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1 Introduction

It has been long noticed that asymmetric information and limited commitment are key fric-

tions, which should be considered seriously to understand credit market performance. Thus

many papers have investigated the intensive margin in credit supply, i.e., the terms of loan

agreements, through the lens of the literature on contracting under asymmetric information.

However they have paid little attention to the extensive margin, i.e., the probability that a

potential borrower gets a loan. In existing works based on contract theory, if necessary, the

extensive margin has been modeled by a randomized contracting strategy together with a

contractual term that indicates the probability with which the other terms are o¤ered. This

scheme introducing the arti�cial term into the intensive margin might be considered as a

reduced-form approach to modelling the extensive margin because it is not explicit about

costs and bene�ts of extending credit supply.

This paper develops a model of a competitive search credit market under hidden infor-

mation and limited commitment. This model is explicit about the extensive margin while

using the standard bilateral contracting framework for the intensive margin, and hence it

allows us to see how two margins jointly channel the in�uences of the credit frictions. More

speci�cally, introducing the friction in competitive search theory, this paper extends the work

by Besanko and Thakor (1987) on a competitive credit market under hidden information.

The equilibrium concept proposed by Guerrieri, Shimer, and Wright (2010) is used for this.

In the model of this paper, lending is carried out through banks, which are principals that

design credit policies, or mechanisms o¤ering credit contracts. Each bank can serve many

borrowers at once, but it costs to increase the maximum number of borrowers it can serve. In

order to introduce this capacity constraint associated with bilateral contracting, the notion

of vacancy in search-theoretic labor market models is adopted, and bilateral matching of a

borrower and a vacancy is assumed. This bilateral matching itself does not necessarily mean

a search friction. However here the credit market is assumed to have a search friction, which

makes both sides of the market left unmatched, though the sources of the friction might be
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di¤erent from those in a typical decentralized market. Banks with vacancies publicly and

credibly announce their credit policies, advertising the vacancies. They wait for applicants

to visit because they cannot locate potential borrowers. A potential borrowers observes all

the policies available and choose for which one to apply. Because it takes time and resources

to access and process loan application, he cannot approach more than a few banks, or a

fraction of the vacancies, within a given period of time. This imperfect matching technology

leads to the search friction in spirit same to Moen (1997).

In the competitive search credit market, banks compete with each other, and free entry

of vacancies leads to zero pro�ts as in the large literature on competitive credit market

and competitive banking. Though this might be an extreme assumption, it a¤ords decisive

advantages in tractability to consider an equilibrium in which banks take possible responses of

other banks into consideration. It might be noticeable that a competitive search equilibrium

can be considered as a possible solution to the Rothschild and Stiglitz (1976) nonexistence

problem. Moreover the assumption allows us to focus on the roles for asymmetric information

because a competitive search market under full information yields the �rst best allocation.

Once a search friction exists, any other market structure, for example, a typical search

market with bargaining, generically has an ine¢cient allocation even under full information.

Thus it looks essential to investigate a competitive search equilibrium allocation �rst before

investigating allocations under alternative market structures.

Results of this paper exhibit the possibility of endogenous credit rationing in the extensive

margin, i.e., pure Type II credit rationing. This does not indicate the possibility that a

potential borrowers fails to receive credit simply due to the search friction, or an unmodeled

characteristic. Given imperfect matching technology and capacity expansion costs, banks

in the competitive search market would supply the socially optimal levels of credit if there

were no informational frictions. However, under hidden information, the supply of credit in

it may be not e¢cient because the terms of a contract themselves a¤ect the riskiness of the

loan by sorting potential borrowers. A key �nding is the possibility that potential borrowers

are rationed because banks charge interests more than the e¢cient levels for the purpose of
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screening. This is a feature distinguished from the results of existing works on a competitive

credit market under hidden information because here credit rationing is not due to lack of

screening but rather a result of screening.1

The results also demonstrate the possibility that unproductive banking as well as lack

of collateral makes the credit market tight, extending interest rate spreads. This possibility

might be important for understanding the occurrence of a credit crunch. For example, when

banks have more di¢culties in �nding quali�ed borrowers, the tightness of credit market

may be endogenously ampli�ed. The possibility also helps to understand small enterprises�

limited access to bank �nance, simply assuming that the entire credit market consists of

many submarkets separated by observable characteristics of �rms.2 For example, it explains

why a credit market in which �rms with less collateralable wealth participate is more tight

and has larger interest rate spreads.

Another key �nding is the possibility of contract dispersion among homogenous borrowers

of the same type. This possibility arises under a standard environment, which would yield

no dispersion if there were no search frictions, or if information were symmetric. This sheds

light on and explains the possibility that sunspots a¤ect the distribution of credit supply as

well as the possibility that imperfect banking enhances interest rate dispersion.

The rest of the paper is organized as follows. Section 2 describes the model. Section

3 de�nes equilibrium and introduces a way to characterize it. Section 4 characterizes equi-

librium and investigates the results. Section 4 gives concluding remarks. All proofs of the

lemmas and the propositions are in the Appendix.

1Though some of Stiglitz-Weiss papers (e.g., Stiglitz and Weiss, 1981) demonstrates possibility of pure
credit rationing under hidden information, this rationing is a pooling or semi-pooling equilibrium phenom-
enon. As pointed out by Bester (1985), the possibility is due to lack of screening, and it disappears if banks
have a screening device that yields a separating equilibrium. Introducing the search friction into a standard
environment, this paper provides an account for a separating equilibrium with pure credit rationing.

2There are many empirical studies about this limited access, in which main sources of banks� reluctance
to extend credit to small enterprises has been discussed (e.g., Green, 2003). Their reluctance is considered
as mainly associated with high administrative costs of small-scale lending, asymmetric information, small
�rms� lack of collateral, the high risk perception attributed to small enterprises, and the underdeveloped
�nancial system. This paper provides a model that allows to see how these sources work together.
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2 Model

The model incorporates the friction in competitive search theory into a standard one-period

credit market model with hidden information. For easier comparison, the standard part

follows Besanko and Thakor (1987), hereafter BT. There is a continuum of potential bor-

rowers with total mass normalized to one, and a large number of ex ante homogenous banks

compete in the supply of loans. Both borrowers and banks are risk neutral.

Each borrower owns a project and has a type � 2 (0; 1]. If a type � borrower invests an

initial outlay of q, his project yields a gross return of f (q; �) with probability � and zero with

probability 1��. The function f : R+� [0; 1] 7! R+ is twice continuously di¤erentiable, fq >

0, and fqq < 0 with f (0; �) = 0, limq!0 fq (q; �) =1 and limq!1 fq (q; �) = 0 for every �. It

is also assumed that f� > 0 and fq� > 0. The distribution of borrower types is concentrated

on D � [�0; �I ] with a continuous probability density function g : D 7! R++ � (0;1). In

addition to income that can be earned by investment, all the borrowers have a deterministic

and identical end-of-period wealth �.3 However, this wealth is illiquid, and hence a borrower

who wants to �nance investment must approach a bank for a loan. All of f , g and � are

common knowledge, but each borrower�s type is his private information.4

Banks participate in the market by creating vacancies and posting a credit policy for

each. A credit policy is a mechanism of which execution determines what credit contract is

o¤ered, where a credit contract is a vector (q; x; k) 2 R2+ � [0; �] that speci�es the loan size

q, the repayment x, and the collateral requirement k. The posting of a policy means that

the bank publicly announces and commits to the policy. The capacity of each vacancy is

one borrower, and there is a sunk cost 
 2 R++ associated with the creation of a vacancy.
5

3As discussed in the introduction, heterogeneity in collateralable wealth could be easily introduced by
assuming that the entire credit market consists of many submarket separated by observable characteristics
of potential borrowers. These submarkets would operate independently under the model environment.

