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Abstract

This paper offers an equilibrium existence theorem in discontinuous games. We introduce

a new notion of continuity, called quasi-weak transfer continuity that guarantees the existence

of pure strategy Nash equilibrium in compact and quasiconcave games. We also consider

possible extensions and improvements of the main result. Our conditions are simple and

easy to verify. We present applications to show that our conditions allow for economically

meaningful payoff discontinuities.
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1 Introduction

The concept of Nash equilibrium in Nash (1950, 1951) is probably the most important solution

concept in game theory. It is immune from unilateral deviations, that is, each player has no in-

centive to deviate from his/her strategy given that other players do not deviate from theirs. Nash

(1951) proved that a finite game has a Nash equilibrium in mixed strategies. Debreu (1952) then

showed that games possess a pure strategy Nash equilibrium if (1) the strategy spaces are convex

and compact, and (2) players have continuous and quasiconcave payoff functions. However, in

many important economic models, such as those in Bertrand (1883), Hotelling (1929), Milgrom
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(1985), Dasgupta and Maskin (1986), and Jackson (2009), payoffs are particularly discontinuous

and/or non-quasiconcave.

Economists then seek weaker conditions that can guarantee the existence of equilibrium.

Some seek to weaken the quasiconcavity of payoffs or substitute it with some forms of transitiv-

ity/monotonicity of payoffs (cf. McManus (1964), Roberts and Sonnenschein (1977), Nishimura

and Friedman (1981), Topkis (1979), Vives (1990), and Milgrom and Roberts (1990)), some seek

to weaken the continuity of payoff functions (cf. Dasgupta and Maskin (1986), Simon (1987),

Simon and Zame (1990), Tian (1992a, 1992b, 1992c, 2009), Tian and Zhou (1992, 1995), Reny

(1999, 2009), Bagh and Jofre (2006), Morgan and Scalzo (2007), Carmona (2009, 2011), and

Nessah (2011)), while others seek to weaken both quasiconcavity and continuity (cf. Yao (1992),

Baye et al. (1993), Tian (2009), McLennan et al. (2011), Prokopovych (2011, 2013), Barelli and

Meneghel (2013), and Nessah and Tian (2009, 2013)).

This paper investigates the existence of pure strategy Nash equilibria in discontinuous games.

We introduce a new notion of very weak continuity, called quasi-weak transfer continuity, which

holds in a large class of discontinuous games. Roughly speaking, a game is quasi-weakly transfer

continuous if for every nonequilibrium strategy x∗, there exists a player i, a neighborhood N and

a securing strategy profile such that for every deviation strategy profile z in N , agent i’s payoff at

securing strategy is strictly above the payoff at the local security level even if the others deviate

slightly from z.

We establish that a compact, convex, quasiconcave and quasi-weakly transfer continuous game

has a Nash equilibrium and show that it is unrelated to Reny (1999), Carmona (2009, 2011), Nes-

sah (2011), Prokopovych (2011, 2013), and Barelli and Meneghel (2013). We provide sufficient

conditions for quasi-weak transfer continuity such as weak transfer continuity, quasi-weak upper

semicontinuity and payoff security, and transfer lower continuity and quasi upper semicontinu-

ity. These conditions are satisfied in many economic games and are often simple to check. We

also provide the existence theorems for symmetric games, and consider further extensions and

improvements of our main result.

The remainder of the paper is organized as follows. In Section 2, we first introduce the notion

of quasi-weak transfer continuity, and then provide the main existence result on pure strategy

Nash equilibrium. We also provide examples illustrating the theorems as well as some sufficient

conditions for quasi-weak transfer continuity. Section 3 considers the equilibrium existence for

symmetric games. Section 4 gives some possible extensions and improvements. Section 5 presents

some applications of interest to economists that illustrate the usefulness of our results. Section 6

concludes the paper. All the proofs are presented in the appendix.
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2 Existence of Nash Equilibria

Consider a game in normal form: G = (Xi, ui)i∈I , where I = {1, ..., n} is a finite set of players,

Xi is player i’s strategy space that is a nonempty subset of a Hausdorff locally convex topological

vector space, and ui is player i’s payoff function from the set of strategy profiles X =
∏
i∈I

Xi to R.

For each player i ∈ I , denote by −i all players rather than player i. Also denote by X−i =
∏
j ̸=i

Xj

the set of strategies of the players in −i. Product sets are endowed with the product topology.

A game G = (Xi, ui)i∈I is said to be compact if for all i ∈ I , ui is bounded and Xi is

compact. A game G = (Xi, ui)i∈I is said to be quasiconcave if for every i ∈ I , Xi is convex and

the function ui is quasiconcave in xi. A pure strategy Nash equilibrium of G is a strategy profile

x∗ ∈ X such that ui(yi, x
∗
−i) ≤ ui(x

∗) for yi ∈ Xi and all i ∈ I .

The following weak notion of continuity, quasi-weak transfer continuity, guarantees the exis-

tence of equilibrium in compact and quasiconcave games.

DEFINITION 2.1 A game G = (Xi, ui)i∈I is said to be quasi-weakly transfer continuous if

whenever x ∈ X is not an equilibrium, there exists a player i, yi ∈ Xi, ϵ > 0, and some

neighborhood Nx of x such that for every z ∈ Nx and every neighborhood Nz ⊆ Nx of z,

ui(yi, z−i) > ui(zi, z
′
−i) + ϵ for some z′ ∈ Nz .

Quasi-weak transfer continuity means that whenever x is not an equilibrium, some player i

has a strategy yi yielding a strictly large payoff at the local security level even if the others play

slightly differently than at x.1

We then have the following main result.

THEOREM 2.1 If G = (Xi, ui)i∈I is compact, quasiconcave, and quasi-weakly transfer contin-

uous, then it possesses a pure strategy Nash equilibrium.

The proof of the theorem will be presented in the appendix. We here briefly explain why quasi-

weak transfer continuity ensures the existence of pure strategy Nash equilibrium for compact and

quasiconcave games. When a game fails to have a pure strategy Nash equilibrium, by quasi-weak

transfer continuity, for every strategy profile x, some player i has a strategy yi yielding a strictly

large payoff at the local security level provided the others play slightly differently than at x. As

such, the difference of payoffs at deviation strategy profile (yi, x−i) and disequilibrium strategy

x is uniformly positive. On the other hand, it can be shown that the resulting maximum value

function Ψi of this difference is lower semicontinuous, and further, by quasiconcavity, the set

of deviation strategies yi that results in positive maximum value of the difference, i.e., the set

1The local security level at z means the value of the least favorable outcome in a neighborhood of z, given by

ui(z) ≡ sup
Nz⊆N

inf
z′∈Nz

ui(zi, z
′
−i).
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defined by Ci(x) = {yi ∈ Xi : Ψi(x, yi) > 0} is convex for all x ∈ X , and its inverse set

C−1
i (yi) = {x ∈ X : Ψi(x, yi) > 0} is an open set for each of such yi. Then, by Yannelis and

Prabhakar Theorem, there exists a strategy profile x such that the maximum value of the function

is nonpositive at the deviation strategy yi, which is impossible.

Note that, contrary to the results of Reny (1999), Bagh and Jofre (2006), Carmona (2009,

2011), and Prokopovych (2011), which require verifying the closureness of the graph of the vector

payoff function, quasi-weak transfer continuity is relatively easier to verify, requiring no analysis

of any closures of high-dimensional objects.

EXAMPLE 2.1 Consider the following game with two players and the unit square X1 = X2 =

[0, 1]. For player i = 1, 2 and x = (x1, x2) ∈ X = [0, 1]2, let the payoff functions for the players

be given by

ui(x1, x2) =





xi + 1, if x−i >
1
2

1, if xi >
1
2 and x−i =

1
2

−1, if xi ≤
1
2 and x−i =

1
2

xi − 1, if x−i <
1
2 .

It can be verified that the game is not (generalized) better-reply secure so that Proposition 2.4

of Barelli and Meneghel (2013), Theorem 1 of Carmona (2011) and Theorem 3.1 in Reny (1999)

cannot be applied. It is not generalized weakly transfer continuous so that Theorem 3.1 of Nessah

(2011) cannot be used. It is neither weakly reciprocal upper semicontinuous. As such, Theorem 4

in Prokopovych (2011) and Corollary 2 in Carmona (2009) cannot be applied.

However, it is quasi-weakly transfer continuous. Indeed, let x = (x1, x2) be a nonequilibrium

strategy profile. If (x1, x2) ̸= (12 ,
1
2), then by nonequilibrium of x and continuity of payoffs at x,

there exists a player i, yi ∈ Xi, ϵ > 0, and some neighborhood N of x such that for all z ∈ N , we

have ui(yi, z−i) − sup
Nz⊆N

inf
z′∈Nz

ui(zi, z
′
−i) > ϵ. Since x1 = x2 = 1

2 , for i = 1, sufficiently small

ϵ > 0, neighborhood N ⊆ (12 − ϵ, 12 + ϵ)2 of (12 ,
1
2), and yi = 1, we have

Case 1) If z−i >
1
2 , then for every neighborhood Nz of z, there is z′ ∈ Nz so that z′−i = z−i >

1
2

and ui(yi, z−i) = 2 > 1 + zi + ϵ = ui(zi, z
′
−i) + ϵ.

