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Abstract

This paper provides necessary and sufficient conditions for fixed-point theorems, minimax
inequalities and some related theorems defined on arbitrary topological spaces that may be
discrete, continuum, non-compact or non-convex. We establish a single condition, ~y-recursive
transfer lower semicontinuity, which fully characterizes the existence of equilibrium of minimax
inequality without imposing any kind of convexity nor any restriction on topological space. The
result then is employed to fully characterize fixed point theory, saddle point theory, and the
FKKM theory.
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1 Introduction

The Fan’s minimax inequality is probably one of the most important results in mathematical sciences
in general and nonlinear analysis in particular, which is mutually equivalent to many important ba-
sic mathematical theorems such as the classical Knaster Kuratowski Mazurkiewicz (KKM) lemma,
Sperner’s lemma, Brouwer’s fixed point theorem, Kakutani fixed point theorem. It also became a
crucial tool in proving many existence problems in various fields, especially in variational inequal-
ity problems, mathematical programming, partial differential equations, impulsive control, equilib-
rium problems in economics, various optimization problems, saddle points, fixed points, coincidence

points, complementarity problems, etc.
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cipline Project (B801), and the Key Laboratory of Mathematical Economics (SUFE) at Ministry of Education of China is
gratefully acknowledged.



The classical Fan’s minimax inequality given by Fan [11] typically assumes lower semicontinuity
and quasiconcavity for the functions, in addition to convexity and compactness in Hausdorff topolog-
ical vector spaces. However, in many situations, these assumptions may not be satisfied. The function
under consideration may not be lower semicontinuous and/or quasiconcave, and choice spaces may
be nonconvex and/or noncompact.

Accordingly, mathematicians continually strive to seek weaker conditions that solve the equilib-
rium existence problems. As such the Fan minimax inequality has been followed by a large number of
generalizations (cf. Allen [1], Ansari et al. [2], Ansari et al. [3], Chebbi [6], Cho et al. [7], Ding and
Park [8], Ding [9], Fan [13], Iusem and Soca [18], Georgiev and Tanaka [19], Lignola [22], Lin and
Chang [23], Lin and Tian [24], Nessah and Tian [25], Tian [30, 32], Yuan [38], Zhou and Chen [39]
and the references therein), among which some seek to weaken the quasiconcavity/semiconintuity
of function, or drop convexity/compactness of choice sets, while others seek to weaken Hausdorff
topological vector spaces to be topological vector spaces, Lassonde type convex spaces, Horvath type
H-spaces, generalized convex spaces, and other types of spaces.

However, all the existing results only provide sufficient conditions. Besides, they are based on rel-
atively strong topological structure, especially like the convexity, but not based on a general topolog-
ical space. In order to prove the results, they all assume some type of quasiconcavity/quasi-convexity
(or transitivity/monotonicity) and semicontinuity of functions, in addition to some types of convex
topological spaces. As such, the intrinsic nature of the existence of equilibrium has not been fully
understood yet. Why does or does not a problem have an equilibrium? Are both lower semicon-
tinuity and quasiconcavity (or their weaker forms) essential to the existence of equilibrium? If so,
can these two conditions be merged into one single condition? One can easily find simple exam-
ples of problems that have or not have an equilibrium, but none of them can be used to reveal the
existence/non-existence of equilibria in these problems.

In this paper we will provide a complete solution to the problem of minimax inequality for a
general topological space. We fully characterize the existence of equilibrium of minimax inequality
for an arbitrary topological space that may be discrete, continuum, non-compact or non-convex, and
the function that may not be lower semicontinuous or does not have any form of quasi-concavity.
We introduce the notion of y-recursive transfer lower semicontinuity that fully characterizes the exis-
tence of equilibrium of minimax inequality without imposing any kind of convexity for a topological
space. It is shown that the single condition, ~y-recursive transfer lower semicontinuity, is necessary,
and further, under compactness, sufficient for the existence of equilibrium of minimax inequalities
for general topological strategy spaces and functions. We also provide a complete solution for the
case of any arbitrary choice space that may be noncompact. We show that y-recursive transfer lower
semicontinuity with respect to a compact set D is necessary and sufficient for the existence of equi-
librium of minimax inequalities for arbitrary (possibly noncompact or open) topological spaces and

general functions.



