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Abstract

We establish the strong consistency and the asymptotic normality of the variance-targeting es-

timator (VTE) of the parameters of the multivariate CCC-GARCH(p, q) processes. This method

alleviates the numerical difficulties encountered in the maximization of the quasi likelihood by

using an estimator of the unconditional variance. It is shown that the distribution of the VTE

can be consistently estimated by a simple residual bootstrap technique. We also use the VTE

for testing the model adequacy. A test statistic in the spirit of the score test is constructed, and

its asymptotic properties are derived under the null assumption that the model is well specified.

An extension of the VT method to asymmetric CCC-GARCH models incorporating leverage

effects is studied. Numerical illustrations are provided and an empirical application based on

daily exchange rates is proposed.
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1 Introduction

Despite their formidable success in the empirical finance literature, multivariate conditionally het-

eroskedastic (GARCH) models are notoriously difficult to estimate. Even for a small number of

series, commonly used specifications of the conditional covariance matrix contain a large number

of parameters, except if some very restrictive and generally arbitrary conditions are set on the pa-

rameters. Moreover, the positive definiteness of the conditional covariance matrix may entail quite

complicated constraints on such parameters. As a consequence, the Quasi-Maximum Likelihood

(QML) method - arguably the most popular estimation method in the univariate GARCH setting -

can be difficult to apply. For this reason, the variance targeting (VT) estimation method proposed

by Engle and Mezrich (1996) has gained popularity in the recent financial econometrics literature.

VT is based on a reparamerization of the conditional variance matrix, in which the matrix of

intercepts is replaced by the unconditional covariance matrix. A simple moment estimator of this

matrix is used in the first-step while, conditioning on this estimate, the remaining parameters are

estimated by QML in the second step. This method has been recommended in the textbooks of Hull

(2003) and Christoffersen (2003). It has been widely discussed in the recent academic literature, for

example by Boudt, Daníelsson and Laurent (2012), Laurent, Rombouts and Violante (2012). The

asymptotic properties of the VT estimator (VTE) have been established for univariate GARCH(p, q)

by Kristensen and Linton (2004) and by Francq, Horváth and Zakoïan (2011). Hill and Renault

(2012), and Vaynman and Beare (2013) studied the asymptotic behavior of the VTE in the presence

of heavy tails. For the first time in a multivariate setting, the asymptotic properties of the VTE

were recently established in the case of the BEKK-GARCH(1,1)1 model by Pedersen and Rahbek

(2013).

In this article, we study VT estimation of the CCC-GARCH(p, q) models2. This class is at-

tractive for its tractability and ease of interpretation. In particular, conditions for the positive

definiteness of the conditional variance and for the existence of strictly stationary solutions are sim-

ple and explicit, in contrast to most of its competitors3. Our first aim is to establish the consistency

and asymptotic normality (CAN) of the VTE under similar assumptions as those used by Francq,

1The BEKK model was studied by Baba, Engle, Kraft and Kroner, in a preliminary version of Engle and Kroner

(1995).
2Constant Conditional Correlations (CCC) models were introduced by Bollerslev (1990) and extended by

Jeantheau (1998).
3For an overview on multivariate GARCH models, see for example the surveys by Bauwens, Laurent and Rombouts

(2006), Silvennoinen and Teräsvirta (2009), and Chapter 11 in Francq and Zakoïan (2010).
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Horváth and Zakoïan (2011) in the univariate case. We also propose a consistent residual bootstrap

procedure for approximating the asymptotic distribution of the VTE. Our second aim is to use the

VTE for testing the model adequacy. Even if the QML method for the whole set of parameters

is not used, the derivatives of the quasi-likelihood with respect to the first components of the pa-

rameter (those which are estimated in the first step of the VT method) can be used to derive a

test in the spirit of the score test. The VTE can indeed be viewed as a "constrained estimator",

the estimation of the theoretical variance being forced to coincide with the empirical variance. An

important difference with usual score tests is that our "constraint" is random, as it depends on the

observations.

The paper is organized as follows. Section 2 introduces the model and some assumptions. Section

3 establishes the consistency and asymptotic normality of the VTE, as well as the validity of the

residual bootstrap procedure. Section 4 considers an extension of the VT method to asymmetric

CCC-GARCH models. Section 5 develops a bootstrap approximation for the distribution of the

VTE. Section 6 defines an adequacy test statistic based on the VTE and derives its asymptotic

distribution under the null assumption that the model is well specified. Numerical illustrations are

given in Section 7. In particular, we propose an empirical study based on daily exchange rates.

Proofs are displayed in Section 8. Section 9 concludes. Additional technicalities are provided in an

appendix.

2 Model and notations

Let (ǫt), with ǫt = (ǫ1t, · · · , ǫmt)
′, be a vector process of dimension m. The process (ǫt) is called a

CCC-GARCH(p, q) if it satisfies





ǫt = H
1/2
t ηt,

H t = DtR0Dt, D2
t = diag(ht),

ht − h0 =

q∑

i=1

A0i

(
ǫt−i − h0

)
+

p∑

j=1

B0j

(
ht−j − h0

)
,

(2.1)

where ǫt =
(
ǫ21t, · · · , ǫ2mt

)′
and R0 is a correlation matrix. The matrices A0i and B0j are ma-

trices of size m × m with positive coefficients and h0 is a vector of dimension m such that{
Im −

r∑

i=1

(A0i +B0i)

}
h0 has strictly positive coefficients (with r = max{p, q} and usual conven-

tions). The innovations (ηt) are iid centered variables on R
m with identity covariance matrix.

The CCC model was introduced by Bollerslev (1990) when the matrices A0i and B0j are diag-
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onal. By contrast, in (2.1) the conditional variance hkk,t of the k-th component of ǫt depends not

only on its past values but also on the past values of the other components. For this reason, model

(2.1) is referred to as the Extended CCC model by He and Teräsvirta (2004).

In the latter reference, a sufficient condition for second-order and strict stationarity of a CCC-

GARCH(1,1) is given. A sufficient condition for strict stationarity and the existence of fourth-order

moments of the CCC-GARCH(p, q) is established in Aue et al. (2009). In particular, it is known

that (2.1) admits a strict and second-order non anticipative stationary solution (ǫt) when

A: the spectral radius of

q∑

i=1

A0i +

p∑

j=1

B0j is strictly less than 1.

Moreover, under this assumption, we have that Eht = h0.

Turning to estimation, the generic parameter value consists of the coefficients of the vector h and

the matrices Ai and Bj (corresponding to the true values h0,A0i and B0j , respectively), and the

coefficients of the lower triangular part (excluding the diagonal) of the correlation matrix R = (ρij).

We will distinguish the first m parameters, that is the components of h, which will be estimated

empirically, and the other parameters, which will be estimated via a QML optimization. Thus the

total number of unknown parameters is

s1 = s0 +m, s0 = m2(p+ q) +
m(m− 1)

2
.

The parameter vector is denoted ϑ = (h′,θ′)′, with

θ = (θ1, . . . , θs0)
′ = (α′

1, . . . ,α
′
q,β

′
1, . . . ,β

′
p,ρ

′)′ := (α′,β′,ρ′)′,

where ρ′ = (ρ21, . . . , ρm1, ρ32, . . . , ρm2, . . . , ρm,m−1) ∈ R
m(m−1)/2, αi= vecAi ∈ R

m2

, i = 1, . . . , q,

and βj= vecBj ∈ R
m2

, j = 1, . . . , p. The parameter space for θ is

Θ ⊂ [0,∞)m
2(p+q) × (−1, 1)m(m−1)/2 .

The true parameter value is denoted by

ϑ0 = (h′
0,θ

′
0)

′, θ0 = (α′
01, . . . ,α

′
0q,β

′
01, . . . ,β

′
0p,ρ

′
0)

′ = (α′
0,β

′
0,ρ

′
0)

′.

3 Asymptotic Properties of the VTE of the CCC-GARCH

Let (ǫ1, . . . , ǫn) be an observation of length n of the unique non anticipative and strictly stationary

solution (ǫt) of model (2.1). Conditionally on nonnegative initial values ǫ0, . . . , ǫ1−q, h̃0, . . . , h̃1−p,
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the Gaussian quasi-likelihood can be written as

Ln(ϑ) = Ln(ϑ; ǫ1, . . . , ǫn) =

n∏

t=1

1

(2π)m/2|H̃ t|1/2
exp

(
−1

2
ǫ′tH̃

−1

t ǫt

)
,

where the H̃ t’s are recursively defined, for t ≥ 1, by





H̃ t = D̃tRD̃t, D̃t = {diag(h̃t)}1/2,

h̃t = h̃t(ϑ) = h+

q∑

i=1

Ai

(
ǫt−i − h

)
+

p∑

j=1

Bj

(
h̃t−j − h

)
.

