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Abstract

We study optimal asset allocation for a portfolio of European fixed-income mutual
funds during the recent financial turmoil. We use a sample of daily returns for country
indices of French, German and Italian funds to investigate the quest for international
diversification. Our analysis focuses on the specific role of Italian funds. We compute
optimal portfolio allocations from a modified mean-variance framework that takes as input
the out-of-sample forecasts for the conditional mean, volatility and correlation of the
funds returns. VaR forecast comparisons between alternative models provide support for
a fractionally-integrated GARCH for the conditional variance. The interaction between
the funds is modelled as the Dynamic Conditional Correlation of Engle (2002). Our
results are twofold. First, the optimal portfolio allocates more than 50% of assets to
German funds, while assigning equal shares of approximately 20% to both French and
Italian funds. This strategy generates portfolio returns that are more stable than those of
our competing models. It is also characterized by a worsening of the risk-return tradeoff
throughout the evaluation period. The second result is that overweighing Italian funds
with respect to the optimal strategy causes the portfolio to hold additional volatility of
returns without generating compensation for risk.
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1 Introduction

Holdings of mutual funds represent a sizeable share of portfolios of both institutional investors

and households around the world. Since the shares of any fund are available to virtually any

investor regardless of her geographical location, investors face the choice of how to diversify

their mutual fund holdings across countries. This choice has evidently become more difficult

since the outbreak of the global financial turmoil in 2007.

In this paper, we focus on the international diversification across the European mutual

fund industry during the recent phase of market disruption. In particular, we investigate the

relative performance of funds managed in France, Germany and Italy. Despite the fact that

a large block of European countries is tied together by a common currency, local financial

markets still face idiosyncratic regulations, different tax regimes and, most of all, a different

phases of development.

Our study also deals with the specific role of Italian funds. Most of the literature on

Italian funds has concentrated on the measurement of management fees (e.g., see Anolli and

Del Giudice, 2008) and performance (e.g., see Cesari and Panetta, 2002). To our knowledge,

no existing contribution has considered the role of Italian mutual funds in international asset

allocation.

Regardless of the specific national factors at play, the turmoil in financial markets that

erupted in August 2007 has pushed central banks around the world to keep a loose monetary

policy stance for the last five years. This has obviously contributed to a fall of interest rates

both on the short and on the long end of the yield curves of most advanced economies. For

this reason, our analysis concentrates on mutual funds investing in fixed-income assets. In

this asset class, we include both bonds and money-market instruments.

To provide insight on the scope for international diversification, we build on the standard

mean-variance framework of Markowitz (1952) to construct forecast-based optimal plans for

asset allocation with a constraint on Value-at-Risk (VaR). As a starting point, we estimate

joint models and generate forecasts for the conditional mean, volatility and correlation of

funds returns in the three economies. These forecasts are then used to compute the optimal

allocations. Our dataset consists of aggregate indices for daily excess returns of French,

German and Italian funds starting in September 2007.

The conditional correlation is modelled through the Dynamic Conditional Correlation

framework of Engle (2002). Since our dataset covers a period of persistent turbulence

and volatility in the financial markets, we start by considering a a fractionally-integrated

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) specification for the

underlying conditional variance (e.g., see Baillie, 1996). The results from out-of-sample VaR

forecast comparisons with alternative GARCH specifications point in favour of our model

with fractional integration.1

1Several papers have already used a fractionally-integrated GARCH to deal with datasets characterized
by persistence in volatility. For example, the reader may refer to Ding, Granger, and Engle (1993) for an
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The empirical results produced by the forecasts of the DCC model with

fractionally-integrated GARCH suggest that an optimal portfolio should include a large

share of German funds. Both Italian and French funds should be allocated portfolio shares

of 20% each. In other words, Italian mutual funds play a marginal role in international

asset allocation. The strategy prescribed by our model generates portfolio returns that are

relatively stable than those of alternative models, despite the fact that they are generated

over a period of turbulence for financial markets. The second result concerns the specific

role of Italian mutual funds. Assigning a higher weight to Italian funds with respect to the

optimal strategy causes the portfolio to face sizeable volatility of returns without adding

compensation for this source of risk. Overall, we can take these results as face value for the

underperformance of Italian mutual funds.

