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Abstract

This paper provides a price equilibrium existence theorem in economies where commodi-

ties may be indivisible and aggregate excess demand functions may be discontinuous. We

introduce a very weak notion of continuity, called recursive transfer lower semi-continuity,

which is weaker than transfer lower semi-continuity and in turn weaker than lower semi-

continuity. It is shown that the condition, together with Walras’s law, guarantees the exis-

tence of price equilibrium in economies with excess demand functions. The condition is also

necessary, and thus our results generalize all the existing results on the existence of price

equilibrium in economies where excess demand is a function.
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1 Introduction

This paper presents a theorem on the existence of price equilibrium in terms of excess demand

function, which fully characterizes the existence of equilibrium price systems in economies where

commodities may be indivisible and aggregate excess demand functions may not be continuous.
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One of the great achievements of economic theory in the last century is the general equilibrium

theory. It aims at studying the behavior of demand, supply, and prices in a whole economy, by

considering equilibrium in many markets simultaneously. It is a benchmark model to study market

economy and also an abstraction from a real economy. It can be used for either considering

equilibrium prices as long-term prices or considering actual prices as deviations from equilibrium.

A price equilibrium is defined as a state where the aggregate demand does not exceed the

aggregate supply for all markets. The proof of the existence of general equilibrium is generally

considered one of the most important and robust results of economic theory. While there are

different ways of establishing the existence of general equilibrium, all the classic proofs use a

fixed point theorem (see Debreu, 1982). It includes the ‘excess demand approach’ which solves

this problem by showing that there is a price system at which excess demand can be non-positive.

The significance of such an approach lies in the fact that supply may not be continuous or even not

be necessarily derived from profit maximizing behavior of price taking firms, but is determined

by prices in completely different ways. It is well known that Walrasian equilibrium precludes the

existence of an equilibrium in the presence of increasing returns to scale and assumes price-taking

and profit-maximizing behavior. As such, some other alternative pricing rules have been proposed

such as loss-free, average cost, marginal cost, voluntary trading, and quantity-taking pricing rules

in the presence of increasing returns to scale or more general types of non-convexities (cf. Beato

(1982), Brown and Heal (1982), Cornet (1988, 1989), Bonnisseau (1988), Bonnisseau and Cornet

(1988, 1990), Kamiya (1988), Vohra (1988), Brown (1990), and Brown, Heller, and Starr (1992)).

At the heart of the excess demand approach is a technical result known as the Gale-Nikaido-

Debreu lemma. Many existence results in terms of excess demand functions or correspondences

have been given. Some use Kakutani’s Fixed Point Theorem, as in Debreu (1974, 1982, 1983),

while some others use modifications of the excess demand functions, as in Dierker (1974), McKen-

zie (1954), and Neuefeind (1980).

When preferences and production sets are strictly convex, excess demand from the Walrasian

pricing rule is a function rather than a correspondence. In this case, it can be defined only on the

open price simplex. Some then uses a technique that simplex is exhausted by an increasing se-

quence of compact subsets so that the Gale-Nikaido-Debreu lemma can be applied. The resulting

sequence of price systems then is shown to converge to an equilibrium price system (cf. Hilden-

brand (1983) and Hildenbrand and Kirman (1988)). However, all the existing results only provide

sufficient conditions for the existence of price equilibrium.

This paper fully characterizes the existence of price equilibrium in economies where com-

modities may be indivisible and excess demand functions may be discontinuous or do not have
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any structure except Walras’ Law. We establish a condition, called recursive transfer lower semi-

continuity, which is weaker than transfer lower semi-continuity and in turn weaker than lower

semi-continuity, for the existence of general equilibrium in such economies. The condition is also

necessary, and thus generalizes all the existing results on the existence of equilibrium in economies

with aggregate excess demand functions.

The basic transfer method is systematically developed in Tian (1992a, 1993), Tian and Zhou

(1992, 1995), Zhou and Tian (1992), and Baye, Tian, and Zhou (1993) for studying the maximiza-

tion of binary relations that may be nontotal or nontransitive and the existence of equilibrium in

games that may have discontinuous or nonquasiconcave payoffs. The notion of recursive transfer

continuity extends usual transfer continuity from single transfer to allowing recursive (sequential)

transfers so that it turns out to be a necessary and sufficient condition for the existence of price

equilibrium in economies with excess demand functions. This method is somewhat similar to ex-

tending the weak axiom of revealed preference (WARP) to strong axiom of revealed preference

(SARP) in order to fully reveal individuals’ preferences.

