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1. Introduction 

Electric power transformers have long lifetime, typically 30 - 40 years under normal operating 

conditions, due to their high level of reliability (Zhou 2013). Accordingly, researchers require 

long follow-up studies with certain observational constraints, which lead to left-truncation and 

right-censoring. Truncation and censoring are common in lifetime data as discussed in the 

books by Meeker and Escobar (1998) and Lawless (2003). Recently, Hong, Meeker and 

McCalley (2009) carry out lifetime analysis of electric power-transformer data in the US. 

Their lifetime data were left-truncated at the starting date of record keeping and 

right-censored at the ending date of the study. For this dataset, they propose likelihood 

inference and prediction analysis appropriately adjusted for truncation and censoring. 

The lognormal and Weibull distributions would be the two most relevant statistical 

distributions to model the electric power-transformer data. They have been extensively used 

to model lifetime data in the literature. Readers are referred to the books by Crow and 

Shimizu (1988) for the lognormal and by Bryan (2006) for the Weibull. They are often fitted 

to lifetime data after discriminating between the Weibull and lognormal distributions (e.g., 

Kundu and Manglick 2004; Emura and Wang 2010). 

The fitting of the Weibull distribution to the electric power-transformer data is considered 

in Hong et al. (2009). They propose a parametric likelihood analysis that properly adjusts for 

the sampling bias due to left-truncation and right-censoring. Their study provides a prediction 

analysis of the remaining lifetime of the power transformers. Zhou (2013) also considers the 

Weibull model for the power transformer data in the absence of truncation.  

The fitting of the lognormal distribution to the electric power-transformer data is 

developed by Balakrishnan and Mitra (2011). In their paper, the EM algorithm (EM) for 

fitting the lognormal distribution to the left-truncated and right-censored data is described. 

Under the same model, confidence intervals and prediction intervals are developed using the 

EM-based missing information principle (Balakrishnan and Mitra, 2013). Their simulations 
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show that the EM-based interval has correct coverage rates and is comparable to the intervals 

based on the observed information matrix and the parametric bootstrap. The EM is also 

developed under the Weibull distribution by Balakrishnan and Mitra (2012). The EM-based 

likelihood inference for the gamma and the generalized gamma distribution is developed in 

the discussion paper of Balakrishnan and Mitra (2014). The generalized gamma distribution 

includes both the Weibull and lognormal distributions as special cases, and hence it provides a 

unified framework for performing the EM.  

   The EM requires mathematical derivation of the expected log-likelihood (E-step) and its 

numerical maximization (M-step). In fact, the EM proposed by Balakrishnan and Mitra (2011, 

2012) is not simple as it requires some numerical approximations to the M-step. Nevertheless, 

the EM often provides stable results when appropriately used. Hence, it is important to clarify 

whether the EM offers better solution compared to the simpler Newton-Raphson algorithm. 

   Checking the adequacy of models is an important issue in parametric analyses. Hong et al. 

(2009) used a graphical model checking procedure to verify the Weibull assumption. However, 

they did not consider model selection among other candidate distributions. A recently 

published Ph.D. thesis of Mitra (2013) and the discussion paper of Balakrishnan and Mitra 

(2014) considered model selection via Akaike’s information criterion (AIC) and Bayesian 

information criterion (BIC). 

   The first objective of this paper is to make a comparison between the Newton-Raphson 

(NR) method and EM algorithm (EM) under the lognormal and Weibull distributions via 

simulations and real data analysis. For the Weibull distribution, we also propose a simplified 

NR (called one-dimensional NR), which will be a better alternative to the usual NR and EM. 

The second objective of this paper is to investigate Akaike's information criterion (AIC, 

Akaike, 1974) to select a suitable model among candidate models. The AIC allows one to 

compare several candidate models with different degree of freedoms and hence provides an 

objective criterion to select a model. During our study, we find that the application of AIC is 
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also discussed in the Ph.D. thesis of Mitra (2013) and the discussion paper of Balakrishnan 

and Mitra (2014). However, our work is conducted independently and hence supplements 

their work under different settings. In fact, the candidate models in our simulations are 

different from those in Mitra (2013) and Balakrishnan and Mitra (2014). 

The rest of this paper is organized as follows. Section 2 describes the data structure and 

the likelihood function. Section 3 introduces the Newton-Raphson and the EM algorithms. 

Section 4 defines AIC for model selection. Section 5 presents simulations to compare the NR 

and EM algorithms and to examine the performance of AIC. Section 6 analyzes the electric 

power transformer datasets. Section 7 concludes the paper. 

2. Likelihood construction with left-truncation and right-censoring 

In this section, we review the data structures and likelihood construction in the presence of the 

left-truncation and right-censoring as considered in Hong et al. (2009) and Balakrishnan and 

Mitra (2011, 2012). 