This paper is organized as follows. Section 2 outlines the models for the conditional

variance and correlation, as well as the framework for studying optimal asset allocation.

Section 3 deals with the dataset. Section 4 discusses the estimation results for the

fractionally-integrated GARCH models. It also compares the predictive ability for

out-of-sample VaR of competing models, and outlines the implications for optimal portfolio

diversification of fixed-income mutual funds. In section 5 we present some concluding remarks.

2 Modelling approach

In this paper, we model daily excess returns of assets. Given a price pt and a risk-free interest

rate rt, we define the realized excess return in period t as:

rt = 100× log(pt/pt−1)− rt (1)

2.1 Univariate fractionally-integrated model

We start by considering a univariate model for excess returns:

(1− ξL)rt = c+ ǫt

ǫt = et
√
ht

(2)

with c ∈ (0,∞), |ξ| < 1, {et}∞t=1 are independently and identically-distributed randon

variables. The term ht denotes the conditional variance. We start by modeling ht as the

FIGARCH(1,d,1) of Baillie, Bollerslev, and Mikkelsen (1996):

(1− βL)(ht − ω) = [(1− βL)− (1− φL)(1− L)d]ǫ2t (3)

where ω = h0 and |φ| ≤ 1. The coefficient d denotes the fractional-integration parameter.

application to the hedging of stock prices.

3



2.2 Multivariate extension

Let us define the N -dimensional vector of returns rt and the corresponding vector et. The

conditional mean of the model can be written as

Z(L)rt = c+ et (4)

with Z(L) = INξ(L) and IN is a N ×N identity matrix, and ξ(L) = [1− ξiL]i.

To model the conditional correlation, we use the Dynamic Conditional Correlation (DCC)

model of Engle (2002). Following Engle and Sheppard (2001), we can estimate the model

in two steps. First, the univariate model for the conditional mean and GARCH dynamics

are estimated. The transformed residuals are then used to compute conditional correlation

estimators, where the standard errors for the first-stage parameters are consistent. The

conditional variance-covariance matrix Ht is estimated as

Ht = DtVtDt

Dt = diag(σ
1/2
1,1,t, . . . σ

1/2
N,N,t)

Vt = diag(θt)
−1/2θtdiag(θt)

−1/2

θt = (1− α− β)θ̄ + αet−1e
′
t−1 + βθt−1

(5)

where θt denotes the conditional variance-covariance matrix of residuals satisfying α+β < 1,

and θ̄ is the unconditional covariance matrix of et.

2.3 Competing univariate GARCH models

In our empirical application, we compare the asset allocation performance of the multivariate

FIGARCH models with that of alternative specifications. We use the standard GARCH(1,1)

based on the Normal distribution (denoted as NGARCH)

ht = α0 + α1ǫ
2
t−1 + νht−1 (6)

with α0 > 0, α1 ≥ 0 and ν1 ≥ 0 in order to ensure a positive conditional variance. The

presence of skewness in financial data has motivated the introduction of the Exponential

GARCH (EGARCH) model (see Bollerslev, Chou, and Kroner, 1992):

log(ht) = α0 + α1

∣

∣

∣

∣

ǫt−1

ht−1

∣

∣

∣

∣

+ γ
ǫt−1

ht−1
+ ν log(ht−1) (7)

The GJR model generates an asymmetric reaction of the conditional variance depending on

the sign of the shock:

ht = α0 + α1ǫ
2
t−1

[

1− I{ǫt−1>0}

]

+ γǫ2t−1I{ǫt−1>0} + νht−1 (8)
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2.4 Framework for optimal asset allocation

In this paper we consider a dynamic approach to portfolio allocation. We use one-month

ahead forecasts for the conditional mean and covariance of returns generated by each model.

The out-of-sample forecasts for each period are then fit into a mean-variance framework to

compute the optimized portfolio composition.