Since minimax inequality provides the foundation for many of the modern essential results in di-
verse areas of mathematical sciences, the results not only fully characterize the existence of solution
to minimax inequality, but also introduce new techniques and methods for studying other optimiza-
tion problems and generalize/characterize some basic mathematics results such as the FKK theorem,
fixed point theorem, saddle point theorem, variational inequalities, and coincidence theorem, etc. As
illustrations, we show how they can be employed to fully characterize fixed point theorem, saddle
point theorem, and the FKKM theorem. The method of proof adopted to obtain our main results is
also new and elementary — neither fixed-point-theorem nor KKM-theorem approach.

The basic transfer method has been systematically developed in Tian [30, 31], Tian and Zhou [35,
37], Zhou and Tian [40], and Baye et al. [4] for studying various existence problems, optimization
problems and some basic mathematics results. These papers, especially Zhou and Tian [40], have de-
veloped three types of transfers: transfer continuities, transfer convexities, and transfer transitivities to
study the maximization of binary relations and the existence of equilibrium in games with discontinu-
ous and/or nonquasiconcave payoffs. Various notions of transfer continuities, transfer convexities and
transfer transitivities provide complete solutions to the question of the existence of maximal elements
for complete preorders and interval orders (cf. Tian [31] and Tian and Zhou [37]).

The notion of recursive transfer continuity extends transfer continuity from direct transfers to
allowing indirect (called recursive or sequential) transfers so that it turns out to be a necessary and
sufficient condition for the existence of equilibrium with a compact choice set. Incorporating recur-
sive transfers into various transfer continuities allows us to obtain full characterization results for
many other solution problems as shown in the application section.

The remainder of this paper is organized as follows. Section 2 states some notation and defini-
tions. In Section 3, we generalize the Ky Fan minimax inequality by fully characterizing the existence
of equilibrium of minimax inequality for an arbitrary topological space. Then in the remaining sec-
tions, we use our main results on minimax inequality to fully characterize the existence problem for
other mutually equivalent theorems. Namely, we provide necessary and sufficient conditions for fixed

point theorem, saddle point theorem, and FKKM theorem in Section 4-6, respectively.

2 Notation and Definitions

Before the formal discussion, we begin with some notation and definitions. Let X be a subset of a
topological space T" and let D C X. Denote the collections of all subsets, convex hull, closure, and
interior of the set D by 2°, co D, cl D, and int D, respectively. Throughout the paper all topological
vector spaces are assumed to be Hausdorff and denoted by E.

Let X be a topological space. A function f : X — RU{4o0} is said to be lower semicontinuous

on X if for each point 2/, we have

lim inf f(x) > f(2'),



or equivalently, if its epigraph epif = {(x,a) € X x R: f(z) < a} is a closed subset of X x R. A
function f : X — RU{=+oc} is said to be upper semicontinuous on X if — f is lower semicontinuous
on X. f is continuous on Y if f is both upper and lower semicontinuous on Y.

Let E be a topological vector space and X a convex subset of F. A function f : X — R is
quasiconcave on X if for any y;, y2 in Y and any 6 € [0, 1], min{f(y1), f(y2)} < f(Oy1 + (1 —
0)y2), and f is quasiconvex on X if —f is quasiconcave on X. A function f : X x X — R is
diagonally quasiconcave in y if for any finite points y',...,y™ € Y and any y € co{y*,...,y™},
ming <<m f(y,¥*) < f(y,y). A function ¢ : X x X — R is y-diagonally quasiconcave in y if for
any y',...,y™ €Y andy € co{yt,...,y"}, minj<p<m f(y, v¥) <.

Let E be a topological vector space and X a convex set. A correspondence F : X — 2% is said

to be FS convex' on X if for every finite subset {1, 2o, ..., T} of X
m
co{x1,za,...,xm} C U F(x;).
j=1

Note that # € F(z) for all z € X when F is FS convex. A correspondence F' : X — 2% is said to be
SS convex® if x ¢ co F(x) for all z € X. Tt is easily shown that a function ¢ : X x X — RU {£oo}
is v-DQCV in z if and only if the correspondence F' : X — 2% defined by F(z) = {y € X :
¢(xj,y) < v} forallz € X is FS convex on X.

3 Full Characterization of the Ky Fan Minimax Inequality
We begin by stating the classical minimax inequality by Fan [11].

THEOREM 3.1 (FAN MINIMAX INEQUALITY) Let X be a compact convex set in a Hausdorff topo-
logical vector space, v € R. Let ¢: X x X — R be a function suppose that

(a) p(x,x) <0 forallz € X,

(b) ¢ is lower semicontinuous in vy,

(c) ¢ is quasiconcave in .

