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Abstract

This paper studies the cost requirement for two-agent collusion-proof mechanism design.

Unlike the existing results for general environments with three or more agents, it is shown that

collusive behavior cannot be prevented freely in two-agent nonlinear pricing environments

with correlated types. Reporting manipulation calls for distortions away from the first-best

efficiency, and arbitrage calls for further distortion. Moreover, we show that the distortionary

patterns are quite different for positive and negative correlations. The second-best outcome

is attainable as negative correlation is vanishing, while the limit of collusion-proof efficiency

is strictly lower than the second-best level as positive correlation goes to zero. Allowing

arbitrage therefore breaks the continuity between correlated and uncorrelated types.
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1 Introduction

The traditional principal-multiagent model assumes away collusion among agents, that is,

they behave in a non-cooperative way. For economic environments with independent types,

the classical result of Myerson and Satterthwaite (1983) show that there is in general no first-

best outcome and only second-best outcome is achievable. But, when risk-neutral agents have

correlated types and are not protected by limited liability, Crémer and McLean (hereafter CM)
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(1985, 1988) show that the principal can obtain the first-best allocation by cross-checking the

agents’ reports against each other and fully extracting their information rents in absence of

collusion. This full surplus extraction (FSE) result holds for any degree of correlation, even if

it approaches zero. However, when correlation is actually zero, the cross-checking method does

not work, so only the second-best allocation is achievable, a conventional result for independent

types. Therefore, a notable discontinuity occurs at zero correlation point. Another drawback of

CM’s FSE mechanism is its vulnerability to collusion. If the agents can coordinate their reports,

it may be impossible for the principal to induce information revelation via cross-checking at no

cost.

However, no collusion is a rather unrealistic assumption unless the principal can impose

sufficiently large transaction costs on side-contracting so that agents are not able to collude

at all. In reality, however, collusion is a widespread and noxious phenomenon. Agents often

collude to increase their aggregate payoffs at the expense of the principal. This phenomenon is

an important concern in mechanism design theory. Typically, collusion imposes severe limits on

what can be achieved, and thus it is generally regarded as a factor that reduces the principal’s

payoff in addition to the asymmetric information.

The pioneering work that studies collusion in principal-multiagent setting is due to Laffont

and Mortimort (hereafter LM) (1997, 2000). They offer a tractable modeling framework for

analyzing the role of colluders’ information asymmetry in collusion-proof mechanism design. A

stark difference is found for independent types and correlated types. In procurement/public

good settings with two agents, they show that the optimal outcome can be made collusion-proof

at no cost to the principal if the agents’ types are uncorrelated (LM, 1997), but if the types are

correlated, preventing collusion entails strict cost to the principal (LM, 2000). Furthermore, the

nature of the optimal incentive scheme changes continuously as correlation goes to zero. That is,

allowing collusion restores continuity between the correlated and the uncorrelated environments.

In LM’s procurement/public good settings, two agents may consume certain amount of goods

in a non-excludable way. As such, there is no need and it is technologically impossible to split

the goods between them. However, in private-goods setting, say, in monopoly pricing problem,

buyers have incentive to reallocate their total purchases obtained from the principal. Thus, the

mechanism designer should make optimal contractual response preventing the agents from (i)

manipulating their reports, (ii) exchanging side transfers and (iii) conducting arbitrage.1 Jeon

1More recently, a number of contributions, noticeably Mookherjee and Tsumagari (2004), Dequiedt (2007) and

Pavlov (2008) among others, have noted that agents can coordinate not only on the way they play the grand

mechanism, but also on their participation decisions.
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and Menicucci (hereafter JM) (2005) extend LM’s model by incorporating arbitrage. They show

that collusion is preventable at no cost with uncorrelated types in a nonlinear pricing model that

allows collusive consumers to arbitrage on their purchases. They do not, however, consider a

more interesting case where agents’ types may be correlated.

Che and Kim (hereafter CK) (2006) advance on these fronts by developing a general method

for collusion-proofing a mechanism. They show that agents’ collusion, including both reporting

manipulation and arbitrage, is harmless to the principal, i.e., agents’ collusion imposes no cost

in a broad class of circumstances with more than two agents (n > 3) for correlated types and

more than one agent (n > 2) for uncorrelated types.2 This no-cost result is sharply different

from Laffont and Mortimort (2000)’s result that preventing collusion entails strict cost to the

principal when the types are correlated. Any payoff the principal can attain in the absence

of collusion, including the second-best efficiency is attainable with uncorrelated types, and the

first-best efficiency is also attainable with correlated types. More importantly, CK’s result on

collusion-proof implementation at no cost is rather robust for general economic environments.

It does not rest on any special assumptions about preferences/technologies or type structures,

nor on collusive behavior.

However, while Che and Kim give a full answer in a broad class of environments when

types are uncorrelated, they leave the two-agent correlated-type case unanswered. It is still

unknown how far these transaction costs can be exploited in contract design for general two-

agent economic environments when types are correlated. The two-agent case is important in the

theory of mechanism design, since a variety of economic phenomena are basically bilateral. As

Moore and Repullo (1990) have emphasized, two-agent model is the leading case for applications

to contracting or bargaining. The results for two-agent design problem may, and in fact, as shown

in the paper, be very different from its multi-agent counterpart. As such, this case needs to be

considered separately.3

In this paper, we show that the result that agents’ asymmetric information imposes no

additional transaction costs on their abilities to carry out collusive arrangements for economies

2An additional requirement is that at least one agent has more than two types if n = 3 for correlated types.
3Notable examples are those in the literature on Nash implementation. It is well known that when n > 3, if

a SCR satisfies monotonicity and no-veto power, it is Nash implementable. These conditions are, however, not

sufficient for Nash implementability of two-person SCR. (See Maskin (1999), Moore and Repullo (1990), Dutta

and Sen (1991), Denilov (1992), Sjöstrom (1991) among many others for detailed discussion.) Contrary to the case

of three or more agents, it is generally impossible to Nash implement Walrasian or Lindahl correspondences with

smooth and balanced mechanism in the case of two agents. (See Hurwicz and Weinberger (1984), Reichelstein

(1984), Nakamura (1987), Kwan and Nakamura (1987) for detailed discussion.)
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with three or more agents is no longer true for economies that include nonlinear-pricing/priviate-

goods economic environments with correlation and arbitrage. Preventing collusion entails strict

cost to the principal when there are only two agents and their types are correlated.

Our results depart from the existing literature as follows. First, our two-agent result comple-

ments CK’s work and gives a full answer to the question whether collusion with both reporting

manipulation and arbitrage is preventable at no cost. Che and Kim (2006) show that the prin-

cipal can always fight off collusion for economies with three or more agents at no cost using a

robustly collusion-proof grand mechanism. In contrast, our finding is that preventing collusion

entails strict cost to the principal for two-agent economies with correlation. This is consistent

with Olson’s famous argument that small groups are more able to act in their common interest

than large ones because they face lower per capita transaction costs when attempting to organize

for collective action [Olson (1965)].4

Secondly, we extend the result of LM (2000) by considering both arbitrage and negative

correlation. LM (2000) give the collusion-proof mechanism in procurement/public good envi-

ronments. It is unnecessary and impossible to split the goods between consumers. In contrast,

we discuss the private good problem. Consumers could conduct arbitrage on their total pur-

chases. We find that the possibility of arbitrage may call for further distortions away from the

efficiency obtained in arbitrage-free case – i.e., preventing collusion may entail an even higher

cost to the principal in two-agent nonlinear pricing setting with correlated types and arbitrage.

Moreover, LM (2000)’s model considers only positive correlation, while we consider negative

correlation as well. In our analysis, the heterogeneous transaction costs endogenously imposed

by the principal on side contracting play an important role in determining the optimal mechanis-

m. We find that, in the presence of arbitrage, asymmetric information between agents does not

generate any transaction cost in the weak positive correlation case while it generates transaction

costs in weak negative correlation case. This leads to a striking discontinuity of collusion-proof

mechanism at zero correlation.

Lastly, we also extend the main conclusion of JM (2005). They consider information ma-

nipulation and arbitrage with only uncorrelated types. In contrast, we consider both positive,

negative and zero correlations. JM’s result is therefore a special case of ours.

The rest of this paper is organized as follows. Section 2 describes the economic environments

studied. Section 3 reviews as a benchmark the optimal pricing mechanism without collusion. Sec-

tion 4 characterizes the coalitional incentive and no-arbitrage constraints that must be satisfied

4This argument is often used to explain why taxpayers often do not form an interest group while managers of

an industry do.
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by a weakly collusion-proof mechanism. Section 5 describes the optimal weakly collusion-proof

mechanism with reporting manipulation alone. Section 6 discusses the case with both reporting

manipulation and arbitrage. Section 7 gives conclusions.

2 The Model

2.1 Preferences, Information, and Mechanisms

A monopolist seller can produce any amount of a homogeneous good at constant marginal

cost c and sells it to two buyers whose consumptions are qi, i ∈ {1, 2}. Buyer i obtains utility

θiV (qi) − ti from consuming qi units of goods and paying ti units of money to the seller. V (·)

is an increasing concave function with V ′(·) > 0 and V ′′(·) < 0. The consumer privately

observes his own type θi ∈ Θ ≡ {θL, θH}, where ∆θ ≡ θH − θL. The probabilities p(θ1, θ2) of

each state (θ1, θ2) ∈ Θ2, are common knowledge prior beliefs. For simplicity, we write pLL =

p(θL, θL), pLH = p(θL, θH) = p(θH , θL), pHH = p(θH , θH). We also denote by ρ ≡ pLLpHH − p2LH

the degree of correlation between the agents’ types.

The monopolist seller designs a grand sale mechanism M to maximize her expected profit.

Considering the Revelation Principle, we can restrict our attention to direct revelation mech-

anism which maps any pair of reported types (θ̂1, θ̂2) into a combination of consumptions and

payments:

M =
{
q1(θ̂1, θ̂2), q2(θ̂1, θ̂2), t1(θ̂1, θ̂2), t2(θ̂1, θ̂2)

}
, ∀(θ̂1, θ̂2) ∈ Θ2.

Since buyers are ex ante identical, without loss of generality, we focus on anonymous mechanism

in which the consumption and payment of a buyer depend only on the reports and not on his

identity. Then we denote by tkl for k, l ∈ {H,L} the tax paid by an agent whose report is θk and

the other agent’s report is θl, and qkl is defined analogously. Let q = (qLL, qLH , qHL, qHH) ∈ R4
+

and t = (tLL, tLH , tHL, tHH) ∈ R4 denote the vectors of quantities and transfers respectively.

2.2 Coalition Formation

Applying the methodology of LM (1997, 2000), we model the buyers’ coalition formation

by a side-contract, denoted by S, offered by a benevolent uninformed third party. The third

party organizes the buyers into collusion in order to maximize the sum of their payoffs subject

to incentive compatibility and participation constraints written with respect to the utility a

buyer obtains when the grand mechanism M is played non-cooperatively. We study a collusive

arrangement that allows the agents (i) to collectively manipulate their reports to the principal
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and exchange transfers in a budget-balanced way, (ii) to reallocate quantities assigned by the

grand contract. The timing of the overall game of contract offer and coalition formation is the

following:

• Stage 1: Buyers learn their respective “types”.

• Stage 2: The seller proposes a grand sale mechanism M. If any buyer vetoes the grand

mechanism, all buyers get their reservation utility normalized exogenously at zero and the

following stages do not occur.

• Stage 3: The third party proposes a side mechanism S to the buyers. If anyone refuses

this side mechanism, M is played non-cooperatively. If both buyers accept S, they report

their types to the third party who enforces manipulation of report into M, and commits

to enforce the corresponding side transfers and reallocation within coalition.

• Stage 4: Reports are sent into the grand mechanism. Quantities and payments specified

in M are enforced. Quantities reallocation and side transfers specified in S, if any, are

implemented.

Formally, a side mechanism S takes the following form:

S =
{
ϕ(θ̃1, θ̃2), x1(θ̃1, θ̃2, ϕ), x2(θ̃1, θ̃2, ϕ), y1(θ̃1, θ̃2), y2(θ̃1, θ̃2)

}
, ∀(θ̃1, θ̃2) ∈ Θ2.

θ̃i is buyer i’s report to the third party. ϕ(·) is the manipulated report to the grand mechanism.

yi(θ̃1, θ̃2) denotes the monetary transfer from buyer i to the third party. xi(θ̃1, θ̃2, ϕ) represents

the quantity of goods buyer i receives from the third party when ϕ is reported to the seller and

(θ̃1, θ̃2) are reported to the third party. Such a reallocation rule maximizes the joint surplus of

the buyers subject to the total amount of the goods being allocated to all consumers. Since the

third party is neither a source of goods nor money, we assume that a side mechanism should

satisfy the ex post budget-balance constraints for the reallocation of goods and for the side

transfers, respectively

2∑

i=1

xi(θ̃1, θ̃2, ϕ) = 0 and
2∑

i=1

yi(θ̃1, θ̃2) = 0, ∀(θ̃1, θ̃1) ∈ Θ2 and ∀ϕ ∈ Θ2.

Let UM (θi) denote the expected payoff of a θi type in truthful equilibrium of M. The side

mechanism must guarantee to an agent a utility level greater than what he expects from playing

non-cooperatively the grand mechanism and then getting a utility UM (θi).
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3 The Optimal Grand-Mechanism without Coalition

Firstly, we study, as a benchmark, the optimal grand-mechanism without side-contracting

with correlated types, i.e., ρ ̸= 0. The seller’s expected profit is

Π(t,q) ≡ 2pLL (tLL − cqLL) + 2pLH (tLH + tHL − cqLH − cqHL) + 2pHH (tHH − cqHH) .