Case 2) If z−i <
1
2 , then for every neighborhood Nz of z, there is z′ ∈ Nz so that z′−i = z−i <

1
2

and ui(yi, z−i) = 0 > zi − 1 + ϵ = ui(zi, z
′
−i) + ϵ.

Case 3) If z−i = 1
2 , then for every neighborhood Nz of z, there is z′ ∈ Nz so that z′−i < 1

2 and

ui(yi, z−i) = 1 > zi − 1 + ϵ = ui(zi, z
′
−i) + ϵ.

Since the game is compact and quasiconcave, by Theorem 2.1, it possesses a pure strategy Nash

equilibrium.
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Prokopovych (2013) introduced the notion of weak single deviation property that general-

izes better-reply security of Reny (1999), weak transfer quasi-continuity of Nessah and Tian

(2009) and single deviation property of Reny (2009) as follows: A game G = (Xi, ui)i∈I has

the weak single deviation property if whenever x ∈ X is not an equilibrium, there exists an

open neighborhood N of x, a set of players I(x) ⊆ I and a collection of deviation strategies

{yi(x) ∈ Xi : i ∈ I(x)} such that for every z ∈ N nonequilibrium, there exists a player

j ∈ I(x) satisfying uj(yj(x), z−j) > uj(z). He then provided a theorem (Theorem 2) that shows

under the weak single deviation property and a condition (Condition (ii) in Theorem 2), there is

a pure strategy Nash equilibrium in games with compact and convex strategy spaces. Notice that

Condition (ii) is unrelated to quasiconcavity. Indeed, Reny (2009) constructed a counterexample

where the game G = (Xi, ui)i∈I is compact, quasiconcave, and has the single deviation property

which implies weak single deviation property, but it may not possess a pure strategy Nash equilib-

rium (also see Example 2 in Prokopovych (2013)). Moreover, the following example shows that

quasi-weak transfer continuity does not imply the weak single deviation property either. As such,

Theorem 2.1 is unrelated to Theorem 2 in Prokopovych (2013).

EXAMPLE 2.2 Consider the following concession game with two players and the unit square

X1 = X2 = [0, 1]. For player i = 1, 2 and x = (x1, x2) ∈ X = [0, 1]2, let the payoff functions

for the players be given by

ui(x1, x2) =





1, if xi = 0 and x−i > 0

x−i − xi + 1, if xi < x−i and xi > 0

3xi, if xi = x−i <
1
2

0, if xi = x−i ≥
1
2

x−i − xi − 1, if xi > x−i.

It can be verified that the game does not have the weak single deviation property. Indeed,

let x = (12 ,
1
2) be a nonequilibrium. For an open neighborhood N of (12 ,

1
2), a set of players

I(12 ,
1
2) ⊆ I and a collection of deviation strategies {yi(x) ∈ Xi : i ∈ I(x)}, we can find a

nonequilibrium strategy z in N so that uj(yj(x), z−j) ≤ uj(z), for each j ∈ I(x). To see this,

consider two cases:

(1) If I(12 ,
1
2) = {i} where i = 1, 2. Let z ∈ N so that zi = z−i = t ̸= yi, t <

1
2 and t > 1

2−
yi
2

if yi > 0. Then

ui(yi, z−i) =





1, if yi = 0

t− yi + 1, if yi < t and yi > 0

t− yi − 1, if yi > t.

≤ 3t = ui(z).

5



(2) If I(12 ,
1
2) = I = {1, 2}. Let z ∈ N so that zi = z−i = t ̸= yi, for each i = 1, 2, t < 1

2 and

t > 1
2 − yi

2 if yi > 0, for each i = 1, 2. Therefore, uj(z) = 3t for each j = 1, 2.

(i) If y1 = y2 = 0, then uj(yj , z−j) = 1 < 3t = uj(z), for each j = 1, 2.

(ii) If yi = 0 and y−i > 0 for each i = 1, 2, then ui(yi, z−i) = 1 < 3t = ui(z) and

u−i(y−i, zi) =

{
t− y−i + 1, if y−i < t

t− y−i − 1, if y−i > t.

≤ 3t = u−i(z).

(iii) If y1 > 0 and y2 > 0, then for each j = 1, 2 we have

uj(yj , z−j) =

{
t− yj + 1, if yj < t

t− yj − 1, if yj > t.

≤ 3t = uj(z).

However, it is quasi-weakly transfer continuous. Indeed, x ̸= (12 ,
1
2) is obviously quasi-weakly

transfer continuous. Suppose that x = (12 ,
1
2). Let ϵ > 0 be sufficiently small, N ⊂ (12 −ϵ, 12 +ϵ)2

and yi = ϵ, for some i = 1, 2. For each z ∈ N , we have the following three cases:

(1) If zi < z−i, then for every neighborhood Nz of z, there is z′ ∈ Nz so that z′−i > z−i > zi

and ui(yi, z−i) = 1 + z−i − ϵ > 1 + z′−i − zi + ϵ = ui(zi, z
′
−i) + ϵ.

(2) If zi > z−i, then for every neighborhood Nz of z, there is z′ ∈ Nz so that z′−i < z−i < zi

and ui(yi, z−i) = 1 + z−i − ϵ > z′−i − zi − 1 + ϵ = ui(zi, z
′
−i) + ϵ.

(3) If zi = z−i, then for every neighborhood Nz of z, there is z′ ∈ Nz so that z′−i < zi and

ui(yi, z−i) = 1 + z−i − ϵ > z′−i − zi − 1 + ϵ = ui(zi, z
′
−i) + ϵ.

While it is somewhat simple to verify quasi-weak transfer continuity, it is sometimes even

simpler to verify other conditions leading to it.

DEFINITION 2.2 A game G = (Xi, ui)i∈I is said to be weakly transfer continuous if whenever

x ∈ X is not an equilibrium, there exists a player i, ȳi ∈ Xi, ϵ > 0, and some neighborhood Nx

of x such that ui(ȳi, x
′
−i) > ui(x

′) + ϵ for all x′ ∈ Nx.

DEFINITION 2.3 A game G = (Xi, ui)i∈I is said to be quasi upper semicontinuous (QUSC) if

for all i ∈ I , x ∈ X , and ϵ > 0, there exists a neighborhood N of x such that for every z ∈ N

and every neighborhood Nz ⊆ N of z, ui(x) ≥ ui(zi, z
′
−i)− ϵ for some z′ ∈ Nz .

DEFINITION 2.4 A game G = (Xi, ui)i∈I is said to be quasi-weakly upper semicontinuous

(QWUSC) if whenever x ∈ X is not an equilibrium, there exists a player i, x̂i ∈ Xi, ϵ > 0, and

some neighborhood Nx of x such that for every z ∈ Nx and every neighborhood Nz ⊆ Nx of z,

ui(x̂i, x−i) > ui(zi, z
′
−i) + ϵ for some z′ ∈ Nz .
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DEFINITION 2.5 A game G = (Xi, ui)i∈I is said to be weakly transfer lower semicontinuous

(WTLSC) if whenever x is not a Nash equilibrium, there exists a player i, yi ∈ Xi, ϵ > 0 and

some neighborhood Nx of x such that ui(yi, z−i) > ui(x) + ϵ for all z ∈ Nx.

Weak transfer continuity was independently introduced in our previously circulated Nes-

sah and Tian (2008), which is the same as the single player deviation property introduced in

Prokopovych (2013). It is obvious that (1) weak transfer continuity implies quasi-weak transfer

continuity, (2) upper semicontinuity implies quasi upper semicontinuity, which in turn implies

quasi-weak upper semicontinuity, and (3) lower semicontinuity implies payoff security, which

in turn implies weak transfer lower semicontinuity. Also, quasi-weak upper semicontinuity and

transfer lower semicontinuity, when combined with payoff security2 and quasi upper semiconti-

nuity respectively, imply quasi-weak transfer continuity. We then have the following proposition.

PROPOSITION 2.1 Suppose that a game G satisfies any of the following conditions:

(a) it is weakly transfer continuous;

(b) it is quasi-weakly upper semicontinuous and payoff secure;

(c) it is weakly transfer lower semicontinuous and quasi upper semicontinuous.

Then it is quasi-weakly transfer continuous, and consequently, there exists a pure strategy Nash

equilibrium provided that it is also compact and quasiconcave.

EXAMPLE 2.3 Consider the two-player game with the following payoff functions defined on

[0, 1]× [0, 1] :

ui(x1, x2) =

{
xi + 1 if x−i >

1
2

xi − 1 if x−i ≤
1
2 .

This game is not (generalized) better-reply secure nor (weakly) reciprocal upper semicontinuous.

As such, Corollary 3.3, Corollary 3.4 of Reny (1999), Proposition 1 of Bagh and Jofre (2006), and

Theorem 4 in Prokopovych (2011) cannot be applied.

However, the game is payoff secure and quasi-weakly upper semicontinuous. To see this, let

i ∈ I , ϵ > 0, and x ∈ X . If x−i ̸=
1
2 , then it is clear that there exists a strategy yi = 1 and some

neighborhood V of x−i such that ui(yi, z−i) ≥ ui(x)− ϵ for each z−i ∈ V . If x−i =
1
2 , then there

exists a strategy yi = 1 and some neighborhood V of x−i such that ui(x)− ϵ = xi − 1− ϵ ≤ 0 ≤

ui(yi, z−i) for each z−i ∈ V . Thus, the game is payoff secure.