We modify the standard mean-variance model along the lines of Lejeune (2012) by

introducing constraints that are economically-relevant, and that provide stability to the

solution of the optimal allocation problem. We assume that the representative investor

maximizes one-period ahead expected returns of the portfolio

max
wt

Erp,t+1 = max
wt

w
′
tErt+1 (9)

subject to the standard constraint

∑

i

wi = 1 (10)

We impose a diversification constraint with both an upper limit for the holdings of each

asset j in each period. Given the lower bound wmax on portfolio shares, we introduce a binary

variable δj ∈ {0, 1} for each asset j = 1, . . . n such that

wj,t ≤ wmaxδj (11)

We also include so-called buy-in thresholds that prevent the portfolio from having small

positions in a mutual fund

wminδj ≤ wj,t (12)

where wmin is the lower limit on the positions.

To limit the risk of the optimized portfolio, we introduce a bound on the one-period ahead

forecast for portfolio variance

w
′
tHt+1wt ≤ s (13)

where Ht+1 denotes the covariance matrix forecast. Finally, our framework includes a

VaR-forecast constraint

w
′
tEtrt+1 + F−1

w
(0.05)

√

w′
tHt+1wt ≥ −β (14)

In the empirical application, we set wmax to 90%, wmin to 1% for all the assets, and β to

5% in order to achieve a 95% VaR. The numerical optimization problem is solved using the
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mixed-integer non-linear programming (MINLP) solver.2

3 Dataset

We construct daily indices for prices of fixed-income mutual funds sold to investors in France,

Germany and Italy. We select the funds that manage assets in the form of corporate and

goverment bonds, as well as money-market instruments. We aggregate the data across funds

sold in a given country by computing weighted averages. The weights are equal to the share

of assets under management (AUM) by both national and foreigner managers registered in

each country. Since our analysis intends to focus on the recent turmoil period, our sample

period goes from September 1 2007 until December 31 2011. We measure the risk-free rate by

the yield on 3-month German government bonds. This is consistent with anecdotal evidence

on flight-to-safety episodes during the turmoil.

Data on daily fund prices are obtained from a commercial dataset provided by Standard

& Poor’s. This includes fund-level information on daily-updated prices, monthtly-updated

assets under management, as well as management and sales fees for a large sample of European

mutual funds. In this paper we control for the effect of survivorship bias by disregarding the

funds that are not active over the entire sample period. This narrows down the number of

funds that are included to a major extent. In particular, our national indices are computed

on 85 French, 79 German and 62 Italian funds. Regardless, the French funds included in

the dataset account for 71%, the German funds for 64%, and the Italian funds for 70% of

national assets under management within the fixed-income funds class.

Table 1 reports the descriptive statistics of our index returns. The impact of the turmoil

on the mutual fund industry is reflected by large skewness and kurtosis coefficients. In

particular, the empirical distributions are left-skewed. The Jarque-Bera test statistics rejects

the null of normality very significantly. Table 1 includes also the statistics for the normality

test of Anderson and Darling (1952). This is a modification of the Kolmogorov-Smirnov

test that gives weight to the tails of the empirical distribution of the data. Also this test

points towards a strong rejection of the null of normality. As an additional step, we test

for nonlinear dependence using the BDS test of Brooks, Dechert, and Scheinkman (1996).

These tests reject the null of independence and identical distribution for the returns. The last

panel of Table 1 reports the unconditional correlations between the excess returns. While the

returns on Italian fixed-income funds are strongly correlated, the German funds are somewhat

decoupled from both the French and the Italian funs. Finally, we check for the presence of

ARCH effects in every series. For this purpose, we use the Lagrange Multiplier test of Engle

(1982). The results are reported in Table 2, which documents large rejections of the null of

no ARCH.

2The open-source code for optimization is available at https://projects.coin-or.org/Bonmin.
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4 Empirical results

After proper statistical testing, we choose to estimate a VAR of order 1 for the conditional

mean. For the purpose of parsimony, in this section, we discuss the empirical estimates

for the alternative DCC models.3 We start by presenting the parameter estimates for

the univariate fractionally-integrated GARCH models. We then compare the out-of-sample

predictive ability for Value-at-Risk of the alternative GARCH models. Finally, we turn to the

multivariate models for conditional correlation, and present evidence in favor of time-varying

correlations against constant the alternative of constant correlations.

We carry out the estimation in the following way. We reserve the last 150 observations

of the dataset for out-of-sample forecast evaluation. The models are estimated in-sample on

the preceding part of the dataset. At the beginning of the evaluation subsample, we start

estimating the models on a recursive sampling scheme, whereby a new observation is used

for estimation after is has been forecast.