The following Bayesian incentive-compatibility constraints should be satisfied. For a θL type

buyer

BICL : pLL [θLV (qLL)− tLL] + pLH [θLV (qLH)− tLH ]

>pLL[θLV (qHL)− tHL] + pLH [θLV (qHH)− tHH ];
(1)

for a θH type buyer

BICH : pLH [θHV (qHL)− tHL] + pHH [θHV (qHH)− tHH ]

>pLH [θHV (qLL)− tLL] + pHH [θHV (qLH)− tLH ].
(2)

The mechanism should also satisfy the following interim individual-rationality constraints. For

a θL and θH type, respectively,

BIRL : pLL[θLV (qLL)− tLL] + pLH [θLV (qLH)− tLH ] > 0, (3)

BIRH : pLH [θHV (qHL)− tHL] + pHH [θHV (qHH)− tHH ] > 0. (4)

Then the seller maximizes her expected profit Π(t,q) subject to constraints (1) to (4).

We look for the transfers such that the four constraints are all binding, i.e., which satisfy

incentive compatibility without leaving any expected rent at the interim stage to any buyer.5

Indeed, for ρ ̸= 0, the equation system of (1) to (4) is invertible since the determinant is ρ2.

Thus, the transfers are determined uniquely as

tLL =

(
pLLpHHθL − p2LHθH

)
V (qLL)− pLHpHH∆θV (qLH)

ρ
, (5)

tLH =

(
pLLpHHθH − p2LHθL

)
V (qLH) + pLLpLH∆θV (qLL)

ρ
, (6)

tHL =

(
pLLpHHθL − p2LHθH

)
V (qHL)− pLHpHH∆θV (qHH)

ρ
, (7)

tHH =

(
pLLpHHθH − p2LHθL

)
V (qHH) + pLLpLH∆θV (qHL)

ρ
. (8)

Substituting these transfers into the the seller’s expected profit function Π(t,q) and then opti-

mizing this expression yield the second-best consumptions represented as functions of correlation:

5CM (1988) show that incentive constraints can be slack.
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qsb(ρ) = (qsbLL(ρ), q
sb
LH(ρ), qsbHL(ρ), q

sb
HH(ρ)), where

θLV
′[qsbLL(ρ)] = θLV

′[qsbLH(ρ)] = θHV ′[qsbHL(ρ)] = θHV ′[qsbHH(ρ)] = c. (9)

It is easy to find that each buyer has the same quantity as with complete information, i.e.,

qsbkl (ρ) = qfbkl (ρ), ∀ρ ̸= 0, ∀k, l ∈ {H,L}. From the expressions of transfers (5) to (8), we observe

that, if ρ is positive and goes to zero, then tLL, tHL go to −∞, tLH , tHH go to +∞. The

consumers’ quasilinear utility function suggests that they are risk neutral on transfers. The

selling mechanism exploits the risk neutrality of the agents by specifying extreme rewards and

penalties. If the correlation is positive, a θH− agent faces, when he tells the truth, an extreme

reward if the other agent is a θL type and extreme penalties if the other agent is a θH type.

Similarly we can work out the result for θL− agent. For negative correlation, the sign of all the

transfers will be altered, which implies the opposite directions of awards and penalties. Given

such a mechanism, the buyers will always accept the contract and tell the truth. The weaker

is the correlation, the larger penalties or awards are needed to elicit truthtelling. It may not

be surprising that when buyers are very similar, it is relatively simple to extract their rents by

“cross-checking” method. A more interesting point is that the above first-best result holds for

any degree of correlation, even if it is infinitesimal.

For the case with independent types, we denote ν = Pr(θi = θL), 1−ν = Pr(θi = θH), i = 1, 2,

then pLL = ν2, pLH = ν(1− ν), pHH = (1− ν)2. The system of binding constraints can no more

be inverted. The standard method for solving single-agent adverse selection model shows that

BICH and BIRL bind in the optimum. When the transfers in Π(t,q) are replaced with those

obtained from BICH and BIRL written with equality, the solution to the principal’s program is

characterized as qsb(0), where

(
θL −

1− ν

ν
∆θ

)
V ′[qsbLL(0)] =

(
θL −

1− ν

ν
∆θ

)
V ′[qsbLH(0)]

=θHV ′[qsbHL(0)] = θHV ′[qsbHH(0)] = c.

(10)

From the above two results with correlated and uncorrelated types respectively one can

see that a striking discontinuity occurs at ρ = 0. Indeed, for correlated types the seller can

exploit “cross-checking” method to induce their revelation at no cost, while for uncorrelated

types, he cannot do that since the report of one consumer is uninformative signal for the other

consumer’s type. The first-best allocation is thus not achievable when ρ = 0. The seller should

give information rents to the θH buyer and, to decrease those rents, distort the quantities of the

θL buyer downward.
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4 The Third Party’s Optimization Program

The above analysis shows that the agents with correlated types get zero rent from playing

non-cooperatively the grand mechanism, so the optimal grand mechanism with a noncooperative

behavior creates endogenously the stakes for collusive behavior. In this section, we study formally

the third party’s optimizing problem and derive the coalitional incentive constraints which must

be satisfied in the optimal collusion-proof grand mechanism under asymmetric information.

Assume that the third-party’s optimal problem is given by:

[PT ] : max
ϕ(·),xi(·),yi(·)

∑

(θ1,θ2)∈Θ2

p(θ1, θ2)
[
U1(θ1) + U2(θ2)

]

subject to :

U i(θi) =
∑

θj∈Θ

p(θj |θi)

[
θiV

(
xi
(
θi, θj , ϕ(θi, θj)

)
+ qi

(
ϕ(θi, θj)

))
+ yi(θi, θj)− ti

(
ϕ(θi, θj)

)
]

for any θi ∈ Θ and i, j = 1, 2 with i ̸= j;

(
BICS

i

)
: U i(θi) > U i(θ̃i | θi)

where

U i(θ̃i | θi) =
∑

θj∈Θ

p(θj |θi)

[
θiV

(
xi
(
θ̃i, θj , ϕ(θ̃i, θj)

)
+ qi

(
ϕ(θ̃i, θj)

))
+ yi(θ̃i, θj)− ti

(
ϕ(θ̃i, θj)

)
]

for any
(
θi, θ̃i

)
∈ Θ2 and i, j = 1, 2 with i ̸= j;

(
BIRS

i

)
: U i(θi) > UM (θi)

for any θi ∈ Θ and i = 1, 2;

(BB : y) :

2∑

i=1

yi(θ1, θ2) = 0

(BB : x) :

2∑

i=1

xi(θ1, θ2, ϕ̃) = 0

for any (θ1, θ2) ∈ Θ2 and ϕ̃ ∈ Θ2.

DEFINITION 1 A side mechanism

S =
{
ϕ(θ̃1, θ̃2), x1(θ̃1, θ̃2, ϕ), x2(θ̃1, θ̃2, ϕ), y1(θ̃1, θ̃2), y2(θ̃1, θ̃2)

}
∀(θ̃1, θ̃2) ∈ Θ2
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is coalition-interim-efficient with respect to an incentive-compatible grand mechanism M pro-

viding the reservation utilities UM (θ)6 if and only if it solves the above third party program.

Let S0 ≡
{
ϕ(·) = Id(·), x1(·) = x2(·) = 0, y1(·) = y2(·) = 0

}
denote the null contract that

implements no manipulation of reports, no reallocation of quantities, and no side transfers, then

we have the following definition.

DEFINITION 2 An incentive-compatible grand mechanism M is weakly 7 collusion-proof if

and only if it is a truthtelling direct mechanism and the null side mechanism S0 is coalition-

interim-efficient with respect to M.

PROPOSITION 1 (Weak Collusion-Proofness Principle, WCP). Any Bayesian perfect equi-

librium of the two-stage game of contract offer and collusion contract offer M◦S can be achieved

by a weakly collusion-proof mechanism.

PROOF. The proof is omitted since it is a straightforward adaptation of proof in Proposition

3 of LM (2000).

The next proposition characterizes the coalitional incentive constraints which must be sat-

isfied in the weakly collusion-proof grand mechanism.

PROPOSITION 2 A symmetric Bayesian incentive compatible grand mechanism M such

that the L− type’s incentive constraints are not binding is weakly collusion-proof if and only if

there exists ϵ ∈ [0, 1) such that:

• The following coalitional incentive constraints are satisfied: for a (θL, θL) coalition,

CICLL;LH : 2

(
θL −

p2LHϵ∆θ

pLLpLH + ρϵ

)
V (qLL)− 2tLL

> 2

(
θL −

p2LHϵ∆θ

pLLpLH + ρϵ

)
V
(qLH + qHL

2

)
− tLH − tHL (11)

CICLL;HH : 2

(
θL −

p2LHϵ∆θ

pLLpLH + ρϵ

)
V (qLL)− 2tLL

> 2

(
θL −

p2LHϵ∆θ

pLLpLH + ρϵ

)
V (qHH)− 2tHH (12)

6We assume here that, if buyer i vetoes S, then the other buyer still has prior beliefs about θi. Therefore, if

we denote by UM (θi) the expected payoff of an i type in the truthful equilibrium of M, the reservation utility for

an i type when deciding whether to accept S or not is also UM (θi) (see LM (2000) for more general analysis).
7The qualifier “weakly” comes from the assumption made in footnote 6.
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for a (θL, θH) coalition,

CICLH;LL :(
θL −

pHHϵ∆θ

pLH

)
V
(
φ1(qLH + qHL)

)
+ θHV

(
φ2(qLH + qHL)

)
− tLH − tHL

>

(
θL −

pHHϵ∆θ

pLH

)
V
(
φ1(2qLL)

)
+ θHV

(
φ2(2qLL)

)
− 2tLL (13)

CICLH;HH :(
θL −

pHHϵ∆θ

pLH

)
V
(
φ1(qLH + qHL)

)
+ θHV

(
φ2(qLH + qHL)

)
− tLH − tHL

>

(
θL −

pHHϵ∆θ

pLH

)
V
(
φ1(2qHH)

)
+ θHV

(
φ2(2qHH

)
− 2tHH (14)

for a (θH , θH) coalition,

CICHH;LL : 2θHV (qHH)− 2tHH > 2θHV (qLL)− 2tLL (15)

CICHH;LH : 2θHV (qHH)− 2tHH > 2θHV
(qLH + qHL

2

)
− tLH − tHL, (16)

where

(φ1(x), φ2(x)) = argmax
x1,x2:x1+x2=x

[(
θL −

pHHϵ∆θ

pLH

)
V (x1) + θHV (x2)

]
(17)

is the optimal splitting rule within a heterogenous coalition.

• The following no-arbitrage-constraint (NAC) is satisfied:

(
θL −

pHHϵ

pLH
∆θ

)
V ′(qLH) = θHV ′(qHL) (18)

• The H− type’s incentive compatibility constraint is binding in the side-contract if and

only if ϵ > 0.

PROOF. See appendix.

The coalitional incentive constraints under asymmetric information are obtained by express-

ing the fact that the third party has no incentive to manipulate the agents’ reports. For instance,

if CICLL;LH is satisfied, a (θL, θL) coalition prefers truthtelling to report (θL, θH). Each coali-

tional incentive constraint takes into account the possibility of reallocation: if both agents report

the same types to the third party, each of them receives half of the total quantities available; oth-

erwise, the total quantities are split in accordance with a profit-maximizing rule. The symmetric

assumption q1(θi, θi) = q2(θi, θi), for all i ∈ {H,L} guarantees that there is no reallocation with-

in homogenous coalitions made of a pair of agents of the same types when they truthfully report

their types to the principal. In heterogeneous coalitions, however, the third party may have

incentive to reallocate the goods bought from the seller unless the no-arbitrage constraint (18)
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is satisfied. Therefore, conditions (11) to (16) and (18) characterize the weakly collusion-proof

mechanisms.

The variable ϵ that enters coalitional incentive constraints can be interpreted as a transaction

cost in side contracting due to asymmetric information. If the θH type’s incentive compatibility

constraint is binding in the third party’s program, the principal has flexibility in choosing it; if

the constraint is slack, it is zero. The colluding partners usually cannot fully trust and share their

private information with each other, then the third party has to face the same incentive problem

faced by the principal and thus some transaction cost may arise. The seller has some degree of

control over this transaction cost of side contracting through the design of an appropriate grand-

mechanism. Suppose that collusion is organized under complete information, then coalitional

incentive constraints would be written with ϵ = 0. Taking into account the transaction cost

of side contracting, true valuations must be replaced by virtual valuations in the coalitional

incentive constraints. The virtual valuation of a H−type is equal to the true valuation θH ,

while the virtual valuation of a L−type is distorted downward to take into account the rent

the principal has to give and its value is θvL,1 ≡ θL −
p2LHϵ∆θ

pLLpLH+ρϵ
in a homogeneous LL coalition,

θvL,2 ≡ θL − pHHϵ∆θ
pLH

in a heterogeneous LH coalition.

