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Abstract: This paper analyses the statistical distribution of war size. We find 

strong support for a Pareto-type distribution (power law) using data from 

different sources (COW and UCDP) and periods. A power law describes 

accurately the size distribution of all wars, but also the distribution of the sample 

of wars in any given period. The estimated Pareto exponent is always less than 

1, indicating that the distribution is heavy-tailed; this means that the war average 

loss is controlled by the largest conflicts. Furthermore, the study of battle deaths’ 

growth rates reveals a clear decreasing pattern; the growth of deaths declines 

faster the greater the number of initial deaths. 

 

Keywords: war size distribution, battle deaths, power law, Pareto distribution. 

JEL: D74, F51, N40,  

 

 

 



 2

1. Introduction 

In one of the first analyses of the statistics of war, Richardson (1948) studied the 

variation of the frequency of fatal quarrels with magnitude. He collected a data set of 

violent incidents (wars and homicides) measured by the number of victims from 1820 to 

1945 and his calculations revealed that the relationship between magnitude (size) and 

the frequency (number) of both wars and small crime incidents could be satisfactorily 

fitted by a straight decreasing line with negative slope, pointing to a power law 

function. This striking empirical regularity could have important implications, but it has 

remained almost unexplored from either a theoretical or empirical point of view for 

many years.  

Only a few papers follow Richardson’s approach (Roberts and Turcotte, 1998; 

Cederman, 2003; Clauset et al., 2007), finding evidence of power law behaviour too. 

Roberts and Turcotte (1998) find a power law dependence of number on intensity taking 

into consideration several alternative measures of the intensity of a war in terms of 

battle deaths, using Levy’s (1983) data set of 119 wars from 1500 to 1974 and Small 

and Singer’s (1982) data set of 118 wars during the period 1816–1980. Cederman 

(2003) finds strong support for a power law distribution using interstate war data from 

1820 to 1997 from the Correlates of War project. Based on this empirical evidence, he 

also proposes an agent-based model of war and state formation that exhibits the same 

kind of power law regularities. Clauset et al. (2007) extend Richardson’s analysis to 

study the frequency and severity of terrorist attacks worldwide since 1968, also finding 

a linear relationship between the frequency and severity of these deadly incidents. 

The results of these studies are similar to the original result of Richardson. 

However, as Levy and Morgan (1984) point out, all these studies focus on the 

distribution of all wars rather than on those occurring in a given period, although the 

frequency of wars in a given period is also assumed to be inversely related to their 

seriousness. Levy and Morgan (1984) try to address this latter point by calculating 

Pearson correlation indexes between frequency and intensity, finding a negative 

correlation. They use Levy’s (1983) data set of wars between 1500 and 1974, 

aggregating wars in 25-year periods.  

Finally, there is also another strand of literature related. All the previous studies 

use between-conflict data, but there are other papers (Bohorquez et al., 2009; Johnson et 
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al., 2011) that focus on within-conflict incidents (attacks). Surprisingly, these studies 

conclude that the size distribution or timing of within-conflict events is also power law 

distributed. Bohorquez et al. (2009) show that the sizes and timing of 54,679 violent 

events reported within nine diverse insurgent conflicts exhibit remarkable similarities. 

In all cases they cannot reject the hypothesis that the size distribution of the events 

follows a power law, but they can reject log-normality. They build on this empirical 

evidence to propose a unified theoretical model of human insurgency that reproduces 

these features, explaining conflict-specific variations quantitatively in terms of 

underlying rules of engagement. Johnson et al. (2011) uncover a similar dynamical 

pattern using data of fatal attacks by insurgent groups in both Afghanistan and Iraq, and 

by terrorist groups operating worldwide. They estimate the escalation rate and timing of 

fatal attacks, finding that the average number of fatalities per fatal attack is fairly 

constant in a conflict. Furthermore, when they calculate the progress curve they obtain a 

straight line, which is best fitted by a power law.  