Note that, up to an unimportant additive constant,

−2 logLn(ϑ) =
n∑

t=1

ℓ̃t, where ℓ̃t = ℓ̃t(h,θ) = ǫ′tH̃
−1

t ǫt + log |H̃ t|,

and |H̃ t| denotes the determinant of H̃t. The VTE of the parameter h0 is first defined by the

empirical mean

ĥn =
1

n

n∑

t=1

ǫt.

The VTE of the parameter θ0 is then defined by

θ̂n = arg min
θ∈Θ

L̃n(θ), (3.1)

where

L̃n(θ) = n−1
n∑

t=1

ℓ̃t,n, and ℓ̃t,n = ℓ̃t(ĥn,θ)

Let ϑ̂n = (ĥ
′
n, θ̂

′
n)

′ be the VTE of ϑ0.

If the parameter h0 were known, the QMLE of the parameter θ0 would be defined by

θ̂
Q

n = arg min
θ∈Θ

n∑

t=1

ℓ̃t(h0,θ).

3.1 Consistency and asymptotic normality

Francq and Zakoïan (2012) provide conditions for the CAN of the QMLE of the whole parameter ϑ0.

Their conditions can be adapted to our framework as follows. Let Aθ(z) =
∑q

i=1 Aiz
i and Bθ(z) =

Im −∑p
j=1Bjz

j . By convention, Aθ(z) = 0 if q = 0 and Bθ(z) = Im, if p = 0.

A1: θ0 ∈ Θ and Θ is compact.

A2: ∀θ ∈ Θ, |Bθ(z)| = 0 ⇒ |z| > 1.
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A3: For i = 1, . . . ,m the distribution of η̃it is not concentrated on 2 points and P (η̃it > 0) ∈ (0, 1).

A4: If p > 0, Aθ0
(z) and Bθ0

(z) are left coprime and [A0q B0p] has full rank m.

A5: R is a positive definite correlation matrix for all θ ∈ Θ.

A6: θ0 ∈
◦
Θ, where

◦
Θ is the interior of Θ.

A7: E‖ηtη
′
t‖2 < ∞.

Under A2 we can define ht(ϑ) = h+B−1
θ (L)Aθ(L) (ǫt − h), where L is the usual backshift operator.

Similarly, ℓt is obtained by replacing h̃t(ϑ) with ht(ϑ) in ℓ̃t.

The asymptotic behavior of θ̂
Q

n is obviously similar to that of the full QMLE ϑ̂
Q

n , as stated in

the following theorem. The proof is omitted.

Theorem 3.1 (CAN of the unfeasible QMLE of θ0). Under Assumptions A and A1-A5, we have

θ̂
Q

n → θ0 a.s. as n → ∞. Under the additional assumptions A6-A7,
√
n(θ̂

Q

n − θ0) converges in

distribution to N (0,J−1IJ−1), where J is a positive-definite matrix and I is a semi positive-definite

matrix, defined by

I = E

(
∂ℓt(ϑ0)

∂θ

∂ℓt(ϑ0)

∂θ′

)
, J = E

(
∂2ℓt(ϑ0)

∂θ∂θ′

)
.

The spectral norm of a matrix A is denoted by ‖A‖, and its Lp-norm is defined by ‖A‖p =

(E‖A‖p)1/p for p ≥ 1. We also need to introduce the notation η
t
=
(
η21t, · · · , η2mt

)′
. Aue et al.

(2009) showed that there exists a stationary solution of (2.1) satisfying ‖ǫt‖4 < ∞, if

‖η1‖4 < ∞ and

r∑

i=1

∥∥∥A0idiag(η
1
) +B0i

∥∥∥
2
< 1. (3.2)

Let

K = E

(
∂2ℓt(ϑ0)

∂θ∂h′

)
, G =


 Im 0

−J−1K −J−1




and

ΣX = Var(xt), xt =


 C(θ0) {ǫt − ht(ϑ0)}

∂
∂θ ℓt(ϑ0)


 ,

where

C(θ) =

{
Im −

r∑

i=1

(Ai +Bi)

}−1(
Im −

p∑

i=1

Bi

)
,

provided that Im −
r∑

i=1

(Ai +Bi) is non singular, which is the case at θ0 under Assumption A.
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Theorem 3.2 (CAN of the VTE). Under the assumptions of Theorem 3.1,

ϑ̂n → ϑ0 a.s.

as n → ∞. Under the additional assumptions in (3.2), we have

√
n
(
ϑ̂n − ϑ0

)
d→ N (0,Σ := GΣXG′). (3.3)

It is worth noting that in the univariate case (m = 1), our conditions for CAN reduce to those

used by Francq, Horváth and Zakoïan (2011) to establish the asymptotic properties of the VTE of

the GARCH(p, q) coefficients. In particular, the observed process is (only) required to have finite

fourth-order moments.

3.2 Estimating the asymptotic covariance matrix

We now discuss the estimation of the asymptotic covariance matrix Σ. Let

Σ̂X =
1

n

n∑

t=1

x̂tx̂
′
t, x̂t =


 C(θ̂n)

{
ǫt − h̃t(ϑ̂n)

}

∂
∂θ ℓ̃t(ϑ̂n)


 .

The appendix describes a recursive algorithm to compute ∂
∂ϑ ℓ̃t(ϑ) in the CCC-GARCH(1,1) case.

Let also

Ĵ =
1

n

n∑

t=1

∂2

∂θ∂θ′ ℓ̃t(ϑ̂n), K̂ =
1

n

n∑

t=1

∂2

∂θ∂h′ ℓ̃t(ϑ̂n). (3.4)

A consistent estimator for Σ is then given by

Σ̂ = ĜΣ̂XĜ
′
, Ĝ =


 Im 0

−Ĵ
−1

K̂ −Ĵ
−1


 . (3.5)

The computation of Σ̂ requires the evaluation of complicated first and second-order derivatives.

More precisely, for Σ̂X one needs to compute ∂ℓ̃t(ϑ̂n)/∂θ for t = 1, . . . , n. These n vectors of

derivatives cannot be evaluated numerically within a reasonable amount of time. In the Appendix

we thus provide recursive formulas for a rapid computation of the first-order derivatives. Second

order derivatives are also required for the computation of Σ̂. Since each second-order derivative has

to be evaluated only once, in view of

Ĵ =
∂2

∂θ∂θ′

{
1

n

n∑

t=1

ℓ̃t(ϑ̂n)

}
, K̂ =

∂2

∂θ∂h′

{
1

n

n∑

t=1

ℓ̃t(ϑ̂n)

}
,

these derivatives can be obtained numerically.
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3.3 The diagonal case

When the matrices A0i and B0j are diagonal, as in the CCC model of Bollerslev (1990), the

asymptotic normality in (3.3) does not hold because the true parameter value has components

equal to zero, and thus A6 is not satisfied. It is known that the asymptotic distribution of the

QMLE for univariate GARCH models is different when the true parameter value is at the frontier

of the parameter space (see Francq and Zakoïan (2007)). Although similar results have not yet been

established for multivariate GARCH, it is clear that the asymptotic distribution of
√
n(ϑ̂n − ϑ0)

cannot be Gaussian when some components of ϑ0 are zero.

However, if these constraints (A0i and B0j diagonal) are known from the econometrician, the

approach developed for the unconstrained model can be straightforwardly adapted. The VTE is

defined as in (3.1) but with θ = (α′,β′,ρ′)′ where the components of α and β are now αi=

diag(Ai) ∈ R
m, i = 1, . . . , q, βj= diag(Bj) ∈ R

m, j = 1, . . . , p. The parameter space Θ is

now a subset of [0,∞)m(p+q) × (−1, 1)m(m−1)/2 . For ℓ = 1, . . . ,m, let Aℓθ(z) =
∑q

i=1 αiℓz
i and

Bℓθ(z) =
∑p

j=1 βjℓz
j . Assumptions A2 and A4 can be replaced by the simpler conditions

A2’: max1≤ℓ≤m
∑p

j=1 βjℓ < 1.

A4’: If p > 0, for ℓ = 1, . . . ,m, Aℓθ0
(z) and Bℓθ0

(z) do not have common roots, and α0qℓ+β0pℓ 6= 0.

The individual components of ǫt are univariate GARCH (p, q) processes and the fourth-moment

condition ‖ǫt‖4 < ∞ reduces to

For ℓ = 1, . . . ,m, the spectral radius of E(Aℓt ⊗Aℓt) is strictly less than 1, (3.6)

where, omitting the indices 0 for the true parameter values,

Aℓt =




α1ℓη
2
ℓt + β1ℓ β2ℓ · · · βp−1,ℓ βpℓ α2ℓ · · · αq−1,ℓ αqℓ

1 0 · · · 0 0 0 · · · · · · 0

0 1 · · · 0 0 0 · · · · · · 0
...