Also, let x = (x1, x2) be a nonequilibrium strategy profile. Then there exists a player i such

that xi < 1. Let xi+2ϵ < 1 for some ϵ > 0. If x−i ̸=
1
2 , then it is clear that there exists a strategy

2A game is payoff secure if for every x ∈ X , every ϵ > 0, and every player i, respectively, there exists xi ∈ Xi

such that ui(xi, z−i) ≥ ui(x)− ϵ for all z−i in some open neighborhood of x−i.
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yi = 1 and some neighborhood V ⊆ (xi − ϵ, xi + ϵ) × [0, 1] of x such that for every z ∈ V and

every neighborhood Vz of z, ui(yi, x−i) > ui(zi, z
′
−i) + ϵ for some z′ ∈ Vz . If x−i =

1
2 , then

there exists a strategy yi = 1 and some neighborhood V ⊆ (xi − ϵ, xi + ϵ) × [0, 1] of x such

that for each z ∈ V and every neighborhood Vz of z, there exists z′ ∈ Vz with z′−i =
1
2 so that

ui(zi, z
′
−i) + ϵ = zi − 1 + ϵ ≤ xi + 2ϵ − 1 < ui(yi, x−i) = 0. Thus, it is quasi-weakly upper

semicontinuous. Since the game is also compact and quasiconcave, then by Proposition 2.1.(b), it

possesses a Nash equilibrium.

EXAMPLE 2.4 Consider the two-player game with the following payoff functions defined on

[−1, 1]× [−1, 1] by

ui(x1, x2) =





xi + 1 if x−i > 0

xi if x−i = 0

xi −
1
2 if x−i < 0.

This game is not generalized better-reply secure. However, it is clearly weakly transfer lower

continuous. To see that it is also quasi upper semicontinuous, consider a player i, a strategy x

and ϵ > 0. If x−i ̸= 0, it is obvious that the game is quasi upper semicontinuous. If x−i = 0,

then there exists a neighborhood N ⊆ (xi − δ, xi + δ] × (−δ, δ) of x (with δ < 1
2 ) such that

for each z ∈ N and each Nz as a neighborhood of z, there exists z′ ∈ Nz with z′−i < 0 so as

ui(x) = xi ≥ (xi+δ)− 1
2−ϵ ≥ ui(zi, z

′
−i)−ϵ, which means it is also quasi upper semicontinuous

at x−i = 0. Since the game is also compact and quasiconcave, then by Proposition 2.1.(c), it

possesses a Nash equilibrium.

3 Pure Strategy Symmetric Nash Equilibrium

In this section, it is assumed that G = (Xi, ui)i∈I is a quasi-symmetric game, i.e., Z = X1 =

... = Xn and u1(x, y, ..., y) = u2(y, x, y, ..., y) = un(y, ..., y, x) for all x, y ∈ Z. Recall that a

Nash equilibrium (x1, ..., xn) is symmetric if x1 = x2 = ... = xn.

DEFINITION 3.1 A symmetric game G = (Xi, ui)i∈I is said to be diagonally quasi-weak trans-

fer continuous if whenever (x∗, ..., x∗) ∈ Xn is not an equilibrium, there exists a player i, strategy

y ∈ X , ϵ > 0, and neighborhood N of x∗ such that for all z1, z2 ∈ N and every neighborhood

N(z1,z2) ⊆ N that contains z1 and z2, ui(z
1, ...z1, y, z1, ..., z1) > ui(z

′, ..., z′, z2, z′, ..., z′) + ϵ

for some z′ ∈ N(z1,z2).

We then have the following existence theorem for quasi-symmetric games.

THEOREM 3.1 Suppose that G = (Xi, ui)i∈I is quasi-symmetric, compact, quasiconcave, and

diagonally quasi-weak transfer continuous. Then it has a symmetric pure strategy Nash equilib-

rium.

8



The following example illustrates Theorem 3.1.

EXAMPLE 3.1 Consider a timing game between two players on the unit square X1 = X2 = [0, 1]

studied by Prokopovych (2013). For player i = 1, 2 and x = (x1, x2) ∈ X = [0, 1]2, let the payoff

functions for the players be given by

ui(x1, x2) =





2, if xi < x−i

2, if xi = x−i <
1
2

0, if xi = x−i ≥
1
2

−2, if xi > x−i.

It can be verified that the game is not diagonally better-reply secure so that Theorem 4.1 in

Reny (1999) cannot be applied. This game is not generalized weakly transfer continuous nor

weakly reciprocal upper semicontinuous so that the results in Nessah (2011), Prokopovych (2011)

and Carmona (2009) cannot be applied.

However, it is diagonally quasi-weak transfer continuous. Indeed, let (x, x) be a nonequilib-

rium strategy profile. By nonequilibrium of (x, x), we have 1
2 ≤ x ≤ 1. Then, there exists a player

i = 1, ϵ = 1, some neighborhood N ⊆ (ϵ, 1) of x and y = 0 such that for all z1, z2 ∈ N , we have

ui(y, z
1) = 2. For each neighborhood N(z1,z2) that contains z1 and z2, there exists a z′ ∈ N(z1,z2)

with z′ < z2 such that ui(z
2, z′) = −2. Thus ui(y, z

1) − sup
N(z1,z2)⊆N

inf
z′∈N(z1,z2)

ui(z
2, z′) ≥ ϵ

for all z1, z2 ∈ N . Since the game is also quasi-symmetric, compact and quasiconcave, by Theo-

rem 3.1, it possesses a symmetric Nash equilibrium.

Quasiconcavity is still a strong assumption for many economic games. For instance, the classic

Bertrand model typically results in nonquasiconcave and discontinuous payoffs. Thus, a general

existence result for nonquasiconcave and discontinuous games is called for. In the following, we

provide an existence result for general nonquasiconcave and discontinuous games. First, recall the

following definition of diagonal transfer quasiconcavity introduced by Baye et al. (1993).

DEFINITION 3.2 A symmetric game G = (Xi, ui)i∈I is said to be diagonally transfer quasicon-

cave if X is convex, and for every player i, any finite subset of {y1, y2, ..., ym} ⊆ X , there is a

corresponding finite subset {x1, ..., xm} ⊆ X such that for any subset J of {1, ...,m} and every

x ∈ co{xj , j ∈ J}, we have

ui(x, ..., x) ≥ min
k∈J

ui(x, ..., x, y
k, x, ..., x).

While diagonal transfer quasiconcavity is weaker than diagonal quasiconcavity,3 and conse-

quently weaker than quasiconcavity, the following notion of diagonal weak transfer continuity is

stronger than the diagonal quasi-weak transfer continuity.

3A game G = (Xi, ui)i∈I is said to be diagonally quasiconcave if X is convex, and for every player i, all

x1, ..., xm ∈ X and all x ∈ co{x1, ..., xm}, ui(x, ..., x) ≥ min
k=1,...,m

ui(x, ..., x, x
k, x, ..., x).
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DEFINITION 3.3 A symmetric game G = (Xi, ui)i∈I is said to be diagonally weak transfer

continuous if whenever (x∗, ..., x∗) ∈ Xn is not an equilibrium, there exists a player i, strategy

y ∈ X , ϵ > 0, and neighborhood N of x∗ such that ui(z, ...z, y, z, ..., z) > ui(z, ..., z) + ϵ for all

z ∈ N .

We now state an existence result for nonquasiconcave and discontinuous games.

THEOREM 3.2 Suppose that G = (Xi, ui)i∈I is quasi-symmetric, compact, diagonally transfer

quasiconcave4, and diagonally weak transfer continuous. Then it has a symmetric pure strategy

Nash equilibrium.

As an illustration, we will use the Bertrand model to show the usefulness of Theorem 3.2 in

the following example.

EXAMPLE 3.2 Consider a quasi-symmetric two-player Bertrand price competition game on the

square [0, a]× [0, a] with a > 0. Assume that the demand function is discontinuous and is defined

by

Di(pi, p−i) =





αf(pi) if pi < p−i

βf(pi) if pi = p−i

γf(pi) if pi > p−i

where f : R+ → R+ is a continuous and nonincreasing function and α > β > γ ≥ 0. Suppose

that the total cost of production is zero for each firm. Then, the payoff function for each firm i

becomes

πi(pi, p−i) =





αpif(pi) if pi < p−i

βpif(pi) if pi = p−i

γpif(pi) if pi > p−i

.

The game is quasi-symmetric and compact. Since α > β > γ and f is nonincreasing, it

is clearly diagonally quasiconcave. Note that the set of discontinuity points is given by A =

{(p1, p2) : p1 = p2}. Let (p, p) be any nonequilibrium strategy. Then obviously there is qi ̸= p

so that πi(qi, p) > πi(p, p) (i.e., (qi, p) /∈ A). Choose ϵ > 0 so as πi(qi, p) > πi(p, p) + 3ϵ.

Thus there exists a neighborhood N of p with qi /∈ N such that πi(qi, p) − ϵ ≤ πi(qi, p
′) for all

p′ ∈ N by the continuity of f . We also have πi(p, p) + ϵ ≥ πi(p
′, p′) for all p′ ∈ N . Therefore,

πi(qi, p
′) > πi(p

′, p′)+ϵ for every p′ ∈ N . Then, this game is diagonally weak transfer continuous

and by Theorem 3.2, it possesses a symmetric pure strategy Nash equilibrium.

4The converse holds as well: if G has a Nash equilibrium, then G is diagonally transfer quasiconcave.