Then there exists a point y* € X such that ¢(x,y*) < 0 forall x € X.

Fan minimax inequality has then been generalized by various ways. Some weaken quasi-
concavity to be (y-)diagonal quasiconcavity or transfer (y-diagonal) quasiconcavity, some weaken
lower semi-continuity to be transfer lower semi-continuity or y-transfer lower semi-continuity, some
weaken compactness to noncompactness, while others weaken Hausdorff topological vector space to

be topological vector space, Lassonde type convex space, Horvath type H-space, generalized convex

"The FS is for Fan [12] and Sonnenschein [27].
2The SS is for Shafer and Sonnenschein [26].



space, etc. (cf. Allen [1], Ansari et al. [2], Ansari et al. [3], Chebbi [6], Cho et al. [7], Ding and
Park [8], Ding [9], Fan [13], Tusem and Soca [18], Georgiev and Tanaka [19], Lignola [22], Lin and
Chang [23], Lin and Tian [24], Nessah and Tian [25], Tian [30, 32], Yuan [38], Zhou and Chen [39]
among others). Yet so far, there is no full characterization available and the topological spaces are
still relatively strong to get their results.

In this section we provide a full characterization on the Fan minimax inequality by giving a single
condition that is necessary and sufficient for the existence of solution to a minimax inequality defined
on an arbitrary topological space that may be discrete, continuum, non-compact or non-convex. We

begin with the notion of v-transfer lower semicontinuity introduced by Tian [30].

DEFINITION 3.1 (v-Transfer Lower Semicontinuity) Let X be a topological space. A function ¢:
X X X — RU {400} is said to be y-transfer lower semicontinuous in y if forallz € X andy € Y,
¢(xz,y) > ~ implies that there exists some point z € X and some neighborhood N (y) of y such that
d(z,y") >~y forall y € N(y).

Now we define the notion of «-recursive transfer lower semicontinuity, which fully characterizes
the existence of equilibrium of a minimax inequality. To do so, we first define the notion of recursive

upsetting.

DEFINITION 3.2 (Recursive Upsetting) A point 20 € X is said to be y-recursively upset by z € X
if there exists a finite set of points {21, 22, ..., 2™71 2} such that ¢(z!, 2°) > v, ¢(2%, 21) >, ...,
Bz, 21 > 7.

We say that a point 2° € X is m-y-recursively upset by z € X if the number of such recursive
upsetting points is m. For convenience, we say 2" is directly upset by z when m = 1, and indirectly
~y-upset by z when m > 1. ~-recursive upsetting says that a point 2° can be directly or indirectly
~-upset by a point z through sequential points {2°, 2!, 22,...,2™~! 2} in a recursive way that 2" is

v-upset by z!, 2! is y-upset by 22, ..., and 2™~ ! is y-upset by z.

DEFINITION 3.3 (y-Recursive Transfer Lower Semicontinuity) Let X be a topological space. A
function ¢: X x X — R U {£oo} is said to be vy-recursively transfer lower semicontinuous in
y if, whenever ¢(z,y) > « for x,y € X, there exists a point z2° € X (possibly z° = y) and a
neighborhood V), of y such that ¢(z,V,) > v for any z that y-recursively upsets 2", i.e., for any
sequence of points {z°, 21, ... 271 2}, é(2, 2™ 1) >, (2™ 272 >y, L, 9(21 20) >y
for m > 1imply that ¢(2,V,) > 0. Here ¢(z,V,) > 0 means that ¢(z,y’) > 0 forally’ € V,.

In the definition of y-recursive transfer lower semicontinuity, ¥ is transferred to 2 that could be

any point in X. ~y-recursive transfer lower semicontinuity implies that, whenever ¢(x,y) > ~, there

2

exists a starting point z” such that any ~y-recursive upsetting chain {z°, 2!, 22, ... 2™} disproves the



possibility of an equilibrium in a sufficiently small neighborhood of y, i.e., all points in the neighbor-
hood are y-upset by all securing points that directly or indirectly upset 2°. This implies that, if ¢ is
not ~y-recursively transfer lower semicontinuous, then there is a point y such that for every z° € X
and every neighborhood V;, of y, some point in the neighborhood cannot be y-upset by a securing

point z that directly or indirectly y-upsets z°.