Collusion imposes that the principal behaves as if she were facing a composite bidder (the

coalition) who has two dimensional preferences (virtual valuations) over the consumptions of

individual agents. In this sense, collusion is an issue that transforms the multi-agent unidi-

mensional mechanism design problem into a single-agent multidimensional mechanism design

problem with the additional subtlety that the willingness to pay of this single agent is endoge-

nous and influenced by the design of the grand-mechanism.

Notice that it is easier for the principal to detect arbitrage than reporting manipulation

and side transfers. For instance, sellers of software and e-books often prohibit the buyers from

reselling their goods via license limit, real-name registration, etc. We need to consider it as a

special case when the principal has control over reallocations between the colluding agents. In

this case, the buyers could only manipulate their reports and exchange side transfers but have

no power conducting arbitrage on the goods; then the above coalitional incentive constraints

(11)-(16) simplify to the following form. 8

COROLLARY 1 If the principal has direct control over reallocations, the coalitional incentive

constraints are:

8“CICW” stands for “coalitional incentive constrain without arbitrage”.
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• for a (θL, θL) coalition

CICWLL;LH : 2

(
θL −

p2LHϵ∆θ

pLLpLH + ρϵ

)
V (qLL)− 2tLL

>

(
θL −

p2LHϵ∆θ

pLLpLH + ρϵ

)
[V (qLH) + V (qHL)]− tLH − tHL (19)

CICWLL;HH : 2

(
θL −

p2LHϵ∆θ

pLLpLH + ρϵ

)
V (qLL)− 2tLL

> 2

(
θL −

p2LHϵ∆θ

pLLpLH + ρϵ

)
V (qHH)− 2tHH ; (20)

• for a (θL, θH) coalition

CICWLH;LL :

(
θL −

pHHϵ∆θ

pLH

)
V (qLH) + θHV (qHL)− tLH − tHL

>

(
θL −

pHHϵ∆θ

pLH

)
V (qLL) + θHV (qLL)− 2tLL (21)

CICWLH;HH :

(
θL −

pHHϵ∆θ

pLH

)
V (qLH) + θHV (qHL)− tLH − tHL

>

(
θL −

pHHϵ∆θ

pLH

)
V (qHH) + θHV (qHH)− 2tHH ; (22)

• for a (θH , θH) coalition

CICWHH;LL : 2θHV (qHH)− 2tHH > 2θHV (qLL)− 2tLL (23)

CICWHH;LH : 2θHV (qHH)− 2tHH > θH [V (qLH) + V (qHL)]− tLH − tHL. (24)

PROOF. See appendix.

For the sake of simplicity, we introduce some new notations before proceeding with our

analysis. Let

Pf : Πfb(ρ) = max
{t,q}

Π(t,q|ρ), s.t : BIRs[(3), (4)],

Ps : Πsb(ρ) = max
{t,q}

Π(t,q|ρ), s.t : BIRs, BICs[(1), (2), (3), (4)],

Pw : Πw(ρ) = max
{t,q,ϵ∈[0,1)}

Π(t,q, ϵ|ρ),

s.t : BIRs, BICs, CICWs[(1), (2), (3), (4); (19)− (24)],

Pa : Πa(ρ) = max
{t,q,ϵ∈[0,1)}

Π(t,q, ϵ|ρ),

s.t : BIRs, BICs, CICs, NAC[(1), (2), (3), (4); (11)− (16), (18)].

Πi(ρ), i = fb, sb, w, a denote as functions of ρ the seller’s optimal profits obtained in the cas-

es with complete information, asymmetric information but no collusion, information manip-

ulation but no arbitrage, both reporting manipulation and arbitrage, respectively. Mi(ρ) =

13



{ti(ρ),qi(ρ)} are the corresponding optimal sale mechanisms in these circumstances.9 The

following proposition gives a result concerning ranking of the principal’s payoffs in different

contexts.

PROPOSITION 3 The seller’s payoffs in different environments satisfy:

Πfb(ρ) > Πsb(ρ) > Πw(ρ) > Πa(ρ),

the first inequality holds strictly if and only if ρ = 0.

PROOF. See appendix.

The intuition behind Πw > Πa is straightforward. Arbitrage between the agents may hurt

the principal since it helps the agents to collude with more degrees of freedom. Hence, the

principal can strictly improve her welfare by making sure that arbitrage does not take place

since she then faces a less constrained problem.

5 The Optimal Weakly Collusion-Proof Mechanism with Re-

porting Manipulation Alone

In this section, we assume the monopolist can prohibit resale of the good between the collud-

ing agents. Evidence on this abounds in reality. In the U.S., Electronic Benefit Transfer system

makes trafficking of the Food Stamp harder to conduct and easier to detect. Moreover, sellers

of information goods can prevent resale indirectly by streaming rentals from places like Netflix

and Spotify. With the advent of high speed internet connections and adoption of platforms

capable of preventing illegal file sharing, e.g., Kindle, exclusive digital distribution is becom-

ing more feasible. Under this assumption, solving the seller’s problem Pw yields the following

three propositions which characterize the weakly collusion-proof mechanisms with respectively

negative, positive and zero correlations.

PROPOSITION 4 In the presence of weakly negative correlation, 10 if θH is sufficiently large,

then ϵ∗ = 1 at the optimum, the weakly collusion-proof mechanism Mw(ρ) = {tw(ρ),qw(ρ)}

entails:

9Superscripts fb, sb, w and a denote respectively “first-best”: “second-best”, “without arbitrage” and “arbi-

trage”.
10It means that ρ is smaller than and close enough to zero.
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• a vector of consumptions qw(ρ) ∈ R4
+ satisfying qwLL(ρ) < qwLH(ρ) < qwHH(ρ) < qwHL(ρ),

where


θLpLH − pHH∆θ

ρ+ pLH
+ ρ

θH − (1− pLL)
(
θL −

p2LH∆θ

pLLpLH+ρ

)

pLL(ρ+ pLH)


V ′ [qwLL(ρ)] = c, (25)


θLpLH − pHH∆θ

ρ+ pLH
+ ρ

(1− pLL)
(
θL −

p2LH∆θ

pLLpLH+ρ

)
− pHH

(
θL − pHH∆θ

pLH

)

2(ρ+ pLH)pLH


V ′ [qwLH(ρ)] = c,

(26)
 θHpLH
ρ+ pLH

+ ρ
(1− pLL)

(
θL −

p2LH∆θ

pLLpLH+ρ

)
− pHHθH

2(ρ+ pLH)pLH


V ′ [qwHL(ρ)] = c, (27)


 θHpLH
ρ+ pLH

+ ρ
θH +

(
θL − pHH∆θ

pLH

)

2 (ρ+ pLH)


V ′ [qwHH(ρ)] = c. (28)

• a vector of transfers tw(ρ) ∈ R4 such that constraints (2), (3), (19) and (22) are binding.

PROOF. See appendix.

With weakly negative correlation, the fact that both coalitions (θL, θL) and (θL, θH) are

prevented from misreporting limits the feasible transfers that could be used by the seller to fully

extract the buyers’ rents. The principal cannot make tLL, tHL largely positive, tLH , tHH largely

negative as they are in the no-collusion outcome without violating the coalitional incentive

constraints (19), (20) and (22). A (θL, θL) coalition would like to avoid bearing this extreme

penalty by mimicking a (θL, θH) or (θH , θH) one. Similarly, a (θL, θH) coalition would like

to mimic a (θH , θH) one to get the corresponding large rewards requested in the no-collusion

outcome since tHH is then large and negative. Therefore (19), (20) and (22) are likely to be

binding. The above analysis shows that the possibility of collusion would amount to protecting

the agents with limited liability. Given that θH is sufficiently large and monotonicity conditions

qwLL(ρ) < qwLH(ρ) < qwHH(ρ) < qwHL(ρ) hold,11 local constraints (19) and (22) imply the global

constraint (20); therefore only (19) and (22) need to bind at the optimum.

For weakly negative correlation, ϵ∗ = 1 at the optimum.12 Indeed, there is no gain in

setting ϵ < 1 since this would only increase the cost of the coalitional incentive constraints

(19) and (22). When information is asymmetric, each agent may want to conceal his private

information in order to increase his own utility, and this could go against the maximization

11This condition can be checked ex post.
12Although ϵ belongs to [0, 1), we allow ϵ to take the value equal to one since we are interested in the supremum

of the seller’s profit.
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of their joint utility, so some frictions in side-contract may arise. Moreover, mutual distrust

between colluding parties is a further impediment to collusion, since the informal side-contract

between agents is usually illegal, implicit, being enforced only by trust, reciprocity or through

repeated relationships. With negative correlation, an agent anticipates that his partner’s type

is more likely to be different from his own. The inherent vigilance against strangers prevents

them from communicating and cooperating smoothly with each other.13 The principal is then

able to exploit the agents’ mutual distrust to increase the transaction cost of side contracting.

PROPOSITION 5 For a weakly positive correlation, ϵ∗ = 1 at the optimum. The optimal

weakly-collusion-proof mechanism Mw(ρ) = {tw(ρ),qw(ρ)} entails

• a vector of consumptions qw(ρ) ∈ R4
+ satisfying qwLH(ρ) < qwLL(ρ) < qwHL(ρ) = qwHH(ρ),

where



(
θLpLH − pHH∆θ

ρ+ pLH

)
+ ρ

θH − pLH

(
θL − pHH∆θ

pLH
+ θH

)
− pHHθH

(ρ+ pLH)pLL


V ′ [qwLL(ρ)] = c,

(29)[(
θLpLH − pHH∆θ

ρ+ pLH

)
+ ρ

θL − pHH∆θ
pLH

ρ+ pLH

]
V ′ [qwLH(ρ)] = c, (30)

θHV ′ [qwHL(ρ)] = θHV ′ [qwHH(ρ)] = c; (31)

• a vector of transfers tw(ρ) ∈ R4 such that (2), (3), (21) and (23) are binding.

The seller cannot make tLL, tHL largely negative and tHH , tLH largely positive without vio-

lating the downward coalitional incentive constraints (21), (23) and (24). When (21) holds with

equality and qwLL(ρ) > qwLH(ρ), the LHS of (23) is larger than that of (24), so only (21) and

(23) are binding at the optimum. The fact that ϵ∗ = 1 at the optimum implies that the buyers

lacking power to reallocate their total purchases cannot collude frictionlessly even if they have

positive correlated types.

It is worth noting that our result here is in contrast to LM (2000). In a public good provision

environment, they characterize the weakly collusion-proof mechanism with weakly positive cor-

relation. It is shown that ϵ∗ = 0 at the optimum (Proposition 5 of LM (2000)). In their model,

two agents may consume the same amount of nonexcludable public goods even if they report

different valuations to the principal and the quantities are decreasing: xHH > xHL > xLL.

Then, the lower the transaction cost set by the principal, the higher the virtual valuation of the

13As an old saying goes: birds of the same feather flock together.
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low-type agent, and the lower incentive a (θL, θH) coalition may have to misreport (θL, θL).
14

Therefore, the principal prefers to set ϵ∗ = 0, as if there is no friction within side contract.

However, things are quite different in our private good environment, in which consumers with

different valuations are allocated with different amounts of goods. The consumption allocated

to a low-type agent in a heterogeneous coalition is smaller than that in a homogeneous coalition,

i.e., qLH < qLL. The intuition is as follows. Since (3) binds at the optimum, the expected

information rent that a high-type agent can obtain by pretending to be a low-type one is given

by pLHUHL + pHHUHH = ∆θ[pLHV (qLL) + pHHV (qLH)]. Because of the well-known trade-off

between efficiency and rent extraction, it is optimal to introduce downward distortions of both

qLL and qLH compared to their respective first-best levels. For very small ρ, the impact of coali-

tional incentive constraints on qLL and qLH is negligibly small compared to the impact of the

individual incentive constraint. The marginal benefit-marginal cost ratios of these two variables

are respectively pLL/pLH and pLH/pHH . With positive correlation, it is clear that the former

dominates the latter term, so qLL is less distorted than qLH in equilibrium. Therefore, the higher

the value of ϵ, the lower the virtual valuation of a low-type agent, and the weaker incentive a

(θL, θH) coalition may have to misreport (θL, θL). Then, by setting ϵ∗ = 1, the principal is able

to exploit the distributional inequality between agents to deter their collusion.

The coalitional incentive constraints are illustrated in the following FIGURE 1 and FIGURE

2. Here and in later diagrams a solid line pointing from type−ij to type−i′j′ means that the

incentive constraint that ij not be tempted to choose the i′j′ contract is binding. A dotted line

implies that the corresponding constraint is slack. As stated above, the principal’s two-agent uni-

dimensional collusion-preventing problem is equivalent to a single-agent two-dimensional mech-

anism design problem. The multidimensional mechanism design model differs markedly from

and is significantly more complex than its one-dimensional counterpart. It is essentially because

different types of agents cannot be unambiguously ordered, therefore the directions in which

incentive constraints bind are difficult to determine. The benefit from focusing on a discrete two

by two model, however, makes this problem tractable. With weakly negative correlation, the

two-dimensional types are ordered decreasingly as: (θvL,1, θ
v
L,1) → (θvL,2, θH) → (θH , θH). With

weakly positive correlation, they are ordered as: (θH , θH) → (θvL,1, θ
v
L,1) → (θ2L,2, θH), but in

this case both the “highest” and “lowest” types have incentive to misreport the “intermediate”

14The CICHL,LL in LM (2000) is

(

θH + θL −
pHHϵ∆θ

pLH

)

xHL − tHL − tLH >

(

θH + θL −
pHHϵ∆θ

pLH

)

xLL − 2tLL

. Given xHL > xLL, it is clear that a smaller ϵ will make this constraint easier to be satisfied.
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binding

slack

FIGURE 1. ρ < 0 without arbitrage

binding

slack

FIGURE 2. ρ > 0 without arbitrage

type.