4It is also assumed that there is no way in the model for any information about the type of a borrower
to be credibly revealed, except possibly by self-selection. This is to focus on the role of borrowers� directed
search in information transfer through banks� screening. Borrowers� signaling in the model directs banks�
search, and this e¤ect can con�ict with its role for information transfer (see Delacroix and Shi, 2007).

5The vacancy creation requires time and resources as in search-theoretic labor market models. It might
have two kinds of costs: one is to enhance capacity, employing labor and capital for additional loan processing,
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Notice that 
 represents the constant marginal cost of bank�s capacity expansion. Taking as

given the probability that each vacancy is �lled with a borrower, banks can create vacancies

as many as they wants. Banks �nance their loans from loanable deposit funds, of which

supply is perfectly elastic at the exogenous gross interest rate � 2 R++. Thus the interest

rate spread in lending with credit contract (q; x; k) is x=q � �.

Each borrower can see all the credit policies posted, and then he chooses for which one to

apply or decides not to participate in the market.6 The set of vacancies with a certain policy

and the set of borrowers applying for the policy form a submarket. Matching is bilateral,

and the mass of matches in each submarket is determined by a standard constant returns to

scale matching technology that captures a search friction.7 If the vacancy-applicant ratio, or

market tightness, in a submarket is � 2 �R+ � [0;1], an applicant to the policy matches with

a vacancy with probability � (�), and a vacancy is �lled with an applicant with probability

� (�) � � (�) =�. The function � : �R+ 7! [0; 1] is twice continuously di¤erentiable, �0 > 0,

�00 < 0, � (0) = 0, and � (1) = 1. It is also assumed that � (0) = �0 (0) = 1. If a vacancy

is �lled with an applicant, its credit policy is executed, and the pair of the bank and the

borrower enter into the resulted contract.8

If a type � borrower obtains a contract c = (q; x; k), his expected surplus is

u (c; �) � � [f (q; �)� x]� (1� �)min fx; kg :

and the other is to search for an additional borrower, for example, by making advertisement.
6If a borrower chooses a credit policy for which to apply, he approaches banks searching for a vacancy

with the policy. Here it is assumed that each borrower approaches banks for only one policy although he
is allowed to randomize his choice in case that he is indi¤erent about which one to apply for. Anyhow this
restriction is not essential to the results. As noted by Moen (1997), we can allow the case where borrowers
search for vacancies with di¤erent policies by introducing their search intensity for each policy and adjusting
their contribution to the matching in each submarket.

7If there were no friction other than the capacity constraint associated with bilateral matching technology,
the short side of the market would be assured of matching. However here it is assumed that there exists a
search friction that makes both sides left unmatched simultaneously. As discussed in the introduction, the
sources of this friction can be time delays and costs due to the completion and processing of applications as
well as those due to the construction of relationship with banks and unmodeled heterogeneities.

8After the mechanism has been executed, the bank always o¤ers the resulted contract because of a law
or reputation e¤ects. Then the borrower always accepts the contract in equilibrium although he could reject
it. He does not try to negotiate it since his bargaining power is assumed to be too small to improve it.
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For banks, the expected surplus from entering into the contract with a type � borrower is

v (c; �) � �x+ (1� �)min fx; kg � �q:

Notice that here limited commitment is assumed: borrowers may choose to default when their

project failed. Banks attempt to overcome this possibility with the collateral requirement.9

Implementing the contract with a type � borrower generates total expected surplus

S (q; �) � �f (q; �)� �q:

De�ne q? : D 7! R++ and S
? : D 7! R++ such that

�fq (q
? (�) ; �) = �; S? (�) = S (q? (�) ; �) ; 8�:

For all �, q? (�) = argmaxq2R+ S (q; �) and S
? (�) = maxq2R+ S (q; �). Assume that

�S? (�) + (1� �)min fS? (�) ; �� �q? (�)g > 
; 8� (1)

to ensure the existence of mutually bene�cial contract for every type.10

De�ne �q : D 7! R++ such that S (�q (�) ; �) = 0 for every �. For each �, S (�q (�) ; �) > 0 if

and only if 0 < q < �q (�). In addition, both �q and S? are strictly increasing. Thus there is

no loss of generality in restricting the set of feasible credit contracts to

C � [0; �q (�I)]� [0; S
? (�I)]� [0; �] :

Moreover, by the revelation principle, banks can without loss restrict themselves to incentive-

compatible direct mechanisms in searching for an optimal policy. Hence there is no loss of

generality in restricting the set of feasible credit policies to

C � f�c : D 7! C j u (�c (�) ; �) � u (�c (�0) ; �) ; 8�; �0 2 Dg :

9The actual realized return on a borrower�s project is his private information that is not veri�able to
banks. However, as in BT, banks are able to notice whether his project succeeded or not. For justi�cation,
one can assume that borrowers cannot abscond with any wealth at the end of period, though they default
whenever optimal. Then in equilibrium no borrower defaults when his project succeeded.
10The de�nition of equilibrium in the next section does not require all the types to satisfy this condition.

Thus, relaxing the assumption, one can investigate the e¤ect of a change in the model parameters on the
cuto¤ type of market participation. However, like BT, pursuing this is not the subject of this paper.
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A credit policy speci�es that, if a vacancy is �lled with a borrower, the borrower truthfully

announces his type � and the contract�c (�) is implemented.

For each credit policy �c 2 C, let #p (�c) indicate the vacancy-applicant ratio in the sub-

market for the policy. Given beliefs about #p : C 7! �R+, the expected surplus for a type �

borrower applying to a policy�c 2 C is

Up (�c; �;#p) � � (#p (�c)) u (�c (�) ; �) :

Let �p (�c; �) denote the probability measure that represents the distribution of the types of

applicants to policy�c. The measure is de�ned on the Borel set of D, denoted by BD, and for

any D0 2 BD, �
p (�c;D0) indicates the share of applicants to the policy whose type is � 2 D0.

Given beliefs about #p : C 7! �R+ and �
p : C �BD 7! [0; 1], the expected pro�t from creating

a vacancy o¤ering a policy�c 2 C is

�p (�c;#p;�p) � � (#p (�c))

Z
v (�c (�) ; �) �p (�c; d�)� 
:

Notice that both #p and �p are de�ned on the set of all revelation policies. Though most

of them are not posted in equilibrium, but it is still necessary to de�ne beliefs about the

vacancy-applicant ratio and the types of applicants to those policies if they were posted.

The timing of events is as follows. At Stage 0, nature draws a type for each borrower,

and borrowers learn their own types. At Stage 1, banks create vacancies and post credit

policies under their beliefs about #p and �p. At Stage 2, every borrower observes what banks

post and then applies to at most one policy under his beliefs about #p. At Stage 3, borrowers

and vacancies in each submarket are matched according to the matching process. At Stage

4, each borrower matched with a vacancy announces his type, and the pair implement the

contract for the type. An outcome in the model is G : D � BC 7! R+, where G (�; �) is the

measure that speci�es how many type � borrowers obtain each contract: G (�; C0) indicates

total mass of contracts in C0 obtained by type �, or equivalently, the mass of type � borrowers

obtain some contract in C0.
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3 Equilibrium

The equilibrium concept used here is competitive search equilibrium under asymmetric in-

formation introduced by Guerrieri, Shimer, and Wright (2010), hereafter GSW. To focus on

equilibrium outcomes, following GSW, let a competitive search equilibrium be de�ned in a

restricted model. It will be shown that, in terms of outcomes, an equilibrium in this model

is equivalent to a competitive search equilibrium in the unrestricted model.