REMARK 3.1 Under v-recursive transfer lower semicontinuity, when ¢(z,2z"71) > 7,
Pz 2m72) > 4, L, ¢(21, 20) > 4, we have not only ¢(2,V,) > 7, butalso ¢(2™"1, V) > 7,
. ¢(21,V,) > 7. That is, any chain of securing points {z1, 22, ..., 2™~7} obtained by truncating a

m—1

~-recursive upsetting chain {z', 22, ..., 2 , 2} is also a y-recursive upsetting chain, including z*.

Similarly, we can define m-vy-recursive transfer lower semicontinuity in . A function ¢: X X
X — RU{+o00} is m-vy-recursively transfer lower semi-continuous in y if the phrase “for any z that
~-recursively upsets 20 in the above definition is replaced by “for any z that m-recursively upsets
297, Thus, a function ¢: X x X — R U {400} is y-recursively transfer lower semicontinuous in ¥

if it is m-vy-recursively transfer lower semicontinuous in y forallm = 1,2.. ..

REMARK 3.2 It is clear that ~y-transfer lower semicontinuity implies 1-vy-recursive transfer lower
semicontinuity by letting 20 = v, but the converse may not be true since y possibly cannot be selected
as 2. Thus, v-transfer lower semicontinuity (thus lower semicontinuity) is in general stronger than
1-~-recursive transfer lower semi-continuity. Also, y-recursive transfer lower semicontinuity neither
implies nor is implied by continuity. This point becomes clear when one sees y-recursive transfer
lower semi-continuity is a necessary and sufficient condition for the existence of equilibrium while
continuity is neither a necessary nor a sufficient condition for the existence of equilibrium to minimax

inequality.

Now we are ready to state our main result on the existence of equilibrium of minimax inequality

defined on a general topological space.

THEOREM 3.2 Let X be a compact subset of a topological space T, v € R, and ¢: X x X —
R U {£o00} be a function with ¢(x,x) <~ for all x € X. Then there exists a point y* € X such that

d(z,y*) <~y forall x € X if and only if ¢ is y-recursively transfer lower semicontinuous in y.

PROOF. Sufficiency (<=). Suppose y is not an equilibrium point. Then there is an € X such that
¢(x,y) > . Then, by ~-recursive transfer lower semicontinuity of ¢(+) in y, for each y € X, there
exists a point z° and a neighborhood Vy such that ¢(z,V,) > 0 whenever 29 € X is ~y-recursively
upset by z, i.e., for any sequence of recursive points {20, z!,... 271 2} with ¢(z, 2™ 1) > 4,
Pz 2m72) >y, L, B(21,20) >y for m > 1, we have ¢(z,V,) > . Since there is no

0

equilibrium by the contrapositive hypothesis, z" is not an equilibrium and thus, by ~y-recursive transfer



m=1 2} exists for some

lower semicontinuity in y, such a sequence of recursive points {2, 2!, ... 2
m > 1.

Since X is compactand X C (J, ¢y V), there is a finite set {y',...,y"}suchthat X C U1T:1 Vyi-
For each of such ¢, the corresponding initial point is denoted by 2% so that ¢(z*, V) > ~ whenever
2% is y-recursively upset by z°.

Since there is no equilibrium, for each of such 2%, there exists z° such that ¢(2*, 2%) > ~, and
then, by 1-y-recursive transfer lower semicontinuity, we have ¢(z%, Vyi) > ~v. Now consider the set
of points {z!, ..., 27}. Then, 2' ¢ V,i; otherwise, by (2, Vi) > v, we will have H(24,2Y) >, a
contradiction. So we must have z! ¢ Yyt

Without loss of generality, we suppose z!' € V2. Since #(2%, 2') > v (by noting that 2! € Vy2)
and ¢(z', 2°1) > 0, then, by 2-y-recursive transfer lower semicontinuity, we have ¢(z2,V,1) > 7.
Also, ¢(22, V,2) > 0. Thus (22, V1 UVy2) > 7, and consequently 22 d Vyr UV,

Again, without loss of generality, we suppose 2>

€ V,s. Since ¢(2%,2%) > ~ by noting that
22 € Vys, ¢(2%,21) > v, and ¢(z', 2°) > ~, then, by 3-v-recursive transfer lower semicontinuity,
we have ¢(z3, V1) > 7. Also, since (23, 2%) > v and ¢(22, 2Y2) > 7, by 2-y-recursive transfer
lower semicontinuity, we have ¢(23, V,2) > 1. Thus, (23, V1 U V2 UVys) > v, and consequently
2 &V UV UVs.