PROPOSITION 6 Assume that types are independently distributed, i.e., ρ = 0, then there

exists a transfer scheme t ∈ R4 such that (2) and (3) are binding and {qsb(0), t} is weakly

collusion-proof, i.e., qw(0) = qsb(0).

PROOF. See appendix.

Summarizing the above discussion, we have the following theorem.

THEOREM 1 For two-agent nonlinear pricing environments with correlated types, collusive

behavior cannot be prevented freely so that reporting manipulation calls for distortions away from

the first-best efficiency. Specifically, the optimal mechanism with reporting manipulation alone

entails:
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• downward distortions for the consumptions of low-demand type for correlated types and no

distortion for them for uncorrelated types:

qwLL(ρ)





< qsbLL(ρ) = qfbLL(ρ) if ρ > 0

= qsbLL(ρ) < qfbLL(ρ) if ρ = 0

< qsbLL(ρ) = qfbLL(ρ) if ρ < 0

,

qwLH(ρ)





< qsbLH(ρ) = qfbLH(ρ) if ρ > 0

= qsbLH(ρ) < qfbLH(ρ) if ρ = 0

< qsbLH(ρ) = qfbLH(ρ) if ρ < 0

;

• no distortion for the consumptions of high-demand type for nonnegative correlation and

upward distortions for them for negative correlation:

qwHL(ρ)





= qsbHL(ρ) = qfbHL(ρ) if ρ > 0

= qsbHL(ρ) = qfbHL(ρ) if ρ = 0

> qsbHL(ρ) = qfbHL(ρ) if ρ < 0

,

qwHH(ρ)





= qsbHH(ρ) = qfbHH(ρ) if ρ > 0

= qsbHH(ρ) = qfbHH(ρ) if ρ = 0

> qsbHH(ρ) = qfbHH(ρ) if ρ < 0

;

• the possibility of reporting manipulation reduces strictly the seller’s profit for correlated

types; it will not hurt the principal if types are uncorrelated:

Πw(ρ)





< Πsb(ρ) = Πfb(ρ) if ρ ̸= 0

= Πsb(ρ) < Πfb(ρ) if ρ = 0
; (32)

• the consumptions qw(ρ) and the efficiency implemented Πw(ρ) are continuous with respect

to correlation:

lim
ρ↓0

qwij(ρ) = lim
ρ↑0

qwij(ρ) = qwij(0) = qsbij (0), ∀i, j ∈ {H,L}

lim
ρ↓0

Πw(ρ) = lim
ρ↑0

Πw(ρ) = Πw(0) = Πsb(0). (33)

PROOF. See appendix.

In the case of negative correlation, the individual incentive constraint is binding for a down-

ward manipulation while the coalitional incentive constraints are binding for upward manipula-

tions. Hence, collusion creates countervailing incentives and this makes the optimal collusion-

proof consumptions exhibit an upward distortion at the top and a downward distortion at the
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bottom with respect to the optimal scheme without side-contracting.15 Lacking power to re-

allocate their total quantities, the agents could collude with a homogeneous transaction cost

(i.e., ϵ∗ = 1), regardless of the signs of their correlation. This is why the discontinuity at ρ = 0

disappears. For nonzero ρ, the collusion-proof constraints prevent the use of the penalty and

award system embedded in the FSE mechanism. It offers a rather satisfactory solution of this

puzzle which explains to some extent the lack of practical success of explicit yardstick mecha-

nisms. The possibility of collusion enables the two agents to collectively extract rents from the

principal, i.e., to succeed in forming a pressure group.

6 The Optimal Weakly Collusion-Proof Mechanism with Both

Reporting Manipulation and Arbitrage

If buyers could conduct arbitrage within their cartel, the optimal weakly collusion-proof

mechanism could be obtained through solving program Pa. The difficulty, as usual, is to de-

termine the binding constraints. To simplify the constraints system, it is useful to derive the

following implementability conditions.

Lemma 1 For a weak correlation, the schedule of collusion-proof implementable consumptions

satisfies the following monotonicity condition:

[M] : qLL 6
qLH + qHL

2
6 qHH (34)

for all ϵ ∈ [0, 1); if these inequalities hold for all ϵ ∈ [0, 1), the local coalitional incentive

constraints (11), (14) or (13), (16) are binding, then all the other coalitional incentive constraints

are indeed satisfied.

PROOF. See appendix.

The relationships among coalitional incentive constraints are depicted in the following FIG-

URE 3.

Given this result, we could focus in the sequel only on the θH agent’s Bayesian incentive

constraint (2); the θL agent’s individual rationality constraint (3); the local coalitional incentive

constraints (11), (14) or (13), (16); no-arbitrage constraint (18) and the implementability con-

dition (34). Then we can now simplify the principal’s problem as the following program [Pa
−] or

15See Lewis and Sappington (1989), Maggi and Rodriguez (1995) and Jullien (1999) for detailed discussion of

countervailing incentives.
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bindingCICLL,LH(11)
2qLL6qLH+qHL−−−−−−−−−−→ CICLH,LL(13)

+ +

bindingCICLH,HH(14)
2qHH>qLH+qHL−−−−−−−−−−−→ CICHH,LH(16)

y2qHH>qLH+qHL

y2qLL6qLH+qHL

CICLL,HH(12) CICHH,LL(15)

bindingCICLL,LH(13)
2qLL6qLH+qHL−−−−−−−−−−→ CICLH,LL(11)

+ +

bindingCICLH,HH(16)
2qHH>qLH+qHL−−−−−−−−−−−→ CICHH,LH(14)

y2qLL6qLH+qHL

y2qHH>qLH+qHL

CICLL,HH(15) CICHH,LL(12)

FIGURE 3. Relationships among CICs in the case with arbitrage

[Pa
+].

[Pa
−] :





max
{t,q,ϵ∈[0,1)}

Π(t,q, ϵ)

subject to:

BIRL, BICH , CICLL,LH , CICLH,HH , NAC,M

[(2), (3), (11), (14), (18), (34)] ,

[Pa
+] :





max
{t,q,ϵ∈[0,1)}

Π(t,q, ϵ)

subject to:

BIRL, BICH , CICHH,LH , CICLH,LL, NAC,M

[(2), (3), (13), (16), (18), (34)] .

The following two propositions show that [Pw
+] and [Pw

−] correspond to the cases with weakly

positive and negative correlations respectively.

PROPOSITION 7 Assuming that the correlation is weakly negative, then ϵ∗ = 1 is the

principal’s optimal choice. The optimal weakly-collusion-proof mechanism with both reports

manipulation and arbitrage entails:

• a schedule of consumptions qa(ρ) ∈ R4
+ such that

(

θHpLH

ρ+ pLH

)

V
′(qHH) +

ρθHV ′ (φ2(2qHH))

ρ+ pLH

= c, (35)

(

θHpLH

ρ+ pLH

)

V
′(qHL) +

ρ
[

(1− pLL)V
′
(

qLH+qHL

2

)

(

θL −
p2LH∆θ

pLLpLH+ρ

)

− pHHθHV ′(qHL)
]

2(ρ+ pLH)pLH

= c, (36)

(

θLpLH − pHH∆θ

ρ+ pLH

)

V
′(qLH) +

ρ
[

(1− pLL)V
′
(

qLH+qHL

2

)

(

θL −
p2LH∆θ

pLLpLH+ρ

)

− pHHθHV ′(qHL)
]

2(ρ+ pLH)pLH

= c,

(37)
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



θLpLH − pHH∆θ

ρ+ pLH

+
ρθH

(ρ+ pLH) pLL

−

ρ(1− pLL)
(

θL −
p2LH∆θ

pLLpLH+ρ

)

pLL(ρ+ pLH)



V
′(qLL) = c. (38)

• a vector of transfers ta ∈ R4 such that (2), (3), (11), (14) are binding.

• a surplus strictly lower than that attained in the case without arbitrage: Πa(ρ) < Πw(ρ) .

PROOF. See appendix.

The fact that coalition (θL, θL) (resp. (θL, θH)) is prevented from misreporting (θL, θH) (resp.

(θH , θH)), limits the extreme awards or penalties that could be used by the FSE mechanism.

This leads to binding local upward coalitional incentive constraints (11) and (14). Conducting

arbitrage will apparently increase the total surplus of a coalition.16 After optimally allocating the

total quantities, a (θL, θL) (resp. (θL, θH)) coalition is more likely to be tempted to overreport

(θL, θH) (resp. (θH , θH)). Hence, it is more reasonable for the principal to disincentive their

misreports by setting ϵ∗ = 1 and decreasing the virtual valuations of low-type agent.

PROPOSITION 8 For weakly positive correlation, the seller will choose ϵ∗ = 0 at the opti-

mum, and the optimal weakly collusion-proof mechanism Ma(ρ) with both reporting manipu-

lation and arbitrage entails:

• a strictly increasing schedule of consumptions: qaLL(ρ) < qaLH(ρ) < qaHL(ρ) < qaHH(ρ) given

by
[

θLpLH − pHH∆θ

ρ+ pLH

+
ρθH

(ρ+ pLH) pLL

]

V
′(qLL)−

ρ(1− pLL)

pLL(ρ+ pLH)
θHV

′ (φ2(2qLL)) = c (39)

(

θLpLH−pHH∆θ

ρ+pLH

)

V ′ (qLH) + ρ

[

(1−pLL)θLV ′(qLH )−pHHθHV ′

(

qLH+qHL
2

)

2(ρ+pLH )pLH

]

− λθLV
′′(qLH) = c (40)

(

θHpLH

ρ+pLH

)

V ′ (qHL) + ρ

[

(1−pLL)θHV ′(qHL)−pHHθHV ′

(

qHL+qHL
2

)

2(ρ+pLH )pLH

]

+ λθHV ′′(qHL) = c, (41)

θHV
′(qHH) = c, (42)

where positive parameter λ is the Lagrangean multiplier of NAC written with ϵ = 0;

• a vector of transfers ta ∈ R4 such that (2), (3), (13), (16) are binding;

• a profit strictly lower than its counterpart in the case without arbitrage: Πa(ρ) < Πw(ρ).

PROOF. See appendix.

The reason why upward coalitional constraints (13) and (16) bind at the optimum is the con-

flicts between these constraints and the extreme award and penalty used by FSE mechanism.

For a weakly positive correlation, ϵ∗ = 0 at the optimum. This is a notable difference in propo-

sition 8 compared to propositions 4, 5 and 7, where the principal sets the collusive transaction

16The RHS of (11) (resp. (15)) is larger than that of (19) (resp. (23)).
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cost at its highest possible level, i.e., ϵ∗ = 1. θH − θvL,2 = ∆θ (1 + pHHϵ/pLH) means the higher

the transaction cost of collusion, the larger the divergence of preferences between agents in a

(θL, θH) coalition. Therefore, when reallocation is infeasible, a coalition with a larger ϵ prefers

the unequal allocation {(qLH , tLH); (qHL, tHL)} to the equal one {(qLL, tLL), (qLL, tLL)} more

than a coalition with a smaller ϵ. When the agents could conduct reallocation, however, a coali-

tion may care only about the total quantities obtained rather than that allocated to individual

agent by the principal. A smaller ϵ will weaken the incentive of a LH−coalition to underreport

(θL, θL). Having a strictly positive ϵ would only make coalitional incentive constraint (13) harder

to satisfy. In a word, the presence of asymmetries increases the frictions among the colluding

parties; but this effect vanishes when quantities reallocation is feasible. The binding coalitional

incentive constraint (13) takes therefore the same form as if consumers could credibly share

their information within the coalition. Everything happens as if asymmetric information does

not really undermine the agents’ ability of colluding, except that their individual incentive and

participation constraints are the interim ones.

Ignoring the no-arbitrage constraint at first and then checking it ex post, we find that

this constraint cannot be satisfied automatically. This is because the quantities derived from

optimization satisfy (θL − pHH∆θ/pLH)V (qLH) = θHV (qHL). However, the NAC written with

ϵ = 0 requires θLV (qLH) = θHV (qHL). The conflict between (18) and the remaining constraints

calls for a further distortion away from the efficiency implemented. The set of binding and

slack coalitional incentive constraints with arbitrage is depicted in Figure 4 and 5. For negative

correlation, the multidimensional types of the composite agent (coalition) could be ordered

decreasingly as (θvL,1, θ
v
L,1) → (θvL,1, θH) → (θH , θH), which is identical to the arbitrage-free

case. For positive correlation, the multidimensional types are ordered conversely as (θH , θH) →

(θvL,1, θH) → (θvL,1, θ
v
L,1).

In the degenerate case of no correlation, we have the following result.

PROPOSITION 9 When arbitrage are possible and the agents’ types are independent (ρ =

0), then ϵ∗ = 1 and there exists a vector of transfers t ∈ R4 such that M = {t,qsb(0)} is the

weakly collusion-proof mechanism. That is to say, Ma(0) = Msb(0) and Πa(0) = Πsb(0).

PROOF. See appendix.

This proposition states that an optimal mechanism in the absence of buyer coalition is also

weakly collusion-proof with uncorrelated types. It is in line with the main finding of JM (2005).