4.1 Evidence of fractional integration in conditional variance

Table 3 shows the estimated parameters for the univariate GARCH models. These are

estimates obtained by maximizing standard likelihood function

L = −1

2
log(2π)− 1

2

T
∑

t=1

[

log h2t +
ǫ2t
h2t

]

(15)

The first panel of Table 3 indicates that the estimated coefficients of fractional integration are

all statistically significant. The average value for d̂ is equal to 0.8. This could be interpreted

as preliminary statistical evidence in favor of the fractionally-integrated model for conditional

volatility. The estimated parameters provide the sufficient conditions to guaranteee the

non-negativity of the variance estimates. The second panel of Table 3 reports the Ljung-Box

test statistics for serial correlation in the standardized and squared standardized residuals,

denoted as Q12 and Q2
12 respectively. The tests indicate that the univariate FIGARCH models

suffer from no significant source of misspecification.

We test for persistence in conditional variance by Wald tests against the null hypothesis

for d = 0 and d = 1. Table 4 reports the tests statistics and the associated p values. Both null

hypothesis are strongly rejected, thus supporting the proposition of fractional integration in

the conditional variance process.

4.2 Out-of-sample VaR comparison

Our asset-allocation model includes a constraint based on VaR prediction. Hence, comparing

the predictive ability of the competing univariate GARCH models using VaR criteria can

3The draft does not report the parameter estimates for the competing GARCH models either. These
estimated parameters can be obtained from the author upon request.
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provide insights into the optimal diversification of fixed-income funds.4 Given a VaR forecast,

several statistical tests are available to assess the predictive ability of the GARCH models.

The time until first failure (TUFF ) is computed from the number of exceptions of the

VaR for model k, denoted as Irt<VaRk
t

. A model can then be judged as appropriate when

the proportion of failures (PF ) is close to the nominal value. Under the assumption that the

number of failures is i.i.d. and distributed as a binomial, a test for proportion of failures is

formulated with the null hypothesis

H0 : E(Irt<VaRk
t

) = γ (16)

Christoffersen (1998) proposes a test of independence failures that accounts for the role

of volatility clustering. The null of independent failure rates (IND) is tested against a

first-order Markov failure process with the test statistics. Finally, we consider a conditional

test of correct coverage (CC) where the null of independent failures with a probability γ is

tested against first-order Markov failure.

Table 5 presents the test results based on one-step ahead VaR forecasts at the 95%.

Figures in bold identify the minima for each evaluation criterion. The theoretical TUFF at

the 5% is 15. First of all, most of the models have time until first failure that exceed the

theoretical value. The fractionally-integrated models deliver the lowest percentage of failure

probabilities for all the countries. The test results indicate that the FIGARCH models also

generate both unconditional and conditional coverage that are consistent with the theoretical

levels. The lowest number of test rejections is produced by the FIGARCH, whereas the

largest share of rejections is obtained by the GJRGARCH.

4.3 Evidence for time-varying conditional correlation

In order to test the specification of the DCC with FIGARCH models, we test for constancy

of the conditional correlations. In the testing framework of Engle and Sheppard (2001), the

null and alternative hypotheses are, respectively

H0 : Vt = V

H1 : vec(Vt) = vec(V ) + φ1vec(Vt−1) + . . . φmvec(Vt−m)
(17)

This procedure requires to define the auxiliary model

ŵt = ω0 + ω1ŵt−1 + . . . ωmŵt−m

ŵt = vec(̂lt̂l
T
t − In)

(18)

where l̂t is a vector of standardized residuals l̂t = V̂ −1/2D̂−1
t êt. The null hypothesis implies

that the coefficients ωι of equation 18 are jointly equal to zero, with a test statistically

4From a statistical point of view, loss functions based on VaR are a natural alternative to the standard
statistical loss functions, like the root mean squared error (see Brooks and Persand, 2003).
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that is asymptotically distributed as a χ2(m − 1). Table 6 reports the tests statistics with

the respective p values. The results provide strong support for a time-varying correlation

structure.

4.4 Results for optimal forecast-based asset allocation

We plug the one-step ahead forecasts for both the conditional mean and the covariance matrix

into the portfolio allocation framework. We then solve the resulting maximization problem

to compute the optimal fund allocation plan.