2.1 Left-truncated and right-censored data 

Data collected on electric power transformers typically involves lower and upper 

observational limits, which produces left-truncation and right-censoring respectively. In an 

example considered in Hong et al. (2009), the lifetime of the US power transformers are 

recorded from 1980 to 2008, a 28 year-period. The interval is still shorter than the average 

lifetimes of power transformers of 30 - 40 years under normal operating conditions. Ignoring 

censoring and truncation leads to sampling bias. 

   Figure 1 gives an illustration of truncation and censoring. For Case 1, the installation year 

of the machine is between 1980 and 2008, and the machine is still in service even after 2008. 

Hence, Case 1 is right-censored on 2008. For Case 2, the machine installed before 1980, and 

it fails between 1980 and 2008. Hence, Case 2 is left-truncated on 1980. For Case 3, the 
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machine is installed before 1980, and it still works after 2008. Hence, Case 3 is both 

left-truncated and right-censored. For Case 4, the installation year of the machine and the 

failure time of the machine are both before 1980. There is no data available on the lifetime for 

Case 4 as the machine is completely missed out of the sampling protocol. 

 

                               Case 3 

               

                    Case 2 

                                         Case 1 

                Case 4                

          

                      1980 (year)            2008 (year) 

Figure 1 Example for left truncated and right censored data 

2.2 Likelihood construction 

To construct the likelihood, we follow the parametric likelihood approaches of Hong et al. 

(2009) and Balakrishnan and Mitra (2011, 2012). Note that their likelihoods suitably adjust 

for the bias due to left-truncation and right-censoring. 

   Let X  be the original lifetime variable and )log( XT   be the log-transformed 

variable. For i-th machine, it  denotes the observed value for T  and ic  denotes the right- 

censored time. More precisely, for a machine still in service after 2008, ic  is the time 

between the year of installation and the censoring point of 2008 (Figure 2). Let 
L

ic  be the 

log-transformed right-censored time and i  be the censoring indicator, i.e., 

Installation year 

Censored 

Failed 



5 






.censorednot  is nobservatio  the if1

,censored is nobservatio  theif0
 

,

,
δi  

Let i  be the left-truncated time. More precisely, for a machine installed before 1980, i  is 

the time between the year of installation and the truncation point of 1980 (Figure 2). Let 
L

i  

be the log-transformed left-truncated time and iv  be the truncation indicator, i.e.,  






.truncatednot  isn observatio the if,1

,truncated isn observatio  theif,0
iv  

Further, let 1S  and 2S  be two index sets, where }1;{1  iiS   is the set of machines 

installed after 1980, and }0;{2  iiS   is the set of machines installed before 1980. 

 

                   Case3           3c  

3     

Case 2                         1c  

  2              Case 1 

                

                   1980 (year)          2008 (year) 

Figure 2 An example for truncated time )( i  and censored time )( ic . 

 

Example 1: Lognormal distribution 

We introduce the likelihood under the lognormal distribution. Assume that the 

log-transformed lifetime XT log  follows a normal distribution with mean   and 

standard deviation 0 . Then, the likelihood function is 

 

        

Installation year 

Censored 

Failure 
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Example 2: Weibull distribution 

We introduce the likelihood under the Weibull distribution with the density of X , 
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where   is the scale and   is the shape parameter. The likelihood function is 
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Example 3: Exponential distribution 

We introduce the likelihood under the exponential distribution, which is a special case of the 

Weibull distribution with 1 . Therefore, the log-likelihood function is given by 
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In the following, we will use the log-likelihood of each distribution to derive the MLE. 

3. Newton-Raphson and EM algorithms 

3.1 Newton-Raphson algorithm 

If the first-order and second-order derivatives of the log-likelihood are available, one can 

maximize the likelihood function using the Newton-Raphson (NR) method. The NR is 

suitable to the present problem since all the required derivatives are analytically available. 

Example 1: Lognormal distribution 

The formulas for the first- and second-order derivatives of the log-likelihood with respect to 

the parameters are available in Balakrishnan and Mitra (2011). The MLE of ( ,  ) is 

obtained by sequentially updating the estimate with 


























 





),(

),(
),(

2

11

1

1

kk

kk

kkf

k

k

k

k

f

f
J











, 
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The iteration continues until   || 1 kk  and   || 1 kk , for some pre-fixed 0 . 

We set 001.0  as the stopping criterion for all the simulations. 

Remark I: Balakrishnan and Mitra (2011) do not study the numerical performance of the NR. 

Instead, they compare their EM with the Fisher scoring algorithm. 
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Example 2: Weibull distribution 

The first-order derivatives of the log-likelihood are given by 
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Importantly, the equation 0/),(log  L  leads to an explicit solution, 
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Therefore, given )(ˆ kk   , one can obtain a one-dimensional estimating function 

0/),(log)(   kLf  for  . We propose a one-dimensional NR to obtain ̂  with 
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The iteration stops if   || 1 kk , for some 0 , where we set 001.0  for all the 

simulations. The MLE of ̂  is explicitly obtained after finding ̂ . A similar procedure in 

the absence of truncation is proposed by Zhou (2013). 