 This paper contributes in several ways. First, in the spirit of Richardson (1948) 

we estimate the distribution of a pool of all wars. Second, using yearly data we estimate 

the war size distribution by year from 1989 to 2010 to study whether there are 

differences between the overall distribution of all wars and the year-by-year 

distribution. Third, we analyse the evolution of the distribution over time and its 

stability. Finally, we study the behaviour of the growth rates for the conflicts that last 

more than one period.  

The paper is organised as follows. Section 2 introduces the databases we use. 

Section 3 contains the statistical analysis of war size distribution and its evolution over 

time and Section 4 concludes. 

2. Data 

We measure war size using the number of recorded battle deaths, i.e. the battle-

related combatant fatalities. Data come from two international data sets: the Correlates 

of War (COW) (Version 4.0) (2010) project and the Uppsala Conflict Data Program 

(UCDP/PRIO) Armed Conflict Dataset (Version 5) (2011). 

Like Cederman (2003), we only consider COW interstate wars. According to the 

COW war typology, an interstate war must involve sustained combat, involving 

organised armed forces, resulting in a minimum of 1,000 battle-related combatant 
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fatalities within a 12-month period; for a state to be considered a war participant, the 

minimum requirement is that it has to either commit 1,000 troops to the war or suffer 

100 battle-related deaths. This requisite condition was established by Small and Singer 

(1982). The COW data contain information of 95 different interstate wars from 1823 to 

2003.
1
 Thus, the COW data set covers all the conflicts within a long-term period and 

enables us to estimate the size distribution of a wide pool of modern wars. 

The UCDP defines conflict as: “a contested incompatibility that concerns 

government and/or territory where the use of armed force between two parties, of which 

at least one is the government of a state, results in at least 25 battle-related deaths.”
2
 

There are two important differences from the COW data. First, the UCDP data set 

includes four different types of conflict: extrasystemic, interstate, internal and 

internationalised internal. Second, the UCDP data set contains information about 

conflicts by year from 1989 to 2010. Thus, we can estimate the year-by-year size 

distribution.  

Table 1 shows the sample sizes for each year and the descriptive statistics. There 

is a decrease in the number of wars over time, especially marked in the last few years 

(the average number of wars by year from 1989 to 2000 is 43.8, while in the 2001–2010 

period it is 33.3). Moreover, the conflicts in the last few years are also less intense; the 

average number of battle deaths by war also decreases over time.  

Roberts and Turcotte (1998) indicate that a pool of wars from different periods 

(like the COW data set) can be criticised because there is a substantial change in the 

global population over such a long time period. Therefore, the same number of battle 

deaths would not represent the same war intensity if there has been a huge change in the 

world population. Some authors try to correct for this using relative measures of size: 

Levy (1983) defines the intensity of a war as the quotient of battle deaths over the 

population of Europe in millions at the time of the war because estimates of the total 

world population may not be reliable for early periods. Here we also define a relative 

measure of size as the ratio of battle deaths to the European population (in thousands) 

the year prior to the start of the conflict. Population data are taken from Maddison 

(2003). Thus, this ratio represents the number of deaths per thousand European 

                                                 
1 The list of interstate wars included in the database is in Sarkees and Wayman (2010). 
2 More information about the UCDP-PRIO Armed Conflict Dataset can be found in Gleditsch et al. 

(2002). 
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inhabitants. However, note that this normalisation is not necessary when all the conflicts 

are in the same period.  

3. Results 

3.1 War size distribution 

Let us denote S  as the war size (measured by recorded battle deaths); if it is 

distributed following a power law, also known as Pareto distribution, the density 

function is 
1
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⎛−= 1)(  SS ≥∀ , where 0>a  is the Pareto exponent and S  is the battle 

deaths of the war at the truncation point. The relationship with the empirically observed 

rank R  (1 for the largest conflict, 2 for the second largest and so on) is 
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⎛⋅=−⋅= )(1 , where N  is the number of wars above the truncation 

point (minimum casualties threshold,
3
 S ). Note that the rank includes the cumulative 

density function and, thus, can also represent the frequency.  