Table 7 reports some selected moments for the distribution of optimizing portfolio weights

for each competing model. The first panel includes the average weights obtained over the

forecasting period. Regardless of the modelling framework, the evidence suggests that a

wealth-optimizing investor holds the largest share of German fixed-income funds. This asset

may absorb up to more than 70% of a portfolio as measured by the maximum weight. If we

focus on the model with the best statistical record - i.e., the DCC-FIGARCH -, we notice that

the optimal share of German funds is twice as large as that of French funds. On the other

hand, optimized portfolios assign only a share of 18% on average to Italian funds. Competing

models provide very different allocation strategies. For instance, the DCC-GJRGARCH

delivers a portfolio of almost equally-weighted funds. For the DCC-FIGARCH model, our

optimal portfolios prescribe asset weights that vary widely through time. In fact, there

are sizeable differences between the maximum and the minimum weights that characterize

optimal portfolios. For the DCC-FIGARCH, the maximum weight on German funds is three

times the minimum portfolio share. The weight on Italian funds drops to as low as 3% for

the same model.

In the following step of our analysis, we consider the performance of the optimal portfolios

of funds. Figure 2 plots the means of the distributions of optimal frontiers for each forecasting

model. These curves are constructed as simple averages of the optimizing mean-variance

combinations over the evaluation period for out-of-sample forecasts. The reader should notice

that the frontiers are not as well-shaped as in the standard portfolio optimization approach of

Markowitz (1952). The reason lies in the additional constraint that we use to achieve stability

in our dynamic asset allocation plans. Figure 2 shows that, on average, a given increase in

portfolio standard deviation for the DCC-FIGARCH generates an increase in expected return

higher than for the competing models. Moreover, for a given level of portfolio return volatility,

the DCC-FIGARCH achieves higher excess return than the other DCC specifications.

How do the mean-variance frontiers change during the turmoil period? Figure 1 provides

insight into the movements of the curve once a year, from June 30 2008 until June 30

2011. This figure depicts the progressive worsening of the trade-off between volatility and

expected portfolio returns that has taken place during the recent period of market turmoil.

In particular, the frontier for June 15 2011 becomes almost flat, which indicates that the

reward for taking additional risk in the fixed-income fund sector is marginal.
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To gain understanding on the distribution of expected returns from alternative portfolio

allocations, Table 8 reports some selected statistics. The first relevant observation is that the

excess returns from the DCC-FIGARCH are stable, as they vary over a range smaller than

that of the competing models. This pattern of stability of portfolio returns emerges is reflected

also by the second panel of Table 8, which reports the standard deviation of excess returns.

Overall, these figures suggest that the DCC-FIGARCH allows to construct portfolios with

higher returns while, at the same time, producing the lowest standard deviation of returns.

The DCC-GJRGARCH, which assigns the smallest mean weight of German funds, generates

portfolio returns with the highest variability. This supports the previous finding about the

desirability of putting a large weight on German funds and a small weight on Italian funds

in our setup of international portfolios.

What is the performance impact of deviating from the optimal allocation of Italian

funds? How important are mistakes from overweighting Italian funds in the design of

optimal portfolios? We study this issue by fixing the weight on the Italian mutual index,

and by computing the optimizing portfolio shares for French and German funds that solve

the planning problem. Figure 3 plots the resulting average frontiers of optimal expected

returns and standard deviations for three values of wITA - wITA = 0.3, wITA = 0.4 and

wITA = 0.5 - with the DCC-FIGARCH as the forecasting model. The curve moves towards

a region with higher standard deviations for each level of portfolio return as wITA increases.

In other words, deviating from the optimal share of Italian funds generate a clear cost in

the terms of additional variability of returns. By how much do the optimal combinations

of risk and return change, on average, as we deviate from the optimal wITA? In Table 9,

we report the percentage rate of increase of both expected returns and standard deviations

of returns from the figures generated by the portfolio with optimal weights for all the three

assets. Choosing a share of Italian funds in excess of the optimizing weight leads to an

increase in portfolio return variability that outpaces largely the increase in expected returns.