Remark II: Although Balakrishnan and Mitra (2012) compare their EM with the NR, their NR 

is the usual two dimensional NR using R maxNR routine for their simulations. We rather 

propose the present one-dimensional NR due to its simplicity. □ 
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Example 3: Exponential distribution 

Since the exponential distribution is a special case of the Weibull distribution with 1 , we 

immediately find the solution to 0/)(log  L  as 

.

))(1(

)1(ˆˆ

1

11












n

i

i

n

i

ii

n

i

i vx




  

There is no need to use the NR. However, the second derivative of the log-likelihood is still 

useful to confirm that the solution ̂  is indeed the maximum of the likelihood by 

0/)ˆ(log 22  L  (Appendix I). □ 

3.2 EM algorithm 

In this section, we briefly introduce the EM algorithm proposed by Balakrishnan and Mitra 

(2011, 2012). Let  ),...,,( 21 ntttt  be the complete log-transformed lifetimes. Since some of 

it ’s are censored and hence not observed exactly,   ),...,,( 21 nδ  and 

 ),...,,( 21 nyyyy  are observed data. Let  ),( θ  be parameters to be estimated. 

Example 1: Lognormal distribution 

The complete data log-likelihood (without constant terms) is 

.1log)1(
2

)(
log),(log

1 1
2

2

 
  


















 








 


n

i

n

i

L

i
i

i
c v

t
nL





θt  

The E-step calculates the conditional expectation of the complete data log-likelihood 

],|),(log[),( δyθtθθ θ ck LEQ
k

 . 

The M-step performs the maximization ).,(maxarg1 kk Q θθθ
θ

  

Balakrishnan and Mitra (2011) suggest a numerical approximation either by a Taylor 

expansion (EM1) or EM gradient algorithm (EM2) for the M-step. The iterations continue 
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until   || 1 kk  and   || 1 kk  for 001.0  as specified for simulations. □ 

Example 2: Weibull distribution 

Let )log(    and  /1 , where   is the scale parameter and   is the shape 

parameter as before. The complete data log-likelihood (without constant terms) is 

 
 








 
















 







 


n

i

n

i

L

i
i

ii
c v

tt
nL

1 1

exp)1(explog),(log







θt . 

The formula of the conditional expectation of the complete data log-likelihood ),( kQ θθ  is 

a complicated nonlinear function as given explicitly in Balakrishnan and Mitra (2012). They 

suggest a linear approximation based on the EM gradient algorithm. The MLE is obtained by 

repeatedly calculating ).,(maxarg1 kk Q θθθ
θ

  □ 

4. Model selection 

Akaike's information criterion or AIC (Akaike, 1974) is a measure of the relative 

goodness-of-fit for a given model penalized by the number of parameters in the model. In 

particular, AIC is given by kLAIC 2ˆlog2  , where k  is the number of unknown 

parameters in the model and L̂  is the maximized value of the likelihood function for the 

fitted model. One selects the model with the minimum AIC value. 

Another commonly used method for model selection is the Bayesian information criterion 

or BIC (Schwarz, 1978) given by nkLBIC logˆlog2  , where n  is the sample size. 

   Although, AIC and BIC are both simple to apply, their empirical performances are often 

different. A comparison of AIC and BIC is given by Burnham and Anderson (2002). In the 

biological and social sciences and medicine, they argue that the AIC-type criteria are 

reasonable for the analysis of empirical data. BIC might find use in some physical sciences 

where a simple true model exists and where sample size is quite large. They recommend AIC 
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for general use in the model selection. It is well known that AIC is minimax-rate optimal for 

estimating the regression function, and BIC is consistent in selecting the true model (Yang, 

2005). In other words, AIC selects the best fitted model and BIC selects the true model. 

   For a given data, we do not know the true model and even do not know whether the true 

model belongs to our candidate models or not. Therefore, we suggest AIC as a general way 

for model selection in order to find the best fitted model. 

5. Simulations 

5.1 Simulation design 

We adopt the simulation design of Balakrishnan and Mitra (2011). We generate the 

installation years under the fixed percentage of truncation at 30 or 60%. The set of installation 

years are split into two parts: (1960-1979) and (1980-1995). Then, the installation years were 

simulated according to the sampling probabilities on Figure 3. For example, suppose that the 

sample size is n 100, and the percentage of truncation is 30%. Since the truncation year is 

fixed at 1980 as in Hong et al. (2009), we generate the installation years that follow the 

probability of each year from the truncated part of (1960-1979) with 30 sample sizes, and the 

from un-truncated part of (1980-1995) with other 70 sample sizes (Figure 3). 