Summarizing the discussion, we have the following theorem.
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binding

slack

FIGURE 4. ρ < 0 with arbitrage

binding

slack

FIGURE 5. ρ > 0 with arbitrage
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THEOREM 2 For two-agent nonlinear pricing environments with correlated types, collusive

behavior cannot be prevented freely so that arbitrage calls for further distortion away from the

first-best efficiency that is lower than the second-best efficiency. Specifically, with both reporting

manipulation and arbitrage, the collusion-proof mechanism Ma(ρ) = (ta(ρ), qa(ρ)) entails the

following:

• for weakly positive correlation, there is no distortion with respect to the no collusion out-

come for qaHH(ρ), and downward distortions for other quantities; for weakly negative cor-

relation, there are downward distortions for qaLL(ρ), q
a
LH(ρ) and upward distortions for

qaHL(ρ), q
a
HH(ρ); for zero correlation, there is no distortion for any qaij(ρ), i, j ∈ {H,L},

qaLL(ρ)





< qsbLL(ρ) = qfbLL(ρ) if ρ > 0

= qsbLL(ρ) < qfbLL(ρ) if ρ = 0

< qsbLL(ρ) = qfbLL(ρ) if ρ < 0

,

qaLH(ρ)





< qsbLH(ρ) = qfbLH(ρ) if ρ > 0

= qsbLH(ρ) < qfbLH(ρ) if ρ = 0

< qsbLH(ρ) = qfbLH(ρ) if ρ < 0

,

qaHL(ρ)





< qsbHL(ρ) = qfbHL(ρ) if ρ > 0

= qsbHL(ρ) < qfbHL(ρ) if ρ = 0

> qsbHL(ρ) = qfbHL(ρ) if ρ < 0

,

qaHH(ρ)





= qsbHH(ρ) = qfbHH(ρ) if ρ > 0

= qsbHH(ρ) < qfbHH(ρ) if ρ = 0

> qsbHH(ρ) = qfbHH(ρ) if ρ < 0

;

• consumptions qaLL(ρ), q
a
HH(ρ) are continuous at ρ = 0, but qaLH(ρ) and qaHL(ρ) are only

continuous from the left hand side at ρ = 0

lim
ρ↑0

qaij(ρ) = qaij(0) = qwij(0) = qsbij (0), ∀i, j ∈ {H,L},

lim
ρ↓0

qaLL(ρ) = qaLL(0) = qwLH(0) = qsbLH(0),

lim
ρ↓0

qaHH(ρ) = qaHH(0) = qwHH(0) = qsbHH(0),

lim
ρ↓0

qaLH(ρ) > qaLH(0) = qwLH(0) = qsbLH(0),

lim
ρ↓0

qaHL(ρ) < qaHL(0) = qwHL(0) = qsbHL(0);
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• the seller’s profit is only left-continuous with respect to ρ at zero correlation,

lim
ρ↓0

Πa(ρ) < Πa(0) = lim
ρ↑0

Πa(ρ). (43)

For positive correlation, both individual and coalitional incentive constraints are binding for

downward manipulation, a trade-off between efficiency and rent extraction calls for a further

downward distortions of qLH and qLL than the case without side contracting, but no distortion

for qHH . For negative correlation, however, the individual incentive constraint is binding for

a downward manipulation while the coalitional incentive constraints are binding for upward

manipulations. Hence, collusion creates countervailing incentives and this calls for two-way

distortions for quantities: qHL and qHH are distorted upwardly; qLH and qLL are distorted

downwardly compared to the quantities without side-contracting. This is analogous to the

argument underlying Corollary 1 in this paper, and the only difference is that now we have

2qaLL(ρ) 6 qaHL(ρ) + qaLH(ρ) 6 2qaHH(ρ).

Corollaries 1 and 2 imply that the efficiency distortion originated from arbitrage-preventing

gradually vanishes as ρ approaches zero from left side: limρ↑0[Π
a(ρ) − Πw(ρ)] = 0; however, a

non-vanishing fraction exists when ρ approaches zero from right side: limρ↓0[Π
a(ρ)−Πw(ρ)] < 0.

Such a discontinuity stems from the heterogeneous transaction costs of collusion. The optimal

transaction costs chosen by the principal in different collusion environments could be summarized

in the following table.

without arbitrage with arbitrage

ρ < 0 ϵ∗ = 1 ϵ∗ = 1

ρ = 0 ϵ∗ ∈ [0, 1] ϵ∗ = 1

ρ > 0 ϵ∗ = 1 ϵ∗ = 0

TABLE 1. Transaction costs in different collusion environments

It can be seen that in the case without arbitrage, the transaction costs are homogeneous

regardless of the sign of correlation. In the case with arbitrage, however, the transaction costs

are heterogeneous. The possibility of arbitrage enables the agents to optimally reallocate their

resources and hence to disincentive a (θL, θH) coalition to underreport (θL, θL). The principal

may thus choose a lowest possible transaction cost to alleviate the coalitional incentive constraint

at the cost of breaking the continuity of optimal mechanism with respect to correlation.
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7 Conclusion

Applying CM’s FSE mechanism, the principal may exploit the correlation between agents’

private information to elicit their truthtelling at no cost. For the purpose of protecting their

rents, agents may collude at the principal’s loss by coordinating their reports and conducting

arbitrage on their total resources. As such, the principal needs to fight off collusion by design-

ing her grand mechanism. This raises a natural question concerning how the transaction cost

associated with agents’ private information can be exploited to overcome collusion. CK (2006)

have shown that the the principal can always fight off collusion at no cost in a broad class of

economic enviroments with n ≥ 2 agents for uncorrelated types and n ≥ 3 agents for correlated

types.

We find in this paper that their findings are no longer true if there exist only two agents

when types are correlated. In a private good nonlinear pricing environment with correlation and

arbitrage, we show that collusion calls for distortion away from the noncollusive efficiency, that

is, collusion cannot be preventable at no cost. Moreover, we find that the distortionary ways

are quite different for positive and negative correlations. For negative correlation, the distortion

vanishes as the correlation goes to zero; for positive correlation, on the contrary, there exists a

nonvanishing fraction of distortion. The collusion-proof mechanism is therefore discontinuous

with respect to information structure. This discontinuity of mechanism relies on the fact that

the principal may choose heterogeneous transaction costs of collusion when arbitrage is possible.

As such, it is optimal for her to choose a highest (resp. lowest) possible transaction cost in the

presence of negative (resp. positive) correlation.
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Appendix

Proof of Proposition 2

Let ϕkl = ϕ(θk, θl), k, l ∈ {H,L} for simplicity. Since we are not interested in grand-mechanisms

such that the θL agents’ incentive constraints are binding (these constraints will be satisfied ex

post), the third-party’s problem can be written as:

max
ϕ(·),xi(·),yi(·)

∑

(θ1,θ2)∈Θ2

p(θ1, θ2)

{
2∑

i=1

[
θiV

(
xi(θ1, θ2, ϕ(θ1, θ2)) + qi(ϕ(θ1, θ2))

)
− ti

(
ϕ(θ1, θ2)

)]
}

subject to the following constraints.

• Budget balance:

(BB : y)
∑

k=1,2

yk(θ1, θ2) = 0, ∀(θ1, θ2) ∈ Θ2 (44)

(BB : x)
∑

k=1,2

xk(θ1, θ2, ϕ) = 0, ∀(θ1, θ2) ∈ Θ2, ∀ϕ ∈ Θ2. (45)

• Bayesian incentive constraints for respectively the θH 1 and 2:

BICS
1 (θH) : pLH

[
θHV

(
x1(θH , θL, ϕHL) + q1(ϕHL)

)
+ y1(θH , θL)− t1(ϕHL)

]

+pHH

[
θHV

(
x1(θH , θH , ϕHH) + q1(ϕHH)

)
+ y1(θH , θH)− t1(ϕHH)

]

> pLH

[
θHV

(
x1(θL, θL, ϕLL) + q1(ϕLL)

)
+ y1(θL, θL)− t1(ϕLL)

]

+pHH

[
θHV

(
x1(θL, θH , ϕLH) + q1(ϕLH)

)
+ y1(θL, θH)− t1(ϕLH)

]

(46)

BICS
2 (θH) : pLH

[
θHV

(
x2(θL, θH , ϕLH) + q2(ϕLH)

)
+ y2(θL, θH)− t2(ϕLH)

]

+pHH

[
θHV

(
x2(θH , θH , ϕHH) + q2(ϕHH)

)
+ y2(θH , θH)− t2(ϕHH)

]

> pLH

[
θHV

(
x2(θL, θL, ϕLL) + q2(ϕLL)

)
+ y2(θL, θL)− t2(ϕLL)

]

+pHH

[
θHV

(
x2(θH , θL, ϕHL) + q2(ϕHL)

)
+ y2(θH , θL)− t2(ϕHL)

]
;

(47)

• Bayesian participation constraints for respectively the θH 1 and 2:

BIRS
1 (θH) :pLH

[
θHV

(
x1(θH , θL, ϕHL) + q1(ϕHL)

)
+ y1(θH , θL)− t1(ϕHL)

]

+pHH

[
θHV

(
x1(θH , θH , ϕHH) + q1(ϕHH)

)
+ y1(θH , θH)− t1(ϕHH)

]

>(pLH + pHH)UM
1 (θH)

(48)
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BIRS
2 (θH) :pLH

[
θHV

(
x2(θL, θH , ϕLH) + q2(ϕLH)

)
+ y2(θL, θH)− t2(ϕLH)

]

+pHH

[
θHV

(
x2(θH , θH , ϕHH) + q2(ϕHH)

)
+ y2(θH , θH)− t2(ϕHH)

]

>(pLH + pHH)UM
2 (θH);

(49)

• Participation constraints for respectively the θL agents 1 and 2:

BIRS
1 (θL) :pLL

[
θLV

(
x1(θL, θL, ϕLL) + q1(ϕLL)

)
+ y1(θL, θL)− t1(ϕLL)

]

+pLH

[
θLV

(
x1(θL, θH , ϕLH) + q1(ϕLH)

)
+ y1(θL, θH)− t1(ϕLH)

]

>(pLL + pLH)UM
1 (θL)

(50)

BIRS
2 (θL) :pLL

[
θLV

(
x2(θL, θL, ϕLL) + q2(ϕLL)

)
+ y2(θL, θL)− t2(ϕLL)

]

+pLH

[
θLV

(
x2(θH , θL, ϕHL) + q2(ϕHL)

)
+ y2(θH , θL)− t2(ϕHL)

]

>(pLL + pLH)UM
2 (θL).

(51)

Let us introduce the following multipliers ρ(θ1, θ2), τ(θ1, θ2), δ1, δ2, ν1, ν2, ν1, ν2, associated

with constraints (44) to (51) respectively. We write the Lagrangean function of the above

maximization problem as:

L =E(U1 + U2) +
2∑

i=1

δiBICS
i (θH) +

2∑

i=1

νiBIRS
i (θH) +

2∑

i=1

νiBIRS
i (θL)

+
∑

(θ1,θ2)∈Θ2

ρ(θ1, θ2)(BB : y)(θ1, θ2) +
∑

(θ1,θ2)∈Θ2

τ(θ1, θ2)(BB : x)(θ1, θ2).

• Maximizing with respect to y1(·, ·), y2(·, ·) yields

y1(θL, θL) : ρ(θL, θL)− pLHδ1 + pLLν1 = 0, (52)

y2(θL, θL) : ρ(θL, θL)− pLHδ2 + pLLν2 = 0, (53)

y1(θL, θH) : ρ(θL, θH)− pHHδ1 + pLHν1 = 0, (54)

y2(θL, θH) : ρ(θL, θH) + pLH (δ2 + ν2) = 0, (55)

y1(θH , θL) : ρ(θH , θL) + pLH (δ1 + ν1) = 0, (56)

y2(θH , θL) : ρ(θH , θL) + pLHν2 − pHHδ2 = 0, (57)

y1(θH , θH) : ρ(θH , θH) + pHH (δ1 + ν1) = 0, (58)

y2(θH , θH) : ρ(θH , θH) + pHH (δ2 + ν2) = 0. (59)

Expressions (52) and (53) imply

−pLHδ1 + pLLν1 = −pLHδ2 + pLLν2. (60)
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(54) and (55) imply

δ2 + ν2 = ν1 −
pHH

pLH
δ1. (61)

(56) and (57) imply

δ1 + ν1 = ν2 −
pHH

pLH
δ2. (62)

(58) and (59) imply

δ1 + ν1 = δ2 + ν2. (63)

In what follows, without loss of generality, we consider the symmetric multipliers δ1 =

δ2 ≡ δ, ν1 = ν2 ≡ ν, ν1 = ν2 ≡ ν.