With this process going on, we can show that z* ¢ VUV eU. . UV, 1e., 2
of Vy1,Vyo,...,Vy fork =1,2,...,T. In particular, for k = T', we have L ¢ Vp UV ... UV,r
and so zT g X C Vy1 U Vy2 .U VyT, a contradiction.

k is not in the union

Thus, there exists y* € X such that (x,y*) < ~ forall z € X, and thus y* is an equilibrium point
of the minimax inequality.

Necessity (=). Suppose y* is an equilibrium and ¢(z,y) > ~ for z,y € X. Let 2° = y* and
V, be a neighborhood of y. Since ¢(z,y*) < ~ for all z € X, it is impossible to find any sequence
of finite points {z°, 21, 22, ... 2™} such that ¢(2},20) > v, d(2%, 21) > 7,...,0(z™, 2" 1) > 0.

Hence, the y-recursive transfer lower semicontinuity holds trivially. m

Although ~-recursive transfer lower semicontinuity is necessary for the existence of solution to
the problem, it may not be sufficient for the existence of equilibrium when a choice space X is

noncompact. To see this, consider the following counterexample.
EXAMPLE 3.1 Let X = (0,1) and ¢: X x X — R U {£o0} be defined by

o(z,y) =2 —y.

The minimax inequality clearly does not possess an equilibrium. However, it is O-recursively
transfer lower semicontinuous in y.

Indeed, for any two points z,y € X with ¢(z,y) = z —y > 0, choose ¢ > 0 such that
(y—ey+e) C X. Let2 =y +e € Xand V, C (y — ¢,y + €). Then, for any finite set



of points {20, 21,22, ... 271 2} with (21, 29) = 21 — 20 > 0, ¢(2%,21) = 22 -2 >0, ...,
H(z,2m ) =z — 2"t > 0ie, 2> 2" > 0> 2% wehave ¢(z, ) =2~y > 20—y >0
for all y' € V,. Thus, ¢(z,V,) > 0, which means ¢ is O-recursively transfer lower semicontinuous in

Y.

The above theorem assumes that X is compact. This may still be a restrictive assumption since
a choice space may not be closed or bounded. In this case, we cannot use Theorem 3.2 to fully
characterize the existence of solution to a minimax inequality.

Nevertheless, Theorem 3.2 can be extended to any topological choice space. To do so, we intro-

duce the following version of y-recursive transfer lower semicontinuity.

DEFINITION 3.4 Let X be a set of a topological space T"and D C X. A function ¢: X x X — RU
{+o00} is said to be y-recursively transfer lower semicontinuous in y with respect to D if, whenever
y € X is not an equilibrium, there exists a point 20 € X (possibly 20 = y) and a neighborhood Vy
such that (1) whenever 2° is upset by a point in X \ D, it is upset by a pointin D, and (2) ¢(z, V) > v
for any finite subset of securing points {z°, 21, ..., 2™} C D with 2™ = z and ¢(z,2™ 1) > 7,
d(zm 1 2m72) >y, (2, 20) >y form > 1.

Now we have the following theorem that fully characterizes the existence of solution to a minimax

inequality.

THEOREM 3.3 Let X be a set of a topological space T, v € R, and ¢: X x X — RU{toc} bea
function. Suppose ¢(x,x) < 7y for all x € X. Then there is a point y* € X such that ¢(z,y*) < =
forall x € X if and only if there exists a compact subset D C X such that ¢ is y-recursively transfer

lower semicontinuous in y with respect to D.

PROOF. Sufficiency («<). The proof of sufficiency is essentially the same as that of sufficiency
in Theorem 3.2 and we just outline the proof here. To show the existence of an equilibrium on
X, it suffices to show that there exists an equilibrium y* in D if it is «-recursively transfer lower
semicontinuous in y with respect to . Suppose, by way of contradiction, that there is no equilibrium
in D. Then, since ¢ is y-recursively transfer lower semicontinuous in y with respect to D, for each
y € D, there exists z° and a neighborhood V), such that (1) whenever 2% is y-upset by a pointin X'\ D,
itis y-upset by a pointin D and (2) ¢(z,V,) >  for any finite subset of points {2921 ...,2m}CD
with 2™ = z and ¢(z, 2™ 71) > 7, p(z2™ 1, 2™72) > 4, .., (2, 2%) > 4 for m > 1. Since there

