision-maker confidence across the

domain of expert distributions. For instance, a decision maker may trust some experts more on the

probability of tail events, while others more on the probability of typical events, depending on their

experience.21 On the applied front, extensions of this work could delve deeper into the ICARUS

survey data to obtain more data points and ultimately solve for optimal R&D investment over a

broader domain.

Appendix

A1: Constructing expert pdfs for the three R&D Scenarios from ICARUS survey

data

In the ICARUS survey, experts were asked to provide values for the 10th, 50th, and 90th percentile

of their distributions for the 2030 cost of solar technology conditional on all three Scenarios. In

addition, they were asked to provide values for the probability of this cost being less than or equal

to the following three values: 11.3, 5.5, and 3c$/kWh. These “threshold” cost levels correspond to

projections of the costs of electricity from fossil fuels or nuclear in 2030. The first (11.27 c$/kWh)

corresponds to the 2030 projected cost of electricity from traditional coal power plants in the

presence of a specific policy to control CO2 emissions (thus effectively doubling electricity costs

from fossil sources). The second threshold cost (5.5 c$/kWh) is the projected cost of electricity

from traditional fossil fuels in 2030, without considering any carbon tax. Finally, the third (3

c$/kWh) reflects a situation in which solar power becomes competitive with the levelized cost of

electricity from nuclear power.

Asking experts the follow up question on the likelihood of reaching threshold cost targets

allowed the survey authors to guard against the cognitive pitfalls associated with direct elicitation of

subjective probabilities, to increase the amount of elicited information, and to deepen the discussion

with the expert, hence improving their perception of his/her beliefs. In cases where the two sets of

21We thank an anonymous referee for this suggestion.
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answers (percentile values and threshold probabilities) were inconsistent, we contacted the expert

in order to obtain coherent estimates. Moreover, we asked all experts to give values for the upper

and lower limits of their distribution’s support in order to pinpoint the intervals over which their

implied probability distributions range.

Such corrected estimates were obtained from 14 out of the original 16 experts, and therefore

the analysis of Section 4 focuses solely on them. Among the respondents, not all provided values on

the left and right endpoints of their distributions’ support. As a result, we deduced between 6 and 8

points of 14 experts’ cumulative distribution functions (cdf) of the 2030 cost of solar electricity, given

the aforementioned three R&D investment Scenarios. From these points a probability distribution

function (pdf) was constructed using linear interpolation in the following way. First of all, and in

accordance with the experts’ answers, we considered cost levels c lying in [2c$/kWh, 30c$/kWh]

and discretized this interval on a scale of 0.5 (30c$/kWh represents an estimate of the technology’s

current cost). Now, suppose an expert reported the values of his/her cdf Fn at two successive

points c1 and c2 where c2 > c1 and gave no further information on cost levels between c1 and c2.

Assuming right-continuity of Fn we took the probability mass Fn(c2) − Fn(c1) to be distributed

uniformly among the cost levels {c1 + .5, c1 + 1, ..., c2}. For experts who did not provide values for

the lower limit of their distribution’s support we assumed that whatever probability mass remained

to be allocated (always less than .1) was distributed uniformly between the smallest argument of

the cdf and two cost levels below it. For example, if an expert only indicated that cl was his y’th

percentile and gave no further points of the cdf below this, we assumed that a probability mass

of y was distributed evenly across {cl − 1, cl − .5, cl}. In the case of an unknown upper limit, if

an expert only indicated that cu was his yth percentile and gave no further arguments for the cdf

above it, we assumed that a probability mass of 1−y was distributed evenly across {cu + .5, cu +1}.

Following this procedure we arrived at probability distribution functions for all 14 experts

conditional on all three Scenarios. The implied cumulative distribution functions are depicted in

Figure 3.
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A3: Tables and Figures not in main text

2030 solar-technology cost c Benefit B(c)

(2005 USc$/kWh) (US$ 109)

2 189.90

2.5 170.76

3 151.26

3.5 131.74

4 112.12

4.5 92.29

5 71.47

5.5 50.64

6 29.27

6.5 23.59

7 12.32

7.5 3.67

8 1.76

> 8 0

Table 1: EU discounted consumption improvement as a function of 2030 solar-power cost

R&D Scenario r Opportunity Cost O(r) (US$ 109)

r1 3.67

r2 5.51

r3 7.35

Table 2: Discounted opportunity cost of R&D Scenarios
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Figure 2: Expert and aggregate cdfs of the 2030 cost of solar technology conditional on the three

R&D Scenarios. Recall that the cdf’s domain is {2, 2.5, ..., 29, 29.5, 30}. Cost is measured in 2005

USc$/kWh.
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Figure 3: Worst and Best-Case net payoffs (benefits minus opportunity cost) for the three R&D

scenarios. Net payoffs are measured in US$109.
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Figure 4: Comparison of the three R&D scenarios over all values of b and α.
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