In the restricted model, banks post a single contract rather than a policy for each vacancy

they create, and each borrower applies to a single contract he likes or does not participate

in the market. For each credit contract c 2 C, let # (c) indicate the the vacancy-applicant

ratio at the contract. Given beliefs about # : C 7! �R+, the expected surplus for a type �

borrower applying to a contract c 2 C is

U (c; �;#) � � (# (c)) u (c; �) .

Put U (?; �;#) = 0 for all �, letting the null contract ? represent the outside option for

borrowers not to participate in the market. For each contract c 2 C, let � (c;D0) indicate

the share of applicants to the contract whose type is � 2 D0, and let � (c; �) be the probability

density function associated with � (c; �), de�ned by the Radon-Nikodym derivative of � (c; �)

with respect to the Lebesgue measure. Given beliefs about # : C 7! �R+ and � : C � BD 7!

[0; 1], the expected pro�t from posting a contract c 2 C is

� (c;#;�) � � (# (c))

Z
v (c; �) � (c; d�)� 
:

Put � (# (?)) v (?; �) = 
 for all �, letting the null contract also represent the outside option

for banks not to create a vacancy. Let 	 : BC 7! R+ be the measure that speci�es how many

each contract banks post: 	(C0) indicates the mass of contracts in C0 posted by all banks.

Its support C	 represents the set of contracts actually posted.

De�nition 1. A competitive search equilibrium is a list of functions f	; #;�; �Ug, where 	

is a measure on BC with support C	, # : C 7! �R+, � (c; �) is a probability measure on BD

for every c 2 C, and �U : D 7! R+, that satis�es the following conditions:
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(i) For every (c; �) 2 C � D, U (c; �;#) � �U (�) � maxĉ2C	[f?g U (ĉ; �;#), with equality

and u (c; �) � 0 if # (c) <1 and � (c; �) > 0,

(ii) For every c 2 C, � (c;#;�) � 0, with equality if c 2 C	

(iii) For every � 2 D,
R
C	
[� (c; �) =# (c)] 	 (dc) � g (�), with equality if �U (�) > 0.

De�nition 2. An allocation is a list of functions f	; ~#; ~�; �Ug, where 	 is a measure on BC

with support C	, ~# : C	 7! �R+, ~� (c; �) is a probability measure on BD for every c 2 C	, and

�U : D 7! R+. The allocation of a competitive search equilibrium f	; #;�; �Ug is f	; ~#; ~�; �Ug,

where ~# and ~� are the restricted domain functions of # and � respectively.

An allocation f	; ~#; ~�; �Ug speci�es aggregate decisions, an outcome, and implied payo¤s.

The allocation of vacancies 	 depicts banks� aggregate decisions. LetH (�; �) be the measure

that speci�es how many type � borrowers apply to each posted contract: for every C0 2 BC	 ,

H (�; C0) indicates the mass of type � borrowers apply to some contract in C0. The allocation

of borrowers H : D � BC 7! R+ describes borrowers� aggregate decisions and is given by

H (�; C0) =

Z

C0

[~� (c; �) =~# (c)]	 (dc) ; 8� 2 D; C0 2 BC	 :

The outcome G is determined by H as well as the trading function � � ~# : C	 7! [0; 1], which

speci�es the share of applicants to each posted contract who success to obtain it, and the

payo¤ function �U : D 7! R+ indicates the expected surplus of each type from the outcome.

De�nition 3. An allocation f	; ~#; ~�; �Ug is attainable if

(i) For every (c; �) 2 C	 �D such that ~� (c; �) > 0, U(c; �; ~#) = �U (�);

(ii) For every c 2 C	, �(c; ~#; ~�) = 0;

(iii) For every � 2 D,
R
C	
[~� (c; �) =~# (c)]	 (dc) � g (�), with equality if �U (�) > 0.

Clearly a competitive search equilibrium has an attainable allocation. The zero pro�t

condition (ii) in De�nition 3 implies that banks� pro�t maximization and their competition

under free entry of vacancies lead to zero expected pro�ts from any posted contract. Since

# (c) =1 makes negative pro�t �
, it also implies that every posted contract has a positive

mass of applicants: ~# (c) < 1 for all c 2 C	. The borrowers� optimality condition (i) then
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implies that, if a borrower applies to a posted contract, this choice over all the contracts

posted is optimal for his type. The market clearing condition (iii) implies that every borrower

applies to a posted contract unless his type is indi¤erent about participating in the market.

Notice that not every attainable allocation is of equilibrium, the de�nition of which

imposes restrictions on contracts not posted in equilibrium, i.e., c =2 C	. To show the role

for these restrictions, introduce some additional notations. Given equilibrium payo¤ function

�U , for every contract c and type �, let P (c; �) �
�
p 2 R++ j pu (c; �) � �U (�)

	
, and de�ne

p (c; �) � inf P (c; �).11 In addition, let p� (c) � inf�2D p (c; �). Among all the types, we could

say, a type � is most likely to apply for a contract c if p (c; �) = p� (c) � 1, in the sense that

this type borrowers are willing to do so at the highest rationing probability 1� � (# (c)).

Lemma 1. In any competitive search equilibrium f	; #;�; �Ug, � (# (c)) = p� (c) if p� (c) � 1,

and # (c) =1 otherwise. Moreover, if p� (c) � 1 and p (c; �) > p� (c), � (c; �) = 0.

Arguing by analogy with the forward induction, the equilibrium conditions in De�nition

1 require that an equilibrium must not be supported by implausible beliefs about # and � on

contracts not posted.12 Following the equilibrium re�nement proposed by Gale (1996), equi-

librium condition (i) restricts banks� beliefs about the composition of borrowers attracted

to a deviating contract, imposing that their probability assessment of its implementation

should be concentrated on the set of types most likely to apply for it.13 In addition, banks

should anticipate that the market tightness will make such types indi¤erent about applying

for it. Imposing these restrictions on all the possible deviations pins down # and �. Equi-

11Notice that the in�mum is taken over p > 0. This is to preclude that a type � with �U (�) = 0 is de�ned
to be most likely to apply for a contract c such that u (c; �) < 0.
12For concreteness, consider an equilibrium candidate, and suppose that it is pro�table for banks to post a

deviating contract c =2 C	 as long as this contract attracts the types most likely to apply for it, inducing the
highest probability of success to implement it. Nevertheless it is possible that the candidate has an attainable
allocation, the de�nition of which allows arbitrary beliefs about # (c) and � (c; �), if banks anticipate that
the contract will attract borrowers whose application requires a low level of the market tightness, making
the deviation unpro�table. However such beliefs would be refuted once a bank did post the contract and
borrowers take the reason for this deviation into account in forming their beliefs about the market tightness.
Such beliefs are implausible since they could survive only if banks did not perceive this.
13As shown in Lemma 1, for any contract c 2 C such that # (c) <1, banks� belief about the distribution

� (c; �) should put zero weights on all the types that are not most likely to apply for it. As pointed out by
Gale (1996), this is analogous to the "universal divinity" re�nement proposed by Banks and Sobel (1987).
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librium condition (ii) then imposes that, given these # and �, no deviating contract could

yield positive pro�t in an equilibrium.