Roughly speaking, an excess demand function is recursively transfer lower semi-continuous

if, whenever q is not a price equilibrium, there exists another nonequilibrium price vector p0 such

that all excess demands in some neighborhood of q are not affordable at any price vector p that

recursively upsets p0. Here, a price system p upsets a price system q if q’s excess demand is not

affordable at price p. A non-equilibrium price vector p0 is recursively upset by p means that there

exist finite upsetting price vectors p1, p2, . . . , pm with pm = p such that p0’s excess demand is

not affordable at p1, p1’s excess demand is not affordable at p2, and pm−1’s excess demand is not

affordable at pm. This implies that p0 is upset by p1, p1 is upset by p2, ..., pm−1 is upset by p.

When the number of such securing price vectors is m, the aggregate excess demand function is

then called m-recursive transfer semi-continuity. Note that transfer semi-continuity introduced by

Tian (1992a) implies 1-recursive transfer semi-continuity.

The remaining of the paper is organized as follows. In Section 2 we present the notion of

recursive transfer lower semi-continuity. In Section 3 we prove that recursive transfer lower semi-

continuity is a necessary and sufficient condition for the existence of equilibrium. Concluding

remarks are offered in Section 4.

2 Notation and Definitions

Consider an economy where there are L commodities and the aggregate excess demand correspon-

dence from a pricing rule that may be Walrasian, loss-free, average cost, marginal cost, voluntary

trading, or quantity-taking pricing rule is a single-valued function. The aggregate excess demand
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correspondence becomes a function when preferences and production possibility sets are both

strictly convex for Walrasian pricing rule.

Let ∆ be the closed L− 1 dimensional unit simplex defined by

∆ = {p ∈ ℜL
+ :

L
∑

l=1

pl = 1}, (1)

and let ẑ(·) : ∆ → R
L denote the (aggregate) excess demand function for the economy. A very

important property of excess demand function is Walras’ law, which can take one of the following

three forms:

(1) strong Walras’ law

p · ẑ(p) = 0 for all p ∈ ∆;

(2) weak Walras’ law

p · ẑ(p) ≤ 0 for all p ∈ ∆;

(3) interior Walras’ law

p · ẑ(p) = 0 for all p ∈ int ∆,

where int ∆ denotes the set of interior points of ∆.

The equilibrium price problem is to find a price vector p which clears the markets for all com-

modities (i.e., the aggregate excess demand functions ẑ(p) ≤ 0 for the free disposal equilibrium

price or ẑ(p) = 0) under the assumption of Walras’ law.

Let X be a topological space. A function f : X → R is said to be lower semi-continuous if

for each point x′, we have

lim inf
x→x′

f(x) ≥ f(x′),

or equivalently, if its epigraph epif ≡ {(x, a) ∈ X × R : f(x) ≤ a} is a closed subset of X × R.

An excess demand function ẑ(·) : ∆ → R
L is lower semi-continuous if ẑl(·) : ∆ → R is lower

semi-continuous for l = 1, . . . , L.

The following weak notion of lower semi-continuity is introduced by Tian (1992a).

DEFINITION 2.1 An excess demand function ẑ(·) : ∆ → R
L is transfer lower semi-continuous

if for all q, p ∈ ∆, p · ẑ(q) > 0 implies that there exists some point p′ ∈ X and some neighborhood

N (q) of q such that p′ · ẑ(q′) > 0 for all q′ ∈ N (q).
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REMARK 2.1 The transfer lower semi-continuity of ẑ(·) means that, whenever the aggregate

excess demand ẑ(q) at price vector q is not affordable at price vector p, then there exists an other

price vector p′ such that ẑ(q′) are also not affordable for all price vectors p′, provided q′ are

sufficiently close to q. Note that, since p ≥ 0, this condition is satisfied if ẑ(·) is lower semi-

continuous by letting p′ = p.

We say that price system p upsets price system q if q’s excess demand is not affordable at price

p, i.e., p · ẑ(q) > 0.