...
. . .

...
...

...
. . .

. . .
...

0 0 . . . 1 0 0 · · · . . . 0

η2ℓt 0 · · · 0 0 0 · · · · · · 0

0 0 · · · 0 0 1 0 · · · 0

0 0 · · · 0 0 0 1 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . 1 0



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is a (p + q − 1)× (p+ q − 1) matrix (see Ling and McAleer, 2002)4. Although the dimensions of θ

and ϑ are much smaller than in the general case, we keep the same notation for ease of exposition.

We also use the same notations for the matrices involved in the asymptotic distribution of the VTE.

Theorem 3.3 (CAN of the VTE in the diagonal case). Under Assumptions A1, A2’, A3, A4’,

A5, A6 and (3.6), we have
√
n
(
ϑ̂n − ϑ0

)
d→ N (0,GΣXG′).

4 Moments Targeting for the Asymmetric CCC-GARCH

Extension of the VT method to GARCH models allowing the leverage effect is not straightforward.

Indeed, a key requirement of this method is the possibility to express the unconditional variance

of the returns in terms of the volatility parameters, and to reparametrize the model with the un-

conditional variance as a new parameter. Without additional assumptions (for instance symmetry)

on the errors distribution, this is generally not possible. Consider for example the univariate GJR

GARCH(1,1) model

ǫt = σtηt, σ2
t = ω + α+(ǫ

+
t−1)

2 + α−(ǫ
−
t−1)

2 + βσ2
t−1,

where x+ = max(x, 0) = (−x)− for any real number x, with ω > 0, α+, α−, β ≥ 0, with (ηt)
iid∼ (0, 1)

and ηt independent of {ǫu, u < t}. Then, straightforward calculation shows that if the variance of

ǫt exists, it is given by Eǫ2t = Eσ2
t = {1 − α+E(η+t )

2 − α−E(η−t )
2 − β}−1ω. If ηt is symmetrically

distributed, then Eǫ2t = {1− 1
2 (α+ + α−)− β}−1ω and we have the reparametrization

σ2
t − h0 = α+

{
(ǫ+t−1)

2 − 1

2
h0

}
+ α−

{
(ǫ−t−1)

2 − 1

2
h0

}
+ β

(
σ2
t−1 − h0

)
.

However, the symmetry assumption is very strong. Another parametrization is

σ2
t = h0 + α+

{
(ǫ+t−1)

2 − ǫ+0
}
+ α−

{
(ǫ−t−1)

2 − ǫ−0
}
+ β

(
σ2
t−1 − h0

)
,

where, still assuming that the variance of ǫt exists, ǫ+0 = E(ǫ+t )
2, ǫ−0 = E(ǫ−t )

2, and h0 = ǫ+0 + ǫ−0 +.

In this parametrization, the moments ǫ+0 and ǫ−0 can be "targeted" in a first step by the empirical

means of (ǫ+t )
2 and (ǫ−t )

2.

4A simple sufficient condition for (3.6) to hold is: max1≤i≤m E(η4

it)

( ∑q
j=1

αij

1−
∑p

j=1
βij

)

2

< 1 (see Giraitis et al. (2006)).
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We apply this approach for estimating an Asymmetric extension of the CCC-GARCH(p, q), the

CCC-AGARCH(p, q) model defined by





ǫt = H
1/2
t ηt,

Ht = DtR0Dt, D2
t = diag(ht),

ht − h0 =

q∑

i=1

A0i,+(ǫ
+
t−i − ǫ0+) +A0i,−(ǫ

−
t−i − ǫ0−) +

p∑

j=1

B0j(ht−j − h0),

where, using the notation x+ = max(x, 0) = (−x)− for any real number x,

ǫ+t =
({

ǫ+1t
}2

, · · · ,
{
ǫ+mt

}2)′
, ǫ−t =

({
ǫ−1t
}2

, · · · ,
{
ǫ−mt

}2)′
, ǫ0+ = Eǫ+t , ǫ0− = Eǫ−t ,

h0 = ǫ0+ + ǫ0− such that h0 −
q∑

i=1

(
A0i,+ǫ0+ +A0i,−ǫ0−

)
−

p∑

j=1

B0jh0 has strictly positive coeffi-

cients, the matrices A0i,+, A0i,− and B0j have size m×m and positive coefficients.

The generic parameter value now consists of the coefficients of the vectors ǫ+, ǫ−, and the

matrices Ai∗ := [Ai,+ Ai,−] and Bj (corresponding to the true values ǫ0+, ǫ0−,A0i∗ = [A0i,+ A0i,−]

and B0j , respectively), and the coefficients of the lower triangular part of R = (ρij). The parameter

vector is denoted by ϑ∗ = (ǫ′∗,θ
′
∗)

′, where ǫ∗ = (ǫ′+, ǫ
′
−)

′, θ∗ = (α′
1∗, . . . ,α

′
q∗,β

′
1, . . . ,β

′
p,ρ

′)′ :=

(α′
∗,β

′,ρ′)′ ∈ R
s∗
0 , with αi∗= vecAi∗ ∈ R

2m2

, i = 1, . . . , q and s∗0 = s0 +m2q.

The VTE of the parameter ǫ0∗ = (ǫ′0+, ǫ
′
0−)

′ is defined by

ǫ̂n∗ = (ǫ̂′n+, ǫ̂
′
n−)

′, ǫ̂n+ =
1

n

n∑

t=1

ǫ+t , ǫ̂n− =
1

n

n∑

t=1

ǫ−t .

The VTE ǫn∗ of the parameter θ0∗ is defined as in (3.1), but with ℓ̃t,n = ℓ̃t(ǫ̂n∗,θ∗) and θ∗ ∈ Θ∗ ⊂
[0,∞)m

2(p+2q) × (−1, 1)m(m−1)/2 . Let ϑ̂n∗ = (ǫ̂′n∗, θ̂
′
n∗)

′ be the VTE of ϑ0∗.

The next result provides the asymptotic distribution of ϑ̂
∗
n. To save space, notations and as-

sumptions are deferred to the appendix.

Theorem 4.1 (CAN of the VTE). Under Assumptions A3, A5, A7 and B1-B4, the VTE of

parameter ϑ0∗ in the CCC-AGARCH(p, q) model satisfies

ϑ̂n∗ → ϑ0∗ a.s. and
√
n
(
ϑ̂n∗ − ϑ0∗

)
d→ N (0,G∗ΣX∗G′

∗) as n → ∞,

where G∗ and ΣX∗ are defined in Appendix 8.3.2.
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5 Bootstrap approximation for the distribution of the VTE

It often happens, specially for statistics for which the asymptotic distribution is not easily esti-

mated, that the bootstrap approximation gives a better insight of the actual distribution than the

asymptotic theory. For this reason, a residual bootstrap procedure is proposed in this section.

Numerous bootstrap procedures have been used in time series analysis, but Shimizu (2013)

notes that most articles investigating the validity of bootstrap techniques concern linear time series

models (see Kreiss, Paparoditis and Politis (2011) and the references therein). Shimizu (2013) also

points out that in empirical studies the limitation of the bootstrap tends to be underestimated. He

studies several bootstrap procedures for univariate ARMA-GARCH models, and shows that they

are not always consistent. We propose the following residual bootstrap procedure.

Step 1 Compute the VTE ϑ̂n and denote by F̂n the empirical distribution function of the rescaled

residuals S
−1/2
n (η̂t − µn) for t = 1, . . . , n, where η̂t = H̃

−1/2

t (ϑ̂n)ǫt, µn = n−1
∑n

t=1 η̂t and Sn =

n−1
∑n

t=1(η̂t − µn)(η̂t − µn)
′. Note that almost surely, Sn is invertible for n large enough.

Step 2 Generate an iid bootstrap sample η∗
1, . . . ,η

∗
n with distribution F̂n.

To explain the last step, note that from (8.2) in the proof of Theorem 3.1 we have

∂

∂θ
ℓ̃t(ϑ0) = ∆̃t(ϑ0)V t + o(ρt), a.s., (5.1)

where V t = vec(Im − R−1/2ηtη
′
tR

1/2) and ∆̃t(ϑ) is a measurable function of ǫ1, . . . , ǫt. More

precisely (see the appendix) the line i ∈ {1, . . . , (p+ q)m2} of the s0 ×m2 matrix ∆̃t(ϑ) is equal to

the transpose of

2vec

(
D̃

−1

t

∂D̃t

∂θi

)
= vec

(
D̃

−2

t

∂ diag(h̃t)

∂θi

)
,

and the line i ∈ {(p+ q)m2 + 1, . . . , s0} is the transpose of vec
(
R−1 ∂R

∂θi

)
.