10



Similar to the previous section, we can provide some sets of sufficient conditions for diagonal

quasi-weak transfer continuity by introducing various notions of diagonal upper/lower semicon-

tinuity, such as diagonal quasi-weak upper semicontinuity, diagonal quasi upper semicontinuity,

and diagonal weak transfer lower semicontinuity.5

4 Further Extensions and Improvements

We can further improve our main result.

DEFINITION 4.1 A game G = (Xi, ui)i∈I is said to be pseudo quasi-weakly transfer continuous

if whenever x∗ ∈ X is not an equilibrium, there exists an ϵ > 0, a neighborhood N of x∗, a player

i, and a strategy yi ∈ Xi such that for all z ∈ N , ui(yi, z−i) > ui(zi, z
′
−i) + ϵ for some z′ ∈ N .

The difference between pseudo quasi-weak transfer continuity and quasi-weak transfer con-

tinuity is that the former takes the neighborhood Nz equal to Nx so that quasi-weak transfer

continuity implies pseudo quasi-weak transfer continuity.

For each player i ∈ I , define a function ̥i : X ×Xi → R by

̥i(x, yi) = sup
N∈Ω(x)

inf
z∈N

[
ui(yi, z−i)− inf

z′∈N
ui(zi, z

′
−i)

]

where Ω(x) is the set of all open neighborhoods N of x. We then have the following result.

THEOREM 4.1 Suppose that the game G = (Xi, ui)i∈I is compact and pseudo quasi-weakly

transfer continuous. If ̥i is quasiconcave in yi for all i, then the game G possesses a pure strategy

Nash equilibrium.

The following proposition shows that pseudo quasi-weak transfer continuity is also weaker

than better-reply security, and consequently Theorem 4.1 extends Theorem 3.1 in Reny (1999) by

weakening better-reply security.

PROPOSITION 4.1 If G = (Xi, ui)i∈I is better-reply secure, then it is pseudo quasi-weakly

transfer continuous.

While in terms of continuity, Theorem 4.1 is more interesting than Theorem 2.1 as well as Theo-

rem 3.1 in Reny (1999), the quasiconcavity of ̥i(x, .) is more complicated to check. A question

is then whether quasiconcavity of ̥i(x, yi) in yi can be replaced by quasiconcavity of ui(xi, x−i)

in xi. Unfortunately, the answer is negative.6

5See Nessah and Tian (2009).
6We would like to thank an anonymous referee for Example 4.1.
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EXAMPLE 4.1 Consider, on the unit square, the following game that has no pure strategy Nash

equilibrium.

u1(x) =

{
x1, if x2 = 0

2− x1, otherwise

u2(x) =

{
x2, if x1 = 1

2− x2, otherwise

The considered game is pseudo quasi-weakly transfer continuous and quasiconcave, but in general

the function ̥1(x, y1) is not quasiconcave in y1. Indeed, for x = (12 ,
1
2),

̥1((
1

2
,
1

2
), y1) = max(y1 −

1

2
,
1

2
− y1)

is not quasiconcave in y1.

Our main result can be further improved by introducing the following notions of transfer quasi-

continuity and strong diagonal transfer quasiconcavity.

DEFINITION 4.2 A game G = (Xi, ui)i∈I is said to be weakly transfer quasi-continuous if

whenever x ∈ X is not an equilibrium, there exists a y ∈ X and a neighborhood Nx of x such

that for every x′ ∈ Nx, there exists a player i satisfying ui(yi, x
′
−i) > ui(x

′).

Weak transfer quasi-continuity, which was independently introduced in our previously cir-

culated Nessah and Tian (2008) and also called single-deviation property in Reny (2009), only

requires that each strategy profile in a neighborhood of x be upset by one, but not all players.

Thus, it is a very weak notion of continuity so that it is a form of quasi-continuity.

DEFINITION 4.3 A game G = (Xi, ui)i∈I is said to be strongly diagonal transfer quasiconcave

if for any finite subset {y1, ..., ym} ⊆ X , there exists a corresponding finite subset {x1, ..., xm} ⊆

X such that for any subset {xk
1
, xk

2
, ..., xk

s

} ⊆ {xk
1
, xk

2
, ..., xk

s

}, 1 ≤ s ≤ m, and any x ∈

co{xk
1
, xk

2
, ..., xk

s

}, there exists y ∈ {yk
1
, ..., yk

s

} so that

ui(yi, x−i) ≤ ui(x) ∀i ∈ I. (4.1)

It is clear that a game is diagonally transfer quasiconcave if it is strongly diagonal transfer

quasiconcave.7 We then have the following result that generalizes Theorem 2 in Prokopovych

(2013).

THEOREM 4.2 Suppose that a game G = (Xi, ui)i∈I is convex, compact, weakly transfer quasi-

continuous. Then, the game possesses a pure strategy Nash equilibrium if and only if it is strongly

diagonal transfer quasiconcave.

7Indeed, summing up (4.1) and denoting U(x, y) =
∑

i∈I
ui(yi, xi), we have min

1≤l≤s
U(x, ykl

) ≤ U(x, x), which

is the condition for diagonal transfer quasiconcavity.

12



It may be remarked that weak transfer quasi-continuity and quasi-weak transfer continuity

are not implied by nor imply each other. The game considered in Example 2.2 is quasi-weakly

transfer continuous, but it does not have the weak single-deviation property which in turn does not

satisfy the single-deviation property/weak transfer quasi-continuity. On the other hand, the game

in Example 3.1 in Reny (2009) is weakly transfer quasi-continuous, but it is not quasi-weakly

transfer continuous.

While weak transfer quasi-continuity in Theorem 4.2 is weaker than the better-reply security

and diagonal transfer continuity, it requires that the game be strongly diagonal transfer quasicon-

cave. Can strong diagonal transfer quasiconcavity in Theorem 4.2 be replaced by conventional

quasiconcavity? Unfortunately, the answer is no. Reny (2009) showed this by giving a counterex-

ample (Example 3.1 in his paper) where a game G = (Xi, ui)i∈I is compact, quasiconcave, and

weakly transfer quasi-continuous, but it may not possess a pure strategy Nash equilibrium.

Thus, Theorems 3.2 and 4.2 both show that there is a trade-off between continuity condition

and quasiconcavity condition.

While Theorems 4.1 and 4.2 are not strict generalization of Theorem 2.1, we now introduce

a result that strictly generalizes Theorem 2.1 in games with discontinuous and nonquasiconcave

payoffs.

For each set B, denote by coB the convex hull of B. Let Ω(x) be the set of all open neigh-

borhoods N of x. For each player i ∈ I and every (x, yi) ∈ X × Xi, define the following

function

Ψi(x, yi) = sup
N∈Ω(x)

inf
z∈N

[
ui(yi, z−i)− sup

Nz⊆N
inf

z′∈Nz

ui(zi, z
′
−i)

]

where Nz is a neighborhood of z.

DEFINITION 4.4 A game G = (Xi, ui)i∈I is said to be Ψ-correspondence transfer continuous

if whenever x ∈ X is not an equilibrium, there exists an open neighborhood N of x and a well-

behaved correspondence8 ϕ : N ⇒ X such that for every z ∈ N , there exists a player j so

as

zj /∈ co{tj ∈ Xj : Ψj(z, tj) ≥ αj},

where αj ≤ inf
(x,yj)∈Graph(ϕj)

Ψj(x, yj).

REMARK 4.1 By the same method, we can extend Definitions 3.1, 3.3, and 4.1.

REMARK 4.2 If the game G is quasiconcave, then the condition zj /∈ co{tj ∈ Xj : Ψj(z, tj) ≥

αj} becomes Ψj(x, yj) > Ψj(z, zj), for each (x, yj) ∈ Graph(ϕj).

8C is said to be a well-behaved correspondence if it is upper hemicontinuous with nonempty, convex and closed

values and for each x ∈ X , C(x) has the following form C(x) = (C1(x), ..., Cn(x)).
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We have the following theorem which is a strict generalization of Theorem 2.1.

THEOREM 4.3 Suppose that G = (Xi, ui)i∈I is compact and convex, then G has a pure strategy

Nash equilibrium provided it is Ψ-correspondence transfer continuous.

REMARK 4.3 The considered game in Example 2.2 is Ψ-correspondence transfer continuous and

consequently by Theorem 4.3 it has a Nash equilibrium.

5 Applications

In this section we show how our main existence results are applied to some important economic

games. We provide two applications: one is the shared resource games that is intensively studied

by Rothstein (2007), and the other is the classic Bertrand price competition games studied first by

Bertrand (1883).

5.1 The Shared Resource Games

The shared resource games that usually result in discontinuous payoffs include a wide class of

games such as the canonical game of fiscal competition for mobile capital. In these games, players

compete for a share of a resource that is in fixed total supply, except perhaps at certain joint

strategies. Each player’s payoff depends on her opponents’ strategies only through the effect those

strategies have on the amount of the shared resource that the player obtains. As Rothstein (2007)

argued, when ad valorem taxes instead of unit taxes are adopted and the aggregate amount of

mobile capital is fixed instead of variable, it will typically result in at least one, and possibly

many, discontinuity points.