Notice that an attainable allocation might not be of equilibrium if some posted contract

attracts more than two types, with some of which entering into it makes negative expected

pro�ts. Suppose that banks post such non-distorting pooling contract in a proposed equilib-

rium, same in spirit to Rothschild and Stiglitz (1976). Since this contract cross-subsidizes

low types at the expense of high types, low types have more to gain from the deviation and

are, therefore, the ones who actually search for the deviating contract. Thus the proposed

equilibrium is not destroyed by the possibility of such deviation, which is supported by the

belief that only bad types search for deviating contracts. To destroy a proposed equilibrium,

together with borrowers who can freely redirect their search, it must be possible for a bank

to post a deviating contract that will be strictly pro�table and that will not become strictly

unpro�table even if other banks are allowed to deviate by posting still more contracts. This

implies that competitive search equilibrium might be regarded as a version of Riley�s reac-

tive equilibrium (Riley, 1979) with the Pareto-dominating strongly informationally consistent

(SINC) outcome.14 Formalize this idea to �nd a way to characterize equilibrium allocations.

De�nition 4. An allocation f	; ~#; ~�; �Ug is SINC if it is attainable, and for every (c; �) 2

C	 �D such that ~� (c; �) > 0, �(~# (c))v (c; �) � 
.

Consider an allocation f	; ~#; ~�; �Ug. Let C� (�) � fc 2 C	 j ~� (c; �) > 0g, and de�ne

C (�) by C (�) � C� (�) or C (�) � f?g if C� (�) = ;. The allocation is SINC if and only if,

for all �; �0 2 D and c (�0) 2 C (�0), every c (�) 2 C (�) satis�es

14It might be noticeable that the universal divinity re�nement, to which the requirement of equilibrium
condition (i) is analogous, selects the "Riley outcome" in a standard signalling game. To be concrete, we
might imagine the following hypothetical adjustment process. Given contracts posted by banks, borrowers
choose not only to which contract to apply but also which vacancy they approach for the contract. Applicants
who approach each vacancy form a queue in front of it. After all borrowers make the decision, they are given
the opportunity to change the contract to which they apply as well as the vacancy at which they apply. If
any borrower moves, borrowers are given a further opportunity to move, and so on, until no borrower moves.
And then banks are given the opportunity to post new contracts. If any bank posts a new contract, banks
are given a further opportunity to post, and so on, until no bank posts any new contracts. Then borrower
are given the opportunity to move one more time, and this process iterates until neither any borrower nor
any bank moves. After the process ends, borrowers approach the vacancies �nally chosen to apply for a loan.
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(C1) �U (�) = � (� (�)) u (c (�) ; �); (C2) �U (�) � � (� (�0)) u (c (�0) ; �);

(C3) � (� (�)) v (c (�) ; �) = 
; (C4) c (�) 2 C [ f?g, � (�) 2 �R+, �U (�) 2 R+

where � (�) � ~# (c (�)). Thus one can �nd a Pareto dominating SINC allocation by solving

(P) max
�U(�);c(�);�(�)

Z �I

�0

�U (�) ĝ (�) d�

subject to (C1)-(C4) for all �; �0 2 D, where ĝ : D 7! R++ is a continuos density function that

assigns welfare weights. Notice that (P) is an optimal control problem with the state �U (�)

and the control � (�) � (c (�) ; � (�)). As will be shown in the next section, this problem can

be restated as a standard program, to which a solution has the form of state-control trajectory

( �U;�), a single-valued vector function with �U : D 7! R+ and � : D 7! (C [ f?g)� �R+.

Lemma 2. A solution to (P) exists. Every solution has the same state trajectory �U such

that �U (�) > 0 for all �.

The above lemma states that there exists a Pareto dominating SINC allocation. Moreover

it is unique in terms of payo¤s. Let f	; ~#; ~�; �Ug be a Pareto dominating SINC allocation

associate with a single solution ( �U;�). The support of 	, or the set of posted contracts is

C	 = c (D). Take an arbitrary posted contract c 2 C	, and �x it. In the next section, it will

be shown that only one type applies for each posted contract. Thus there exists unique � such

that c = c (�). The vacancy-applicant ratio at the contract is ~# (c) = � (�), and ~� (c; �) is the

Dirac measure at point �. The market clearing condition then implies that  (c) = � (�) g (�),

where  is the Radon-Nikodym derivative of 	 with respect to the Lebesgue measure. The

payo¤ function �U is the same to the optimal state trajectory. As will be shown in the next

section, however an optimal control trajectory is not necessarily unique. Consider a Pareto

dominating SINC allocation associate with a pair of solutions ( �U;�0); ( �U;�1). In this case,

for each c 2 C	, there exists unique � such that c 2 fc0 (�) ; c1 (�)g, and ~� (c; �) is the Dirac

measure at point �. The market clearing condition implies that
P

i  (ci (�)) =�i (�) = g (�).

Notice that the allocation of vacancies 	 is not pinned down because banks� beliefs about

the distribution of type � applicants over the indi¤erent contracts c0 (�) ; c1 (�) is arbitrary.

13



The next proposition establishes that the model has outcomes characterized by solutions

to (P), and that hence they are equivalent in terms of payo¤s. This follows directly from

results in GSW. See the proof of Lemma 2. In an equilibrium, the type distribution g only

a¤ects the allocation of vacancies 	. As pointed out by GSW, this is consistent with known

results in competitive search models with heterogenous agents (e.g. Moen, 1997).15

Proposition 1. A competitive search equilibrium exists, and any competitive search equilib-

rium has a Pareto dominating SINC allocation.

The next proposition implies that the restriction to contract posting is without loss

of generality in terms of outcomes. The de�nition of competitive search equilibrium with

revelation policies is provided in its proof.

Proposition 2. Any competitive search equilibrium with contract posting is a competitive

search equilibrium with revelation policies. Any competitive search equilibrium with revelation

policies has the outcome same to a competitive search equilibrium with contract posting.

4 Characterization

To solve (P), �rst restate it in the form of a standard program. The de�nitional constraint

on payo¤s (C1) can be written as

�U (�) = � (� (�)) [�f (q (�) ; �)� x (�) + (1� �) y (�)] ; (2)

where y (�) � max fx (�)� k (�) ; 0g. As is standard in optimal mechanism design, write the

incentive compatibility constraint (C2) as

�U (�) = max
�̂2D

U(�̂; �) � �(�(�̂))[�f(q(�̂); �)� x(�̂) + (1� �) y(�̂)]:

By the envelope theorem, the �rst order condition U�̂(�; �) = 0 is equivalent to

�U 0 (�) = � (� (�)) [f (q (�) ; �) + �fq (q (�) ; �)� y (�)] : (3)

15A solution to (P) is not a¤ected by ĝ, implying that the Pareto dominating SINC allocation is independent
of the welfare weights as in BT. This is because (P) has an equivalent representation in a recursive structure.
See the proof of Lemma 2.
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Since the �rst order condition is only local and not su¢cient even locally, so is (3). The next

lemma provides a su¢cient condition under which it replaces the global constraint (C2). In

addition, if the condition holds as the inequality almost everywhere, then that only one type

applies for each posted contract.

Lemma 3. Let (3) be satis�ed for almost every � and (C1) for all �. Then (C2) hold for all

�; �0 if �U 0 (�) � 0 for almost every �.