Divide installation years into truncated and un-truncated cases 

(1960-1979); Truncated part 

Year 1960 1961 1962 1963 

Probability 0.1 0.1 0.1 0.1 

Year 1964 1965 1966~1979 

Probability 0.1 0.1 0.4/14 (each) 
 

(1980-1995); Un-truncated part 

Year 1980 1981 1982 1983 

Probability 0.15 0.15 0.15 0.15 

Year 1984 1985~1995 

Probability 0.15 0.25/11 (each) 
 

Figure 3 Sampling probabilities for generating the installation years. 
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Then the lifetimes of the machines, in years, are simulated from lognormal, Weibull or 

exponential distributions. Adding these lifetimes to the corresponding installation years, we 

obtains the failure years of the machines. If the failure year of a machine exceeds 2008, the 

machine is censored, where 2008 is the fixed censoring point. 

   There are some remarks to notice. For the left-truncated machines, if the year of failure is 

before 1980, one cannot detect the machine (Case 4 in Figure 1). Therefore, if the year of the 

failure is before 1980, we ignore this machine, and generate a new one with the new 

installation year and lifetime. The sample sizes used in our simulations are n 50, 100, and 

200. All the simulation results are based on 1000 Monte Carlo runs. We set the stopping 

criterion 001.0  for all the simulations for both NR (Newton-Raphson) and EM (EM 

algorithms). 

5.2 Results under the lognormal distribution 

The lifetimes of the machines are simulated from the lognormal distribution with ),(   

being (3.5, 0.5) or (3.0, 0.2), the same values as Balakrishnan and Mitra (2011). We compare 

the three algorithms, namely EM1, EM2, NR, where EM1 corresponds to EM algorithm 

approximating the hazard function by a Taylor expansion, EM2 corresponds to the EM 

gradient algorithm, and NR corresponds to the Newton-Raphson method. The sample mean 

and sample standard deviation of 
iy ’s are used as initial values for   and  , respectively. 

   Table 1 compares the results of the three different methods. Overall, the three methods 

produce almost unbiased results and have small MSE. As the sample size increases, the bias 

and the MSE tend to decrease. This implies that the MLE obtained by the three methods all 

work well and the three methods are quite comparable in terms of the bias and MSE. However, 

the average number of iterations in the NR is smaller than both EM1 and EM2. This quick 

convergence may be regarded as the advantage of the NR over EM1 and EM2. 

Under a different setting from Table 1, we find that occasional un-convergence occurs 
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especially for the NR under small sample sizes and high censoring percentages. In the 

following we pick up such a case. 

Table 2 gives the separate simulation results under small sample sizes and high censoring 

percentage. It can be seen that the NR sometimes produces un-convergence. In spite of the 

problem in the NR, the EM1 always converges. Although the percentages of un-convergent 

runs in the NR are quite small, the problem may still occur as many engineering applications 

have small sample sizes with high censoring percentages. 

   Table 3 shows the results for the EM1 with n 50, where the NR and EM2 occasionally 

fail to converge. We see that the EM1 always converges and has reasonable performance for 

the bias and MSE. Therefore, under this configuration, only the EM1 works properly. 

   From Tables 1-3, it can be concluded that, for moderate samples, the EM1, EM2, and NR 

perform very similarly in terms of the bias and MSE. However, the NR method converges 

more quickly than the EM1 and EM2. Nevertheless, under small sample sizes and high 

percentage of censoring, EM1 is the only one reliable method. 

[ Insert Tables 1-3 ] 

5.3 Results under the Weibull distribution 

The lifetimes of the machines are simulated from the Weibull distribution with ),(   being 

(35, 3) and (40, 3), which corresponds to ),(   = (3.55, 0.33) and (3.69, 0.33), 

respectively. For the Weibull distribution, we denoted T  as the log-transformed lifetime 

variable which follows an extreme value distribution with parameters   and  . Then 

 )E( T  and 6/)Var( 22T , where 5772.0  (approximately) is Euler’s 

constant. Accordingly, we choose the initial values ),( 00   such that 

00
1

/  


ny
n

i

i  and 6/)1/()( 2
0

2

1

2 


n

i

i nyy . 

   Table 4 compares the performance of the NR and EM in terms of the bias, MSE, and 
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average number of iterations until convergence. It can be observed that the bias and MSE are 

very close to zero for both the NR and EM. Hence the accuracy of the EM and NR is virtually 

the same. Also, as the sample size increases, the MSE decreases for both methods. A 

remarkable difference is that the NR takes fewer steps until convergence than the EM. Unlike 

the lognormal distribution, the one-dimensional NR always converges under the Weibull 

distribution even for the small sample sizes (n = 50) and high censoring percentage (66.3%). 

[ Insert Tables 4 ] 

5.4 Model selection performance 

We examine the model selection performance of AIC. For instance, if the data is simulated 

from lognormal distribution, the MLEs of the three models (lognormal, Weibull and 

exponential) are calculated, and then AICs are computed under the three models. Finally, we 

select the model that has the smallest AIC among the three. In this case, one may expect that 

AIC is the smallest with the lognormal distribution. 

