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Abstract

This note examines the complexity of complete transitive binary re-
lations or tournaments using Kolmogorov complexity. The complexity of
tournaments calculated using Kolmogorov complexity is then compared
to minimally complex tournaments defined in terms of the minimal num-
ber of examples needed to describe the tournament. The latter concept
is the concept of complexity employed by Rubinstein [6] in his economic
theory of language. A proof of Rubinsein’s conjecture on the complexity
bound of natural language tournaments is provided.

JEL Classification: C60,D89



1 Introduction

Ariel Rubinstein’s work on the applications of binary relations in natural lan-
guage raises interesting questions both for the economics of language and for
the uses of natural language in everyday economic activity. In particular, many
forms of economic interaction involve the use of natural language. Certain types
of legal contracts such as employment contracts, sales contracts, etc. employ
natural language in their formulation.

Rubinstein analyses complete and transitive binary relations or tournaments
[7]. He argues that tournaments that are less complex than others are more
likely to give rise to behavioral regularities. Rubinstein suggests measuring the
complexity of the tournament in terms of the minimum number of examples nec-
essary to describe the tournament. An alternative approach has been suggested
by the philosopher Johann van Benthem [1] this employs Rissannen’s [5] idea of
the minimal description length of a model. This idea is related to Kolmogorov
complexity. Van Benthem’s suggestion is interesting because it provides a ready
way of calculating the complexity of a tournament that is well grounded in in-
formation theoretic principles. This approach has to the best of the author’s
knowledge not been constructively explored.

In this note Rubinstein’s theory is further developed within the framework
of Kolmogorov complexity theory. A proof of Rubinstein’s conjecture on the
complexity bounds is suggested and some further results relating Rubinstein’s
concept to Kolmogorov complexity is addressed. This note may also be in-
terpreted as a partial response to van Benthem’s suggestion for using minimal
description length as criteria.

In section 2 the theoretical framework and some essential definitions and no-
tations from Kolomogorov complexity theory that are employed in the derivation
of results. In section 3 Rubinstein’s conjecture and a proof of the conjecture
are presented. In section 4 an algorithm for computing the Kolmogorov com-
plexity of a tournament is suggested and two propositions relating Rubinstein
and Kolmogorov complexity are presented and discussed. Finally conclusions
are drawn in section 5 and possible extensions suggested.

2 Background

One approach to the complexity of a tournament would be to pose the question:
How does one determine a winner? Another would be to ask “How do we rank
the elements of a tournament?” Each of these questions could in principle be
examined from an algorithmic perspective. In other words one can identify
an algorithm that computes the winner of a tournament and one that ranks
the elements of a tournament. An example of this can be found in social choice
theory, imagine an algorithm that determines the Condorcet winner and another
algorithm that ranks societal alternatives. Each of these algorithms takes a
certain number of steps to compute. The complexity of a tournament could
then be measured in terms of the number of steps it takes to solve each of these



tasks. If the number of steps it takes to compute a winner is bounded by some
polynomial function of the steps.

The complexity of a tournament may be approached from two perspectives:
on the one hand the complexity of a tournament could be examined as a graph
theoretic entity in terms of complexity classes (P or NP). Secondly, a tournament
may be approached from perspective of Kolmogorov complexity using Turing
machines. From an algebraic perspective tournaments are complete asymmetric
binary relations. Alternatively, tournaments may be represented as a graph. In
terms of graph theory a tournament is a directed graph such that for any two
vertices u and v either (u,v) or (v,u) but not both is an arc of the tournament
[2, p. 326.].

Before proceeding to the main contribution of the paper it is first necessary
to introduce some basic notation. Most notation follows Rubinstein [6] and new
notation is only introduced as necessary. Fistly, define an alphabet €2 as a set of
symbols representing objects. A set of I agents is assumed to communicate in
natural language about these objects using the alphabet. The reader is referred
to Rubinstein [6] for examples.