Formally, for such a game G = (Xi, ui)i∈I , each player i has a convex and compact strategy

space Xi ⊂ Rl and a payoff function ui that depends on other players’ strategies only through the

sharing rule defined by Si : X → [0, s] with s ∈ (0,+∞). That is to say, each player has a payoff

function ui : X → R with the form ui(xi, x−i) = Fi[xi, Si(xi, x−i)] where Fi : Xi × [0, s] → R

and ui is bounded.9

Let Di ⊆ X be the set of joint strategies at which Si is discontinuous and the set ∆ =
∪
i∈I

Di

be all of the joint strategies at which one or more of the sharing rules are discontinuous. The set

X\∆ is then all of the joint strategies at which the sharing rules are continuous.

Rothstein (2007) showed a shared resource game possesses a pure strategy Nash equilibrium

if the following conditions are satisfied: (1) X is compact and convex; (2) ui is continuous on

X and quasiconcave in xi; (3) Si satisfies: (3.i)
∑n

i=1 Si(x) = s̄ for all x ∈ X \ ∆; (3.ii) there

exists s ∈ [0, s̄] such that
∑n

i=1 Si(x) = s for all x ∈ ∆; (3.iii) for all i, (xi, x−i) ∈ Di and

9For more details on this model, see Rothstein (2007).
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every neighborhood V(xi) of xi, there exists x′i ∈ V(xi) such that (x′i, x−i) ∈ X \ Di; (3.iv)

there exists a constant s̃i satisfying s̄ ≥ s̃i > s̄/n such that for all i, all (xi, x−i) ∈ ∆, and all

(x′i, x−i) ∈ X \ Di, Si(x
′
i, x−i) ≥ s̃i ≥ Si(xi, x−i); (4) Fi is continuous, nondecreasing in si,

and satisfies max
xi∈Xi

Fi(xi, si) > max
xi∈Xi

Fi(xi, s̄/n) for any si > s̄/n.

In the following, we will give an existence result with much simpler conditions and its proof

is also much easier:

Assumption 1: The game is compact and quasiconcave.

Assumption 2: If (yi, x−i) ∈ Di and Fi(yi, Si(yi, x−i)) > Fi(xi, Si(x)) for player i, then there

exists some player j ∈ I and ȳj such that (ȳj , x−j) ∈ X\Dj and Fj(ȳj , Sj(ȳj , x−j)) >

Fj(xj , Sj(x)).

Assumption 3: If (yi, x−i) ∈ X\Di and Fi(yi, Si(yi, x−i)) > Fi(xi, Si(x)) for player i, then

there exists a player j ∈ I , a deviation strategy profile ȳi, ϵ > 0, and a neighborhood Nx of

x such that for every z ∈ Nx and every neighborhood Nz ⊆ Nx of z, Fj(ȳj , Sj(ȳj , z−j)) >

Fj(zj , Sj(zj , z
′
−j)) + ϵ for some z′ ∈ Nz .

Assumption 1 is standard. A well-known sufficient condition for a composite function ui =

Fi[xi, Si(xi, x−i)] to be quasiconcave is that Fi is quasiconcave and nondecreasing in si, and

Si is concave. Assumption 2 means that if x is not an equilibrium and can be improved at a

discontinuous strategy profile (yi, x−i) when player i uses the deviation strategy yi, then there

exists a player j such that it must also be improved by a continuous strategy profile (ȳj , x−j)

when player j uses the deviation strategy ȳj . Assumption 3 means that if a strategy profile x is

not an equilibrium and can be improved by a continuous strategy profile (yi, x−i) when player i

uses a deviation strategy yi, then there exists a securing strategy profile ȳ and a neighborhood of

x such that all points in the neighborhood cannot be equilibria. We then have the following result.

PROPOSITION 5.1 A shared resource game possesses a pure strategy Nash equilibrium if it sat-

isfies Assumptions 1-3.

5.2 The Bertrand Price Competition Games

It is well known that Bertrand competition typically results in discontinuous and nonquasiconcave

payoffs. It is a normal form game in which each of n ≥ 2 firms, i = 1, 2, ..., n, simultaneously

sets a price pi ∈ P = [0, p]. Under the assumption of profit maximization, the payoff to each firm

i is

πi(pi, p−i) = piDi(pi, p−i)− Ci(Di(pi, p−i)),
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where p−i denotes the vector of prices charged by all firms other than i, Di(pi, p−i) represents the

total demand for firm i’s product at prices (pi, p−i), and Ci(Di(pi, p−i)) is firm i’s total cost of

producing the output Di(pi, p−i). A Bertrand equilibrium is a Nash equilibrium of this game.

Let Ai ⊆ Pn be the set of joint strategies at which πi is discontinuous, ∆ =
∪
i∈I

Ai be the set

of all of the joint strategies at which one or more of the payoffs are discontinuous, and X\∆ be

the set of all joint strategies at which all of the payoffs are continuous.

We make the following assumptions:

Assumption 1′: The game is compact, convex, and quasiconcave.

Assumption 2′: If (qi, p−i) ∈ Ai and πi(qi, p−i) > πi(p) for i ∈ I , then there exists a firm j ∈ I ,

and q̄j such that (q̄j , p−i) ∈ Pn\Aj and πj(q̄j , p−i) > πi(p).

Assumption 3′: If (qi, p−i) ∈ Pn\Ai and πi(qi, p−i) > πi(p) for player i, then there exists a

player j ∈ I , ϵ > 0, a deviation strategy profile q̄j and a neighborhood Np of p such that for

every r ∈ Np, every neighborhood Nr ⊆ Np of r, πj(q̄j , r−i) > πj(rj , r
′
−j) + ϵ, for some

r′ ∈ Nr.

We then have the following result.

PROPOSITION 5.2 Each Bertrand price competition game has a pure strategy Nash equilibrium

if it satisfies Assumptions 1′-3′.

6 Conclusion

In this paper, we investigate the existence of Nash equilibria in games that may be discontinuous

and/or nonquasiconcave. We offer new existence results on Nash equilibrium for a large class of

discontinuous games by introducing new notions of weak continuity, such as quasi-weak transfer

continuity, pseudo quasi-weak transfer continuity, weak transfer quasi-continuity, etc. Our equi-

librium existence results neither imply nor are implied by those results in Baye et al. (1993), Reny

(1999), Carmona (2009, 2011), and Nessah (2011).

These results permit us to significantly weaken the continuity conditions for the existence of

Nash equilibria. We also provide examples and economic applications where our general results

are applicable. Although some work has been done for seeking necessary and sufficient conditions

for the existence of equilibrium, such as those in Tian (2009), McLennan et al. (2011), and Barelli

and Meneghel (2013), these full characterization results mainly show what is possible for the

existence of equilibrium, yet the conditions are more complicated. As such, they may be harder to

verify.
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The approach developed in the paper can be similarly used to study the existence of mixed

strategy Nash and Bayesian Nash equilibria in general discontinuous games. For details, see our

earlier version of this paper (cf. Nessah and Tian (2009)).

17



Appendix

PROOF OF THEOREM 2.1. The proof of Theorem 2.1 is divided into three steps. In the first step,

we construct for each player i an approximation function Ψi(x, yi) defined on X ×Xi, which is

lower semicontinuous in x. Second step shows that if the game is quasi-weakly transfer continuous

and sup
yi∈Xi

Ψi(x, yi) ≤ 0 for each i, then x is a Nash equilibrium. Therefore in the third step, we

need only to find a strategy profile which satisfies the maximum of function Ψ. For this, based on

function Ψ, we can construct a correspondence C and show that it is convex valued, x /∈ C(x) for

each x ∈ X , and C has the lower open section. Then, by Yannelis and Prabhakar Theorem, there

exists x ∈ X such that sup
yi∈Xi

Ψi(x, yi) ≤ 0.

Step I: Construction. Let Ω(x) be the set of all open neighborhoods N of x. For each player

i ∈ I and every (x, yi) ∈ X ×Xi, define the following function

Ψi(x, yi) = sup
N∈Ω(x)

inf
z∈N

[
ui(yi, z−i)− sup

Nz⊆N
inf

z′∈Nz

ui(zi, z
′
−i)

]

where Nz is a neighborhood of z. For each x ∈ X , we have Ψi(x, xi) ≤ 0. Indeed, if Ψi(x, xi) >

0 for some i ∈ I and x ∈ X , choose ϵ > 0 with Ψi(x, xi) > 2ϵ, then there exists a neighborhood

N of x such that for each z = (xi, z−i) ∈ N , we have ui(xi, z−i) > sup
Nz⊆N

inf
z′∈Nz

ui(xi, z
′
−i) +

ϵ. Then, for Nz = N , we have ui(xi, z−i) > inf
z′∈N

ui(xi, z
′
−i) + ϵ for each z = (xi, z−i) ∈

N . Moreover, there exists z ∈ N such that ui(xi, z−i) ≤ inf
z′∈N

ui(xi, z
′
−i) +

ϵ
2 . Therefore,

inf
z′∈N

ui(xi, z
′
−i) + ϵ < ui(xi, z−i) ≤ inf

z′∈N
ui(xi, z

′
−i) +

ϵ
2 ; i.e., ϵ < 0, which is impossible.

For each i and every yi ∈ Xi, the function Ψi(., yi) is real-valued by boundedness of payoff

function. Let us consider the following function giN (., yi) defined by

giN (x, yi) =





inf
z∈N

[ui(yi, z−i)− sup
Nz⊆N

inf
z′∈Nz

ui(zi, z
′
−i)] if x ∈ N

−∞ if x /∈ N

where i ∈ I , yi ∈ Xi and N is an open neighborhood. The function giN (., yi) is lower semi-

continuous on X . Since the function Ψi(., yi) is the pointwise supremum of a collection of lower

semicontinuous functions on X , then Ψi(., yi) is lower semicontinuous on X (Lemma 2.41, page

43 in Aliprantis and Border (2006)).