DEFINITION 2.2 (Recursive Upset Pricing) Let ẑ(·) : ∆ → R
Lbe an excess demand function.

We say that a price system p0 ∈ ∆ is m-recursively upset by p ∈ ∆ if there exist m price systems

p1, p2, . . . , pm with pm = p such that p·ẑ(pm−1) > 0, pm−1 ·ẑ(pm−2) > 0, . . ., p1 ·ẑ(p0) > 0. We

say that p0 ∈ ∆ is recursively upset by p ∈ ∆ if there is some m ≥ 1 such that it is m-recursively

upset by p.

In words, non-equilibrium price system p0 is recursively upset by p means that there exist finite

upsetting price systems p1, p2, . . . , pm with pm = p such that p0’s excess demand is not affordable

at p1, p1’s excess demand is not affordable at p2, and pm−1’s excess demand is not affordable at

pm. Note that, by definition, when p0 is recursively upset by p, it must be a non-equilibrium price

system (since p1 · ẑ(p0) > 0).

For convenience, we say p0 is directly upset by p when m = 1, and indirectly upset by p when

m > 1. Recursive upsetting says that nonequilibrium price system p0 can be directly or indirectly

upset by a price system q through sequential upsetting price systems {p1, p2, . . . , pm−1} in a

recursive way that p0 is upset by p1, p1 is upset by p2, . . ., and pm−1 is upset by p.

DEFINITION 2.3 (m-Recursive Transfer Lower Semi-Continuity) An excess demand function

ẑ(·) : ∆ → R
L is said to be m-recursively transfer lower semi-continuous on ∆ if for r · ẑ(q) > 0

with r, q ∈ ∆, there exists p0 ∈ ∆ and a neighborhood Vq such that p · ẑ(Vq) > 0 whenever p0

is m-recursively upset by p ∈ ∆, i.e., for any sequence of price vectors {p0, p1, . . . , pm−1, p},

p · ẑ(pm−1) > 0, pm−1 · ẑ(pm−2) > 0, . . ., p1 · ẑ(p0) > 0 for m ≥ 1 imply that p · ẑ(Vq) > 0.

Here p · ẑ(Vq) > 0 means that p · ẑ(q′) > 0 for all q′ ∈ Vq.

DEFINITION 2.4 (Recursive Transfer Lower Semi-Continuity) An excess demand function ẑ(·) :

∆ → R
L is said to be recursively transfer lower semi-continuous on ∆ if ẑ(·) is m-recursively

transfer continuous for m = 1, 2 . . ., i.e., whenever q ∈ ∆ is not a equilibrium price system, there

exists some price system p0 ∈ ∆ (possibly p0 = q) and a neighborhood Vq such that p · ẑ(Vq) > 0

for any p that recursively upsets p0.
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In the definition of recursive transfer lower semi-continuity, q is transferred to q0 that could

be any point in ∆. Roughly speaking, recursive transfer lower semi-continuity of ẑ(·) means that,

whenever q is not an equilibrium price system, there exists another nonequilibrium price system

p0 such that all excess demands in some neighborhood of q are not affordable at any price system

p that recursively upsets p0. This implies that, if an excess demand function ẑ(·) : ∆ → R
L is

not recursively transfer lower semi-continuous, then there is some non-equilibrium price system

q such that for every other price system p0 and every neighborhood of q, excess demand of some

price system q′ in the neighborhood becomes affordable at price system p that recursively upsets

p0.

REMARK 2.2 By recursive transfer lower semi-continuity, when p · ẑ(pm−1) > 0, pm−1 ·

ẑ(pm−2) > 0, . . ., p1 · ẑ(p0) > 0, we have not only p · ẑ(Vq) > 0, but also pm−1 · ẑ(Vq) > 0,

. . ., p1 · ẑ(Vq) > 0 since it is also k-recursively transfer lower semi-continuous for k = 1, 2 . . .,

m-1. That means all of the points in Vq are upset by {p1, . . . , pm−1, pm} that directly or indirectly

upset p0.