Rubinstein defines a binary relation as follows:

Definition 1. (Binary relation with respect to f) (f,{a:, Rb;},c;) defines the
binary relation (R* on A C Q) when

e fis a sentence in predicate calculus
e R* is the unique binary relation on Q satisfying f and Vi a;R*b; is true.

The complexity C(R*) of the binary relation R* may be computed in a
number of ways. Rubinstein [7] suggests that the complexity of a tournament
is given by the solution of the following optimization problem:

min C(R")
R*eT

where T is the set of tournaments and C(R*) = {I|R* € T'}.

An alternative method of computing the complexity of a tournament has
been suggested by Van Benthem [1]. This involves employing Solomonoff-
Kolmogorov complexity theory and the minimum description length principle
[5] to formalize the notion of a tournaments complexity. In the following this
idea will be explored to some extent but the the theory will not be dveloped to
the extent of introducing a minimum description length characterization of the
complexity of tournaments. Instead it will be shown how Rubinstein’s complex-
ity concept may be formulated in terms of Solomonoff-Kolmogorov complexity
before proceeding to prove Rubinstein’s conjecture on the complexity bound of
a tournament.

Definition 2. Solomonoff-Kolmogorov complexity Given a message x the com-
plexity of x is given in general by

Cy(x) = min{l(p) : f(p) =n(z)}



where p is some non-negative integer, f(p) a partial function defined over the
integers and n(x) the size of x where n: X — N, and l(p) the length of p.

One way to think of this is to think of p being a program and f(p) a Turing
machine [3],[4, p. 94].

If f(p) is considered to be a Turing Machine then the Kolmogorov complexity
may be expressed as:

C(x) = min {I(T) + C(|T) : T € {To, T1,...}} + O(1)

where T is a Turing machine.

To compute the Kolmogorov complexity of a tournament one need only
write a program to compute the minimum number of binary relations needed
to identify all objects in €. But this is just a minimal spanning tree problem
for a digraph with equal weights on each edge with the one modification that
cycles are allowed (see section 4). So the complexity of a tournament reduces to
the problem of computing the Kolmogorov complexity of a minimal spanning
algorithm for a tournament, i.e. the task is to find a minimal spanning subgraph
that is both complete and asymmetric. The key point is that one no longer
requires transitivity so that the digraph is not necessarily a tree.

Before moving on to a discussion of what such an algorithm might look like,
a conjecture of Rubinstein regarding the lower bound of the complexity of a
tournament is proved [6, 7].

3 Rubinstein’s conjecture

The economics of language has lead to a number of interesting results including
the following conjecture by Rubinstein [6, 7]:

Conjecture 1. Rubinstein’s Conjecture Let ¢ be a sentence in the predicate
calculus language which includes a single name of a binary relation, R. then
there exists n* such that for any || > n* and any tournament R which is
defined by the sentence ¢, C(R) > |Q] — 1.

Note that || is the order of the tournament p and that C(R) is the size g of
the tournament. The first theorem of digraph theory relates these two concepts
[2, p. 32]. This theorem states that given a digraph D of order p and size ¢,
with V(D) = {v1,...,vp , then Y7 odv; = Y%, idv; = q, where ody; is the
outdegree of vertex v; and idy; is the indegree of vertex v;. Clearly, the validity
of Rubinstein’s conjecture depends on the degree of the graph.

Proof. (of Rubinstein’s conjecture) Call the first vertex the start vertex then

p—1

odvy + Z odv; = q

=2



if all vertices labelled 2 to p — 1 are identical in degree then
C(R)>|Q| -1

To see this note that C(R) = odvy + odv(|Q] — 1) so that the strict inequality
holds for odv > 1 and odr1 = 0 or for odry > 1.

Furthermore, the out-degree of any vertex must be a non-negative integer
so that this strict inequality will hold for all-graphs regular or otherwise, unless
the arbitrarily chosen start vertes has out-degree zero and all other vertices have
an out-degree at each vertex of at least 1. Note that strict equality only holds
if one vertex has out-degree zero and all others have out-degree 1. So that for
a graph with any non-negative out-degree at each vertex C(R) > |©2| — 1. Note
that for a graph to be a tournament n* > 0 (there are no tournaments of order
7ero). O

Note that that a strict equality will hold for the transitive case.