Step II: Detection of Nash Equilibria. If there exists a point x ∈ X such that

Ψi(x, yi) ≤ 0, for all i ∈ I and yi ∈ Xi, (6.1)

then x is a Nash equilibrium. Indeed, if x is not a Nash equilibrium and since the game G is quasi-

weakly transfer continuous, then there exists a player i, strategy yi, ϵ > 0, and neighborhood N of

x such that for every z ∈ N and every neighborhood Nz ⊆ N of z, ui(yi, z−i) > ui(zi, z
′
−i) + ϵ
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for some z′ ∈ Nz . Then, for each z ∈ N , we have ui(yi, z−i) − sup
Nz⊆N

inf
z′∈Nz

ui(zi, z
′
−i) > ϵ.

Thus, Ψi(x, yi) > ϵ, which contradicts (6.1). Therefore, x is a Nash equilibrium.

Step III: Sufficiency for Existence. Define a correspondence C : X ⇒ X by C(x) =
∏
i∈I

Ci(x)

such that Ci : X ⇒ Xi and Ci(x) = {yi ∈ Xi : Ψi(x, yi) > 0}. For each x ∈ X , C(x) is

convex in X . To see this, let x ∈ X , y1, y2 be two elements of C(x) and θ ∈ [0, 1]. Since y1 and

y2 are in C(x), then for each i and some ϵ > 0, we have Ψi(x, y
1
i ) > 2ϵ and Ψi(x, y

2
i ) > 2ϵ. For

ϵ > 0 and j = 1, 2, there exists a neighborhood N j of x such that for all z ∈ N j , we have

ui(y
j
i , z−i)− sup

Nz⊆N j

inf
z′∈Nz

ui(zi, z
′
−i) ≥ Ψi(x, y

j
i )− ϵ > ϵ. (6.2)

Let Ñ = N 1 ∩ N 2. Suppose sup
Nz⊆Ñ

inf
z′∈Nz

ui(zi, z
′
−i) > sup

Nz⊆N j

inf
z′∈Nz

ui(zi, z
′
−i) for some

z ∈ Ñ . Then, for some δ > 0, sup
Nz⊆Ñ

inf
z′∈Nz

ui(zi, z
′
−i) > sup

Nz⊆N j

inf
z′∈Nz

ui(zi, z
′
−i)+2δ. Therefore,

there exists Ñz ⊆ Ñ ⊆ N j such that inf
z′∈Ñz

ui(zi, z
′
−i) > inf

z′∈Nz

ui(zi, z
′
−i) + δ for each Nz ⊆ N j .

Hence for Nz = Ñz ⊆ Ñ ⊆ N j , inf
z′∈Ñz

ui(zi, z
′
−i) > inf

z′∈Ñz

ui(zi, z
′
−i) + δ, i.e., δ < 0, which is

impossible. Thus, for each z ∈ Ñ and j = 1, 2 we must have

sup
Nz⊆Ñ

inf
z′∈Nz

ui(zi, z
′
−i) ≤ sup

Nz⊆N j

inf
z′∈Nz

ui(zi, z
′
−i). (6.3)

By (6.2) and (6.3), for each j = 1, 2 and each z ∈ Ñ , we have

ui(y
j
i , z−i) > sup

Nz⊆N j

inf
z′∈Nz

ui(zi, z
′
−i) + ϵ ≥ sup

Nz⊆Ñ

inf
z′∈Nz

ui(zi, z
′
−i) + ϵ.

Therefore, for each z ∈ Ñ , we have min{ui(y
1
i , z−i), ui(y

2
i , z−i)} ≥ sup

Nz⊆Ñ

inf
z′∈Nz

ui(zi, z
′
−i) + ϵ.

Since the game G is quasiconcave, then min{ui(y
1
i , z−i), ui(y

2
i , z−i)} ≤ ui(θy

1
i +(1−θ)y2i , z−i)

for all z. Hence, for each z ∈ Ñ , we have ui(θy
1
i +(1− θ)y2i , z−i) ≥ sup

Nz⊆Ñ

inf
z′∈Nz

ui(zi, z
′
−i)+ ϵ,

i.e., Ψi(x, θy
1
i + (1 − θ)y2i ) > 0 and then θy1i + (1 − θ)y2i ∈ Ci(x) for all i ∈ I . Thus,

θy1 + (1− θ)y2 ∈ C(x).

Since Ψi(., yi) is lower semicontinuous on X , the set {x ∈ X : yi ∈ Ci(x)} is open in X

for all yi ∈ Xi. For each y ∈ X , we have C−1(y) = {x ∈ X : y ∈ C(x)} = {x ∈ X : yi ∈

Ci(x), ∀i ∈ I} =
∩
i∈I

{x ∈ X : yi ∈ Ci(x)} =
∩
i∈I

{x ∈ X : Ψ(x, yi) > 0}. Then C−1(y) is

open in X for every y ∈ X . By the convexity of C(x) and Ψi(x, xi) ≤ 0 for i ∈ I and x ∈ X , it

follows that x /∈ conC(x) = C(x) for each x ∈ X . Then, by Yannelis and Prabhakar Theorem

(Yannelis and Prabhakar (1983)), there exists x ∈ X such that C(x) = ∅. Therefore, for each

i ∈ I and each yi ∈ Xi, Ψi(x, yi) ≤ 0, which proves (6.1).
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PROOF OF PROPOSITION 2.1. The conclusion of 2.1.(a) is clearly true. We only need to

show that the conclusions of 2.1.(b) and 2.1.(c) are also true.

2.1.(b) Suppose that G is QWUSC and payoff secure. If x ∈ X is not a Nash equilibrium,

then by quasi-weak upper semicontinuity, some player i has a strategy x̂i ∈ Xi, ϵ > 0 and a

neighborhood N 1 of x such that for every z ∈ N 1 and every neighborhood Nz ⊆ N 1 of z,

ui(x̂i, x−i) > ui(zi, z
′
−i) + ϵ for some z′ ∈ Nz . The payoff security of G implies that there exists

a strategy yi and a neighborhood N 2 of x such that ui(yi, z−i) ≥ ui(x̂i, x−i)−
ϵ
2 for all z ∈ N 2.

Thus, for every z ∈ N = N 1 ∩N 2 and its neighborhood Nz ⊆ N , there exists z′ ∈ Nz such that

ui(yi, z−i) > ui(zi, z
′
−i) +

ϵ
2 .

2.1.(c) Suppose that G is WTLSC and QUSC. Then, if x ∈ X is not a Nash equilibrium,

by WTLSC, there exists a player i, yi ∈ Xi, ϵ > 0 and a neighborhood N 1 of x such that

ui(yi, z−i) > ui(x)+ ϵ for all z ∈ N 1. The QUSC implies that for i ∈ I , x ∈ X , and ϵ > 0, there

exists a neighborhood N 2 of x such that for every z ∈ N 2 and every neighborhood Nz ⊆ N 2

of z, ui(x) ≥ ui(zi, z
′
−i) −

ϵ
2 for some z′ ∈ Nz . Thus, for every z ∈ N = N 1 ∩ N 2 and its

neighborhood Nz ⊆ N , there exists z′ ∈ Nz such that ui(yi, z−i) > ui(zi, z
′
−i) +

ϵ
2 .

Thus, by Theorem 2.1, the game possesses a pure strategy Nash equilibrium.

PROOF OF THEOREM 3.1. For notational convenience, let i = 1. Define the following

function by, for each (x, y) ∈ X ×X ,

w(x, y) = sup
N∈Ω(x)

inf
{z1,z2}⊆N

[
u1(y, z

1, ..., z1)− sup
N(z1,z2)⊆N

inf
z′∈N(z1,z2)

u1(z
2, z′, ..., z′)

]
.

We first show that w(x, x) ≤ 0 for each x ∈ X . Indeed, suppose, by way of contradic-

tion, that w(x, x) > 0 for some x ∈ X . Choose ϵ > 0 with w(x, x) > 2ϵ. Then there

exists a neighborhood N of x such that for all z1 and z2 in N , we have u1(x, z
1, ..., z1) >

sup
N(z1,z2)⊆N

inf
z′∈N(z1,z2)

u1(z
2, z′, ..., z′) + ϵ. Then, for every z ∈ N and letting z2 = x, we

have u1(x, z, ..., z) > sup
Nz⊆N

inf
z′∈Nz

u1(x, z
′, ..., z′) + ϵ. In particular, taking Nz = N , we

have u1(x, z, ..., z) > inf
z′∈N

u1(x, z
′, ..., z′) + ϵ for all z ∈ N . By definition of inf , for ϵ > 0,

there exists z ∈ N such that u1(x, z, ..., z) ≤ inf
z′∈N

u1(x, z
′, ..., z′) + ϵ

2 . Finally, we obtain

inf
z′∈N

u1(x, z
′, ..., z′) + ϵ < u1(x, z, ..., z) ≤ inf

z′∈N
u1(x, z

′, ..., z′) + ϵ
2 , and consequently, we must

have ϵ < 0, a contradiction.