REMARK 2.3 Recursive transfer lower semi-continuity is weaker than lower semi-continuity. In-

deed, when ẑ(·) is lower semi-continuous, p · ẑ(·) is also lower semi-continuous for any nonnega-

tive vector p, and thus we have p · ẑ(q′) > 0 for all q′ ∈ Vq and p ∈ ∆. Then, for any finite price

vectors {p1, p2, . . . , pm}, we of course have pk · ẑ(q′) > 0 for all q′ ∈ Vq, k = 1, . . . ,m, which

means ẑ(·) is transfer lower semi-continuous.

3 The Existence of Price Equilibrium

Before proceeding to our main result, we describe the main idea why the recursive transfer lower

semi-continuity ensures the existence of price equilibria. When an economy fails to have a price

equilibrium, every price vector q is upset by some price vector p0. Then, by recursive transfer

lower semi-continuity, there is some open set of candidate solutions containing q, all of which will

be upset by some solution p that directly or indirectly upsets p0. Then there are finite price vectors

{q1, q2, . . . , qn} whose neighborhoods cover ∆. Then, all of the points in a neighborhood, say

Vq1 , will be upset by a corresponding price vector p1, which means p1 cannot be a point in Vq1 .

If it is in some other neighborhood, say, Vq2 , then it can be shown that p2 will upset all points

in the union of Vq1 and Vq2 so that p2 is not in the union. We suppose p2 ∈ Vq3 , and then we

can similarly show that p3 is not in the union of Vq1 , Vq2 and Vq3 . Repeating such a process, we

can show that price vectors in {p1, . . . , pn} will not be in ∆, which is impossible. Thus recursive

transfer lower semi-continuity guarantees the existence of a price equilibrium.
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Now we state our main result on the existence of price equilibrium in economies that have

single-valued excess demand functions.

THEOREM 3.1 Let ∆ be the closed standard L− 1 dimensional unit simplex. Suppose an excess

demand function ẑ(·) : ∆ → R
L satisfies either the strong or the weak form of Walras’ law. If ẑ(·)

is recursively transfer lower semi-continuous on ∆, then there exists an equilibrium price system

p∗ ∈ ∆.

PROOF. Suppose, by way of contradiction, that there is no price equilibrium. Then, by recur-

sive transfer lower semi-continuity of ẑ(·), for each q ∈ SL−1, there exists p0 and a neighborhood

Vq such that p · ẑ(Vq) > 0 whenever p0 ∈ SL−1 is recursively upset by p, i.e., for any sequence

of recursive price systems {p1, . . . , pm−1, p} with p · ẑ(pm−1) > 0, pm−1 · ẑ(pm−2) > 0, . . .,

p1 · ẑ(p0) > 0 for m ≥ 1, we have p · ẑ(Vq) > 0. Since there is no price equilibrium by the

contrapositive hypothesis, p0 is not a price equilibrium and thus, by recursive transfer lower semi-

continuity, such a sequence of recursive price systems {p1, . . . , pm−1, p} exists for some m ≥ 1.

Since SL−1 is compact and SL−1 ⊆
∪

q∈SL−1 Vq, there is a finite set {q1, . . . , qT } such that

SL−1 ⊆
∪T

i=1 Vqi . For each of such qi, the corresponding initial price system is denoted by p0i so

that pi · ẑ(Vqi) > 0 whenever p0i is recursively upset by pi.

Since there is no price equilibrium, for each of such p0i, there exists pi such that pi ·ẑ(p0i) > 0,

and then, by 1-recursive transfer lower semi-continuity, we have pi · ẑ(Vqi) > 0. Now consider

the set of price systems {p1, . . . , pT }. Then, pi ̸∈ Vqi ; otherwise, by pi · ẑ(Vqi) > 0, we will have

pi · ẑ(pi) > 0, contradicting to Walras’ law. So we must have p1 ̸∈ Vp1 .

Without loss of generality, we suppose p1 ∈ Vp2 . Since p2 · ẑ(p1) > 0 by noting that p1 ∈ Vq2

and p1 · ẑ(p01) > 0, then, by 2-recursive transfer lower semi-continuity, we have p2 · ẑ(Vq1) > 0.

Also, q2 · ẑ(Vq2) > 0. Thus p2 · ẑ(Vq1 ∪ Vq2) > 0, and consequently p2 ̸∈ Vq1 ∪ Vq2 .