• Maximizing with respect to x1(·, ·, ·), x2(·, ·, ·) yields

τ(θL, θL) + (pLLθL − pLHδ1θH + pLLν1θL)V
′
(
x1(θL, θL, ϕLL) + q1(ϕLL)

)
= 0, (64)

τ(θL, θL) + (pLLθL − pLHδ2θH + pLLν2θL)V
′
(
x2(θL, θL, ϕLL) + q2(ϕLL)

)
= 0, (65)

τ(θL, θH) + (pLHθL − pHHθHδ1 + pLHν1θL)V
′
(
x1(θL, θH , ϕLH) + q1(ϕLH)

)
= 0, (66)

τ(θL, θH) + (pLHθH + pLHθHδ2 + pLHν2θH)V ′
(
x2(θL, θH , ϕLH) + q2(ϕLH)

)
= 0, (67)

τ(θH , θL) + (pLHθH + pLHθHδ1 + pLHν1θH)V ′
(
x1(θH , θL, ϕHL) + q1(ϕHL)

)
= 0, (68)

τ(θH , θL) + (pLHθL − pHHθHδ2 + pLHν2θL)V
′
(
x2(θH , θL, ϕHL) + q2(ϕHL)

)
= 0, (69)

τ(θH , θH) + (pHHθH + pHHθHδ1 + pHHθHν1)V
′
(
x1(θH , θH , ϕHH) + q1(ϕHH)

)
= 0, (70)

τ(θH , θH) + (pHHθH + pHHθHδ2 + pHHθHν2)V
′
(
x2(θH , θH , ϕHH) + q2(ϕHH)

)
= 0. (71)

(64) and (65) imply

V ′
(
x1(θL, θL, ϕLL) + q1(ϕLL)

)
= V ′

(
x2(θL, θL, ϕLL) + q2(ϕLL)

)
, ∀ϕLL ∈ Θ2.

(70) and (71) imply

V ′
(
x1(θH , θH , ϕHH) + q1(ϕHH

)
= V ′

(
x2(θH , θH , ϕHH) + q2(ϕHH)

)
, ∀ϕHH ∈ Θ2.

Since x1(θL, θL, ϕLL) + x2(θL, θL, ϕLL) = 0, x1(θH , θH , ϕHH) + x2(θH , θH , ϕHH) = 0 from

a budget-balance constraint, we have

x1(θL, θL, ϕLL) + q1(ϕLL) = x2(θL, θL, ϕLL) + q2(ϕLL) =
q1(ϕLL) + q2(ϕLL)

2
, ∀ϕLL(72)

x1(θH , θH , ϕHH) + q1(ϕHH) = x2(θH , θH , ϕHH) + q2(ϕHH) =
q1(ϕHH) + q2(ϕHH)

2
, ∀ϕHH .(73)

(66) and (67) imply
(
θL −

pHH

pLH
θHδ1 + ν1θL

)
V ′

(
x1(θL, θH , ϕLH) + q1(ϕLH)

)

=(1 + δ2 + ν2) θHV ′
(
x2(θL, θH , ϕLH) + q2(ϕLH)

)
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Using (61), we obtain

(
θL −

pHHϵ

pLH
∆θ

)
V ′

(
x1(θL, θH , ϕLH)+q1(ϕLH)

)
= θHV ′

(
x2(θL, θH , ϕLH)+q2(ϕLH)

)
, ∀ϕLH

where

ϵ =
δ

1 + δ + ν
.

Similarly, expressions (68), (69) and (62) imply

θHV ′
(
x1(θH , θL, ϕHL)+q1(ϕHL)

)
=

(
θL −

pHHϵ

pLH
∆θ

)
V ′

(
x2(θH , θL, ϕHL)+q2(ϕHL)

)
, ∀ϕHL.

With budget-balance constraints x1(θk, θl, ϕkl) + x2(θk, θl, ϕkl) = 0, ∀k, l ∈ {H,L}, k ̸= l ,

the total quantity available to a heterogeneous coalition is split according to the following

rule:

x1(θL, θH , ϕLH) + q1(ϕLH) = φ1

(
q1(ϕLH) + q2(ϕLH)

)
, (74)

x2(θL, θH , ϕLH) + q2(ϕLH) = φ2

(
q1(ϕLH) + q2(ϕLH)

)
, (75)

x1(θH , θL, ϕHL) + q1(ϕHL) = φ2

(
q1(ϕHL) + q2(ϕHL)

)
, (76)

x2(θH , θL, ϕHL) + q2(ϕHL) = φ1

(
q1(ϕHL) + q2(ϕHL)

)
, (77)

for any ϕij ∈ Θ2, where

(φ1(x), φ2(x)) = argmax
x1,x2:x1+x2=x

[(
θL −

pHHϵ∆θ

pLH

)
V (x1) + θHV (x2)

]
.

For weakly collusion-proof grand mechanism, ϕ(θ1, θ2) = (θ1, θ2), xi
(
θ1, θ2, ϕ(θ1, θ2)

)
= 0,

so (72) and (73) are trivially satisfied. Expressions (74) and (75) (or (76) and (77)) imply

qLH = φ1 (qLH + qHL) , qHL = φ2 (qLH + qHL) ,

or equivalently, (
θL −

pHHϵ

pLH
∆θ

)
V ′(qLH) = θHV ′(qHL). (78)

This condition states that if the quantities allocated by the principal to agents maximize

their total payoff, then the third party has no incentive to conduct reallocation. Therefore,

we call it “no-arbitrage constraint (NAC)”.

• The optimal manipulation of reports.
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– Optimizing with respect to ϕLL yields

ϕ∗
LL ∈ argmax

ϕLL

{
pLL

[
θLV

(
x1(θL, θL, ϕLL) + q1(ϕLL)

)
+ θLV

(
x2(θL, θL, ϕLL) + q2(ϕLL)

)

− t1(ϕLL)− t2(ϕLL)
]

+ pLLν1
[
θLV

(
x1(θL, θL, ϕLL) + q1(ϕLL)

)
− t1(ϕLL)

]

+ pLLν2
[
θLV

(
x2(θL, θL, ϕLL) + q2(ϕLL)

)
− t2(ϕLL)

]

− pLHδ1
[
θHV

(
x2(θL, θL, ϕLL) + q2(ϕLL)

)
− t1(ϕLL)

]

− pLHδ2
[
θHV

(
x1(θL, θL, ϕLL) + q2(ϕLL)

)
− t1(ϕLL)

]}
.

Note that at symmetric equilibrium δ1 = δ2 = δ; ν1 = ν2 = ν; ν1 = ν2 = ν, then from

constraints (60) to (62) and (72), (73) the objective function can be written as

(pLL + pLLν1 − pLHδ1)
[
θLV

(
x1(θL, θL, ϕLL) + q1(ϕLL)

)
− t1(ϕLL)

]

+(pLL + pLLν2 − pLHδ2)
[
θLV

(
x2(θL, θL, ϕLL) + q2(ϕLL)

)
− t2(ϕLL)

]

−pLH∆θδ1V
(
x1(θL, θL, ϕLL) + q1(ϕLL)

)
− pLH∆θδ2V

(
x2(θL, θL, ϕLL) + q2(ϕLL)

)

=(pLL + pLLν − pLHδ)

×

{(
θL −

p2LHϵ∆θ

pLLpLH + ρϵ

)[
V
(
x1(θL, θL, ϕLL) + q1(ϕLL)

)
+ V

(
x2(θL, θL, ϕLL) + q2(ϕLL)

)]

−t1(ϕLL)− t2(ϕLL)

}

=(pLL + pLLν − pLHδ)

{
2

(
θL −

p2LHϵ∆θ

pLLpLH + ρϵ

)
V

(
q1(ϕLL) + q2(ϕLL)

2

)

− t1(ϕLL)− t2(ϕLL)

}
.

(79)

Hence, we have

ϕ∗
LL ∈ argmax

ϕLL

{
2

(
θL −

p2LHϵ∆θ

pLLpLH + ρϵ

)
V

(
q1(ϕLL) + q2(ϕLL)

2

)
− t1(ϕLL)− t2(ϕLL)

}
.

(80)

– Similarly, optimizing with respect to ϕLH and ϕHL yields respectively

ϕ∗
LH ∈ argmax

ϕLH

{(
θL −

pHHϵ∆θ

pLH

)
V
(
x1(θL, θH , ϕLH) + q1(ϕLH)

)

+ θHV
(
x2(θL, θH , ϕLH) + q2(ϕLH)

)
− t1(ϕLH)− t2(ϕLH)

}

= argmax
ϕLH

{(
θL −

pHHϵ∆θ

pLH

)
V
(
φ1

(
q1(ϕLH) + q1(ϕLH)

))

+ θHV (φ2(q1(ϕLH) + q2(ϕLH)))− t1(ϕLH)− t2(ϕLH)

}

(81)
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and

ϕ∗
HL ∈ argmax

ϕHL

{(
θL −

pHHϵ∆θ

pLH

)
V
(
x2(θH , θL, ϕHL) + q2(ϕHL)

)

+ θHV
(
x1(θH , θL, ϕHL) + q1(ϕHL)

)
− t1(ϕHL)− t2(ϕHL)

}

= argmax
ϕHL

{(
θL −

pHHϵ∆θ

pLH

)
V
(
φ1

(
q1(ϕHL) + q1(ϕHL)

))

+ θHV (φ2(q1(ϕHL) + q2(ϕHL))− t1(ϕHL)− t2(ϕHL)

}
.

(82)

– Optimizing with respect to ϕHH yields

ϕ∗
HH ∈ argmax

ϕHH

{
θHV

(
x1(θH , θH , ϕHH) + q1(ϕHH)

)
+ θHV

(
x2(θH , θH , ϕHH) + q2(ϕHH)

)

− t1(ϕHH)− t2(ϕHH)

}

= argmax
ϕHH

{
2θHV

(
q1(ϕHH) + q2(ϕHH)

2

)
− t1(ϕHH)− t2(ϕHH)

}
.

(83)

• In a weakly collusion-proof mechanism ϕ(θ1, θ2) = (θ1, θ2), inserting into (80), (81), (82)

and (83) yields coalitional incentive constraints (11) to (16) in the main text.

• Note that ϵ = δ
1+δ+ν

∈ [0, 1). Moreover, δ > 0 when the Bayesian incentive constraints

(46) and (47) are binding in the third party’s optimizing problem.

• Note that participation constraints (48) to (51) are binding for a weakly collusion-proof

mechanism. Hence the slackness condition obtained from the Lagrangean optimization

does not give any information on ϵ. Therefore, ϵ is a free variable in the principal’s

programme.

Proof of Corollary 1

In the absence of arbitrage, let xi (θ1, θ2;ϕ(θ1, θ2)) = 0, i = 1, 2 in (79), (81), (82)and (83), then

we get

ϕ∗
LL ∈ argmax

ϕLL

{(
θL −

p2LHϵ∆θ

pLLpLH+ρϵ

)
[V (q1(ϕLL)) + V (q2(ϕLL))]− t1(ϕLL)− t2(ϕLL)

}
,

ϕ∗
LH ∈ argmax

ϕLH

{(
θL −

pHHϵ∆θ

pLH

)
V
(
q1(ϕLH)

)
+ θHV

(
q2(ϕLH)

)
− t1(ϕLH)− t2(ϕLH)

}
,

ϕ∗
HL ∈ argmax

ϕHL

{(
θL −

pHHϵ∆θ

pLH

)
V
(
q2(ϕHL)

)
+ θHV

(
q1(ϕHL)

)
− t1(ϕHL)− t2(ϕHL)

}
,

ϕ∗
HH ∈ argmax

ϕHH

{
θHV

(
q1(ϕHH)

)
+ θHV

(
q2(ϕHH)

)
− t1(ϕHH)− t2(ϕHH)

}
.

Substituting ϕ(θ1, θ2) = (θ1, θ2) into the above expressions yields constraints (19) to (22).
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Proof of Proposition 3

Let

Da =
{
(t,q) | t ∈ R4,q ∈ R4

+, s.t : (1)− (4), (11)− (18)
}

and

Dw =
{
(t,q) | t ∈ R4,q ∈ R4

+, s.t : (1)− (4), (19)− (24)
}

represent the feasible regions of the principal’s problem with and without arbitrage, respectively.

Denote by ℓi, ri, i =11 to 16 and 19 to 24 the left and right hand sides of the above coalitional

incentive constraints. Note that under NAC (18), qLH = φ1(qLH + qHL), qHL = φ2(qLH + qHL),

then ℓ11 = ℓ19, ℓ12 = ℓ20, ℓ13 = ℓ21, ℓ14 = ℓ22, ℓ15 = ℓ23, ℓ16 = ℓ24, and it is obvious that r11 >

r19, r12 = r20, r13 > r21, r14 > r22, r15 = r23, r16 > r24, so Da ⊆ Dw, therefore Πw(ρ) > Πa(ρ).

The other two inequalities Πfb(ρ) > Πsb(ρ) > Πw(ρ) are straightforward.

Proof of Proposition 4

If ρ < 0, we write the θH type’s incentive constraint (2), the θL type’s participation constraint (3),

and local upward coalitional incentive constraints (19) and (22) as binding ones by introducing

nonnegative parameters εi, i = 2, 3, 19, 22.




pLL pLH 0 0

pLH pHH −pLH −pHH

2 −1 −1 0

0 1 1 −2



×




tLL

tLH

tHL

tHH



=




β3 − ε3

β2 + ε2

β19 − ε19

β22 − ε22



,

where




β3

β2

β19

β22



≡




θLpLLV (qLL) + θLpLHV (qLH)

θHpLH [V (qLL)− V (qHL)] + θHpHH [V (qLH)− V (qHH)]
(
θL −

p2LHϵ∆θ

pLLpLH+ρϵ

)
[2V (qLL)− V (qLH)− V (qHL)](

θL − pHHϵ∆θ
pLH

)
[V (qLH)− V (qHH)] + θH [V (qHL)− V (qHH)]



.