Notice that the zero pro�t condition (C3) can be written as

y (�) = (1� �)�1 [x (�)� �q (�)� 
� (� (�))] ; (4)

where � (�) � �=� (�) = 1=� (�), and that this is equivalent to

x (�) � �q (�) + 
� (� (�)) ; (5a)

�x (�) + (1� �) k (�) � �q (�) + 
� (� (�)) ; (5b)

with either (5a) or (5b) holding as an equality. Substituting (4) into (2) and (3) results in

�U (�) � � (� (�))S (q (�) ; �)� 
� (�) ; (6)

�U 0 (�) = � (� (�))
�
S� (q (�) ; �)� (1� �)�1 fx (�)� �q (�)g

�
+ (1� �)�1 
� (�) ; (7)

with (6) holding as the equality, respectively.

Now (P) can be restated as follows. Maximize the objective function subject to, for all �,

(5a), (5b), with either holding as an equality, (6), 0 � k (�) � �, and for almost every �, (7).

Lemma 2 allows us not to deal with the state-space constraint �U (�) � 0, establishing that it

never binds for any � in a solution. In addition, as shown in its proof, if the nonnegative pro�t

condition were introduced, it would be never slack. Hence the solution remains unchanged

by replacing the equality constraint with (6). As is usual, solve the relaxed problem obtained

by ignoring that (7) is not su¢cient. It will be shown that a resulting solution satis�es the

condition in Lemma 3.
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4.1 Full Information Benchmark

First describe the allocation that would arise under full information, the case in which banks

observe each applicant�s type, as a benchmark.

A full information allocation is a Pareto optimum and is characterized by ( �U?;�?) that

solves (P) without the incentive compatibility constraint (7). In a solution, the loan size and

the market tightness for each type is given by

(q? (�) ; �? (�)) = arg max
(q;�)2�R+

f� (�)S (q (�) ; �)� �
g ; 8�: (8)

Here an optimal choice of q does not depend on the level of �. Thus q? : D 7! R++ de�ned

before constitutes a solution. Given q?, �? : D 7! R++ is characterized by

�0 (�? (�))S? (�) = 
; 8�: (9)

Each borrower receives a loan that maximizes the expected social surplus of his project with

the socially optimal probability given matching technology and capacity expansion costs.

Plugging (C3) into (9), we see that

v (c? (�) ; �) =S? (�) = �0 (�? (�)) �? (�) =� (�? (�)) ; 8�;

where the elasticity in the right hand side measures banks� contribution to borrowers� prob-

ability of transaction. This demonstrates that, for all �, c? (�) endogenously satis�es the

famous Hosios condition (Hosios, 1990): entry is e¢cient if and only if agents� share of the

surplus from trade equals the elasticity. As pointed out by Rocheteau and Wright (2005),

under full information, the competitive search market structure internalizes the optimality

conditions in both intensive and extensive margins.

Lemma 4. De�ne �� such that S?(��) = 
. Let �� � �� if �q?(��) � � and �� � 1 if �q?(1) � �.

Then there exists unique �� 2 [��; 1] such that �q? (�) + 
� (�? (�)) > � if and only if � > ��.

For each type, the collateral requirement maximizes expected pro�t given interest rate,

while the interest rate yields zero expected pro�ts given collateral requirement. Notice that

16



we have restricted attention on the case all � > ��. By the zero pro�t condition, for � � ��,

x? (�) = �q? (�) + 
� (�? (�)) ; k? (�) � �q? (�) + 
� (�? (�)) :

The size of collateral requirement is arbitrary as long as k? (�) � x? (�), but a dispersion due

to this arbitrariness is immaterial. Assume that these payo¤ equivalent contracts are traded

in the same submarket. For � > ��, the zero pro�t condition yields

x? (�) = ��1 [�q? (�) + 
� (�? (�))� (1� �)�] > �q? (�) + 
� (�? (�)) ; k? (�) = �:

Here �� is a cuto¤ success probability. Assume that �0 < �� < �I in what follows. A borrower

with a success probability lower than the cuto¤ makes small investments and pays the riskless

rate and the spread due to bank�s administrative costs only. Limited commitment does not

matter for this kind of high-risk borrowers because they o¤er enough collateral to ensure

full loan repayment. However a borrower with a higher success probability makes larger

investments and puts up all of his collateralable wealth as collateral. Given collateralable

wealth, he has a positive probability of default. The interest rate spread includes a default

premium that compensates the bank for this risk.

A positive probability that a borrower fails to obtain a mutually bene�cial contract under

full information is not �pure credit rationing� but close to �redlining� (see Stiglitz and Weiss,

1987). Moreover this probability is socially optimal. However it might be noticeable that

interest rate spreads are a¤ected by such probabilities because interest rates compensate

banks for costs of creating all vacancies, though some of them fail to sell a contract.

4.2 Allocation under Asymmetric Information

To describe the equilibrium allocation, investigate the optimal control solution to (P) sepa-

rately over [�0; �� ] and (��; �I ] and then join the two solutions.

First consider the problem same to (P) but only with � 2 [�0; �� ]. Its solution is the same

to the part of solution to (P) over [�0; �� ] because (P) has the recursive structure previously

mentioned. The following proposition shows that, in a competitive search equilibrium, every
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type � � �� obtains the �rst-best contract with the socially optimal probability as it would

under full information. This is the same to the result in BT, though the full information

allocation as well as the cuto¤ probability is di¤erent.

Proposition 3. If ( �U;�) solves (P), ( �U (�) ;� (�)) = ( �U? (�) ;�? (�)) for all � 2 [�0; �� ].

Now consider the problem same to (P) but only with � 2 [��; �I ], denoted by (P), and let

( �U�;��) be its solution. Since type �� is the lowest one in (P) with the recursive structure, it is

awarded the �rst-best outcome as under full information: �U�(��) = �U?(��) and ��(��) = �?(��).

This implies that the initial state of (P) is equal to the optimal terminal state of the problem

with � 2 [�0; �� ]. As long as every type � � �� has no incentive to deviate, by the recursive

structure of (P), the part of its solution over [��; �I ] is the same to ( �U
�;��).

Lemma 5. If ( �U;�) solves (P), ( �U (�) ;� (�)) = ( �U� (�) ;�� (�)) for all � 2 (��; �I ].

Notice that the full information Pareto optimum cannot be achieved under asymmetric

information. In the allocation, every type � > �� deviated to the contract designed for some

higher type because for � > ��

U�̂(�; �) = � (�? (�)) [�fq (q
? (�) ; �)� �] q?0 (�) + [�0 (�? (�))S? (�)� 
] �?0 (�)

+ � (�? (�)) ��1 [�q? (�) + 
� (�? (�))� �] > 0:

As long as the limit of collateralization does not matter, banks can screen borrowers without

welfare loss by lending q? (�) at the interest rate with no default premium to a type � borrower

and asking for title to x? (�) of the borrower�s collateralable wealth in the event the project

fails. The limit does not matter, and such screening is possible, if and only if the borrower�s

collateralable wealth exceeds the collateral required for this, i.e., � � �q? (�) + 
� (�? (�)).

The remaining thing is to characterize ( �U�;��), solving the optimal control problem (P).

As a �rst step, the following lemma establishes that the repayment of every type � > �� in

the unsuccessful state equals the collateral in an equilibrium.

Lemma 6. In an optimal solution to (P), (5b) is binding over (��; �I ].
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Proposition 4. If ( �U;�) solves (P), then for every � 2 (��; �I ],

q (�) > q? (�) ; x (�) = ��1 [�q� (�) + 
� (�� (�))� (1� �)�] > x? (�) ; k (�) = �; (10)

and generically � (�) ? � (�), where � (�) satis�es

�0 (� (�))
�
S (q (�) ; �) + � (q (�) ; �)

�
�f� (q (�) ; �) + ��1�

	�
= 
: (11)

where � (q; �) � [�fq� (q; �)]
�1 [�� �fq (q; �)]. In addition, �U

0 (�) > 0 for all � 2 (��; �I ].