For instance, raising wITA to 0.5 produces an ancrease of expected return equal to 9.2%,

while the standard deviation rises by almost 53%.

5 Conclusion

This paper considers the optimal allocation problem in a a portfolio of European fixed-income

mutual funds during the recent period of financial turmoil. We consider daily price indices

for French, German and Italian funds to study the benefits from international diversification

since September 2007. In particular, our analysis focuses on the role of Italian mutual

funds. We model the conditional correlations of the funds returns using the DCC model

of Engle (2002). The conditional variance is modelled as a fractionally-integrated process.

Out-of-sample VaR forecast comparisons with alternative GARCH specifications indicate that

the fractionally-integrate model bears desirable empirical properties. We compute a dynamic
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optimal asset allocation plan that take as input out-of-sample forecasts for the conditional

mean, volatility and correlation of the funds returns. Given one-step ahead forecasts for these

moments, we solve a mean-variance allocation problem for each day of the forecast-evaluation

period. The structure of this portfolio optimization problem includes several constraints, such

as a bound on out-of-sample VaR.

The results obtained from the forecasts of the DCC-FIGARCH are twofold. First of all,

a wealth-optimizing investor should hold a large fraction of German fixed-income funds for

approximately 60%, while assigning a share of approximately 20% to both French and Italian

funds. These optimal allocations vary widely on a daily basis. However, they generate

portfolio returns more stable than those of alternative models, and are characterized by

a worsening of the risk-return tradeoff across the forecast evaluation period. The second

result concerns the role of Italian mutual funds. Overweighing Italian funds with respect to

the optimal strategy causes the portfolio to hold additional volatility of returns without

generating compensation for risk. We can interpret this result as a reflection of the

underperformance of the Italian mutual fund industry.

The analysis presented here can be extended in several ways. From a modelling point of

view, we could introduce a fully multivariate model where fractionally-integrated processes

for both the conditional variance and correlation are jointly estimated (e.g., see Conrad,

Karanasos, and Zeng, 2011). The optimal asset allocations could be computed using the

approach of Black and Litteman (1992), rather than relying on arbitrary types of boundaries

to generate stable portfolio plans. Most important, we should consider the role of transaction

costs and management fees for measuring mutual fund performance. Hence, we should

compare optimal allocations based on gross returns with those for net returns.
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Table 1: Descriptive statistics for excess returns on fixed-income funds

French index German index Italian index
Minimum -2.04 -1.57 -2.09
Maximum 2.23 2.43 1.99
Mean 1.053 1.141 1.016
Std. dev. 2.30 3.61 2.38
Skewness -15.52 -35.64 -9.70
Kurtosis 29.85 13.65 27.40

Jarque-Bera 170.09
[0.0]

144.16
[0.0]

17.905
[0.0]

Anderson-Darling 45.93
[0.0]

31.99
[0.0]

47.72
[0.0]

BDS(2) 9.70
[0]

12.44
[0]

19.10
[0]

Correlations
French index German index Italian index

French index 1 0.19 0.66
German index 0.19 1 0.38
Italian index 0.66 0.38 1

Legend: Brackets denote p-values. The BDS test was computed by setting the
largest dimension to 2, and the length of the correlation integral to one times the
standard deviation of the series. These values are chosen so that the first-order
correlation integral estimate lies around 0.7.
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Table 2: Lagrange-multiplier tests of ARCH effects

Lag Engle (1982)

French index German index Italian index
1 37.79

[0.0]
12.20
[0.0]

7.54
[0.0]

2 54.20
[0.0]

19.79
[0.0]

15.46
[0.0]

3 162.23
[0.0]

98.04
[0.0]

56.79
[0.0]

4 164.56
[0.0]

125.59
[0.0]

56.74
[0.0]

5 164.72
[0.0]

131.20
[0.0]

56.97
[0.0]

Legend: p-values are in brackets.
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Table 3: Parameter estimates of FIGARCH univariate model

German index French index Italian index

β 0.55
(7.13)

0.68
(8.03)

0.16
(8.13)

φ 0.25
(5.99)

0.37
(8.93)

0.49
(7.55)

d 0.80
(10.38)

0.89
(9.26)

0.90
(12.04)

Q12 14.90
[0.53]

10.37
[0.61]

14.08
[0.50]