Step 3 Define the bootstrapped estimator

ϑ̂
∗
n = ϑ̂n + Ĝ

1

n

n∑

t=1

x∗
t,n,

where

x∗
t,n =


 Ĉ

{
U∗2

t,n − Im

}
h̃t(ϑ̂n)

∆̃t(ϑ̂n)V
∗
t,n


 ,

11



with Ĉ = C(θ̂n) and

U∗
t,n = diag(R̂

1/2
η∗
t ), V ∗

t,n = vec(Im − R̂
−1/2

η∗
tη

∗′
t R̂

1/2
).

Note that the procedure does not require simulating and estimating multivariate GARCH mod-

els, which would be too time-consuming. The distribution of the VTE is mimicked by a Newton-

Raphson type iteration. The following result shows the asymptotic validity of this procedure.

Theorem 5.1 (Consistency of the bootstrap procedure). Let the assumptions of Theorem 3.2 be

satisfied. For almost all sequence (ǫt) satisfying (2.1), the bootstap procedure is consistent in the

sense that, given (ǫt),
√
n
(
ϑ̂
∗
n − ϑ̂n

)
d→ N (0,Σ) as n → ∞.

6 Adequacy test based on the VTE

In this section, we consider testing the validity of our model. We first introduce some additional

notations. Let

ΣR = MΣYM
′, M =

(
H −K′J−1K,−K ′J−1, Im

)
, H = E

(
∂2ℓt(ϑ0)

∂h∂h′

)
,

and

ΣY = Var(yt), yt =


 xt

∂
∂hℓt(ϑ0).


 .

In the spirit of the score test, our test is based on the derivative of the quasi-likelihood with respect

to the first components of ϑ. If the model is correct, such derivatives should be small when evaluated

at the VTE ϑ̂n. More precisely, let the variance targeting test (VTT) statistic be defined as

Rn = T ′
nΣ̂

−1

R T n, T n =
1√
n

n∑

t=1

∂

∂h
ℓ̃t(ϑ̂n),

where Σ̂R is a consistent estimator of ΣR (for instance defined in (6.1) or (6.2) below), assuming

it is invertible. The next result gives the asymptotic distribution of the statistic Rn under the null

assumption

H0 : the CCC-GARCH(p, q) model is correctly specified.

Theorem 6.1 (Asymptotic distribution of the adequacy test statistic). Under H0 and the assump-

tions of Theorem 3.1, and if Σ̂R → ΣR in probability, and ΣR is non singular, we have

Rn
d→ χ2

m.

12



At the asymptotic level α, the estimated CCC-GARCH(p, q) model can thus be rejected if

Rn > χ2
m(1− α), where χ2

m(1− α) is the (1− α)-quantile of the χ2 distribution with m degrees of

freedom. Comparing the proposed test with other adequacy tests (see references in the introduction)

we note that, by using the VTE, we do not need to estimate the model by the full QML method.

6.1 Estimators of ΣR

A natural estimator of ΣR is obtained by replacing the moments involved in M and ΣY by sample

counterparts. Let

Σ̂Y =
1

n

n∑

t=1

ΥtΥ
′
t, Υt =




C(θ̂n)
{
ǫt − h̃t(ϑ̂n)

}

∂
∂θ ℓ̃t(ϑ̂n)

∂
∂h ℓ̃t(ϑ̂n)


 .

In addition to Ĵ and K̂ defined in (3.4), introduce the matrices

Ĥ =
1

n

n∑

t=1

∂2

∂h∂h′ ℓ̃t(ϑ̂n)

and

M̂ =
(

Ĥ − K̂
′
Ĵ
−1

K̂ −K̂
′
Ĵ
−1

Im

)
.

We then define an estimator of ΣR by

Σ̂R = M̂Σ̂Y M̂
′
. (6.1)

An alternative estimator is obtained by adding a step to the bootstrap procedure given in

Section 5. Similar to (5.1), we have

∂

∂h
ℓ̃t(ϑ0) = Ω̃t(ϑ0)V t,

where Ω̃t(ϑ) is a m×m2 matrix, whose line i ∈ {1, . . . ,m} is the transpose of 2vec(D̃
−1

t
∂D̃t

∂ϑi
). The

additional step is the following.

Step 4 Define the bootstrapped test statistic

T ∗
n = M̂

1√
n

n∑

t=1

Υ
∗
t , Υ

∗
t =




Ĉ
{
U∗2

t,n − Im

}
h̃t(ϑ̂n)

 ∆̃t(ϑ̂n)

Ω̃t(ϑ̂n)


V ∗

t,n


 .

The proof of the following result is identical to that of Theorem 5.1, and therefore it is omitted.
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Theorem 6.2 (Asymptotic validity of the bootstrap procedure). Under the assumptions of Theo-

rem 6.1, in particular H0, and conditionally to almost all sequence (ǫt) satisfying (2.1), we have

√
nT ∗

n
d→ N (0,ΣR) as n → ∞.

The previous result shows that the matrix ΣR can be consistently estimated by

Σ̂R = E
(
T ∗

nT
∗′
n | ǫ1, . . . , ǫn

)
. (6.2)

6.2 Univariate case

This test can in particular be employed in the univariate case (m = 1). For simplicity, we focus on

the GARCH(1,1) model, which is also the most widely used in practice. A simpler version of the

test can be obtained in this case.

With ϑ0 = (v0, α0, β0)
′ we have

ǫt =
√

ht(ϑ0)ηt, (ηt)
iid∼ (0, 1), (6.3)

with, for v > 0 and (α, β) belonging to some compact parameter space Θ ⊂ (0,∞) × (0, 1),

ht(ϑ) = v + α(ǫ2t−1 − v) + β{ht−1(ϑ)− v} = v +
∞∑

i=0

βiα(ǫ2t−i−1 − v).

The VTE of ϑ0 is ϑ̂n = ( 1n
∑n

t=1 ǫ
2
t , α̂n, β̂n)

′ and we have

T n =
1− α̂n − β̂n

1− β̂n

1√
n

n∑

t=1

1

h̃t(ϑ̂n)

{
1− ǫ2t

h̃t(ϑ̂n)

}
.

Theorem 6.3 (Adequacy test of the GARCH(1,1)). Let (ǫt) generated by (6.3) with (α0, β0) be-

longing to the interior of Θ and (α0 + β0)
2 + (κ4 − 1)α2

0 < 1, where κ4 = Eη4t . Assume that the

distribution of η2t is not concentrated on a set of cardinality 2. Then ΣR is non singular and for

any consistent estimator Σ̂R of ΣR, we have Rn
d→ χ2

1.

We show in the proof that

ΣR = (κ4 − 1)(σ2δ + 1)δ, (6.4)

where σ2 =
(

1−β0

1−α0−β0

)2
Eh2t and δ = H − K ′J−1K. A consistent estimator of ΣR can be easily

defined.
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7 Numerical illustrations

7.1 Simulation experiments

To assess the performance of the adequacy test based on the VTE developed in Section 6, we

first simulated N = 1, 000 independent trajectories of size n = 2, 000 and 4, 000 of the univariate

GARCH(1,1) model

ǫt =
√

htηt, ht = 0.03 + 0.09(ǫ2t−1 − 0.03) + 0.89(ht−1 − 0.03).

The benchmark distribution for ηt is the standard Gaussian. It is however well known that the

conditional distributions of the financial returns often exhibit non-normalities, in particular fat-

tailedness and skewness. For these reasons, we considered the case where ηt follows the Asymmetric

Exponential Power Distribution (AEPD) introduced by Zhu and Zinde-Walsh (2009). For the

parameter of this distribution, we took the values estimated by Zhu and Zinde-Walsh on the S&P500

(namely α = 0.4, p1 = 1.182 and p2 = 1.802, as in their Table 2), and the distribution has then been

centered and reduced. We also tried other distributions for ηt, without qualitatively changing the

outputs. For a GARCH(1,1), the 4th-order stationarity condition is τ = (α+ β)2 + (κ4 − 1)α2 < 1.

For both distributions this condition is satisfied: we get τ = 0.9766 for the Gaussian and τ ≃ 0.985

for the AEPD. In Table 1, the frequencies of rejection under the null assumption appear to be

reasonably close to the nominal levels. Next, we simulated Markov-switching models of the form

ǫt = σ(∆t)ηt, where (ηt)
iid∼ N (0, 1) and (∆t) is a two-state Markov chain independent of (ηt).