Regarding the intensive margin, the equilibrium contracts are not so much di¤erent from

those in BT without search frictions. The loan sizes and the collateral requirements are ex-

actly same to those in it, and the interest rates are changed only for zero pro�ts under the

matching technology and capacity expansion costs. For the reason same as under full infor-

mation, the low-risk borrowers, those with � > ��, puts up the maximum available collateral.

Then collateral cannot be used as a screening device under asymmetric information. How-

ever a contract specifying a suboptimally large loan in conjunction with a high interest rate

is relatively more attractive for a borrower with a higher type.16 Thus, banks sort borrowers

by o¤ering a set of such contracts, and a high type borrower receives a larger loan and pays

more interest than under full information.

A key �nding distinguished from BT, in which a randomized loan granting strategy does

not emerge, is the possibility of credit rationing in the extensive margin. De�ne �� (q; �)

such that �0 (�� (q; �))S (q; �) = 
, which indicates the e¢cient level of market tightness

given loan size q. Because q� (�) > q? (�) implies that �fq (q
� (�) ; �) < �, the condition (11)

yields �� (�) > �� (q� (�) ; �) for all � > ��. Together with competitive search, screening under

asymmetric information requires that not only borrowers should overinvest, but that banks

should create vacancies more than the e¢cient number under the overinvestment. However

such overinvestment lowers down the e¢cient level of vacancy creation: �� (q� (�) ; �) < �? (�)

16This is because, when fq� > 0 in the quasi-linear preference, the marginal rate of substitution between
investment and interest rate is increasing in the success probability �. That is, a borrower with a higher
type is willing to pay more for an incremental amount of investment. The sorting property of u stated in
the Appendix holds for this reason.

19



for all � since S (q� (�) ; �) < S (q? (�) ; �) in an equilibrium. Because the screening reduces

socially gains from contracts, it is e¢cient that banks do not create vacancies as much as

under full information. Clearly the vacancy creation in an equilibrium is less than under full-

information, i.e., �� (�) < �? (�), if and only if the latter channels a stronger e¤ect than the

former, and this situation can be regarded as pure credit rationing. In this case, if banks cut

down interests reducing loan sizes per borrower, the supply of credit would be enhanced in

the extensive margin, and it would be more e¢cient. Nevertheless this does not occur in an

equilibrium because banks screen borrowers to maximize pro�ts under hidden information.17

Precise analytical analysis for the e¤ects of changes in the model parameters is di¢cult

without a closed form solution. However, assuming the environment in which the e¤ects

on the loan sizes are relatively small, focus on changes in the market tightness. Then, the

condition (11) shows that a rise in banks� costs 
 as well as a fall in the value of collateralable

wealth � make the market more tight, lowering down the vacancy-applicant ratio �� (�) for

all �. This ampli�es the increase in interest rate spread x� (�) =q� (�)�� for every � due to the

direct e¤ect. The condition also shows that a fall in the productivity of matching technology,

i.e., decreases in both � (�) and �0 (�) for every �, has the same e¤ects. These results might

be important for understanding the occurrence of a credit crunch. For example, when banks

have more di¢culties in �nding quali�ed borrowers, the tightness of credit market may be

endogenously ampli�ed. As discussed in the introduction, the results also help to explain

small enterprises� limited access to bank �nance.

Another key �nding of this paper is that there can exist an equilibrium in which some

borrowers of the same type obtain di¤erent contracts. The following proposition establishes

the possibility of such contract dispersion.

Proposition 5. An optimal control trajectory is unique if fqq� � 0 but not in general. If

both �0 and �1 are optimal control trajectories, q0 (�) < q1 (�) implies that �0 (�) > �1 (�).

17The cost of screening is independent of the distribution of borrower types, whereas the collective bene�t
of screening depends on the distribution. Thus high type borrowers may collectively prefer to cross-subsidize
low type borrowers rather than take costly screening. However, any individual borrower would prefer a
contract that screens out all the lower types, and banks know this.
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Suppose that, for each type �, the arrival rate of loan o¤ers � (� (�)) were �xed at one,

or any exogenously given level, as in BT. Then the equilibrium payo¤ �U (�) only depends

on the surplus S (q (�) ; �), which is entirely determined by the loan size q (�) given �. Thus,

in the absence of extensive margin, there could not exist more than one optimal contract

since S is strictly decreasing on q > q?. However the competitive search market structure

allows that di¤erent combinations of loan size q (�) and market tightness � (�) in each margin

yields the same equilibrium payo¤. If both �0 and �1 are optimal control trajectories and

q0 (�) < q1 (�), contract (q0 (�) ; x0 (�) ; �) yields less gains from implementation for type

�.18 Nevertheless it can survive in the market with a higher probability of implementation:

�0 (�) > �1 (�). This is similar in spirit to wage dispersion in wage posting models with more

than one o¤er (e.g. Burdett and Mortensen, 1998) as well as price dispersion in the price

posting model of Curtis and Wright (2004). This result is noticeable because it provides an

account for a source of dispersion in the terms of loan other than heterogeneity of borrowers.

It also demonstrates the possibility that sunspots a¤ect the distribution of credit supply. As

discussed in the last section, multiple solutions to (P) does not only allow contract dispersion

in an equilibrium but also yields multiple equilibria. If borrowers obtain di¤erent contracts

in an equilibrium, there is an equilibrium in which borrowers obtain only one of them.

5 Concluding Remarks

This paper develops a model of a competitive search credit market under hidden information.

The novelty of the model is that it explicitly captures both intensive and extensive margins

of credit supply, and hence that it is appropriate to show how they jointly operate under

hidden information. Using the model, this paper sheds light on and explains the possibility of

pure credit rationing and contract dispersion among homogeneous borrowers. These are key

�ndings distinguished from the results of existing works on a competitive credit market under

18This highlights the role of capacity expansion costs. It states that � (�0 (�))S (q0 (�) ; �)� 
�0 (�) is less
than the other though S (q0 (�) ; �) > S (q1 (�) ; �). This is possible because banks ask more interests x0 (�)
that compensate 
� (�0 (�)) > 
� (�1 (�)) due to lower success probability. See the proof of Proposition 5.

21



hidden information. This paper also provides a theoretical account that links unproductive

banking as well as lack of collateral to the credit market tightness and interest rate spreads.

The analysis of this paper relies on simplifying assumptions, which preclude us from

analyzing dynamic general equilibrium e¤ects. However the model developed here could be

used as a module of a macroeconomic model, which properly take into account both intensive

and extensive margins of credit supply under asymmetric information. A straightforward way

for this is to use the two-sector framework in new monetarist economics (see Williamson and

Wright, 2011). It is obvious that not only total amount of credit supply but its distribution

matters for macroeconomic performance. Therefore such integration is important in studying

many central issues like monetary policy, credit cycles, and credit market regulation. Clearly

extending the work in this paper by introducing moral hazard as well as potential borrower�s

signaling is worthwhile for a more plausible model. Anyhow this paper can be considered as

a reasonable starting point.

Appendix

1 Properties of Preferences

First of all, it is obvious that both u : C �D 7! R and v : C �D 7! R are continuous. In

addition, C is nonempty and compact in (R3; k�k), where k�k is the Euclidean norm. Let

�C (�) � fc 2 C j u (c; �) � 0; v (c; �) � 
g

denote the set of contracts of which implementation with type � yields nonnegative gains for

both sides, and let N� (c) � fc
0 2 C j kc0 � ck < �g be the neighborhood of c with radius �.