Q2
12 14.60

[0.28]
9.17
[0.31]

11.52
[0.47]

Legend: Round brackets denote t statistics. Square brackets refer to p values.
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Table 4: Wald tests for restrictions on fractional differencing parameter

H0 : d = 0 H0 : d = 1

German index 15.71
[0.01]

29.40
[0.00]

French index 19.52
[0.00]

41.85
[0.00]

Italian index 11.95
[0.03]

13.33
[0.01]

Legend: Square brackets denote p values.
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Table 5: One-step ahead VaR farecasting evaluation

Model TUFF PF(%) LFPF LFIND LFCC

FR - FIGARCH 24 4.100 0.213 2.648 5.331*
DE - FIGARCH 13 2.390 0.722 2.796 13.927*
IT - FIGARCH 25 3.599 0.263 3.690 3.953

FR - NGARCH 11 11.735 0.299 4.959* 4.999
DE - NGARCH 23 5.097 14.131* 2.450 13.490*
IT - NGARCH 37 4.159 0.472 4.959* 5.442*

FR - EGARCH 19 5.405* 0.250 4.648* 4.898
DE - EGARCH 28 2.541 14.131* 2.796 13.927*
IT - EGARCH 14 4.880 0.116 4.851* 4.967

FR - GJRGARCH 27 5.541* 0.440 8.241* 8.411*
DE - GJRGARCH 27 2.973 7.443* 4.357* 14.800*
IT - GJRGARCH 19 4.595 0.263 3.69 4.930

Legend: * indicates significance at the 5% level.
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Table 6: Tests for constant conditional correlations

Lag Test statistics

1 28.53
[0.0]

2 33.96
[0.0]

3 45.49
[0.0]

4 45.52
[0.0]

5 52.70
[0.0]

Legend: p-values are in brackets.
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Table 7: Composition of optimal portfolios

French index German index Italian index

Mean weight
DCC-FIGARCH 23% 59% 18%
DCC-NGARCH 35% 51% 14%
DCC-EGARCH 21% 47% 32%
DCC-GJRGARCH 31% 39% 30%

Maximum weight
DCC-FIGARCH 40% 79% 41%
DCC-NGARCH 45% 72% 38%
DCC-EGARCH 37% 65% 50%
DCC-GJRGARCH 57% 59% 44%

Minimum weight
DCC-FIGARCH 9% 26% 3%
DCC-NGARCH 8% 11% 5%
DCC-EGARCH 5% 14% 10%
DCC-GJRGARCH 9% 22% 5%
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Table 8: Statistics on performance distribution of optimal portfolios

Mean Maximum Minimum

Portfolio excess return
DCC-FIGARCH 1.53 1.75 1.19
DCC-NGARCH 1.43 2.05 0.38
DCC-EGARCH 1.27 1.98 0.26
DCC-GJRGARCH 1.41 1.97 0.35

Standard deviation
DCC-FIGARCH 15.97 19.90 10.19
DCC-NGARCH 21.15 23.95 14.42
DCC-EGARCH 19.70 24.10 16.99
DCC-GJRGARCH 29.82 24.05 17.20
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Table 9: Percentage change in portfolio performance arising from deviations of wITA

% change in Etrp,t+1 % change in σ (rp,t)

wITA = 0.3 1.99% 3.71%

wITA = 0.4 4.77% 28.33%

wITA = 0.5 9.20% 52.94%

Legend: This plot is obtained by fixing the weight on Italian funds fixed to
wITA, and by computing asset-allocation plans by optimizing the weights
for French and German fund indices. The underlying forecasting model
is the DCC-FIGARCH. The term Etrp,t+1 denotes the expected portfolio
return, and σ (rp,t) is the standard deviation of the portfolio returns over
the forecasting period.
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Figure 1: Mean of distribution of optimal frontiers for each forecasting model
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Figure 2: Movement of mean-variance frontiers from DCC-FIGARCH model
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Figure 3: Mean-variance frontiers with fixed weight on Italian fund index
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Legend: This plot is obtained by fixing the weight on Italian funds fixed to
wITA, and by computing asset-allocation plans by optimizing the weights
for French and German fund indices. The underlying forecasting model is
the DCC-FIGARCH.
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