Again, without loss of generality, we suppose p2 ∈ Vq3 . Since p3 · ẑ(p2) > 0 by noting that

p2 ∈ Vp3 , p2 · ẑ(p1) > 0, and p1 · ẑ(p01) > 0, by 3-recursive transfer lower semi-continuity, we

have p3 · ẑ(Vq1) > 0. Also, since p3 · ẑ(p2) > 0 and p2 · ẑ(p02) > 0, by 2-recursive transfer

lower semi-continuity, we have p3 · ẑ(Vq2) > 0. Thus, we have p3 · ẑ(Vq1 ∪ Vq2 ∪ Vq3) > 0, and

consequently p3 ̸∈ Vq1 ∪ Vq2 ∪ Vq3 .

With this process going on, we can show that pk ̸∈ Vq1 ∪ Vq2 ∪ . . . ,∪Vqk , i.e., pk is not

in the union of Vq1 ,Vq2 , . . . ,Vqk for k = 1, 2, . . . , T . In particular, for k = T , we have pL ̸∈

Vq1 ∪ Vq2 . . . ∪ VqT and so pT ̸∈ SL−1 ⊆ Vq1 ∪ Vq2 . . . ∪ VqT , a contradiction.

Thus, there exists p∗ ∈ SL−1 such that p · ẑ(p∗) ≤ 0 for all p ∈ SL−1. Letting

p1 = (1, 0, . . . , 0), p2 = (0, 1, 0, . . . , 0), and pL = (0, 0, . . . , 0, 1), we have ẑl(p∗) ≤ 0 for

7



l = 1, . . . , L and thus p∗ is a price equilibrium.

REMARK 3.1 Recursive transfer lower semi-continuity is, in fact, also a necessary condition for

the existence of price equilibrium. Indeed, suppose p∗ is a price equilibrium and p · ẑ(q) > 0

for q, p ∈ SL−1. Let p0 = p∗ and Vq be a neighborhood of q. Since p · ẑ(p∗) ≤ 0 for all

p ∈ SL−1, it is impossible to find any sequence of finite price vectors {p1, p2, . . . , pm} such that

p1 · ẑ(p0) > 0, p2 · ẑ(p1) > 0, . . . , pm · ẑ(pm−1) > 0 . Hence, the recursive transfer lower

semi-continuity holds trivially.

REMARK 3.2 Although recursive transfer lower semi-continuity is necessary for the existence of

price equilibrium, but it may not be sufficient for the existence of price equilibrium when an excess

demand function is well-defined only on the set of positive price vectors. As such, unlike people

might think, recursive transfer lower semi-continuity cannot be regarded as being equivalent to the

definition of price equilibrium. To see this, consider the following counterexample.

EXAMPLE 3.1 Consider a two-commodity economy and let p = (p1, 1 − p1) denote the price

vector where p1 ∈ [0, 1]. Let ẑ(·) be a function defined on int∆ such that

ẑ(p) =

(

1

p1
,−

1

1− p1

)

.

This excess demand function clearly satisfies Walras’ law and does not have an competitive equi-

librium. However, it is recursively transfer lower semi-continuous on int∆. To see this, observe

that for prices p = (p1, 1− p1) and q = (q1, 1− q1), p · ẑ(q) =
p1
q1

− (1− p1)
1

1−q1
> 0 if and only

if p1 > q1 > 0.1 As such, ẑ(q) is upset by p if and only if p1 > q1 for q1 ̸= 1.

Now for any two price vectors r, q ∈ int∆ with r · ẑ(q) > 0, choose ϵ > 0 such that (q1 −

ϵ, q1 + ϵ) × (q2 − ϵ, q2 + ϵ) ⊂ int∆. Let p0 = (q1 + ϵ, q2 + ϵ) ∈ int∆ and Vq ⊆ (q1 − ϵ, q1 +

ϵ) × (q2 − ϵ, q2 + ϵ). Then, for any sequence of price vectors {p0, p1, p2, . . . , pm−1, p} with

p · ẑ(pm−1) > 0, . . . , p1 · ẑ(p0) > 0 (as such we must have p01 < p11 < p21 < . . . < pm−1
1 < p1

by the above observation), we have p · ẑ(q′) > 0 for all q′ ∈ Vq, which means the excess demand

function is recursively transfer lower semi-continuous on ∆.