Monotonicity: For every c 2 C, v (c; �) is increasing.

Proof. Notice that, for c = (q; x; k),

v (c; �) = x� �q � (1� �)max fx� k; 0g :

For each c 2 C, v (c; �) is constant if x � k, and it is strictly increasing otherwise.
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Local Nonsatiation: For any c 2 [�2D �C (�) and � > 0, there exists c
0 2 N� (c) such that

v (c0; �) > v (c; �) and u (c0; �) < u (c; �) for all �.

Proof. Take arbitrary � 2 D and c = (q; x; k) 2 �C (�). Then 0 < x < S? (�) since c 2 �C (�).

Thus, for any � > 0, there is �x > 0 that allows c0 = (q; x��x; k) 2 N� (c). This c
0 satis�es

the inequalities since u is strictly decreasing in x while v is strictly increasing in x.

Lemma 7. For any �, c 2 �C (�), and � > 0, there is c0 2 N� (c) such that u (c
0; �0) > u (c; �0)

for all �0 > � and u (c0; �0) < u (c; �0) for all �0 < �.

Proof. Take arbitrary � 2 D and c = (q; x; k) 2 �C (�). Consider c0 = (q +�q; x��x; k)

with �q > 0. Notice that �f (q +�q; �) � �f (q; �) is positive and is strictly increasing on

�. Since u is continuous and strictly decreasing in x, given �q, there exists �x > 0 such

that u (c0; �) = u (c; �). It is obvious that this c0 satis�es the inequalities, and that such �x

approaches 0 as �q approaches 0. Since c 2 �C (�) implies that q < �q (�) and 0 < x < S? (�),

there exists �q able to ensure that c0 2 N� (c) for any � > 0.

Sorting: For any �, c 2 �C (�), and � > 0, there exists c0 2 N� (c) such that u (c
0; �) > u (c; �)

and u (c0; �0) < u (c; �0) for all �0 < � such that c 2 �C (�0).

Proof. Take arbitrary pair (�; �0) 2 D2 such that �0 < � and c = (q; x; k) 2 �C (�0) � �C (�).

Once it is shown that there exists �00 2 (�0; �) such that u (c; �00) � 0, Lemma 7 completes

the proof since v (c; �0) � v (c; �00) � v (c; �) by the monotonicity. Since u is continuos, it is

obvious that such �00 exists in case that u (c; �0) > 0. If u (c; �0) = 0, its existence is ensured

by u� (c; �
0) > 0. Notice that u� (c; �) = f (q; �) + �f� (q; �) if x � k, and that u (c; �) = 0

yields u� (c; �) = �f� (q; �) + k=� otherwise.

2 Proof of Lemma 1

First notice that we can rewrite equilibrium condition (i) as: for every c 2 C, � (# (c)) �

p� (c), and � (# (c)) = p (c; �) if # (c) <1 and � (c; �) > 0 for some � 2 D.
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Take an arbitrary contract c 2 C, and �x it. Notice that there should exist some type

� such that � (c; �) > 0 since � (c; �) is a probability measure. Hence the condition implies

that # (c) =1 if p� (c) > 1. It also implies that, in case that p� (c) � 1, p� (c) = p (c; �) for

some � such that � (c; �) > 0, or # (c) =1, and hence � (# (c)) = p� (c). If p� (c) > 1, � (c; �)

is arbitrary and immaterial. Otherwise � (c; �) > 0 implies that p (c; �) = p� (c).

3 Proof of Lemma 2

For the standard program in Section 4 equivalent to (P), there exists mathematical theory

that proves the lemma directly (see, e.g., Weber, 2011). However, rather than verifying the

applicability of the theory, here it is proved by deriving the continuos type results as the

limit of the discrete type results in GSW.

Suppose that there exist only �nite number of borrowers� types as in GSW. For any given

� 2 R++, let �i � �0 + i� for i = 0; 1; � � � ; n (�), where n (�)� 1 < �I � �0 � n (�). Then

de�ne
�
�Ui; ĝi; ci; �i

	n(�)
i=0

by �Ui � �U (�i), ĝi � ĝ (�i), ci � c (�i), and �i � � (�i) for every i. In

this case, a Pareto dominating SINC allocation can be found by solving

(�P) max
fci;�ig

n(�)�1X

i=0

�Uiĝi�

subject to (C1)-(C4) for all �i; �j. The continuous type problem (P) is the limit of (�P) as �

approaches to 0 because

Z �I

�0

�U (�) ĝ (�) d� = lim
�!0

�

n(�)�1X

i=0

�U (�i) ĝ (�i) :

Notice that (�P) has an equivalent representation in the form of a nested sequence of smaller

optimization problems (see Spence, 1978). For any type i, consider a problem

(Pi) �Ui = max
ci2C[f?g;�i2�R+

� (�i) u (ci; �i)

subject to

� (�i) v (ci; �i) = 
; � (�i) u (ci; �j) � �Uj; 8j < i: (12)
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The larger problem (~P) of solving (Pi) for all i is equivalent to the problem (�P). Notice that

the solution will be unchanged as the �rst equality constraint in (12) is replaced by

� (�i) v (ci; �i) � 
 (13)

since (13) will never be slack. In addition, for all i, the optimal decision about �i in �R+ is

the same in R+ since �i = 1 violates the constraint (13). Therefore the problem (�P) as

well as (~P) is equivalent to (P) in GSW. Now one can use all the results in GSW as long as

their assumptions on preferences u and v hold for arbitrarily small �. The preferences in

our model satisfy this condition as shown above in the Appendix.

The existence of solution and the uniqueness of optimal state trajectory follow directly

from Lemma 1 and Proposition 3 in GSW. The assumption (1) guarantees that, for every �,

there exists c 2 C with u (c; �) > 0 and v (c; �) > 
. By Proposition 4 in GSW, this implies

that �U (�) > 0 for all � on the optimal state trajectory.

4 Proofs of Proposition 2

The following de�nition of competitive search equilibrium in the unrestricted model with

policy posting is a natural generalization of its de�nition in the restricted model with contract

posting. Let �p (c; �) denote the probability density function associated with �p (c; �).

De�nition 5. A competitive search equilibrium with revelation policies is a list of functions

f	p; #p;�p; �Ug, where 	p is a measure on a �-algebra of C with support C	p , #
p : C 7! �R+,

�p : C � BD 7! [0; 1], and �U : D 7! R+, that satis�es the following conditions:

(i) For every (�c; �) 2 C�D, Up (�c; �;#p) � �U (�) � maxĉ2C	p[f?g U
p (ĉ; �;#p), with equality

and u (�c (�) ; �) � 0 if #p (�c) <1 and �p (�c; �) > 0;

(ii) For every�c 2 C, � (�c;#p;�p) � 0, with equality if�c 2 C	p ;

(iii)
R
C	p
[�p (�c; �) =#p (�c)] 	p (d�c) � g (�) for every � 2 D, with equality if �U (�) > 0.