Also, for each y ∈ X , w(., y) is real-valued and lower semicontinuous on X from the proof

of Theorem 2.1. Thus, H(y) = {x ∈ X : w(x, y) ≤ 0} is closed in X , i.e., cl H(y) = H(y) for

all y ∈ X . Then, G is transfer closed-valued.10

10A correspondence H : X → 2X is transfer closed-valued on X if for every y ∈ X , x ̸∈ H(y) implies that there

exists a point y′ ∈ X such that x ̸∈ clH(y).
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Moreover, since the game G is quasiconcave, H is transfer FS-convex.11 To show this, sup-

pose by way of contradiction that H is not transfer FS-convex. Then, there exists a finite subset

of {y1, y2, ..., ym} ⊆ X , a corresponding finite subset {xl, ..., xm} ⊆ X , and a subset J of

{1, ...,m} such that co{xj , j ∈ J} *
∪
j∈J

H(yj). Thus, there exists x ∈ co{xj , j ∈ J} such that

for each j ∈ J , w(x, yj) > 0. Choose ϵ > 0 such that for each j ∈ J , w(x, yj) > 2ϵ. Then, there

exists a neighborhood N j of x such that for all z1 and z2 in N j , we have

u1(y
j , z1, ..., z1)− sup

N(z1,z2)⊆N j

inf
z′∈N(z1,z2)

u1(z
2, z′, ..., z′) ≥ w(x, yj)− ϵ > ϵ. (6.4)

Let Ñ =
∩
j∈J

N j . By the same arguments as in the proof of Theorem 2.1, we obtain that for each

z2 ∈ Ñ and j ∈ J , we have

sup
N

z2⊆Ñ

inf
z′∈N(z1,z2)

u1(z
2, z′, ..., z′) ≤ sup

N
z2⊆N j

inf
z′∈N

z2

u1(z
2, z′, ..., z′). (6.5)

By (6.4) and (6.5), for each (z1, z2) ∈ Ñ and each j ∈ J , we have u1(y
j , z1, ..., z1) >

sup
N(z1,z2)⊆N j

inf
z′∈N(z1,z2)

u1(z
2, z′, ..., z′)+ϵ ≥ sup

N(z1,z2)⊆Ñ

inf
z′∈N(z1,z2)

u1(z
2, z′, ..., z′)+ϵ. Therefore,

for each (z1, z2) ∈ Ñ , we have min
j∈J

u1(y
j , z1, ..., z1) ≥ sup

N(z1,z2)⊆Ñ

inf
z′∈N(z1,z2)

u1(z
2, z′, ..., z′)+ϵ.

Since the game G is quasiconcave, then u1(x, z
1, ..., z1) ≥ sup

N(z1,z2)⊆Ñ

inf
z′∈N(z1,z2)

u1(z
2, z′, ...z′)+

ϵ for all {z1, z2} ∈ Ñ . Hence,

inf
{z1,z2}∈Ñ


u1(x, z1, ..., z1)− sup

N(z1,z2)⊆Ñ

inf
z′∈N(z1,z2)

u1(z
2, z′, ..., z′)


 ≥ ϵ,

which means that w(x, x) > 0, contradicting to w(x, x) ≤ 0 for all x ∈ X . Therefore, H must be

transfer FS-convex.

Therefore, by Lemma 1 of Tian (1993),
∩

y∈X
H(y) is nonempty and compact. Thus, there

exists a point x ∈ X such that w(x, y) ≤ 0 for all y ∈ X . If x is not a symmetric Nash

equilibrium, by diagonal quasi-weak transfer continuity, there exists a player i, say, i = 1, y ∈ X ,

ϵ > 0, and a neighborhood N of x such that for every (z1, z2) ∈ N and every neighborhood

N(z1,z2) ⊆ N of (z1, z2), we have u1(y, z
1, ..., z1) > u1(z

2, z′, ..., z′)+ ϵ for some z′ ∈ N(z1,z2).

Then, for each (z1, z2) ∈ N , u1(y, z
1, ..., z1)− sup

N(z1,z2)⊆N
inf

z′∈N(z1,z2)

u1(z
2, z′, ..., z′) > ϵ. Thus,

w(x, y) > ϵ, a contradiction. Therefore, x is a Nash equilibrium.

11A correspondence H : X → 2X is transfer FS-convex if for any finite subset {y1, ..., ym} ⊆ X , there exists a

corresponding finite subset {x1, ..., xm} ⊆ X such that for each J ⊆ {1, ...,m}, we have co{xj , j ∈ J} ⊆
∪

j∈J

H(yj).
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PROOF OF THEOREM 3.2. Define the following function by, for each (x, y) ∈ X ×X ,

φ(x, y) = sup
N∈Ω(x)

inf
z∈N

[u1(y, z, ..., z)− u1(z, z, ..., z)] .

For each y ∈ X , the function φ(., y) is real-valued and lower semicontinuous over X from the

proof of Theorem 2.1. Thus, K(y) = {x ∈ X : φ(x, y) ≤ 0} is closed in X , and therefore K is

transfer closed-valued.

K is also transfer FS-convex. Suppose not. Then, there exists a finite subset of

{y1, y2, ..., ym} ⊆ X , a corresponding finite subset {xl, ..., xm} ⊆ X , and a subset J of

{1, ...,m} such that co{xj , j ∈ J} *
∪
j∈J

K(yj). Thus, there exists x ∈ co{xj , j ∈ J}

such that for each j ∈ J , φ(x, yj) > 0. Choose ϵ > 0 such that for each j ∈ J , φ(x, yj) > 2ϵ.

Then, there exists a neighborhood N j of x such that for all z in N j , we have

u1(y
j , z, ..., z)− u1(z, z, ..., z) ≥ φ(x, yj)− ϵ > ϵ. (6.6)

Let z = x ∈ N j for each j ∈ J . Then (6.6) becomes that

u1(y
j , x, ..., x) ≥ u1(x, x, ..., x) + ϵ, for each j ∈ J. (6.7)

Then min
j∈J

u1(y
j , x, ..., x) ≥ u1(x, x, ..., x)+ϵ. Since the game G is diagonally transfer quasicon-

cave, then u1(x, x, ..., x) ≥ u1(x, x, ..., x)+ ϵ. Hence, ϵ < 0, which is a contradiction. Therefore,

K must be transfer FS-convex.

Then, by Lemma 1 of Tian (1993),
∩

y∈X
K(y) is nonempty and compact. Thus, there exists a

point x ∈ X such that φ(x, y) ≤ 0 for all y ∈ X . If x is not a symmetric Nash equilibrium, by

diagonal weak transfer continuity, there exists a player i = 1, y ∈ X , ϵ > 0, and a neighborhood

N of x such that ui(y, z, ..., z) > ui(z, z, ..., z) + ϵ for every z ∈ N . Thus, φ(x, y) > ϵ, a

contradiction. Therefore, x is a symmetric Nash equilibrium.

PROOF OF THEOREM 4.1. For each x ∈ X , we have ̥i(x, xi) ≤ 0 by the same proof as

in Theorem 2.1. For each i and every xi ∈ Xi, the function ̥i(., yi) is lower semicontinuous

on X . Consider the following correspondence C : X ⇒ X defined by C(x) =
∏
i∈I

Ci(x) such

that Ci : X ⇒ Xi and Ci(x) = {yi ∈ Xi : ̥i(x, yi) > 0}. Since the function ̥i(x, .) is

quasiconcave, then C(x) is convex in X . For each x ∈ X , by lower semicontinuity of ̥i(., yi),

C−1(y) is open in X for each y ∈ X . Then, by Yannelis and Prabhakar Theorem, there exists

x ∈ X such that C(x) = ∅. Therefore, for each i ∈ I and each yi ∈ Xi, ̥i(x, yi) ≤ 0. If x is not

a Nash equilibrium, then by pseudo quasi-weak transfer continuity, there exists a player i, strategy

yi, ϵ > 0, and a neighborhood N of x such that for each z ∈ N , ui(yi, z−i) > ui(zi, z
′
−i) + ϵ

for some z′ ∈ N . Then, for each z ∈ N , we have ui(yi, z−i) − inf
z′∈N

ui(zi, z
′
−i) > ϵ, and thus,
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̥i(x, yi) > ϵ, a contradiction. Therefore, x is a Nash equilibrium.

PROOF OF PROPOSITION 4.1. Let G = (Xi, ui)i∈I be better-reply secure. Suppose, by

way of contradiction, that the game is not pseudo quasi-weakly transfer continuous. Then, there

exists a nonequilibrium x∗ ∈ X such that for all player j, ϵ > 0, every neighborhood N of x∗,

and all yj , there exists x′ ∈ N satisfying

uj(yj , x
′
−j) ≤ uj(x

′
j , x

′′
−j) + ϵ, for all x′′ ∈ N .

Letting u be the limit of the vector of payoffs corresponding to some sequence of strategies con-

verging to x∗, and U∗ be the set of all such points, which is a compact set by the boundedness of

payoffs, we have (x∗, u) ∈ cl(Γ) for all u ∈ U∗. Then, for each (x∗, u) ∈ cl(Γ) with u ∈ U∗, there

exists a player i, a strategy yi, ϵ > 0 and a neighborhood N of x∗ such that ui(yi, x
′
−i) > ui + ϵ

for all x′ ∈ N . Then inf
x′∈N

ui(yi, x
′
−i) ≥ ui + ϵ. Let U∗

i be the projection of U∗ to coordinate i

and

u∗i = sup{ui ∈ U∗
i : inf

x′∈N
ui(yi, x

′
−i) ≥ ui + ϵ}.