It should be noted that such models display similarities with the GARCH(1,1), in particular the

absence of serial correlation for (ǫt) together with the autocorrelation of (ǫ2t ). Interestingly, the

test strongly rejects the validity of the GARCH(1,1) model for these simulated Markov-switching

models (see the right panel of Table 1).

Next, we turn to multivariate illustrations. Table 2 displays estimation results for 500 simulations

of a bivariate CCC-GARCH(1,1) model. The two components of ηt are independent and distributed

according to the previous AEPD. The true parameter value is such that the matrix B is diagonal,

so the volatility of each component is related to its own lagged value, and to the lagged values of the

squared observations of both components. However, in a first step, we do not take this information

into account in the estimation. The results in Table 2 are in accordance with the consistency of the

VTE, in particular the medians of the estimated parameters are very close to the true values. As

expected, the accuracy increases as the sample size increases from n = 500 to n = 4, 000. Figure 1

shows non parametric estimators of the density of two components of ϑ̂n − ϑ0. For the coefficient
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Table 1: Empirical size and power of the univariate VTT for the null of a GARCH(1,1) model: over

1, 000 independent replications, relative frequencies (in %) of rejection of the null, when the null is

correct (models I and II) or when the null is incorrect (models III and IV).

Model n α Model n α

1% 2.1 1% 66.4

I 2000 5% 6.2 III 2000 5% 83.2

10% 9.7 10% 87.4

1% 1.8 1% 66.4

II 2000 5% 5.8 IV 2000 5% 83.2

10% 10.8 10% 87.4

1% 1.0 1% 58.9

I 4000 5% 4.4 III 4000 5% 90.2

10% 9.8 10% 92.3

1% 0.5 1% 86.6

II 4000 5% 4.2 IV 4000 5% 93.2

10% 8.4 10% 95.6

I: GARCH(1,1) with ϑ0 = (0.03, 0.09, 0.89) and ηt ∼ N (0, 1)

II: As model I, but ηt follows the AEPD of Zhu and Zinde-Walsh (2009)

III: Markov-switching model ǫt = σ(∆t)ηt where ηt ∼ N (0, 1), σ(1) = 1/200, σ(2) = 3/200,

and the Markov chain ∆t has transition probabilities p(1, 1) = p(2, 2) = 0.99

IV: As model III, but with the transition probabilities p(1, 1) = p(2, 2) = 0.01

A(2, 2), the estimated density is very close to a Gaussian, at least for n = 400. On the contrary,

for the coefficient B(1, 2) a huge discrepancy is observed. This is not surprising as the true value

of B(1, 2) is equal to zero. Thus ϑ0 does not belong to the interior of the parameter space and the

VTE is not asymptotically Gaussian (see comments in Section 3.3).
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Table 2: Sampling distribution of the VTE of ϑ0 over 500 replications for the CCC-GARCH(1,1)

model with AEPD errors.

parameter true val. bias RMSE min Q1 Q2 Q3 max

n = 500

h 10.00 0.08 2.17 6.32 8.65 9.85 10.95 23.10

10.00 0.07 1.84 6.47 8.90 9.82 10.85 21.82

α 0.10 0.00 0.05 0.00 0.06 0.09 0.13 0.26

0.05 0.00 0.04 0.00 0.01 0.04 0.07 0.25

0.05 0.01 0.05 0.00 0.02 0.05 0.08 0.23

0.05 0.00 0.04 0.00 0.01 0.04 0.07 0.24

β 0.75 -0.11 0.22 0.00 0.59 0.70 0.77 0.94

0.00 0.13 0.24 0.00 0.00 0.00 0.16 1.00

0.00 0.11 0.21 0.00 0.00 0.00 0.16 0.86

0.80 -0.17 0.32 0.00 0.55 0.74 0.81 0.97

ρ 0.80 0.00 0.02 0.74 0.79 0.80 0.82 0.86

n = 4, 000

h 10.00 0.04 0.72 8.44 9.54 9.98 10.48 13.01

10.00 0.01 0.63 8.54 9.58 9.98 10.43 12.98

α 0.10 0.00 0.02 0.06 0.09 0.10 0.12 0.17

0.05 0.00 0.02 0.00 0.04 0.05 0.06 0.12

0.05 0.00 0.02 0.00 0.04 0.05 0.06 0.10

0.05 0.00 0.02 0.00 0.04 0.05 0.06 0.11

β 0.75 0.06 0.13 0.00 0.68 0.73 0.75 0.82

0.00 0.08 0.17 0.00 0.00 0.00 0.11 0.70

0.00 0.07 0.15 0.00 0.00 0.00 0.09 0.84

0.80 0.10 0.21 0.00 0.68 0.77 0.80 0.87

ρ 0.80 0.00 0.01 0.78 0.80 0.80 0.80 0.82

RMSE is the Root Mean Square Error, Qi, i = 1, 3, denote the quartiles.
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Figure 1: Kernel density estimator (in full line) of the distribution of the VTE errors for the estimation of

A(2, 2) (top panel) and B(2, 1) (bottom panel), and gaussian density (in dotted line) with the same mean

and variance.

In a second step, we conducted the same experiments but the model was now estimated under the

assumption that the matrix B was diagonal. The results displayed in Table 3 are, unsurprisingly,

better than with the unrestricted estimator. Figure 2 shows that the estimated densities of the

estimators over the 500 simulations are now close to a Gaussian density for n sufficiently large.

Next, we performed a Monte Carlo experiment with the aim to compare the empirical ac-

curacies of the VTE and QMLE. We simulated a model close to that estimated on the real

series of the next section. More precisely, we simulated 100 independent replications of a 3-

dimensional CCC-GARCH(1,1) model, with diagonal matrices A = diag(0.04, 0.04, 0.04) and
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Table 3: As Table 2, but for the constrained VTE.

parameter true val. bias RMSE min Q1 Q2 Q3 max

n = 500

h 10.00 -0.01 1.79 6.21 8.68 9.78 10.99 17.74

10.00 -0.02 1.57 6.57 8.80 9.81 11.00 16.11

α 0.10 0.00 0.05 0.00 0.06 0.09 0.13 0.24

0.05 0.01 0.04 0.00 0.03 0.05 0.08 0.26

0.05 0.01 0.04 0.00 0.03 0.05 0.08 0.20

0.05 0.00 0.04 0.00 0.02 0.05 0.07 0.18

β 0.75 -0.03 0.11 0.00 0.66 0.73 0.78 0.96

0.80 -0.05 0.14 0.00 0.71 0.78 0.84 0.99

ρ 0.80 0.00 0.02 0.74 0.79 0.80 0.81 0.85

n = 4, 000

h 10.00 -0.02 0.70 8.16 9.51 9.89 10.43 12.85

10.00 -0.01 0.59 8.57 9.58 9.94 10.33 12.27

α 0.10 0.00 0.02 0.05 0.09 0.10 0.11 0.15

0.05 0.00 0.01 0.01 0.04 0.05 0.06 0.08

0.05 0.00 0.02 0.01 0.04 0.05 0.06 0.12

0.05 0.00 0.01 0.01 0.04 0.05 0.06 0.10

β 0.75 0.00 0.03 0.67 0.73 0.75 0.77 0.82

0.80 0.00 0.03 0.70 0.78 0.80 0.82 0.87

ρ 0.80 0.00 0.01 0.78 0.80 0.80 0.81 0.82
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Figure 2: As Figure 1 but for the constrained VTE of A(2, 2) (top panel) and B(2, 2) (bottom panel).

B = diag(0.93, 0.93, 0.93), with ω = (1/3, 1/3, 1/3)′ and with vech(R) = (0.8, 0.64, 0.8)′ . As

distribution for ηt, we still took the AEPD of Zhu and Zinde-Walsh. Figure 3 displays the dis-

tribution of the estimation errors for simulations of length n = 5000. The upper-left, upper-right,

bottom-left and bottom-right panels correspond respectively to the estimation errors for the 3 pa-

rameters involved in h, A, B and R. The distributions of the VTE and QMLE are very similar.

For the simulation length n = 500 (not presented here to save space), the distributions of the two

estimations are also equivalent, but the estimators are of course less accurate.

To complete the section, we compared the computation time of the VTE and QMLE, on the

same CCC-GARCH(1,1) models as in the previous experiment, but with m varying from 2 to 5.

Table 4 shows that, as expected, the VTE is more rapid than the QMLE. The computation time

increases rapidly with m, but the relative time-computation gain does not depend much on m, nor

on n. When the number m of individual components is too large with respect to n (say, m ≥ 5
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Figure 3: Boxplot of the estimation errors for the VTE and QMLE
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Table 4: Seconds of CPU time for computing the VTE and QMLE

n = 500 n = 5000

m = 2 m = 3 m = 4 m = 5 m = 2 m = 3 m = 4 m = 5

VTE 2.92 7.44 16.66 24.38 33.93 97.12 205.50 186.91

QMLE 4.98 13.62 31.23 35.24 61.07 136.81 263.74 269.99

when n = 500), both estimators give very inaccurate estimates, and the comparison of the time

computations does not make sense anymore. Indeed, when the model contains too many parameters,

the optimization routine (we used the function nlmib of R) generally cannot progress, and it returns

(sometimes relatively rapidly) final estimates that are close to the initial values of the parameters.