   Table 5 gives the model selection performance of AIC when the data is simulated from the 

lognormal distribution. As expected, the percentage that the lognormal is selected is higher 

than the other two. The result is consistent with the observation that the average AIC 

calculated under the lognormal distribution is the smallest among the three distributions. 

   Table 6 shows the performance of AIC when the data is generated from the Weibull 

distribution. Again, the percentage of selecting the Weibull model is the highest and the 

average AIC calculated under the Weibull model is the smallest among the three distributions. 

It should be noted that the mean lifetimes of the data simulated form the lognormal and 

Weibull distributions are both near 30. Therefore, we choose the mean parameter   of the 

exponential distribution as 30. Table 7 shows the performance of AIC when the data is 

simulated from the exponential distribution. As expected, the percentage of selecting the 

exponential distribution is the highest and the average AIC is smallest under the exponential 
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distribution among the three distributions. 

From Tables 5-7, we find that AIC can appropriately identify the correct model and the 

percentage of choosing the correct model increases as the sample size increases. Therefore, 

the model selection via AIC seems to have a model selection consistency.  

[ Insert Tables 5-7 ] 

6. Data analysis 

The power transformer lifetime data consist of 710 observations with 62 failures from 

manufactures (Hong, et al. 2009). Although the original data is not available, their paper 

provides a systematic subset of the data containing 286 observations with 39 failures, which is 

described in Appendix II. 

Table 8 shows the successive steps of iterations of the NR and EM (EM1 and EM2) for 

fitting the lognormal distribution. We find that the NR diverges at the nd2  iteration step. The 

high censoring percentage (86.4%) explains this phenomenon as the NR occasionally diverges 

under small sample sizes and high censoring percentage in the simulations (Section 5). On the 

other hand, the two EM algorithms converge and their estimates are very close to one another. 

The EM1 converges more quickly than the EM2 does. In all cases, the initial values for the 

parameters   and   are taken as the sample mean and sample standard deviation of 
iy ’s . 

Now, we reveal the detailed behavior of convergence using the EM and NR from Figure 4. 

Obviously, the NR moves a wrong way while EM gradually moves to the maximum of the 

likelihood. This may be because NR tends to have a big leap in one iteration step. While the 

big leap accelerates the convergence speed, it can increase the chance of divergence. 

  Based on the dataset, we estimate the parameters of the lognormal, Weibull, and 

exponential distributions and then compute AIC for the respective models. The resultant AIC 

values are 470.04 (lognormal), 472.29 (Weibull) and 470.67 (Exponential). Therefore, we 

choose the lognormal distribution to be the suitable model for this data.  



16 

[ Insert Table 8 ] 

 

 

  

Figure 4 The directions of convergence using EM algorithm and NR (Newton-Raphson) 

method. The EM algorithm converges to the maximum while the NR algorithm diverges. 

7. Conclusion and discussion 

The first objective of this paper is to compare the performance of the EM algorithm and 

Newton-Raphson method based on the left-truncated and right-censored data. We summarize 

the highlights of our finding as follows: 

 For the lognormal distribution, when the sample sizes are small and censoring percentage 

is high, the Newton-Raphson occasionally fails to converge. On the other hand, the EM 

algorithm with the approximation by a Taylor expansion still converges. 

 The Newton-Raphson converges more quickly than the EM when both converge. 

 The transformer lifetime data analysis demonstrates the real case where the EM 

algorithm converges but the Newton-Raphson diverges. 
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 For the Weibull distribution, the proposed one-dimensional Newton-Raphson provides 

faster convergence speed than the EM algorithms in any circumstance and the two 

algorithms converge to the virtually same limit. Therefore, the EM algorithm appears to 

have little advantage over the one-dimensional Newton-Raphson under the Weibull. 

Although our comparison between the NR and EM algorithms is based on the 

left-truncated and right-censored data, our conclusion (EM is better for lognormal; NR is 

better for Weibull; NR is faster when it converges) may be generalized to other data structures 

that use EM algorithms for censored data. Obviously, there are many papers that utilize the 

EM algorithms for handling censored data. For instance, Ng, Chan, and Balakrishnan (2002) 

used EM algorithms to determine the maximum likelihood estimates of the lognormal and 

Weibull distributions when data are progressively Type II censored. Recently, Fan and Wang 

(2011) and Balakrishnan and Pal (2013) develop EM algorithms for the Weibull analysis 

under very general competing risks structures. Since the likelihood in their paper seems to be 

twice differentiable, the NR method may still apply. However, it is less clear to us whether our 

one-dimensional NR method is appropriate or not for such complicated data structure. 

The second objective of this paper is to investigate Akaike's information criterion (AIC) 

for model selection. In the simulations, we have confirmed that AIC can correctly identify the 

true model among the candidate models. In addition, when the sample size gets large, the 

percentage of choosing the correct model increases. Therefore, AIC exhibits model selection 

consistency. Note that Barakrishnan and Mitra (2014) also consider AIC as well as BIC as a 

model selection tool. Our candidate models in the simulations are exponential, Weibull and 

lognormal distributions while those in Barakrishnan and Mitra (2014) are Weibull, lognormal, 

gamma, and generalized gamma distributions. Hence, our paper provides additional support 

for the performance of AIC under different simulation settings. 