Making 
a

SNA ⋅=  we obtain the simple expression a
SAR

−⋅= . This 

expression is applied to the study of very varied phenomena, such as the distribution of 

the number of times different words appear in a book (Zipf, 1949), the intensity of 

earthquakes (Kagan, 1997), the losses caused by floods (Pisarenko, 1998), forest fires 

(Roberts and Turcotte, 1998), city size distribution (Soo, 2005) or country size 

distribution (Rose, 2006). 

Taking natural logarithms, we obtain the linear specification that is usually 

estimated 

uSaAR +−= lnlnln ,   (1) 

where u  represents a standard random error ( ( ) 0=uE  and ( ) 2σ=uVar ) and Aln  is a 

constant, SaNA lnlnln += . The greater the coefficient â , the more homogeneous are 

the war sizes. Similarly, a small coefficient (lower than 1) indicates a heavy-tailed 

distribution. 

                                                 
3 The COW data set uses the relatively high threshold of 1,000 battle-deaths, while the UCDP dataset has 

a lower threshold, 25 annual battle-deaths (Gleditsch et al., 2002). 
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Gabaix and Ibragimov (2011) propose specifying Equation (1) by subtracting 

21  from the rank to obtain an unbiased estimation of a  in small samples: 

vSabR +−=⎟
⎠
⎞

⎜
⎝
⎛ − ln

2

1
ln .   (2) 

First, we replicate Cederman’s (2003) results, considering only COW interstate 

wars from 1823 to 2003. Eq. (1) can be represented as a graph. Figure 1 shows the 

logarithmic plot for the COW data, covering interstate wars from 1823 to 2003. Data 

are fitted by a power law, and its exponent is estimated by using the Gabaix and 

Ibragimov (2011) estimator. For illustrative purposes a log-normal distribution is also 

fitted to the data by maximum likelihood. The power law provides a very good fit to the 

real behaviour of the distribution ( 97.02 =R ) with an estimated Pareto exponent of 

0.464. In contrast, the fit by the log-normal distribution is very poor, especially at the 

upper tail. These results are robust to a change in the measure of size; by using the 

relative measure of size (battle deaths divided by European population) we obtain a 

similar good fit, with an estimated Pareto exponent of 0.459. This evidence confirms 

Cederman’s (2003) results and the original result of Richardson (1948). 

Remember that this is the distribution of a pool of all wars over a long period. 

Next, we use the yearly UCDP data set to estimate the war size distribution by year 

from 1989 to 2010. Eq. (2) was estimated by OLS for our yearly sample of wars; Figure 

2 displays the results for two representative years (1992 and 2007).
4
 Again, the power 

law provides a very good fit to the real behaviour of the distribution and the fit 

improves over time ( 2
R  increases from 0.87 in 1989 to 0.94 in 2010). However, the 

log-normal distribution provides a very poor fit, even worse than in the size distribution 

for all the 1823–2003 period. 

Figure 3 shows the evolution over time of the estimated exponent. We estimated 

using all the observations available in each year. The results show that the distribution 

remained stable around the 0.5 value, although in the last ten years there has been a 

slight increase in the exponent. Thus, during this period the year-by-year distribution 

has been stable, with an estimated value similar to that of the size distribution of all 

wars. This exponent is always lower than 1, indicating that the distribution is heavy-

tailed; this means that the war average loss is controlled by the largest conflicts. 

                                                 
4 Results for all the years are available from the author upon request. 
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Therefore, a power law describes accurately the size distribution of all wars, but also the 

distribution of the sample of wars in any given period.  