7.2 An application to exchange rates

We consider log-returns series of the daily exchange rates of the American Dollar (USD), the

Japanese Yen (JPY) and the British Pound (GBP) versus the Euro. The observations have been

downloaded form the website of the European Central Bank5, and cover the period from January

5, 1999 to January 22, 2013, which corresponds to 3601 observations. A CCC-GARCH(1,1) model

has been fitted by VTE to the trivariate series ǫt = (USDt, JPYt,GBPt)
′.

With obvious notations (in particular the estimated standard deviations, obtained from the

empirical estimator (3.5), are into brackets), the estimated parameters can be written as

ĥ =




0.44 (0.07)

0.65 (0.14)

0.25 (0.05)




USD

JPY

GBP

Â =




0.03 (0.01) 0.00 (0.01) 0.00 (0.02)

0.01 (0.02) 0.07 (0.03) 0.00 (0.04)

0.01 (0.01) 0.01 (0.01) 0.06 (0.02)




USD

JPY

GBP

USD JPY GBP

B̂ =




0.94 (0.01) 0.00 (0.04) 0.02 (0.10)

0.00 (0.03) 0.86 (0.00) 0.14 (0.15)

0.01 (0.02) 0.00 (0.03) 0.87 (0.01)




USD

JPY

GBP

USD JPY GBP
5http://www.ecb.int/home/html/index.en.html
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Figure 4: Kernel density estimators for the bootstrap distribution of the VTE of ρ
0

(full line), and gaussian

density (dotted line) with the same mean and variances.

and, introducing the half-vectorization operator6,

vech
(
R̂n

)
=




0.58 (0.02)

0.53 (0.01)

0.32 (0.02)




USD− JPY

USD−GBP

JPY −GBP

When using the empirical estimate of ΣR defined in (6.1), the adequacy test statistic of The-

orem 6.1 is equal to Rn = 0.838, corresponding to the p-value P (χ2
3 > 0.838) = 0.84. Using the

bootstrap estimate of ΣR defined in (6.2), with 1, 000 bootstrap replications, we obtain Rn = 0.69,

which gives the p-value 0.88. Therefore the CCC-GARCH(1,1) model is not rejected by the VTT.

The bootstrap estimates of the standard deviations are not given because, as expected, they are

very similar to those displayed into brackets. Figure 4 displays the bootstrap approximation for the

distributions of the estimators of the correlation matrix elements ρ0. This figure clearly shows that

the error terms of the GARCH model are significantly positively correlated. This is not surprising

since the three exchange rates are against the same currency, and thus exhibit comovements. Indeed,

when the euro depreciates, the depreciation is often with respect to the three other currencies.

Note that, none of the off-diagonal elements of the matrices A0 and B0 seems to be significantly

non zero. However, one has to be cautious in the interpretation of t-test statistics because Theorem

3.2 requires that the parameter belong to the interior of the parameter space (see Francq and

Zakoïan (2009) for testing zero coefficients in univariate GARCH models). However, the results of

6vech(A) of a symmetric n × n matrix A is the n(n + 1)/2 × 1 column vector obtained by vectorizing only the

lower triangular part of A.
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Section 3.3 allow to re-estimate the CCC-GARCH(1,1) model with the constraint that the matrices

A0 and B0 be diagonal. The estimated parameters of the constrained model are

ĥ =




0.44 (0.058)

0.65 (0.142)

0.25 (0.067)




USD

JPY

GBP

Â =




0.025 (0.003) 0 0

0 0.054 (0.006) 0

0 0 0.052 (0.003)




USD

JPY

GBP

USD JPY GBP

B̂ =




0.966 (0.001) 0 0

0 0.935 (0.005) 0

0 0 0.939 (0.004)




USD

JPY

GBP

USD JPY GBP

and

vech
(
R̂
)

=




0.595 (0.020)

0.530 (0.016)

0.320 (0.023)




USD− JPY

USD−GBP

JPY −GBP

The estimated standard deviations were obtained using Theorem 3.3. As expected, the estimated

coefficients are very close to those of the unconstrained model and the accuracy increased. The

opposite of the log-likelihood of the full model is 1659.186 and that of the constrained model is

1656.311 (up to some unimportant constant). If one uses a standard likelihood-ratio test, the

difference does not appear to be significant, and the constrained model is not rejected at any

reasonable significance level. However, the caveat concerning the reliability of asymptotic tests

when the parameter may lie on the boundary of the parameter space applies.

The conclusion from this empirical study is that the relationships between the different exchange

rates are mainly instantaneous. The conditional correlations are strongly positive while the spillover

effects in the volatilities are weak.
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8 Proofs

8.1 Proof of the consistency of ϑn in Theorem 3.2

The strong convergence of ĥn to h0 is a direct consequence of Assumption A and the ergodic

theorem. To complete the proof it suffices to show that

sup
θ∈Θ

∣∣∣∣∣L̃n(θ)− n−1
n∑

t=1

ℓ̃t(h0,θ)

∣∣∣∣∣→ 0 a.s. (8.1)

The mean value theorem yields

sup
θ∈Θ

∣∣∣ℓt(ĥn,θ)− ℓt(h0,θ)
∣∣∣ ≤ sup

ϑ∈Ξ

∣∣∣∣
∂

∂h
ℓt(ϑ)

∣∣∣∣ |ĥn − h0|,

where Ξ = Λ×Θ, with Λ a compact subset of (0,∞)m whose interior contains h0. Moreover,

sup
θ∈Θ

∣∣∣ℓ̃t(ĥn,θ)− ℓ̃t(h0,θ)
∣∣∣ ≤ 2 sup

ϑ∈Ξ

∣∣∣ℓ̃t(ϑ)− ℓt(ϑ)
∣∣∣+ sup

θ∈Θ

∣∣∣ℓt(ĥn,θ)− ℓt(h0,θ)
∣∣∣ .

In view of the consistency of ĥn, the convergence in (8.1) will thus follow from the Cesàro lemma

and

sup
ϑ∈Ξ

∣∣∣ℓ̃t(ϑ)− ℓt(ϑ)
∣∣∣→ 0 a.s. and E sup

ϑ∈Ξ

∣∣∣∣
∂

∂h
ℓt(ϑ)

∣∣∣∣ < ∞,

The a.s. convergence was established in the proof of Theorem 11.7 in Francq and Zakoian (2010, page

295), and the latter inequality follows from formula (11.67) on page 300 of the previous reference.

8.2 Proof of the asymptotic normality of ϑn in Theorem 3.2

Introduce the martingale difference

νt = ǫt − ht = (U2
t − Im)ht,

where U t = diag(R
1/2
0 ηt). Replacing ht−j by ǫt−j −νt−j , j = 0, . . . , p, in the last equation of (2.1),

we get the ARMA equation

ǫt − h0 =

r∑

i=1

(A0i +B0i)
(
ǫt−i − h0

)
+ νt −

p∑

i=1

B0iνt−i.

Taking the average of the two sides of the equality for t = 1, . . . n leads to

ĥn − h0 =

{
Im −

r∑

i=1

(A0i +B0i)

}−1(
Im −

p∑

i=1

B0i

)
n−1

n∑

t=1

νt + o(1), a.s.
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The central limit theorem (CLT) for square integrable stationary martingale differences (see Billings-

ley (1961)) entails that

√
n
(
ĥn − h0

)
=

C√
n

n∑

t=1

(U2
t − Im)ht + oP (1)

d→ N (0,Σh) ,

where C = C(θ0), as defined before Theorem 3.2, and

Σh = CE
{
(U2

t − Im)E
(
hth

′
t

)
(U2

t − Im)
}
C ′.

Noting that ℓ̃t,n(θ) = ℓ̃t(ĥn,θ), we have

0s0 =
1√
n

n∑

t=1

∂

∂θ
ℓ̃t,n(θ̂n) =

1√
n

n∑

t=1

∂

∂θ
ℓ̃t(ϑ̂n)

=
1√
n

n∑

t=1

∂

∂θ
ℓ̃t(ϑ0) +

(
1

n

n∑

t=1

∂2

∂θi∂ϑj
ℓ̃t(ϑi)

)

s0×s1

√
n
(
ϑ̂n − ϑ0

)

=
1√
n

n∑

t=1

∂

∂θ
ℓ̃t(ϑ0) + Jn

√
n
(
θ̂n − θ0

)
+Kn

√
n
(
ĥn − h0

)
,

where, for some ϑi between ϑ̂n and ϑ0,

Jn =

(
1

n

n∑

t=1

∂2

∂θi∂θj
ℓ̃t(ϑi)

)

s0×s0

, Kn =

(
1

n

n∑

t=1

∂2

∂θi∂hj
ℓ̃t(ϑi)

)

s0×m

.