0

is no equilibrium by the contrapositive hypothesis, 2" is not an equilibrium point and thus, by ~-

recursive transfer lower semicontinuity in y with respect to D, such a sequence of recursive securing
points {z%, 21, ... 2™~ y} exists for some m > 1.
Since D is compact and D C |J,cx Vy. there is a finite set {y*,...,yT} C D such that

D C UiT:1 Vyi. For each of such y', the corresponding initial point is denoted by 2% so that



(2%, V,i) > 0 whenever 2% is recursively upset by z* through any finite subset of securing points
{20 21 . 2™} C D with 2™ = 2. Then, by the same argument as in the proof of Theorem 3.2,
we will obtain that z* is not in the union of Vs Vyz, oo, Ve fork = 1,2,....T. Fork =T, we
have 27 ¢ Vi UV,2...UVr and so 2I'¢ D C UzT:]_ Vi, which contradicts that 2T is an upsetting
point in D.

Thus, there exists a point y* € X such that ¢(z,y*) < forall z € X.

Necessity (=). Suppose y* is an equilibrium. Let D = {y*}. Then, the set D is clearly compact.
Now, for any disequilibrium point ¢ € A, let 2 = y* and V, be a neighborhood of y. Since
(z,y*) < v forallz € X and 2° = y* is a unique element in D, there is no other y-upsetting point

2! such that ¢(x, 2°) > . Hence, ¢ is y-recursively transfer continuous in 3 with respect to D. m

COROLLARY 3.1 (GENERALIZED KY FAN’S MINIMAX INEQUALITY) Let X be a subset of a
topological space T, ¢: X x X — R U {+oc} be a function, and v = sup,cx ¢(y,y). Then
there is a point y* € X such that ¢(x,y*) < supyex ¢(y,y) for all z € X if and only if there exists
a compact subset D C X such that ¢ is y-recursively transfer lower semicontinuous in y with respect
to D.

Theorem 3.3 and Corollary 3.1 thus strictly generalize many existing results on the minimax
inequality such as those in Allen [1], Ansari et al. [2], Ansari et al. [3], Chebbi [6], Cho et al. [7],
Ding and Park [8], Ding [9], Fan [10, 11, 13], Lignola [22], Lin and Chang [23], Nessah and Tian
[25], Tian [30], Yuan [38], Zhou and Chen [39].

The following example about game theory shows that, although the strategy space of a game is an
open unit interval and the payoff function is highly discontinuous and nonquasiconcave, we can use

Theorem 3.3 to argue the existence of Nash equilibrium.

EXAMPLE 3.2 [Tian 33] Consider a game with n = 2, X = X; x Xy = (0,1) x (0,1) that is an
open unit interval set, and the payoff functions are defined by
1 if (x1,22) € Q x
ui (21, T2) = (@1, 72) €@ Q i=1,2,
0 otherwise
where Q = {z € (0,1) : z is a rational number}.

Let U(x,y) = ui(y1, x2) + ua(z1, y2) and then define a function ¢: (0,1) x (0,1) — R by

d(x,y) = u1(y1, v2) +uz(z1, y2) — u1(y1, y2) — u2(y1,y2).

Then ¢ is neither y-(transfer) lower semicontinuous in y nor y-(transfer) quasiconcave in . How-
ever, it is O-recursively transfer lower semicontinuous in y on X. Indeed, suppose ¢(y,z) > 0 for
= (71,79) € X and y = (y1,2) € X. Let 2° be a vector with rational numbers, B = {2°}, and
V, be a neighborhood of y. Since ¢(x,2") < 0 for all z € X, it is impossible to find any securing



strategy profile z! such that ¢(z!,4%) > 0. Hence, ¢ is O-recursively transfer lower semicontinuous

in y on X with respect to B. Therefore, by Theorem 3.3, there exists 4 € X such that

¢(z,7) <0
for all z € X. In particular, letting 1 = ¥; and keeping x5 vary leads to

u2(g1, x2) < ua(y1, y2) Vo € Xo,

and letting x2 = §» and keeping x; vary leads to

ui(z1,92) < ui(y1,72) Vr € Xy.

Hence, this game possesses a Nash equilibrium. In fact, the set of Nash equilibria consists of all

rational numbers on (0, 1).

4 Full Characterization of Fixed Point

This section provides necessary and sufficient conditions for the existence of fixed point of a function
defined on a set that may be finite, continuum, nonconvex, or noncompact.