Thus, Theorem 3.1 assumes that the excess demand function is well defined for all prices in

the closed unit simplex ∆, including zero prices. However, when preferences are strictly mono-

tone, excess demand functions are not well defined on the boundary of ∆. Then, some boundary

1Note that, even for any p1 < 0, we still have p · ẑ(q) = p1
q1

− (1−p1)
1

1−q1
> 0 as q1 goes to 1. Thus the necessity

part is not true when q1 = 1.

8



conditions have been used to show the existence of price equilibrium in the case of an open set

of price systems for which excess demand is defined —cf. Neuefeind (1980). In this case, we

naturally cannot use Theorem 3.1 to fully characterize the existence of price equilibrium.

Nevertheless, Theorem 3.1 can be extended to the case of any set, especially the positive

price open set, of price systems for which excess demand is defined. To do so, we introduce the

following version of recursive transfer lower semi-continuity.

DEFINITION 3.1 Let D be a subset of int∆. An excess demand function ẑ(·) : int∆ → R
L

is said to be recursively transfer lower semi-continuous on int ∆ with respect to D if, whenever

q ∈ int∆ is not an equilibrium price system, there exists some price system p0 ∈ int∆ (possibly

p0 = q) and a neighborhood Vq such that (1) whenever p0 is upset by a price system in int∆ \D,

it is upset by a price system in D, and (2) p · ẑ(Vq) > 0 for any finite subset of price vectors

{p1, . . . , pm} ⊂ D with pm = p and p · ẑ(pm−1) > 0, pm−1 · ẑ(pm−2) > 0, p1 · ẑ(p0) > 0 for

m ≥ 1.

Condition (1) in the above definition ensures that if q is not an equilibrium price vector, it

must not be an equilibrium price vector when int∆ is constrained to be D. Note that, while

{p1, . . . , pm−1, p} are required to be in D, p0 is not necessarily in D but can be any point in int∆.

Also, when D = ∆, recursive transfer lower semi-continuity on ∆ with respect to D reduces to

recursive transfer lower semi-continuity on ∆.

We then have the following theorem that fully characterizes the existence of price equilib-

rium in economies with possibly indivisible commodity spaces and discontinuous excess demand

functions.

THEOREM 3.2 Suppose an excess demand function ẑ(·) : int∆ → R
L satisfies Walras’ law:

p · ẑ(p) = 0 for all p ∈ int∆. Then there exists a compact subset D ⊆ int∆ such that ẑ(·) is

recursively transfer lower semi-continuous on int∆ with respect to D if and only if there exists a

price equilibrium p∗ ∈ int∆.

PROOF. The proof of necessity is essentially the same as that of sufficiency in Theorem 3.1

and we just outline the proof here. To show the existence of a price equilibrium on ∆, it suffices to

show that there exists a price equilibrium p∗ in D if it is recursively transfer lower semi-continuous

on ∆ with respect to D. Suppose, by way of contradiction, that there is no price equilibrium in

D. Then, since ẑ is recursively transfer lower semi-continuous on ∆ with respect to D, for each

q ∈ D, there exists p0 and a neighborhood Vq such that (1) whenever p0 is upset by a price

system in ∆ \D, it is upset by a price system in D and (2) p · ẑ(Vq) > 0 for any finite subset of
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price systems {p1, . . . , pm} ⊂ D with pm = p and p · ẑ(pm−1) > 0, pm−1 · ẑ(pm−2) > 0, . . .,

p1 ·ẑ(p0) > 0 for m ≥ 1. Since there is no price equilibrium by the contrapositive hypothesis, p0 is

not a price equilibrium and thus, by recursive transfer lower semi-continuity on ∆ with respect to

D, such a sequence of recursive securing price systems {p1, . . . , pm−1, p} exists for some m ≥ 1.