In view of (11.69) and (11.70) in Francq and Zakoian (2010), and using the elementary equality

Trace(A′B) = (vecA)′vecB, we also have

∂

∂θ
ℓ̃t(ϑ0) = ∆tV t + o(ρt) a.s., (8.2)

with some ρ ∈ [0, 1),

V t = vec(Im −R−1/2ηtη
′
tR

1/2)

and ∆t is a s0 × m2 matrix, which is measurable with respect to the sigma-field generated by

{ηu, u < t}. Because J is positive-definite, Jn is a.s. non-singular for sufficiently large n. It

follows that, for n large enough

√
n
(
ϑ̂n − ϑ0

)
=


 Im 0

−J−1
n Kn −J−1

n


Xn

where

Xn :=




√
n
(
ĥn − h0

)

1√
n

∑n
t=1

∂
∂θ ℓ̃t(ϑ0)


 =




C√
n

∑n
t=1(U

2
t − Im)ht

1√
n

∑n
t=1 ∆tV t


+ oP (1).
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Using again the CLT for square integrable stationary martingale differences (see Billingsley

(1961)), we have

Xn
d→ N



0,ΣX =


 Σh L

L′ I





 ,

with L = E{C(U 2
t − Im)htV

′
t∆

′
tC

′}. The conclusion follows.

8.3 Assumptions and the proof of Theorem 4.1

8.3.1 Notations and assumptions

Let A+
θ∗
(z) =

∑q
i=1 Ai,+z

i,A−
θ∗
(z) =

∑q
i=1 Ai,−zi and Bθ∗

(z) = Im −∑p
j=1Bjz

j . We refer to

Proposition 3.1 in Francq and Zakoïan (2012) for the definition of the matrix M1(A+
θ0∗

,A−
θ0∗

,Bθ0∗)

introduced below.

B1: θ0∗ ∈
◦
Θ∗ and Θ∗ is compact.

B2: ∀θ∗ ∈ Θ∗, |Bθ∗
(z)| = 0 ⇒ |z| > 1.

B3: If p > 0, A+
θ0∗

(1)+A−
θ0∗

(1) 6= 0, A+
θ0∗

(z), A−
θ0∗

(z) and Bθ0∗(z) are left coprime and the matrix

M1(A+
θ0∗

,A−
θ0∗

,Bθ0∗) has full rank m.

B4: (ǫt) is a strictly stationary solution of Model (4) and satisfies ‖ǫt‖4 < ∞.

8.3.2 Proof of Theorem 4.1

The consistency can be established by the arguments used in the proof of Theorem 3.2. We omit

the details. For the asymptotic normality, introduce the martingale difference

ν∗
t =


 ν+

t

ν−
t


 = ǫ∗t − Γht = (U

(2)
t − Γ)ht,

where

ǫ∗t =


 ǫ+t

ǫ−t


 , Γ =


 Γ+

Γ−


 = EU

(2)
t , U

(2)
t =


 (U+

t )
2

(U−
t )

2


 ,

U+
t = diag

(
η+1t, · · · , η+mt

)
, U−

t = diag
(
η−1t, · · · , η−mt

)
.
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We have

ǫ+t − ǫ0+ =Γ+(ht − h0) + ν+
t

=

r∑

i=1

Γ+(A0i,+ +B0iΓ
−1
+ )(ǫ+t−i − ǫ0+) + Γ+A0i,−(ǫ

−
t−i − ǫ0−)

+ ν+
t −

p∑

j=1

Γ+B0jΓ
−1
+ ν+

t−j ,

and a similar equation for ǫ−t − ǫ0−. It follows that

ǫ∗t − ǫ0∗ =
r∑

i=1

C0i,∗(ǫ
∗
t−i − ǫ0∗) + ν∗

t −
p∑

j=1

B0j,∗ν
∗
t−j ,

where

C0i,∗ =


 Γ+(A0i,+ +B0iΓ

−1
+ ) Γ+A0i,−

Γ−A0i,+ Γ−(A0i,− +B0iΓ
−1
− )


 , B0j,∗ =


 B0j 0

0 B0j


 .

Taking the average of the two sides of the equality for t = 1, . . . n leads to

ǫ̂n∗ − ǫ0∗ =
C∗
n

n∑

t=1

ν∗
t + o(1), a.s.

where

C∗ =

{
I2m −

r∑

i=1

C0i,∗

}−1

I2m −

p∑

j=1

B0j,∗


 .

By arguments already used,

√
n (ǫ̂n∗ − ǫ0∗) =

C∗√
n

n∑

t=1

(U
(2)
t − Γ)ht + oP (1)

d→ N (0,Σ∗
h) ,

where

Σ
∗
h = C∗E

{
(U

(2)
t − Γ)E

(
hth

′
t

)
(U

(2)
t − Γ)′

}
C ′

∗.

The rest of the proof is similar to the proof of the asymptotic normality of ϑn in Theorem 3.2.

Therefore is it omitted. We will only define the matrices required to derive the asymptotic variance

in Theorem 4.1. Let

G∗ =


 I2m 0

−J−1
∗ K∗ −J−1

∗


 , J∗ = E

(
∂2ℓt(ϑ0∗)

∂θ∗∂θ
′
∗

)
, K∗ = E

(
∂2ℓt(ϑ0∗)
∂θ∗∂ǫ′∗

)
,

ΣX∗ = Var(x∗
t ), x∗

t =


 C∗ {ǫt − ht(ϑ0∗)}

∂
∂θ∗

ℓt(ϑ0∗)


 ,
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8.4 Proof of Theorem 5.1

Since Ĝ → G and Σ = GΣXG′, it suffices to show that, conditionally on (ǫt),

1√
n

n∑

t=1

x∗
t,n

d→ N (0,ΣX). (8.3)

Note that, conditionally on (ǫt), for each n the random vectors x∗
1,n,x

∗
2,n, . . . are independent and

centered, with finite second-order moments. From the Lindeberg CLT for triangular arrays and the

Wold-Cramèr device, to prove (8.3) it suffices to show that for any λ ∈ R
s1

1

n

n∑

t=1

Varλ′x∗
t,n → λ′

ΣXλ as n → ∞, (8.4)

and for all ε > 0
1

n

n∑

t=1

Eλ′x∗
t,nx

∗′
t,nλ1{|λ′x∗

t,n|≥
√
nε} → 0 as n → ∞. (8.5)

Recall that we are reasoning conditionally on (ǫt). Therefore, the moments involved in (8.4) and

(8.5) are computed with respect to the distribution of the bootstrap sample, and the convergences

must hold for almost all sequence (ǫt) satisfying (2.1). Let us give the arguments for the proof of

(8.4) when λ = e1 := (1, 0, . . . , 0)′ and m = 1. In this case, Ĉ and h̃
2

t (ϑ̂n) are scalar and, given

(ǫt),

Varλ′x∗
t,n = Ĉ

2
h̃
2

t (ϑ̂n)(µ̂4 − 1),

where µ̂4 is the empirical fourth-order moment of η̂1, . . . , η̂n (centered and reduced). Using the

consistency of ϑ̂n, the smoothness of ϑ 7→ ht(ϑ) and the asymptotic irrelevance of the initial

values, i.e.

sup
ϑ∈Ξ

∣∣∣h̃2

t (ϑ)− h2
t (ϑ)

∣∣∣ ≤ Kρt

for any compact set Ξ, some K > 0 and ρ ∈ (0, 1), it can be shown (see, for example, the proof

of Theorem 2 in Francq and Zakoïan (2013)) that, for almost all sequence (ǫt) satisfying (2.1),

µ̂4 → Eη4
1 as n → ∞,

Ĉ
2
h̃
2

t (ϑ̂n)(µ̂4 − 1) → C2h̃
2

t (ϑ0)(Eη4
1 − 1) for t fixed and n → ∞,

and
1

n

n∑

t=1

Ĉ
2
h̃
2

t (ϑ̂n)(µ̂4 − 1) → C2Eh2
t (ϑ0)(Eη4

1 − 1) = ΣX(1, 1)

as n → ∞. More generally, by the previous arguments we have

Var
1√
n

n∑

t=1

x∗
t,n =

1

n

n∑

t=1

Ex∗
t,nx

∗′
t,n → ΣX as n → ∞,
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which entails (8.4).