The proposition follows directly from the proof of Proposition 5 in GSW.
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5 Proof of Lemma 3

Assume that �U 0 (�) � 0 for almost every �. Since (P) has the recursive structure, it is enough

to show that there is no incentive to deviate to the contract designed for a higher type. See

the proof of Lemma 2. Suppose that there exists �0 > � such that U(�0; �) > U(�; �) for some

�. Then
R �0
�
U�̂(
~�; �)d~� > 0. The assumption implies that U�̂(

~�; ~�) � U�̂(
~�; �) � U�̂(�; �) for

almost every ~� 2 [�; �0], and hence that
R �0
�
U�̂(
~�; ~�)d~� > 0. This contradicts the �rst order

condition that U�̂(
~�; ~�) = 0 for almost every ~�.

6 Proof of Lemma 4

Since �? as well as q? is strictly increasing, it is obvious that

J (�) � �(�?(�))(�q?(�)� �) + �?(�)
 > 0

for all � > �� if �q?(��) � �, and that J (�) � 0 for all � if �q?(1) � �. In case that �q?(��) < �

and �q?(1) > �, lim�!�� J (�) < 0 since �? (�) ! 0 as � ! ��, and J (1) > 0. Since J is

strictly increasing, this implies that there exists unique �� 2 (��; 1) such that J (��) = 0.

7 Proof of Proposition 3

Taking � = �?, we have

U(�0; �) = � (�? (�0))S (q? (�0) ; �)� 
�? (�0) ; 8�; �0 2 [�0; �� ]:

For every �, (q? (�) ; �? (�)) is a solution to the maximization problem in (8). Thus, for any � 2

[�0; �� ], there cannot exist �
0 2 [�0; �� ] such that U(�

0; �) > U(�; �), and ( �U?;�?) satis�es the

global incentive compatibility constraints. Since the solution to the unconstrained problem

satis�es the constraints, it is the solution to the constrained problem.

8 Proof of Lemma 5

The only thing we need to prove is that any type � 2 [�0; �� ] has no incentive to deviate from

�?. Deviating to the contract designed for a type �0 > ��, the type � obtains

U(�0; �) = � (�? (�0))S (q? (�0) ; �)� 
�? (�0)
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if k? (�0) � x? (�0). Clearly, in this case, it has no incentive to deviate since (q? (�) ; �? (�)) is

a solution to the maximization problem in (8). If k? (�0) < x? (�0), the type � obtains

U(�0; �) = � (�? (�0)) [S (q? (�0) ; �)� (�0 � �) k? (�0)]� 
�? (�0) :

Thus it has no incentive to deviate to the contract designed for a type �0 > �.

9 Proof of Lemma 6

Suppose not, and let ( �U;�) be a solution such that, for some � > ��,

x (�) + (1� �) k (�) > �q (�) + 
� (� (�)) : (14)

Then (5a) holds as an equality for �, and this implies that

U(�0; �) = � (� (�0))S (q (�0) ; �)� 
� (�0) :

For the incentive compatibility, i.e. � 2 argmax�̂2D U(�̂; �), it must hold that q (�) = q? (�)

and � (�) = �? (�). But this contradicts the assumption because

x? (�) = �q? (�) + 
� (�? (�)) > � � k? (�)

for � > ��, whereas (14) implies that k (�) < x (�) if (5a) holds as an equality.

10 Proof of Proposition 4

First notice that, by Lemma 6, (7) becomes

�U 0 (�) = � (� (�))
�
f (q (�) ; �) + �f� (q (�) ; �)� ��1�q (�) + ��1k (�)

�
� ��1
� (�) (15)

� ' (q (�) ; � (�) ; k (�) ; �) :

Consider an optimal control problem

(�P) max
�U(�);q(�);�(�);k(�)

Z �I

��

�U (�) ĝ (�) d�

subject to, for all � 2 [��; �I ], (6), (15), 0 � k (�) � �, and the initial condition �U(��) = �U?(��).

The relaxed version of (P) consists of (�P) and (5b) holding as an equality.
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Letting �U be the state variable, � � (q; �; k) the vector of control variables, and & the

costate variable, Lagrangian for (�P) is

L
�
�U;�; &; �; �

�
= �Uĝ (�)+ &' (q; �; k; �)+�[� (�) [�f (q; �)� �q]�
�� �U ]+� (�� k) ; (16)

where � � (�; �) is the vector of multipliers. The Pontryagin maximum principle calls for

(i) maximality: for all �,

Lq = (�+ ��1&) [�fq (q; �)� �] + &�fq� (q; �) = 0; (17)

L� = (�+ ��1&) [�0 (�) f�f (q; �)� �qg � 
] + &�0 (�) [�f� (q; �) + ��1k] = 0; (18)

Lk = ��1&� (�)� � � 0; = 0 if k > 0; (19)

together with �; � � 0 and the complementary slackness conditions

�[� (�) f�f (q; �)� �qg � 
� � �U ] = 0; � (�� k) = 0;

(ii) adjoint equation:

�& 0 (�) = L �U = ĝ (�)� � (�) 8�; (20)

(iii) transversality: & (�I) = 0.

Let ( �U�;��) be a solution to (P). Notice that (�P) has an equivalent representation

max
�U(�);�(�)

Z �I

��

[� (� (�)) f�f (q (�) ; �)� �q (�)g � 
� (�)] ĝ (�) d�

subject to the same constraints but

� (� (�)) f�f (q (�) ; �)� �q (�)g � 
� (�) � �U (�) (21)

instead of (6). By rearranging (6), we see that L �U = ĝ (�)� � (�) is the Lagrange multiplier

for (21). Since L �U > 0 if and only if �U
� (�) < �U? (�), by the adjoint equation (20), & 0 (�) < 0

for all � 2 (��; �I ]. Together with the transversality condition, this implies that & (�) > 0 for

all � 2 [��; �I). In addition, L �U = ĝ (�) if and only if & (�) �U�0 (�) = 0 as well as �U� (�) < �U? (�).

If �U� (�) < �U? (�), & (�) > 0 implies that �U�0 (�) > 0 because (18) yields

�0 (�)
�
f (q; �) + �f� (q; �)� ��1�q + ��1k

�
� 
; = 0 if � = 0
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and � (�) > ��0 (�). Therefore � (�) > 0 for all � 2 [��; �I) and � (�I) = 0.

Since � (�) ; & (�) ; �U�0 (�) > 0 for all � 2 (��; �I), for every � 2 (��; �I ], �fq (q
� (�) ; �) < �

by (17) implies that q� (�) > q? (�), and � (�) > 0 by (19) implies that k� (�) = �. Together

with k� (�) = �, Lemma 6 yields x� (�) in (10), and combining (17) and (18) leads to the

condition (11). Though this characterizes a solution to the relaxed problem with a local

representation of the incentive compatibility constraint, Lemma 3 ensures that the solution

is globally incentive compatible.

11 Proof of Proposition 5

Take an arbitrary � 2 (��; �I ], and �x it. The condition for the uniqueness comes from the

condition (17). Since fqq < 0, �� �fq (q; �) is strictly increasing on q. Thus, given &; � > 0,

a loan size q that satis�es the condition is unique in case that fq� is decreasing on q.

Let q0 and q1 > q0 satisfy (17), and let �0 and �1 satisfy (11) given q0 and q1 respec-

tively. In principle, the relative size between the two levels of market tightness is arbitrary,

depending on the shapes of f and �. However, since the optimal payo¤s must be the same,

��U � J (S (q0; �) ; �0)� J (S (q1; �) ; �1) = 0;

where J (S; �) � � (�)S� 
�. Notice that the condition (11) with �fq (q; �) < � ensures that

J� = �0 (�)S � 
 < 0. In addition, JS � Sq < 0 since JS = � (�) > 0 and Sq < 0 for q > q?.

Thus ��U = 0 implies that �0 > �1.
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