3.2 Growth analysis 

The above results show what we consider to be a snapshot of the size 

distribution of wars from 1989 to 2010. For each year we obtained the estimated 

coefficients of the Pareto exponent, which enabled us to conclude that war size 

distribution is fairly stable over time. Literature studying financial assets (Gabaix et al., 

2006), firm (Sutton, 1997) and city (Gabaix, 1999) size distributions usually concludes 

that this kind of Pareto-type distribution is generated by a random growth process. The 

hypothesis tested is that the growth of the variable is independent of its initial size.
5
 To 

check whether this is true for war sizes we carry out a dynamic analysis of growth rates 

using two different non-parametric tools. The UCDP data set enables us to calculate the 

yearly growth rates of battle deaths for the conflicts that last more than one year. We 

define ig  as the growth rate ( )1lnln −− itit SS  normalised (subtracting the contemporary 

mean and dividing by the standard deviation in the relevant year), with itS  being the ith 

war’s size (battle deaths).
6
 We build a pool with all the growth rates between two 

consecutive years; there are 639 battle deaths-growth rate pairs in the period 1989–

2010. 

First, we study how the distribution of growth rates is related to the distribution 

of initial battle deaths (Ioannides and Overman, 2004). Figure 4 shows the stochastic 

kernel estimation of the distribution of normalised growth rates, conditional on the 

distribution of initial battle deaths at the same date. In order to make the interpretation 

easier, the contour plot is also shown. The plot reveals a slight negative relationship 

between both distributions, although there is a great deal of variance. However, most of 

the observations are concentrated into two peaks of density; the greater corresponds to 

conflicts with a small number of deaths (lower than 5 on the logarithmic scale, i.e. less 

than 150 casualties), and the second to the less numerous group of conflicts with a high 

number of battle deaths (7 on the logarithmic scale, which means around 1,100 

casualties). Note that the conditional distribution of growth rates is equal to zero for 

                                                 
5 In firm and city size literature this hypothesis is called “Gibrat’s law”. 
6 Growth rates need to be normalised because we are considering growth rates from different periods 

jointly in a pool. 
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both types of war, indicating that both distributions are independent for most of the 

observations. 

To get a clearer view of the relationship between growth and initial battle deaths 

we also perform a non-parametric analysis using kernel regressions (Ioannides and 

Overman, 2003). It consists of taking the following specification: 

( ) iii smg ε+= ,    

where ig  is the normalised growth rate and is  the logarithm of the ith war’s number of 

initial battle deaths. Instead of making assumptions about the functional relationship m , 

( )sm̂  is estimated as a local mean around the point s  and is smoothed using a kernel, 

which is a symmetrical, weighted and continuous function in s .  

To estimate ( )sm̂ , the Nadaraya-Watson method is used, as it appears in Härdle 

(1990, Chapter 3), based on the following expression: 
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where hK  denotes the dependence of the kernel K  (in this case an Epanechnikov) on 

the bandwidth h . We use the bandwidth 5.0=h .
7
 As the growth rates are normalised, 

if growth was independent of the initial number of deaths the non-parametric estimate 

would be a straight line on the zero value, and values different from zero would involve 

deviations from the mean. 

Results are shown in Figure 5. The graph also includes the bootstrapped 95% 

confidence bands (calculated from 500 random samples with replacement). The 

estimates confirm the negative relationship between size and growth observed in Figure 

4, although we cannot reject the fact that growth is different from zero (random growth) 

for most of the distribution. Random growth would explain the observed war size 

distribution, because it implies a Pareto (power law) distribution if there is a lower 

bound to the distribution (which can be very low) (see Gabaix, 1999). Nevertheless, the 

decreasing pattern is clear: the greater the number of initial deaths, the lower the growth 

                                                 
7   Results using Silverman’s optimal kernel bandwidth were similar. 
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rate. We can interpret this result as evidence of the ‘explosive’ behaviour of conflicts, 

because the growth of deaths declines faster the greater the number of initial deaths.  

4. Conclusions 

Richardson’s (1948) seminal study established a negative relationship between 

the frequency and severity of wars, introducing a new empirical regularity. The aim of 

this paper is to provide robust evidence on whether Richardson’s claim holds. 