In future work, one may not only consider AIC for distribution choice, but also for 
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variable selection and grouping. For example, Hong et al. (2009) consider a regression model 

that includes manufacture ID, insulation class, and cooling system as explanatory variables. It 

is possible to apply AIC to select optimal sets of explanatory variables, thought the numerical 

performance remains to be studied. One can also use AIC for grouping. Hong et al. (2009) 

first split the sample into “Old” and “New” groups, where the Old group mostly consists of 

truncated samples and the New group mostly consists of un-truncated samples. Then, they fit 

a Weibull model with different shape and scale parameters between the two groups. One may 

apply AIC to see whether this split results in a better fit. It is interesting to point out that the 

different parameters due to truncation can be associated with the concept of “dependent 

truncation” [see Emura and Wang (2012) and references therein; Bakoyannis and Touloumi, 

2011]. This implies that truncation has some information about the lifetime. It is also 

interesting to consider the effect of “dependent censoring” [see Emura and Chen (2014) and 

references therein]. How to incorporate the dependent truncation/censoring information in 

model selection of power transformer lifetimes is an interesting topic for further investigation. 
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Appendix I: Confirming that ̂  is indeed the MLE 

Under the exponential distribution, the solution to the likelihood equation 

0/)(log  L  is 
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Now we verify that the solution is indeed the maximum of the likelihood function by 
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The last inequality holds since iiii vx  )1(   for all i . 

Appendix II: The subset of data provided by Hong, Meeker, and McCalley (2009) 

Table A1 is obtained by reading off numerical values from Fig. 1 of Hong, et al. (2009).  
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Table 1 

Bias (B), mean square error (MSE), average number of iterations (AI) for the lognormal 

distribution using three different methods (EM1, EM2, and NR) in 1000 Monte Carlo 

simulations. 

),(   Trun.(%) 

Cen. (%) 

Method )ˆB(   )ˆB(  )ˆMSE(   )ˆMSE(  AI 

n 100        

(3.5, 0.5) 30; 62.3 EM1 0.00001 0.00028 0.00508 0.00445 14.0 

  EM2 -0.00033 -0.00001 0.00507 0.00445 17.5 

  NR 0.00216 0.00260 0.00517 0.00449 7.0 

 60; 51.1 EM1 0.00703 -0.00102 0.00431 0.00363 10.3 

  EM2 0.00662 -0.00134 0.00430 0.00362 13.5 

  NR 0.00772 0.00026 0.00437 0.00364 6.4 

(3.0, 0.2) 30; 17.4 EM1 -0.00103 -0.00134 0.00047 0.00025 3.9 

  EM2 -0.00110 -0.00150 0.00047 0.00025 4.3 

  NR -0.00010 -0.00136 0.00047 0.00025 3.9 

 60; 10.1 EM1 0.00107 -0.00142 0.00054 0.00025 3.7 

  EM2 0.00096 -0.00140 0.00054 0.00025 3.7 

  NR 0.00099 -0.00135 0.00054 0.00025 3.5 

n 200        

(3.5, 0.5) 30; 62.3 EM1 -0.00052 -0.00128 0.00256 0.00201 13.9 

  EM2 -0.00084 -0.00155 0.00255 0.00201 17.4 

  NR 0.00160 0.00103 0.00261 0.00202 7.0 

 60; 51.1 EM1 0.00009 -0.00274 0.00188 0.00173 10.2 

  EM2 -0.00031 -0.00306 0.00188 0.00173 13.3 

  NR 0.00072 -0.00153 0.00190 0.00173 6.3 

(3.0, 0.2) 30; 17.4 EM1 0.00036 -0.00037 0.00023 0.00012 3.9 

  EM2 0.00028 -0.00054 0.00023 0.00012 4.2 

  NR 0.00038 -0.00039 0.00023 0.00013 3.9 

 60; 10.1 EM1 0.00099 -0.00055 0.00024 0.00013 3.7 

  EM2 0.00087 -0.00052 0.00024 0.00013 3.6 

  NR 0.00089 -0.00047 0.00024 0.00013 3.4 

Trun. = Truncation percentage (%); Cens. = Censoring percentage (%); 

EM1 = the EM algorithm method approximating the hazard function by the Taylor expansion; 

EM2 = the EM gradient algorithm; NR is the Newton-Raphson method. 
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Table 2 

The percentage of unconvergence for the lognormal distribution under three different methods 

(EM1, EM2, and NR) in 1000 Monte Carlo simulations. 