The expected transfer is therefore

E[t(θ1, θ2)] =
∑

i∈{H,L}

∑

j∈{H,L}

pijtij =
pLH + pHH

ρ+ pLH
(β3 − ε3)−

pLH
ρ+ pLH

(β2 + ε2)

−
ρ(1− pLL)

2(ρ+ pLH)
(β19 − ε19)−

ρpHH

2(ρ+ pLH)
(β22 − ε22).

(84)

Note that ρ < 0 and 2V (qLL) < V (qLH) + V (qHL)(It can be checked ex post.), so the seller will

choose ϵ∗ = 1, εi = 0, i = 2, 3, 19, 22 at the optimum.
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Substituting (84) into the seller’s objective function Π(t,q) and then optimizing with re-

spect to qij yields expressions (25)-(28). With weakly negative correlation, the monotonicity

of consumptions can be verified as follows. qwLi(ρ) < qwHj(ρ), ∀(i, j) ∈ {H,L} × {H,L} is easily

obtained when ρ is sufficiently close to zero. qwLL(ρ) < qwLH(ρ) holds when

ρ

[

θH−(1−pLL)

(

θL−
p2LH∆θ

pLLpLH+ρ

)]

(ρ+pLH)pLL
−

ρ

[

(1−pLL)

(

θL−
p2LH∆θ

pLLpLH+ρ

)

−pHH

(

θL−
pHH∆θ

pLH

)

]

2pLH(ρ+pLH)

= ∆θρ
2pLLpLH(ρ+pLH)

[
2pLH

(
1 +

p2LH

pLLpLH+ρ

)
− ρpHHpLL(pHH+pLH)

ρ+pLLpLH

]
< 0.

This condition is obviously satisfied for weakly negative correlation. qwHH(ρ) < qwHL(ρ) is ensured

by

ρ
θH+

(

θL−
pHH∆θ

pLH

)

2(ρ+pLH) − ρ
(1−pLL)

(

θL−
p2LH∆θ

pLLpLH+ρ

)

−pHHθH

2(ρ+pLH)pLH

= ρ
2(ρ+pLH)pLH

[
(pLH+pHH)2∆θ

pLH
− ρ (1−pLL)∆θ

pLLpLH+ρ

]
< 0.

Hence, the monotonicity of quantities, qwLL(ρ) < qwLH(ρ) < qwHH(ρ) < qwHL(ρ), is ensured.

The monotonicity of consumptions and the fact that (2), (3), (19), (22) are binding ensure

that (1), (4), (21), (23) and (24)are satisfied strictly. The only work left is to check constraint

(20). From (19) and (22) written with equality we get

[
2

(
θL −

p2LHϵ∆θ

pLLpLH + ρϵ

)
V (qLL)− 2tLL

]
=

[
2

(
θL −

p2LHϵ∆θ

pLLpLH + ρϵ

)
V (qHH)− 2tHH

]
+H(ρ)

where

H(ρ) ≡
ρ(pLH + pHH)

pLH(ρ+ pLLpLH)
[V (qLH)− V (qHH)] + ∆θ

(
1 +

p2LH
pLLpLH + ρ

)
[V (qHH)− V (qHL)] .

lim
ρ↑0

H(ρ)

ρ
= lim

ρ↑0

(pLH + pHH) [V (qLH)− V (qHH)]

pLH(pLLpLH + ρ)

+ lim
ρ↑0

∆θ

(
1 +

p2LH
pLLpLH + ρ

)
V (qHH)− V (qHL)

ρ

=
pLH + pHH

p2LHpLL

[
V (qsbLH(0))− V (qsbHH(0))

]

+∆θ
pLL + pLH

pLL
lim
ρ↑0

V (qHH)− V (qHL)

ρ

(85)

Letting

α(ρ) ≡
(1− pLL)

(
θL −

p2LH∆θ

pLLpLH+ρ

)
− pHHθH

2(ρ+ pLH)pLH

β(ρ) ≡
θH + θL − pHH

pLH
∆θ

2(ρ+ pLH)
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, it can be shown that,

lim
ρ↑0

V (qHH)− V (qHL)

ρ
= lim

ρ↑0

[
V ′(qHH)

dqHH

dρ
− V ′(qHL)

dqHL

dρ

]

= lim
ρ↑0





[V ′(qHL)]
2

[
θHpLH

ρ+pLH

∣∣∣
′

ρ
+ α(ρ) + ρα′(ρ)

]

[
θHpLH

ρ+pLH
+ ρα(ρ)

]
V ′′(qHL)

−

[V ′(qHH)]2
[

θHpLH

ρ+pLH

∣∣∣
′

ρ
+ β(ρ) + ρβ′(ρ)

]

[
θHpLH

ρ+pLH
+ ρβ(ρ)

]
V ′′(qHH)





=
V ′[qsbHH(0)]2[α(0)− β(0)]

θHV ′′[qsbHH(0)]
= −

V ′[qsbHH(0)]c

θ2HV ′′[qsbHH(0)]

∆θ

2pLHpLL
.

(86)

Inserting expression (86) into (85), we get

lim
ρ↑0

H(ρ)

ρ
=

pLH + pHH

p2LHpLL

[
V (qsbHL(0))− V (qsbHH(0))−

c(∆θ)2V ′(qsbHH(0))

2θ2HV ′′(qsbHH(0))

]
.

It is easy to see that the last term in the square bracket vanishes as θH → +∞. Therefore, for

sufficiently large θH , limρ↑0
H(ρ)
ρ

< 0, which implies that (20) holds strictly, i.e., H(ρ) > 0 for

weakly negative ρ.

Proof of Proposition 5

For weakly positive correlation, the principal could not fully extract the agents’ rents without

violating coalitional incentive constraints (21), (23) and (24).17 As usual, IRL and ICH are surely

binding, and it is obvious that (23) and (24) cannot be simultaneously binding. Therefore, the

set of binding constraints consists of either (2), (3), (21), (23) or (2), (3), (21), (24).

• If (2), (3), (21), (24) are binding, then

E[t(θ1, θ2)] =
∑

i∈{H,L}

∑

j∈{H,L}

pijtij

=
pLH + pHH

ρ+ pLH
β3 −

pLH
ρ+ pLH

β2 +
ρ(1− pLL)

2(ρ+ pLH)
β21 −

ρpHH

2(ρ+ pLH)
β24

(87)

where




β3

β2

β21

β24



≡




θLpLLV (qLL) + θLpLHV (qLH)

θHpLH [V (qLL)− V (qHL)] + θHpHH [V (qLH)− V (qHH)]
(
θL − pHHϵ∆θ

pLH

)
[V (qLL)− V (qLH)] + θH [V (qLL)− V (qHL)]

θH [V (qLH) + V (qHL)]− 2θHV (qHH)



.

17Remember that FSE mechanism requires tLL, tHL → −∞, tLH , tHH → +∞ as ρ is positive and goes to zero.
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Substituting it into the principal’s objective function and then optimizing with respect to

ϵ ∈ [0, 1) and qij , i, j ∈ {H,L} yields ϵ∗ = 1 and
[
pLH + pHH

ρ+ pLH
θL −

p2LHθH
(ρ+ pLH)pLL

+
ρ(1− pLL)

2pLL(pLH + ρ)

(
θL + θH −

pHH∆θ

pLH

)]
V ′(qLL) = c


pLH + pHH

ρ+ pLH
θL −

pHHθH
(ρ+ pLH)

−
ρ(1− pLL)

(
θL − pHH∆θ

pLH

)

2(pLH + ρ)pLH
−

ρpHHθH
2(ρ+ pLH)pLH


V ′(qLH) = c

θHV ′(qHL) = θHV ′(qHH) = c.

It can be verified that qLH < qLL < qHL = qHH . Summing (21) and (24) written with

equalities yields:

[2θHV (qHH)− 2tHH ]−[2θHV (qLL)− 2tLL] =

(
θH − θL +

pHH∆θ

pLH

)
[V (qLH)− V (qLL)] < 0,

which contradicts (23).

• If (2), (3), (21), (23) are binding, then

E[t(θ1, θ2)] =
∑

i∈{H,L}

∑

j∈{H,L}

pijtij

=
pLH + pHH

ρ+ pLH
β3 −

pLH
ρ+ pLH

β2 −
ρpLH

ρ+ pLH
β21 −

ρpHH

2(ρ+ pLH)
β23

where



β3

β2

β21

β23



≡




θLpLLV (qLL) + θLpLHV (qLH)

θHpLH [V (qLL)− V (qHL)] + θHpHH [V (qLH)− V (qHH)]
(
θL − pHHϵ∆θ

pLH

)
[V (qLL)− V (qLH)] + θH [V (qLL)− V (qHL)]

2θH [V (qLL)− V (qHH)]



.

Substituting it into the principal’s objective function Π(t,q) and then optimizing with

respect to ϵ ∈ [0, 1) and qij , i, j ∈ {H,L} yields ϵ∗ = 1 and expressions (29)-(31). The

monotonicity of quantities qwLH(ρ) < qwLL(ρ) < qwHL(ρ) = qwHH(ρ) obtains when

θH >

(
θLpLH − pHH∆θ

ρ+ pLH

)
+ ρ

θH − pLH

(
θL − pHH∆θ

pLH
+ θH

)
− pHHθH

(ρ+ pLH)pLL

>

(
θLpLH − pHH∆θ

ρ+ pLH

)
+ ρ

θL − pHH∆θ
pLH

ρ+ pLH
.

The first inequality holds for sufficiently small ρ > 0; the second inequality holds since

ρ
θH − pLH

(

θL −
pHH∆θ

pLH
+ θH

)

− pHHθH

(ρ+ pLH)pLL

− ρ
θL −

pHH∆θ

pLH

ρ+ pLH

=
ρ∆θ(pLH + pLL)(pLH + pHH)

pLH

> 0.

Hence, the monotonicity of quantities is ensured and it implies that the other incentive

constraints (1), (4), (19), (20), (22) and (24) are all strictly satisfied.
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Proof of Proposition 6

With independent types, pLL = ν2, pLH = ν(1− ν), pHH = (1− ν)2, then we can find transfers

tij , i, j ∈ {H,L} such that ULL ≡ θLV (qLL) − tLL = 0, ULH ≡ θLV (qLH) − tLH = 0, UHL ≡

θHV (qHL)− tHL = ∆θV (qLL), UHH ≡ θHV (qHH)− tHH = ∆θV (qLH). It is easy to verify that

ICH , IRL are binding and all the coalitional constraints are strictly satisfied for any ϵ ∈ [0, 1).

Substituting tij , i, j ∈ {H,L} into the principal’s objective function and then maximizing with

respect to qij yields qw(0) = qsb(0).

Proof of Corollary 1

• If ρ > 0 and is close enough to zero, it can be verified easily from (29), (30) and (31)

that qwLL(ρ) < qsbLL(ρ), q
w
LH(ρ) < qsbLH(ρ), qwHL(ρ) = qsbHL(ρ), q

w
HH(ρ) = qsbHH(ρ); if ρ < 0 and

is close enough to zero, it can be verified from (25)-(28) that qwLL(ρ) < qsbLL(ρ), q
w
LH(ρ) <

qsbLH(ρ). The upward distortions for the quantities of high-type consumers, i.e., qwHL(ρ) >

qsbHL(ρ), q
w
HH(ρ) > qsbHH(ρ) are ensured by the following two inequalities:

θHpLH
ρ+ pLH

+ ρ
(1− pLL)

(
θL −

p2LH∆θ

pLLpLH+ρ

)
− pHHθH

2(ρ+ pLH)pLH
>

θHpLH
ρ+ pLH

+
ρθH

ρ+ pLH
= θH

θHpLH
ρ+ pLH

+ ρ
θH +

(
θL − pHH∆θ

pLH

)

2 (ρ+ pLH)
>

θHpLH
ρ+ pLH

+
ρθH

ρ+ pLH
= θH .

• If ρ ̸= 0, then collusion imposes more constraints on the set of implementable allocations

which must now also be coalitionally incentive compatible, and the seller’s payoff is thus

strictly lower than the first-best level: Πw(ρ) < Πsb(ρ) = Πfb(ρ). If ρ = 0, then qw(ρ) =

qsb(ρ) ̸= qfb(ρ), the seller’s payoff is thus Πw(ρ) = Πsb(ρ) < Πfb(ρ), and (32) holds.

• Letting ρ goes to zero in (25)-(28) and (29)-(31), we get the continuity of consumptions:

lim
ρ↓0

qwij(ρ) = lim
ρ↑0

qwij(ρ) = qwij(0), ∀i, j ∈ {H,L}. Continuity of the seller’s profit (33) can be

obtained accordingly.

Proof of Lemma 1.

Let

f(x) ≡

(
θL −

pHHϵ∆θ

pLH

)
V (φ1(x)) + θHV (φ2(x))− 2θHV

(x
2

)

g(x) ≡ 2

(
θL −

p2LHϵ∆θ

pLLpLH + ρϵ

)
V
(x
2

)
−

(
θL −

pHHϵ∆θ

pLH

)
V (φ1(x))− θHV (φ2(x)),
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then

f ′(x) =

(
θL −

pHHϵ∆θ

pLH

)
V ′(φ1(x))φ

′
1(x) + θHV ′(φ2(x))φ

′
2(x)− θHV ′

(x
2

)

g′(x) =

(
θL −

p2LHϵ∆θ

pLLpLH + ρϵ

)
V ′

(x
2

)
−

(
θL −

pHHϵ∆θ

pLH

)
V ′(φ1(x))φ

′
1(x)− θHV ′(φ2(x))φ

′
2(x).