First, we estimate the distribution of a pool of all wars using COW interstate war 

data from 1823 to 2003. Our estimates confirm Cederman’s (2003) results and the 

original result of Richardson (1948); the power law provides a very good fit to the real 

behaviour of the distribution. Second, using UCDP yearly data we estimate the war size 

distribution by year from 1989 to 2010, finding that a power law describes accurately 

the size distribution of wars in any given period. Furthermore, during this period the 

year-by-year distribution has been stable, with an estimated value similar to that of the 

size distribution of all wars. If we add that some studies conclude that the size 

distribution or timing of within-conflict events is also power law distributed (Bohorquez 

et al., 2009; Johnson et al., 2011), all this evidence points to a universal pattern across 

and within war sizes. 

Finally, the study of battle deaths’ growth rates reveals that random growth 

cannot be rejected for most of the distribution, which could explain the resulting Pareto 

(power law) size distribution. Nevertheless, a clear decreasing pattern is also observed: 

the growth of deaths declines faster the greater the number of initial deaths.  
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Table 1. Armed conflict battle deaths: descriptive statistics by year 

 

Year Observations Mean Size 
Standard 

Deviation 
Minimum Maximum Max. Location 

1989 43 1,256.651 3,023.588 25 18,403 Ethiopia 

1990 50 1,631.6 5,057.416 25 30,633 Ethiopia 

1991 51 1,372.471 3,436.919 25 21,790 Iraq, Kuwait 

1992 53 676.2453 1,142.743 25 4,989 Bosnia-Herzegovina

1993 45 852.6889 1,955.79 25 12,054 Angola 

1994 47 727.0213 1,505.68 25 8,829 Afghanistan 

1995 41 698.7318 1,249.098 25 5,061 Afghanistan 

1996 41 591.0732 955.7285 25 3,533 Turkey 

1997 39 927.3075 1,948.249 25 10,033 Congo 

1998 40 881.8 1,297.505 25 4,891 Sudan 

1999 39 2,035.283 7,521.621 25 47,192 Eritrea, Ethiopia 

2000 37 2,016.649 8,161.813 25 50,000 Eritrea, Ethiopia 

2001 36 603.6111 800.9718 25 3,407 Sudan 

2002 32 551.4063 787.1231 25 3,947 Nepal 

2003 30 697.5001 1,512.132 25 8,202 

Australia, Iraq, 

United Kingdom, 

United States of 

America 

2004 32 566.6875 891.6652 25 3,499 Iraq 

2005 32 358.0313 533.4645 25 2,364 Iraq 

2006 33 527.2122 853.8419 25 3,656 Iraq 

2007 35 487.7714 1,049.312 25 5,828 Afghanistan 

2008 37 738.6217 1,586.588 25 8,413 Sri Lanka 

2009 36 858.3056 1,805.982 25 8,162 Sri Lanka 

2010 30 640.6 1,425.88 25 6,374 Afghanistan 

 

Source: UCDP Battle-related deaths dataset v5 (2011), available at: 

www.pcr.uu.se/research/ucdp/datasets/  

 

 



 13

Figure 1. Log-log plot, interstate wars from 1823 to 2003 
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Note: COW InterState War Data (v4.0). The slope of the line is fitted by OLS using the 

Gabaix-Ibragimov (2011) specification. 97.02 =R  in both cases.
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Figure 2. Log-log plots in 1992 and 2007 
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Note: UCDP Battle-related deaths dataset v5 (2011). The slopes of the lines are fitted by 

OLS using the Gabaix-Ibragimov (2011) specification. 85.02 =R  in 1992 and 

92.02 =R  in 2007. 
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Figure 3. Evolution of the estimated Pareto exponents 
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Notes: UCDP Battle-related deaths dataset v5 (2011). The Pareto exponent is estimated 

using Gabaix and Ibragimov’s Rank- 21  estimator. Dashed lines represent the standard 

errors calculated applying Gabaix and Ioannides’s (2004) corrected standard errors: 

( ) 21
2ˆ s.e. GI Na ⋅= , where N  is the sample size.  
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Figure 4. Stochastic kernel, battle deaths to growth rates 

 
Note: UCDP Battle-related deaths dataset v5 (2011), 639 observations. 
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Figure 5. Kernel estimate of growth (bandwidth 0.5), 639 observations 
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Note: UCDP Battle-related deaths data set v5 (2011). 

 

 

 