Now we turn to the proof of (8.5). For notational simplicity, we still give the arguments in the

case λ = e1 and m = 1 Since there exists c > 0 such that Ĉ
2
h̃
2

t (ϑ̂n) > c for all sequence (ǫt), we

have

Eλ′x∗
t,nx

∗′
t,nλ1{|λ′x∗

t,n|≥
√
nε} ≤ Ĉ

2
h̃
2

t (ϑ̂n)E|η∗2
1 − 1|21{|η∗2

1
−1|≥√

n ε
c

}. (8.6)

Because E|η∗2
1 − 1|2 < ∞ and the event

{
|η∗2

1 − 1| ≥ √
nε/c

}
decreases to ∅ as n → ∞, the

dominated convergence theorem shows that the right-hand side of (8.6) tends almost surely to zero.

We then obtain (8.5) by Cesàro’s lemma. The result can be extended for m > 1 and for other values

of λ, which completes the proof.

8.5 Proof of Theorem 6.1

Similar to (8.2) we have
∂

∂h
ℓ̃t(ϑ0) = ΩtV t + o(ρt) a.s.,

where Ωt is a m×m2 matrix, measurable with respect to the sigma-field generated by {ηu, u < t}.
A coordinate wise Taylor expansion yields

1√
n

n∑

t=1

∂

∂h
ℓ̃t(ϑ̂n) =

1√
n

n∑

t=1

∂

∂h
ℓ̃t(ϑ0) +Hn

√
n
(
ĥn − h0

)
+K′

n

√
n
(
θ̂n − θ0

)
,

where Kn is defined in the proof of (3.3) Section 8.2, and

Hn =

(
1

n

n∑

t=1

∂2

∂hi∂hj
ℓ̃t(ϑi)

)

m×m

.

Write
1√
n

n∑

t=1

∂

∂h
ℓ̃t(ϑ̂n) =

(
Hn −K ′

nJ
−1
n Kn −K′

nJ
−1
n Im

)
Y n,

where

Y n :=


 Xn

1√
n

∑n
t=1

∂
∂h ℓ̃t(ϑ0)


 =




C√
n

∑n
t=1(U

2
t − Im)ht

1√
n

∑n
t=1


 ∆t

Ωt


V t


+ oP (1).

By (3.2) and the CLT for square integrable stationary martingale differences, we have Y n
d→

N (0,ΣY ). We thus have T n
d→ N (0,ΣR) .
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8.6 Proof of Theorem 6.3

The vector Y n introduced in the proof of Theorem 6.1 has the form

Y n =
1√
n

n∑

t=1

(1− η2t )




− 1−β0

1−α0−β0
ht

1
ht

∑
i≥0 β

i(ǫ2t−i−1 − v0)

1
ht

∑
i≥0 β

i(ht−i−1 − v0)

1−α0−β0

1−β0

1
ht




+ oP (1).

It follows that

ΣY = (κ4 − 1)



(

1−β0

1−α0−β0

)2
Eh2t f

′

f J


 ,

where f
′ = (0, 0,−1) and J = E

(
1
h2
t

∂ht(ϑ0)
∂(α,β,v)′

∂ht(ϑ0)
∂(α,β,v)

)
. In particular,

J33 = E

(
1

h2t

)(
1− α0 − β0

1− β0

)2

.

Now we evaluate ΣR. We have H = J33 and K′ = (J31,J32). With the notations introduced

in (6.4), we get

ΣY = (κ4 − 1)




σ2
01×2 −1

02×1 J K

−1 K ′ H




resulting in MΣY = (κ4 − 1)(σ2δ − 1,01,2, 2δ) and thus (6.4) follows.

Now we show that ΣY is positive-definite. Note that ΣY = (κ4 − 1)E(StS
′
t), where

St =




−e−1ht

h−1
t

∂ht

∂(α,β)′ (ϑ0)

eh−1
t


 , e =

1− α0 − β0
1− β0

,

which yields that ΣY is semi positive-definite. Now if c′ΣY c = 0 for some c = (c1, c2, c3, c4)
′ ∈ R

4

we have

c1h
2
t + c2

∂ht
∂α

(ϑ0) + c3
∂ht
∂β

(ϑ0) + c4 = 0 a.s.

Thus

xt−2η
4
t−1 + yt−2η

2
t−1 + zt−2 = 0

for some variables xt−2, yt−2, zt−2 belonging to the σ-field generated by {ηt − i, i ≥ 2}. In view of

the independence between η2t−1 and this σ-field, by solving the latter equation we find that η2t−1

takes, almost surely, at most two constant values. Thus, we have shown that ΣY is positive-definite

if the law of η2t is not concentrated on two points. It follows that ΣR > 0, because M 6= 01×4.
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9 Conclusion

In the framework of CCC-GARCH models, we studied a method, already widely used by practi-

tioners, consisting in estimating the unconditional variances of the individual returns in a first step,

and estimating the remaining parameters by QML in a second step. The main motivation for this

method is computational and our experiments showed that the reduction of computational time

compared to the full QML can be effective. Interestingly, the accuracy loss entailed by the two-step

procedure is often barely visible on the simulation experiments. We also showed that the method is

not limited to the standard CCC model. Models incorporating leverage effects can also be estimated

in a similar way: instead of targeting the variances, moments related to the signs of the returns are

more naturally targeted. A question of interest for future research is whether dynamic correlation

models (such as the DCC model) can be handled this way.

A Appendix: First-order derivatives of the criterion

To avoid using numerical derivatives in the practical estimation of CCC-GARCH models, it is

important to be able to compute explicitly (in a recursive way) the derivatives of the criterion. For

the CCC-GARCH(1,1) model we have

h̃t = (Im −A−B)h +Aǫt−1 +Bh̃t−1.

Write α = vec(A),β = vec(B). The derivatives of h̃t with respect to the parameters can be

computed recursively as follows, for t ≥ 1

∂h̃t

∂h′ = Im −A−B +B
∂h̃t−1

∂h′ ,

∂h̃t

∂α′ = (ǫt−1 − h)′ ⊗ Im +B
∂h̃t−1

∂α′ ,

∂h̃t

∂β′ = (h̃t−1 − h)′ ⊗ Im +B
∂h̃t−1

∂β′ ,

or equivalently, letting φ′ = (h′,α′,β′)

∂h̃t

∂φ′ =


Im −A−B


 ǫt−1 − h

h̃t−1 − h




′

⊗ Im


+B

∂h̃t−1

∂φ′ ,

32



with, for example,
∂h̃

0

∂φ′ = 0. For the CCC-GARCH(p, q) model we similarly have

∂h̃t

∂φ′ =




Im −
r∑

i=1

(Ai +Bi)




ǫt−1 − h

...

ǫt−q − h

h̃t−1 − h

...

h̃t−p − h




′

⊗ Im




+

p∑

j=1

Bj

∂h̃t−j

∂φ′ ,

where φ′ = (h′,α′
1, . . . ,α

′
q,β

′
1, . . . ,β

′
p).

Now let D̃
2

t = diag(h̃t) and let Rj. denote the jth row of R−1. We have (see for example

(11.67)-(11.70) in Francq and Zakoian (2010))

∂ℓ̃t(ϑ)

∂ϑi
= −Tr

{(
ǫtǫ

′
tD̃

−1

t R−1 +R−1D̃
−1

t ǫtǫ
′
t

)
D̃

−1

t

∂D̃t

∂ϑi
D̃

−1

t

}

+2Tr

(
D̃

−1

t

∂D̃t

∂ϑi

)

= 2Tr

{(
Im − D̃

−1

t ǫtǫ
′
tD̃

−1

t R−1
)
D̃

−1

t

∂D̃t

∂ϑi

}

= −
m∑

j=1

{
1−

(
Rj.D̃

−1

t ǫt

) ǫjt

{h̃jt}1/2

}
1

h̃jt

∂h̃jt
∂ϑi

:= ω′
t

∂h̃t

∂ϑi
,

for i = 1, . . . , s2 = m+ (p + q)m2. It follows that

∂ℓ̃t(ϑ)

∂φ
= (Is2 ⊗ ω′

t)vec

(
∂h̃t

∂φ′

)
.

Similarly

∂ℓ̃t(ϑ)

∂ϑi
= −Tr

(
R−1D̃

−1

t ǫtǫ
′
tD̃

−1

t R−1 ∂R

∂ϑi

)
+ Tr

(
R−1 ∂R

∂ϑi

)

= Tr

{(
Im −R−1D̃

−1

t ǫtǫ
′
tD̃

−1

t

)
R−1 ∂R

∂ϑi

}
,

for i = s2 + 1, . . . , s1.
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