Since D is compact and D ⊆
∪

q∈∆ Vq, there is a finite set {q1, . . . , qT } ⊆ D such that

D ⊆
∪T

i=1 Vqi . For each of such qi, the corresponding initial deviation price system is denoted

by p0i so that pi · ẑ(Vqi) > 0 whenever p0i is recursively upset by pi through any finite subset

of securing price systems {p1i, . . . , pmi} ⊂ D with pmi = pi. Then, by the same argument as

in the proof of Theorem 3.1, we will obtain that zk is not in the union of Vq1 ,Vq2 , . . . ,Vqk for

k = 1, 2, . . . , T . For k = T , we have pT ̸∈ Vq1 ∪Vq2 . . .∪VqT and so pT ̸∈ D ⊆
∪T

i=1 Vqi , which

contradicts that pT is an upsetting price in D.

Thus, there exists a price system p∗ ∈ ∆ such that p · ẑ(p∗) ≤ 0 for all p ∈ int∆. We want

to show that p∗ in fact is a price equilibrium. Note that int∆ is open and D is a compact subset

of int∆. One can always find a sequence of price vector {qln} ⊆ int∆ \ D such that qln → pl

as n → ∞, where pl = (0, . . . , 0, 1, 0, . . . , 0) is the unit vector that has only one argument - the

lth argument - with value 1 and others with value 0. Since p · ẑ(q) is continuous in p, we have

ẑl(p∗) ≤ 0 for l = 1, . . . , L and thus p∗ is a price equilibrium.

Similarly, we can show that recursive transfer lower semi-continuity on int∆ with respect to

the existence of a compact D is also a necessary condition for the existence of price equilibrium.

EXAMPLE 3.2 Consider again Example 3.1. We know that, although the excess demand function

is recursively transfer lower semi-continuous on int∆, it does not exist a price equilibrium. In

fact, the necessity part of the above theorem implies the excess demand function is not recursively

transfer lower semi-continuous on int∆ with respect to any compact subset D of int∆. In other

wors, there does not exist any compact set D ⊂ int∆ such that the game is recursively transfer

lower semi-continuous on int∆ with respect to D.

We can versify this directly. Indeed, for a given compact set D, let r̄1 be the maximum of r1

for all (r1, r− q1) ∈ D. Choosing q ∈ int∆ \D with q1 > r̄1, we have p · ẑ(q) < 0 for all p ∈ D.

Also, for any p wit p1 > q1, we have p · ẑ(q) > 0. Now we show that one cannot find any price

vector p0 ∈ int∆ and a neighborhood Vq of q such that (1) whenever p0 is upset by a price vector

in int∆ \D, it is upset by a price vector in D and (2) p · ẑ(Vq) > 0 for every price vector p ∈ D

that upsets directly or indirectly p0. We show this by considering two cases.

Case 1. p01 ≥ r̄1. p0 can be upset by a price vector profile p′ ∈ int∆ \D with p′1 > p01, but it

cannot be upset by any price vector in D.
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Case 2: p01 < r̄1. For any price vector p ∈ D that upsets directly or indirectly p0, we have

p · ẑ(Vq) < 0, but not p · ẑ(Vq) > 0.

Thus, we cannot find any price system p0 ∈ int∆ \ D and a neighborhood Vq of q such that

such that (1) whenever p0 is upset by a price system in int∆ \D, it is upset by a price system in

D and (2) p · ẑ(Vq) > 0 for every price system p that recursively upsets p0. Hence, the excess

demand function is not recursively transfer lower semi-continuous on int∆ with respect to D.

Thus, Theorem 3.2 generalizes all the existing results on the existence of price equilibrium

in economies with single-valued excess demand functions, such as those in Gale (1955), Nikaido

(1956), Debreu (1970, 1982), Hildenbrand (1974), Hildenbrand and Kirman (1975), Grandmont

(1977), Neuefeind (1980), Aliprantis and Brown (1983), Hüsseinov (1999), Momi(2003), and

Quah (2008).

4 Conclusion

The existing results only give sufficient conditions for the existence of equilibrium, and no charac-

terization result has been given in the literature. This paper fills this gap by providing a necessary

and sufficient condition for the existence of price equilibrium. We establish a condition, called re-

cursive transfer lower semi-continuity, which full characterizes the existence of price equilibrium.

As such, it strictly generalizes all the existing theorems on the existence of price equilibrium. The

recursive transfer continuity is a useful tool, which can also be used to characterize the existence

of equilibrium in games with general strategy spaces and payoffs (cf. Tian, 2010).
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