Let T be a topological space, and X be a subset of 7. A correspondence I : X — 27 has a fixed
pointz € X if x € F(x). If F is a single-valued function, then a fixed point = of F' is characterized
by x = F(z).

We first recall the notion of diagonal transfer continuity introduced by Baye et al. [4].

DEFINITION 4.1 A function ¢ : X — RU{400} is diagonally transfer continuous in y if, whenever
o(x,y) > p(y,y) for z,y € X, there exists a point z € X and a neighborhood V,, C X of y such
that p(z,y') > (v, ) forally’ € V,,.

Similarly, we can define the notion of recursive diagonal transfer continuity.

DEFINITION 4.2 (Recursive Diagonal Transfer Continuity) Let X be a subset of a topological
space T'. A function ¢: X x X — RU{zo00} is said to be recursively diagonally transfer continuous
in y if, whenever o(x,7y) > U(y,y) for z,y € X, there exists a point z° € X (possibly 2° = %) and
a neighborhood V, of y such that ¢(2,V,) > ¢(V,, V,) for any z that recursively upsets 2°.

THEOREM 4.1 (Fixed Point Theorem) Let X be a nonempty and compact subset of a metric space
(E,d) and f : X — X be a function. Then, f has a fixed point if and only if the function :
X x X — RU{£o0}, defined by

p(z,y) = —d(z, f(y))

is recursively diagonally transfer continuous in v.

10



Proof. Define ¢ : X x X — R by

o(z,y) = d(y, f(y)) — d(z, f(y))-

Then ¢(x,z) = 0 for all z € X. Also, we can easily see ¢ is O-recursively transfer lower semicon-
tinuous in y if and only if ¢ is recursively diagonally transfer continuous in y. Then, by Theorem 3.2,

there exists % such that
o(x,y) <0 VereX

or equivalently

d(g, f(9)) < d(z, f(y)) VeeX

if and only if ¢ is recursively diagonally transfer continuous in y. Letting f(y) = Z, we have

d(y, f(y)) < d(z, f()) = 0

and thus § = f(g). Therefore, f has a fixed point if and only if the function —d(x, f(y)) is recursively
diagonally transfer continuous in y.

Theorem 4.1 can be generalized by relaxing the compactness of X.

THEOREM 4.2 Let X be a nonempty subset of a metric space (E,d) and f : X — X be a function.
Then, f has a fixed point if and only if there exists a compact set D C X such that —d(x, f(y)) is

recursively diagonally transfer continuous in y with respect to D.

Proof. The proof is the same as in Theorem 3.3, and it is omitted here.

Theorem 3.3 and Corollary 3.1 strictly generalize many existing fixed point theorems in the liter-
ature, including those well-known theorems such as Browder fixed point theorem, Tarski fixed point
theorem in [28], and other fixed point theorems such as those in Fan [10, 11, 12, 13], Halpern [14,

15], Halpern and Bergman [16], Istrdtescu [17] and the references therein.

5 Full Characterization of Saddle Point

The saddle point theorem is an important tool in variational problems and game theory. Much work
has been dedicated to the problem of weakening its existence conditions. However, almost all these
results assume that a function is defined on convex set. In this section, we present some existence

theorems on saddle point without imposing any form of convexity conditions.
DEFINITION 5.1 A pair (Z,7) in X x X is called a saddle point of f in X x X, iff,

$(z,y) < 6(z,7) < $(x,7) forallz € X and y € X.

11



This definition reflects the fact that each player is individualistic.

DEFINITION 5.2 (v-Recursive Transfer Upper Semicontinuity) Let X be a subset of a topological
space 1. A function ¢: X x X — RU{=4o00} is said to be y-recursively transfer upper semicontinuous
in z if, whenever ¢(z,y) < ~ for z,3 € X, there exists a point 2 € X (possibly 2z’ = z) and a
neighborhood V, of x such that ¢(V,, z) < v for any sequence of points {20, 2% ... 2m~1 2},
d(zm L 2) <, (2™ 2™ <, L, 9(20,2Y) < oy for m > 1 implies that ¢(V,, 2) < 0. We
can similarly define ~y-recursive transfer upper semicontinuity in x with respect to D C X.

Before giving our new results, we state the classical result on saddle point.