Method ),(   Sample size Truncation (%) Censoring (%) Unconvergence (%) 

EM1 (3.5, 0.5) 50 
30 

60 

62.3 

51.1 

0 

0 

  100 
30 

60 

62.3 

51.1 

0 

0 

EM2 (3.5, 0.5) 50 
30 

60 

62.3 

51.1 

0.1 

0 

  100 
30 

60 

62.3 

51.1 

0 

0 

NR (3.5, 0.5) 50 
30 

60 

62.3 

51.1 

1.9 

0.5 

  100 
30 

60 

62.3 

51.1 

0.2 

0 

Unconvergence (%) = 100 (the number of un-convergent runs)/1000; 

EM1 = the EM algorithm method approximating the hazard function by the Taylor expansion, 

EM2 = the EM gradient algorithm, 

NR = the Newton-Raphson method. 

 

Table 3 

Bias (B), mean square error (MSE), average number of iterations (AI) for the lognormal 

distribution under the EM1 method for a sample size of 50 in 1000 Monte Carlo simulations. 

),(   Trun.(%); 

Cen. (%) 

Method )ˆB(   )ˆB(  )ˆMSE(   )ˆMSE(  AI 

n 50        

(3.5, 0.5) 30; 62.3 EM1 0.00235 -0.00594 0.01038 0.00802 14.17 

 60; 51.1 EM1 0.00372 -0.00712 0.00802 0.00713 10.33 

(3.0, 0.2) 30; 17.4 EM1 0.00141 -0.00254 0.00089 0.00050 3.97 

 60; 10.1 EM1 0.00102 -0.00248 0.00103 0.00052 3.77 

EM1 = the EM algorithm method approximating the hazard function by the Taylor expansion. 
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Table 4 

Bias (B), mean square error (MSE), and average number of iterations (AI) for the Weibull 

distribution under two different methods (EM and NR) in 1000 Monte Carlo simulations. 

),(   Trun. (%); 

Cens. (%) 

Method )ˆB(   )ˆB(  )ˆMSE( 
 

)ˆMSE(  AI 

n 50        

(3.55, 0.33) 30; 56.8 EM -0.00414 -0.00848 0.00569 0.00333 21.8 

  NR 0.00028 -0.00610 0.00585 0.00333 5.3 

 60; 42.3 EM -0.00321 -0.00125 0.00415 0.00310 12.8 

  NR -0.00149 -0.00037 0.00421 0.00310 4.7 

(3.69, 0.33) 30; 66.3 EM -0.00722 0.00957 0.00463 0.00433 33.1 

  NR 0.00114 -0.00002 0.00471 0.00442 6.0 

 60; 53.3 EM -0.00328 -0.00244 0.00528 0.00451 19.5 

  NR 0.00055 0.00013 0.00546 0.00459 5.0 

n 100        

(3.55, 0.33) 30; 56.8 EM -0.00474 -0.00308 0.00274 0.00187 21.4 

  NR -0.00053 -0.00076 0.00279 0.00188 5.3 

 60; 42.3 EM -0.00309 -0.00438 0.00196 0.00164 12.5 

  NR -0.00143 -0.00323 0.00199 0.00165 4.7 

(3.69, 0.33) 30; 66.3 EM -0.00878 -0.00764 0.00390 0.00220 32.1 

  NR -0.00096 -0.00350 0.00402 0.00220 5.9 

 60; 53.3 EM -0.00204 -0.00111 0.00244 0.00175 19.2 

  NR 0.00162 0.00140 0.00253 0.00178 5.0 

n 200        

(3.55, 0.33) 30; 56.8 EM -0.00478 -0.00532 0.00147 0.00082 21.1 

  NR -0.00069 -0.00305 0.00149 0.00081 5.3 

 60; 42.3 EM -0.00220 -0.00158 0.00101 0.00079 12.4 

  NR -0.00058 -0.00044 0.00102 0.00080 4.8 

(3.69, 0.33) 30; 66.3 EM -0.00538 -0.00362 0.00208 0.00111 31.3 

  NR 0.00233 0.00055 0.00217 0.00112 5.8 

 60; 53.3 EM -0.00443 -0.00475 0.00124 0.00102 18.9 

  NR -0.00088 -0.00232 0.00127 0.00102 5.0 

Trun. = Truncation percentage (%); Cens. = Censoring percentage (%) 

EM = the EM algorithm 

NR = the Newton-Raphson method 
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Table 5 

The percentage of the model selected by AIC and the average of AIC when the data is 

simulated from the lognormal distribution with ),(   = (3.5, 0.5). 

Truncation (%); 

Censoring (%) 
Sample size 

Percentage (%)   Average AIC 

LN WB EP   LN WB EP 

30; 62.3 n 50 76.9 20.4 0  172.2 173.8 190.6 

 n 100 86.0 14.0 0  344.4 347.6 381.4 

 n 200 91.6 8.4 0  684.9 691.3 759.7 

60; 51.1 n 50 79.9 20.1 0  216.6 218.2 232.9 

 n 100 85.6 14.4 0  431.5 434.6 465.3 

 n 200 92.4 7.6 0  860.8 866.7 928.1 

Note: LN = lognormal; WB = Weibull; EP = Exponential; 

We select the model that has the smallest AIC. 