Then, for ϵ/2 > 0, there is a neighborhood N i,∗ of x∗ and a strategy y∗i such that

inf
x′∈N i,∗

ui(y
∗
i , x

′
−i) ≥ (u∗i + ϵ)− ϵ/2 = u∗i + ϵ/2. (6.8)

Now, since the game is not pseudo quasi-weakly transfer continuous, then for a directed system

of neighborhoods {N k}k of x∗, a sequence {ϵk}k converging to 0, and every j ∈ I , there exists a

sequence {xj,k}k with xj,k ∈ N k so that {xj,k}k converges to x∗ and

uj(y
∗
j , x

j,k
−j) ≤ uj(x

j,k
j , x′−j) + ϵk, for each x′ ∈ N k. (6.9)

Consider the following sequence: for each k, let x̃k = (x1,k1 , ..., xn,kn ). Since for each j ∈ I ,

xj,k ∈ N k and {xj,k}k converges to x∗, then x̃k ∈ N k and the sequence {x̃k}k converges to x∗.

Therefore, inequality (6.9) becomes

uj(y
∗
j , x

j,k
−j) ≤ uj(x

j,k
j , x̃k−j) = uj(x̃

k) + ϵk, for each k, j ∈ I. (6.10)

Assume that {u(x̃k)}k converges and ũ = lim
k→∞

u(x̃k). Hence, (x∗, ũ) ∈ cl(Γ) with ũ ∈ U∗, then

there exists a player i ∈ I such that ũi ≤ u∗i . Thus, for ϵ/3 > 0, there exists k1 such that whenever

k > k1, we have ui(y
∗
i , x

i,k
−i) ≤ u∗i + ϵ/3 ≤ inf

x′∈N i,∗
ui(y

∗
i , x

′
−i)− ϵ/6. Then for k > k1, we obtain

ui(y
∗
i , x

i,k
−i) ≤ ui(y

∗
i , x

′
−i)− ϵ/6, for each x′ ∈ N i,∗. (6.11)

Since the sequence {xi,k}k converges to x∗, then for N i,∗, there exists k2 such that for k > k2, we

have xi,k ∈ N i,∗. Thus, by (6.11) for k > max(k1, k2), we have ui(y
∗
i , x

i,k
−i) ≤ ui(y

∗
i , x

i,k
−i)−ϵ/6,
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which is impossible. Hence, the game must be pseudo quasi-weakly transfer continuous.

PROOF OF THEOREM 4.2. Sufficiency. For each y ∈ X , let

F (y) = {x ∈ X : ui(yi, x−i) ≤ ui(x), ∀i ∈ I}.

It is clear that G is weakly transfer quasi-continuous if and only if F is transfer closed-valued.

For y ∈ X , let F̄ (y) = cl F (y). Then F̄ (y) is closed, and by the strong diagonal trans-

fer quasiconcavity, it is also transfer FS-convex. By Lemma 1 in Tian (1993), we know that
∩

y∈X
F (y) =

∩
y∈X

F̄ (y) ̸= ∅. Thus, there exists a strategy profile x ∈ X such that

ui(yi, x−i) ≤ ui(x), for all y ∈ X and i ∈ I.

Thus x is a pure strategy Nash equilibrium of the game G.

Necessity: Suppose the game Γ has a pure strategy Nash equilibrium x∗ ∈ X . We want

to show that it is strongly diagonal transfer quasiconcave in y. Indeed, for any finite subset

{y1, . . . , ym} ⊂ X , let the corresponding finite subset Xm = {x1, . . . , xm} = {x∗}. Then for

any subset {xk
1
, xk

2
, . . . , xk

s

} ⊂ Xm = {x∗}, 1 ≤ s ≤ m, x ∈ co {xk
1
, xk

2
, . . . , xk

s

} = {x∗},

and y ∈ {yk
1
, yk

2
, . . . , yk

s

}, we have

ui(yi, x−i) = ui(yi, x
∗
−i) ≤ ui(x

∗
i , x

∗
−i) = ui(xi, x−i).

Hence U is strongly diagonal transfer quasiconcave in x.

PROOF OF THEOREM 4.3. Define a surrogate game G0 = (X̃i, ũi)i∈I0 as follows: I0 =

I∪{0}, X̃i = X if i = 0 and X̃i = Xi if i ∈ I , and ũi : X̃ = X×X → R by ũi(x, y) = Ψi(x, yi)

if i ∈ I and ũ0(x, y) =

{
1 if x = y,

0 otherwise.

We first show that G has a Nash equilibrium if G0 has an equilibrium. Indeed, let (x, y) be

a Nash equilibrium of surrogate game G0. Then, by definition of the payoff ũ0, we must have

x = y, otherwise it cannot be a Nash equilibrium. Then it is clear that x is a Nash equilibrium of

G.

Now we show that the surrogate game G0 has an equilibrium. Fix any nonequilibrium strategy

x̃ = (x, y) of G0. Then we need distinguish two cases.

Case 1) x ̸= y. Then choose a neighborhood V(x,y) ⊂ X×X such that for each (z1, z2) ∈ V(x,y)

with z1 ̸= z2 and a well-behaved correspondence ϕ0 : V(x,y) ⇒ X defined by ϕ0(z
1, z2) =

{z1}, we have ũ0(z
1, z1) = 1 > 0 = ũ0(z

1, z2), for each (z1, z2) ∈ V(x,y).
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Case 2) x = y. Then, by the Ψ-correspondence transfer continuity of G, the surrogate game G0

is continuously secure in (x, x)12 (see Barelli and Meneghel (2013)).

Thus, in either case, the surrogate game G0 is continuously secure, and consequently, by Theorem

2.2 of Barelli and Meneghel (2013), it has a Nash equilibrium (x, x), which implies that x is a

Nash equilibrium of G.

PROOF OF PROPOSITION 5.1. Suppose x is not an equilibrium. Then some player i

has a strategy yi such that ui(yi, x−i) > ui(x), i.e., Fi(yi, Si(yi, x−i)) > Fi(xi, Si(x)). If

(yi, x−i) ∈ X\Di, then by Assumption 3, there exists a player j ∈ I , a deviation strategy

profile ȳ, ϵ > 0, and a neighborhood V(x) of x such that for every z ∈ V(x) and ev-

ery neighborhood Nz ⊆ Nx of z, Fj(ȳj , Sj(ȳj , z−j)) > Fj(zj , Sj(zj , z
′
−j)) + ϵ for some

z′ ∈ Nz , i.e., uj(y
′
j , z−j) > uj(zj , z

′
−j) + ϵ for some z′ ∈ Nz . If (yi, x−i) ∈ Di, then

by Assumption 2, there exists a player j ∈ I and ȳj such that (ȳj , x−j) ∈ X\Dj and

Fj(ȳj , Sj(ȳj , x−j)) > Fj(xj , Sj(x)). Thus, by Assumption 3, there exists a player k ∈ I , a

deviation strategy profile ỹ, ϵ > 0, and a neighborhood V(x) of x such that for every z ∈ V(x)

and every neighborhood Nz ⊆ Nx of z, Fk(ỹk, Sk(ỹk, z−k)) > Fj(zk, Sk(zk, z
′
−k)) + ϵ for some

z′ ∈ Nz , i.e., uk(ỹk, z−k) > uk(zk, z
′
−k) for some z′ ∈ Nz . Therefore, the game is quasi-weakly

transfer continuous. Since it is also compact and quasiconcave, by Theorem 2.1, it has a pure

strategy Nash equilibrium.

PROOF OF PROPOSITION 5.2. Suppose p is not an equilibrium. Then some player i has

a strategy qi such that πi(qi, p−i) > πi(p). If (qi, p−i) ∈ Pn\Ai, then by Assumption 3’, there

exists a player j ∈ I , a deviation strategy profile q̄j and a neighborhood Np of p such that for

every r ∈ Np, every neighborhood Nr ⊆ Np of r, πj(q̄j , r−i) > πj(rj , r
′
−j) + ϵ, for some

r′ ∈ Nr. If (qi, p−i) ∈ Ai, then by Assumption 2’, there exists a firm j ∈ I , and q̄j such

that (q̄j , p−i) ∈ Pn\Aj and πj(q̄j , p−i) > πi(p). Thus, by Assumption 3, there exists a player

j ∈ I , a deviation strategy profile q̄j and a neighborhood Np of p such that for every r ∈ Np, every

neighborhood Nr ⊆ Np of r, πj(q̄j , r−i) > πj(rj , r
′
−j)+ϵ, for some r′ ∈ Nr. Therefore, the game

is quasi-weakly transfer continuous. Since the game is also compact, convex, and quasiconcave,

by Theorem 2.1, it has a pure strategy Nash equilibrium.

12G = (Xi, ui)i∈I is continuously secure at x where x is not an equilibrium. Then there is a neighborhood N of x,

α ∈ Rn, and a well-behaved correspondence ϕx : N ։ X so that

(1) for each t ∈ N and i ∈ I , we have ϕx,i(t) ⊆ Bi(t, αi),

(2) for each z ∈ N , there exists a player j for whom zj /∈ coBj(z, αj),

where Bi(x, αi) = {yi ∈ Xi such that ui(yi, x−i) ≥ αi}.
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