4 An algorithm for computing the Kolmogorov
complexity of a tournament

Instead of using a Turing machine to compute the Kolmogorov complexity, a
specific algorithm that could be implemented by a Turing machine will suffice.

A starting point for the development of an algorithm for computing the Kol-
mogorov complexity of a tournament is the following modification of Kruskal’s
algorithm for mimimal spanning tree problems [2, p. 88]:

1 Initialize the set E « ) of edges of some graph (V, E)

2 Increment E pick any ¢ € E (note all weights are equal and normalized
to 1) such that e ¢ E and E U {e} is complete and asymmetric but not
necessarily acyclic, then let £ «+— E U {e}

e If |E| > p—1 where p is the order of the graph, then output E and output
|E|, the size of the graph.

This algorithm computes the subdigraph which minimally spans a given set
of vertices. The Kolmogorov complexity of this algorithm is then the minimum
number of steps that the program needs to compute the size of the minimal
spanning subdigraph.

In what follows the fact that any string can be suitably encoded is utilized to
establish a relationship between Rubinstein and Kolmogorov complexity. This
comparison is a partial response to van Benthem’s suggestion of using the min-
imal description length criteria. This is because minimal description length
is based on kolmogorv complexity. A detailed discussion of coding theory is
however omitted, the reader is referred to Li and Vitanyi for this [4].



Proposition 1. (Relationship between Rubinstein and Kolmogorov complexity)
The Kolmogorov complexity C(x) is less than or equal to the Rubinstein com-
plexity n(z) plus a constant.

Proof. The algorithm suggested above computes the Rubinstein complexity for
an arbitrary set of vertices by calculating |F| the number of steps needed to
do this is just I(p). If the source alphabet is just the set of vertices then the
size of the spanning digraph |F| = n(z) which is the Rubinstein complexity of
the tournament. Note that this is just the order of the digraph minus 1. On
termination of the program f(p) = n(z) = |E| and the minimum number of
steps required to do this will be [(p) or the Kolmogorov complexity. The order
of the digraph is by definition [(x). From the previous theorem it is known
that n(z) > I(z) — 1. Finally, from [4, p. 100] theorem 2.1.2 it is known that
C(z) < l(z) + ¢. Combining these facts, rearranging and substituting gives
Cz)<n(z)+1+e O

Note that n(x) = || by definition. Based on the proceeding result relating
to the relationship between Kolmogorov complexity and Rubinstein complexity
the following corollary may be stated.

Proposition 2.
CR)> 19 —-1>C(x)—2—c¢
Proof. Follows by substitution and proposition 1 and proposition 2. O

Rissannen [5] has developed the idea of the minimum description length as
a model selection criteria for statistical models. To relate the notion of a sta-
tistical model back to the preceeding discussion, graph theoretic analysis would
need to be extended to a random graph setting. This implies a stochastic rank
ordering. So that Benthem’s suggestion of using minimal description length as
an alternative complexity measure should not be taken too literally. So while
theoretically a tournament could be constructed on a random graph and mini-
mal description length could be employed to evaluate the complexity of binary
relations. Rubinstein complexity is simpler and more intuitively appealing.

5 Conclusion

This note discusses the relationship between Kolmogorov complexity and Ru-
binstein complexity for tournaments. A number of results are proven showing
the relationship between Kolmogorov complexity and Rubinstein complexity for
tournaments. The main purpose of this paper has been to explain the connec-
tion between these two notions of complexity concept and to provide a proof
of Rubinstein’s conjecture regarding a complexity bound for binary relations in
natural languages. Some possible extensions are to exlore the connection be-
tween Rubinstein’s concept of indication friendliness and unique decodability in
coding theory and to develop a more explicit comparison of minimal description
length and Rubinstein complexity.
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