 

Table 6 

The percentage of the model selected by AIC and the average of AIC when data is simulated 

from the Weibull distribution with ),(   = (3.55, 0.33). 

Truncation (%); 

Censoring (%) 
Sample size 

Percentage (%)   Average AIC 

LN WB EP   LN WB EP 

30; 56.8 n 50 33.0 67.0 0  193.0 191.1 214.1 

 n 100 17.9 82.1 0  383.3 378.7 424.0 

 n 200 8.5 91.5 0  763.8 753.7 847.3 

60; 42.3 n 50 31.6 68.4 0  240.3 238.0 262.4 

 n 100 17.5 82.5 0  481.7 475.9 526.0 

 n 200 7.2 92.8 0  959.1 948.2 1049.1 

Note: LN = lognormal; WB = Weibull; EP = Exponential; 

We select the model that has the smallest AIC. 
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Table 7 

The percentage of the model selected by AIC and the average of AIC when the data is 

simulated from the exponential distribution with   =30. 

Truncation (%); 

Censoring (%) 
Sample size 

Percentage (%)   Average AIC 

LN WB EP   LN WB EP 

30 ; 43.9 n 50 19.0 11.3 69.7  250.8 249.2 248.3 

 n 100 13.9 12.2 73.9  503.6 499.3 498.3 

 n 200 8.7 12.8 78.5  989.2 967.3 966.8 

60; 41.6 n 50 22.0 10.5 67.5  260.0 258.7 257.7 

 n 100 17.6 11.8 70.6  518.3 515.0 514.0 

 n 200 9.0 12.2 78.8  1036.4 1028.3 1027.3 

Note: LN = lognormal; WB = Weibull; EP = Exponential; 

We select the model that has the smallest AIC. 

 

Table 8. 

The successive steps of iterations of the EM algorithms and  

Newton-Raphson (NR) method for the lognormal distribution. 

EM1   EM2   NR 

Step )ˆ,ˆ(     Step )ˆ,ˆ(     Step )ˆ,ˆ(   

1 (3.065, 0.968)  1 (3.065, 0.968)  1 (3.065, 0.968) 

2 (3.675, 1.209)  2 (4.255, 0.659)  2 (13.156,-3.395) 

3 (4.015, 1.292)  3 (4.196, 0.769)    

4 (4.221, 1.339)  4 (4.164, 0.873)    

5 (4.355, 1.379)  5 (4.161, 0.966)    

6 (4.446, 1.418)  6 (4.182, 1.045)    

            

45 (4.961, 1.875)  61 (4.957, 1.872)    

46 (4.962, 1.876)  62 (4.959, 1.873)    

47 (4.963, 1.877)  63 (4.960, 1.874)    

48 (4.964, 1.878)  64 (4.961, 1.875)    

EM1 = the EM algorithm method approximating the hazard function by the Taylor expansion; 

EM2 = the EM gradient algorithm; NR is the Newton-Raphson method. 
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Table A1. 

The systematic subset of the transformer lifetime data provided by Hong, Meeker, and 

McCalley (2009). (Unit: years). 

Number of 

machines 

Truncation 

indicator 

Truncation 

time 

Lifetime Censoring 

indicator 

Censoring 

time 

2 

14 

23 

2 

10 

10 

9 

8 

2 

2 

5 

3 

2 

3 

5 

2 

6 

2 

3 

3 

8 

1 

1 

2 

1 

1 

2 

2 

11 

16 

1 

3 

16 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

1 

0 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

7 

* 

14 

* 

* 

* 

* 

* 

4 

14 

10 

14 

10 

12 

12 

5 

7 

12 

22 

12 

1 

3 

4 

5 

6 

8 

10 

11 

12 

13 

14 

15 

16 

17 

19 

20 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

35 

36 

37 

38 

40 

1 

0 

0 

1 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

0 

1 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

0 

0 

1 

1 

0 

* 

3 

4 

* 

6 

8 

10 

11 

* 

* 

* 

* 

* 

* 

19 

* 

22 

23 

24 

25 

26 

* 

* 

* 

* 

* 

* 

* 

35 

36 

* 

* 

40 
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Number of 

machines 

Truncation 

indicator 

Truncation 

time 

Lifetime Censoring 

indicator 

Censoring 

time 

22 

1 

19 

5 

5 

9 

3 

7 

7 

8 

10 

3 

2 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

12 

18 

16 

18 

18 

20 

20 

22 

24 

26 

28 

30 

32 

32 

38 

38 

40 

41 

42 

44 

46 

47 

48 

49 

51 

53 

55 

57 

59 

60 

61 

61 

66 

69 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

41 

* 

44 

46 

47 

48 

49 

51 

53 

55 

57 

59 

60 

61 

* 

66 

69 

 

 

 

 

 

 

 

 