THEOREM 5.1 (von Neumann Theorem). Let X be nonempty, compact and convex subsets in a

Hausdorff locally convex vector space E, and ¢p: X x X — RU {Fo00} be a function. Suppose that

(a) @ is lower semicontinuous and quasiconvex in y,

(b) @ is upper semicontinuous and quasiconcave in .
Then, ¢ has a saddle point.

Also, a lot of work has been done by weakening the conditions of semi-continuity and/or quasi-
concavity/quasiconvexity of von Neumann Theorem. Here, we give a theorem that fully characterizes
the existence of saddle point for a general topological space without assuming any kind of quasicon-

vexity or quasiconcavity.

THEOREM 5.2 Let X be a compact subset of a topological space T, v € R, and ¢: X x X — RU
{f00} be a function with ¢(x,x) < 7 forall x € X. Then there exists a saddle point (Z,y) € X x X
if and only if ¢ is y-recursively transfer upper semicontinuous in x and ~y-recursively transfer lower

semicontinuous in .
Proof. Applying Theorem 3.2 to ¢(x, y), we have the existence of § € X such that
$(z,5) <7, VreX. (1)

Let ¢ (z,y) = —¢(y,x). Since ¢ is y-recursively transfer upper semicontinuous in x, v is —~-
recursively transfer lower semicontinuous in .

Applying Theorem 3.2 again to 1)(x, y), we have the existence of Z € X such that

o(z,y) >, VyeX. (2)

By (1) and (2), we have ¢(z,y) < v and ¢(Z,y) > -, respectively, and therefore ¢(z,y) = ~.
Thus, (z,y) is a saddle point satisfying

(T, y) < ¢(7,y) < ¢(x,y) forallz € X and y € X.

Theorem 5.2 can also be generalized by relaxing the compactness of X.

12



THEOREM 5.3 Let X be a subset of a topological space T, v € R, and ¢: X x X — RU {£o0}
be a function with ¢(x,x) < 7 for all x € X. Then there exists a saddle point (Z,y) € X x X if
and only if there exist two compact sets D1 and D2 in X such that ¢ is y-recursively transfer upper
semicontinuous in x with respect to D1 and ~-recursively transfer lower semicontinuous in y with

respect to Do.

Proof. The proof is the same as in Theorem 3.3, and it is omitted here.

6 Full Characterization of FKKM Theorem

In this section, we use Theorems 3.2 and 3.3 to generalize the FKKM theorem, which provide suffi-
cient conditions on noncompact and nonconvex sets.
We begin by stating the FKKM theorem due to Fan [12, 13].

THEOREM 6.1 (FKKM Theorem) In a Hausdorff topological vector space, let Y be a convex set
and) # X CY. Let F : X — 2V be a correspondence such that

(a) for each x € X, F(x) is a relatively closed subset of Y ;
(b) F is FS-convex on X;

(c) there is a nonempty subset X of X such that the intersection (), xo F (x) is compact

and X is contained in a compact convex subset of Y.

Then (,cx F(x) # 0.

Also, this theorem has been generalized in various forms in the literature. In the following, we
provide a full characterization of FKKM theorem in a special form where F' is a correspondence

mapping from X to X.

THEOREM 6.2 Let X be a nonempty compact subset of a topological space T and F : X — 2%
be a correspondence such that x € F(x) for all v € X. Then [], .y F(x) # 0 if and only if the
Sunction ¢: X x X — RU {+o00} defined by
v iy e
o(z,y) = { :

+o00 otherwise
where v € Rand G = {(z,y) € X XY :y € F(x)}, is y-recursively transfer lower semicontinuous
iny.
Proof. Since z € F(x) for all z € X, we have ¢(z,z) <  for all z € X. Then, by Theorem 3.2,
there exists a point y* € X such that ¢(z,y*) < ~ for all y € X if and only if ¢ is y-recursively
transfer lower semicontinuous in y. However, by construction, [] . F/(X) # 0 if and only if there

exists a point z* € X such that ¢(x, z*) < v forally € X. |

Similarly, we can drop the compactness of X, and have the following theorem.
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THEOREM 6.3 Let X be a nonempty subset of a topological space T and F : X — 2% be a
correspondence such that x € F(x) for all x € X. Then [, x F(x) # 0 if and only if there exists
a compact subset D C X such that ¢p: X x X — R U {+oc} defined by

d)(x,y):{ v if(zy) €qG ’

+00 otherwise

where v € Rand G = {(z,y) € X XY :y € F(x)}, is y-recursively transfer lower semicontinuous
in y with respect to D.
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