Since

(φ1(x), φ2(x)) = argmax
x1,x2:x1+x2=x

[(
θL −

pHHϵ∆θ

pLH

)
V (x1) + θHV (x2)

]
,

(
θL − pHHϵ∆θ

pLH

)
V ′(φ1(x)) = θHV ′(φ2(x)) and φ′

1(x) + φ′
2(x) = 1. Therefore,

f ′(x) = θHV ′(φ2(x))− θHV ′
(x
2

)
,

g′(x) =

(
θL −

p2LHϵ∆θ

pLLpLH + ρϵ

)
V ′

(x
2

)
−

(
θL −

pHHϵ∆θ

pLH

)
V ′(φ1(x)).

Note that φ1(x) <
x
2 < φ2(x), hence, f

′(x) < 0, g′(x) < 0 if ρ is close enough to zero.

• (=⇒) Summing constraints (14) and (16) yields f(qLH + qHL) > f(2qHH); summing

constraints (11) and (13) yields: g(2qLL) > g(qLH + qHL). Therefore qLL 6
qLH+qHL

2 6

qHH .

• (⇐=) Assume that qLL 6
qLH+qHL

2 6 qHH holds. If (14) is binding, then

ℓ16 − r16 = [2θHV (qHH)− tHH ]−

[
2θHV

(
qLH + qHL

2

)
− tHL − tLH

]

=f(qLH + qHL)− f(2qHH) > 0,

(16) is therefore satisfied. If (11) holds with equality, then

ℓ13 − r13 =

[(
θL −

pHHϵ∆θ

pLH

)
V
(
φ1(qLH + qHL)

)
+ θHV

(
φ2(qLH + qHL)

)
− tLH − tHL

]

−

[(
θL −

pHHϵ∆θ

pLH

)
V
(
φ1(2qLL)

)
+ θHV

(
φ2(2qLL)

)
− 2tLL

]

=g(2qLL)− g(qLH + qHL) > 0.

It follows that (13) is satisfied. Summing (13) and (16) yields:

ℓ15 − r15 = [2θHV (qHH)− 2tHH ]− [2θHV (qLL)− 2tLL]

> f(2qLL)− f(qLH + qHL) > 0,

(15) is thus satisfied. Summing (11) and (14) written with equalities yields:

ℓ12 − r12

=

[
2

(
θL −

p2LHϵ∆θ

pLLpLH + ρϵ

)
V (qLL)− 2tLL

]
−

[(
p2LHϵ∆θ

pLLpLH + ρϵ

)
V (qHH)− 2tHH

]

=g(qLH + qHL)− g(2qHH) > 0,

(12) holds. Analogously, given the monotonicity of quantities, binding constraints (13)

and (16) imply the other coalitional incentive constraints (11), (12), (14) and (15).
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Proof of Proposition 7

If ρ < 0, we write the downward individual incentive compatibility constraint (2), the θL type’s

participation constraint (3), the local upward coalitional constraints (11) and (14) as binding

ones by introducing nonnegative parameters εi, i = 2, 3, 11, 14.




pLL pLH 0 0

pLH pHH −pLH −pHH

2 −1 −1 0

0 1 1 −2



×




tLL

tLH

tHL

tHH



=




β3 − ε3

β2 + ε2

β11 − ε11

β14 − ε14



,

where,



β3

β2

β11

β14



≡




θLpLLV (qLL) + θLpLHV (qLH)

θHpLH [V (qLL)− V (qHL)] + θHpHH [V (qLH)− V (qHH)]

2
(

θL −
p2LHϵ∆θ

pLLpLH+ρϵ

)

[

V (qLL)− V ( qLH+qHL

2
)
]

(

θL −
pHHϵ∆θ

pLH

)

[V (φ1(qLH + qHL))− V (φ1(2qHH))] + θH [V (φ2(qLH + qHL))− V (φ2(2qHH))]



.

The expected transfer is thus obtained from this invertible equations system

E[t(θ1, θ2)] ≡
∑

i∈{H,L}

∑

j∈{H,L}

pijtij

=
pLH + pHH

ρ+ pLH
(β3 − ε3)−

pLH
ρ+ pLH

(β2 + ε2)

−
ρ(1− pLL)

2(ρ+ pLH)
(β11 − ε11)−

ρpHH

2(ρ+ pLH)
(β14 − ε14).

(88)

We use for a moment the monotonicity condition qLL < qHL+qLH

2 < qHH , which will turn

out to be satisfied at the optimum. To maximize the expected transfer, the seller will set

ϵ∗ = 1, ε2 = ε3 = ε11 = ε14 = 0. Optimizing with respect to qij yields (35)-(38). (36) and (37)

imply that the NAC (18) is satisfied automatically since ϵ∗ = 1.

The only work left is to verify the implementability condition. Since lim
ρ↑0

qaij(ρ) = qaij(0) =

qsbij (0), ∀i, j ∈ {H,L} and qsbLL(0) = qsbLH(0) < qsbHL(0) = qsbHH(0), 2qaLL(ρ) < qaLH(ρ) + qaHL(ρ) <

2qaHH(ρ) holds when ρ is sufficiently close to zero. Since Πa(ρ) 6 Πw(ρ) and qa(ρ) ̸= qw(ρ), we

get Πa(ρ) < Πw(ρ).

Proof of Proposition 8

When ρ > 0, we write (2), (3), (13) and (16) are binding by introducing nonnegative variables

ε2, ε3, ε13 and ε16.
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


pLL pLH 0 0

pLH pHH −pLH −pHH

2 −1 −1 0

0 1 1 −2



×




tLL

tLH

tHL

tHH



=




β3 − ε3

β2 + ε2

β13 + ε13

β16 + ε16



,

where,



β3

β2

β13

β16



≡




θLpLLV (qLL) + θLpLHV (qLH)

θHpLH [V (qLL)− V (qHL)] + θHpHH [V (qLH)− V (qHH)]
(

θL −
pHHϵ∆θ

pLH

)

[V (φ1(2qLL))− V (φ1(qLH + qHL))] + θH [V (φ2(2qLL))− V (φ2(qLH + qHL))]

2θH
[

V
(

qLH+qHL

2

)

− V (qHH)
]



.

Again, the expected transfer is obtained from the binding constraints:

E[t(θ1, θ2)] ≡
∑

i∈{H,L}

∑

j∈{H,L}

pijtij

=
pLH + pHH

ρ+ pLH
(β3 − ε3)−

pLH
ρ+ pLH

(β2 + ε2)

−
ρ(1− pLL)

2(ρ+ pLH)
(β13 + ε13)−

ρpHH

2(ρ+ pLH)
(β16 + ε16).

(89)

Considering the monotonicity condition qLL < qHL+qLH

2 < qHH , it is optimal to set ε3 =

ε2 = ε13 = ε16 = 0 and ϵ∗ = 0. Optimizing with respect to qij under the constraint of

NAC written with ϵ = 0 yields expressions (39) to (42). λ > 0 is the Lagrangean multiplier

associated with NAC. It can be verified easily that for weakly positive correlation, monotonicity

of consumptions qLL < qLH < qHL < qHH is satisfied. Hence the implementability condition

qLL 6
qLH+qHL

2 6 qHH is ensured. Since Πa(ρ) 6 Πw(ρ) and qa(ρ) ̸= qw(ρ), the seller’s profit is

strictly lower than the arbitrage-free case, i.e., Πa(ρ) < Πw(ρ).

Proof of Proposition 9

When ρ = 0, let tLj = θLV [qsbLj(0)], tHj = θHV [qsbLj(0)] − ∆θV [qsbLj(0)], ∀j ∈ {H,L}. It can be

verified that for mechanism (qsb(0), t), (2) and (3) are binding, and all the coalitional incentive

constraints hold strictly for any ϵ ∈ [0, 1). Since all constraints containing ϵ are slack, any

ϵ ∈ [0, 1) is indifferent to the principal. Hence, she may choose ϵ∗ = 1 to make NAC hold for

qsb(0). The proof is finished.

Proof of Corollary 2

• The case with weakly positive correlation
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– (39) implies lims↓0 q
a
LL(s) = qaLL(0) = qsbLL(0) < qsbLL(ρ), ∀ρ > 0. Therefore, qaLL(ρ) <

qsbLL(ρ) when ρ is close enough to zero.

– It follows from (40) that

θHV ′[qsbHL(ρ)] = c

=

(
θHpLH
ρ+ pLH

)
V ′ [qaHL(ρ)] + ρ




(1− pLL)θHV ′ [qaHL(ρ)]− pHHθHV ′

[
qaLH(ρ)+qaHL(ρ)

2

]

2(ρ+ pLH)pLH





+ λV
′′

[qaHL(ρ)]

<

(
θHpLH
ρ+ pLH

)
V ′ [qaHL(ρ)] + ρ




(1− pLL)θHV ′ [qaHL(ρ)]− pHHθHV ′

[
qaLH(ρ)+qaHL(ρ)

2

]

2(ρ+ pLH)pLH





<

(
θHpLH
ρ+ pLH

)
V ′ [qaHL(ρ)] + ρ

{
(1− pLL)θHV ′ [qaHL(ρ)]− pHHθHV ′ [qaHL(ρ)]

2(ρ+ pLH)pLH

}

=θHV ′ [qaHL(ρ)] ,

hence, qaHL(ρ) < qsbHL(ρ).

– Since qaHL(ρ) < qsbHL(ρ) and V ′[qaLH(ρ)]/V ′[qaHL(ρ)] = V ′[qsbLH(ρ)]/V ′[qsbHL(ρ)] = θH/θL,

we have qaLH(ρ) < qsbLH(ρ).

• The case with weakly negative correlation

– (35) implies

θHV ′[qsbHH(ρ)] = c =

(
θHpLH
ρ+ pLH

)
V ′ [qaHH(ρ)] +

ρθHV ′ [φ2(2q
a
HH(ρ))]

ρ+ pLH

>

(
θHpLH
ρ+ pLH

)
V ′ [qaHH(ρ)] +

ρθHV ′ [qaHH(ρ)]

ρ+ pLH
= θHV ′ [qaHH(ρ)] ,

hence, qaHH(ρ) > qsbHH(ρ);

– (36) implies that

θHV
′[qsbHL(ρ)] = c

=

(

θHpLH

ρ+ pLH

)

V
′ (qaHL(ρ)) +

ρ
[

(1− pLL)V
′
(

qaLH (ρ)+qaHL(ρ)

2

)(

θL −
p2LH∆θ

pLLpLH+ρ

)

− pHHθHV ′ (qaHL(ρ))
]

2(ρ+ pLH)pLH

>

(

θHpLH

ρ+ pLH

)

V
′ (qaHL(ρ)) +

ρ
[

(1− pLL)V
′ (qaLH(ρ))

(

θL −
pHH∆θ

pLH

)

− pHHθHV ′ (qaHL(ρ))
]

2(ρ+ pLH)pLH

=

(

θHpLH

ρ+ pLH

)

V
′ (qaHL(ρ)) +

ρ [1− pLL − pHH ] θHV ′ (qaHL(ρ))

2(ρ+ pLH)pLH

= θHV
′ (qaHL(ρ))

.

It follows that qaHL(ρ) > qsbHL(ρ);
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– If ρ is close enough to zero, it follows from (37) and (38) that

θLV
′[qsbLH(ρ)] = c =

(
θLpLH − pHH∆θ

ρ+ pLH

)
V ′ (qaLH(ρ))

+
ρ
[
(1− pLL)V

′
(
qaLH(ρ)+qaLH(ρ)

2

)(
θL −

p2LH∆θ

pLLpLH+ρ

)
− pHHθHV ′ (qaLH(ρ))

]

2(ρ+ pLH)pLH

< θLV
′[qaLH(ρ)]

θLV
′[qsbLL(ρ)] = c

=


θLpLH − pHH∆θ

ρ+ pLH
+

ρθH
(ρ+ pLH) pLL

−
ρ(1− pLL)

(
θL −

p2LH∆θ

pLLpLH+ρ

)

pLL(ρ+ pLH)


V ′ (qaLL(ρ))

< θLV
′ (qaLL(ρ))

,

Therefore, qaLL(ρ) < qsbLL(ρ), q
a
LH(ρ) < qsbLH(ρ).

• The continuity of quantities can be verified directly from expressions (39)-(42)and (35)-

(38).

• The continuity of surplus functions. From (88) and (89), we get

lim
ρ↓0

Πa(ρ) =


pLH + pHH

pLH
β3 − β2 − c

∑

i∈{H,L}

∑

j∈{H,L}

pijqij



q=lim

ρ↓0
qa(ρ)

lim
ρ↑0

Πa(ρ) =


pLH + pHH

pLH
β3 − β2 − c

∑

i∈{H,L}

∑

j∈{H,L}

pijqij



q=lim

ρ↑0
qa(ρ)

Πa(0) =


pLH + pHH

pLH
β3 − β2 − c

∑

i∈{H,L}

∑

j∈{H,L}

pijqij



q=qa(0)

Since qa(0) = argmax
q∈R4

+

[
pLH+pHH

pLH
β3 − β2 − c

∑
i∈{H,L}

∑
j∈{H,L} pijqij

]
and lim

ρ↓0
qa(ρ) ̸=

qa(0), lim
ρ↑0

qa(ρ) = qa(0) , it follows that lim
ρ↓0

Πa(ρ) < Πa(0), lim
ρ↑0

Πa(ρ) = Πa(0). (43)

is thus verified.
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