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Abstract 
The use of chain-linked methods reduces significantly the problem of price structure obsolescence 
present in fixed base environments. However, price updating introduces a new dimension that may 
produce confusion if not accounted for. Probably the most notorious difficulty generated by the 
introduction of chain-linked indices to the measurement of GDP has been that the aggregate is not 
the direct sum of its components, thus not only making it harder to explain its behaviour but also 
making it more cumbersome to work with the series in a consistent manner. Because of the non-
additivity of the components, one of the processes that have been affected is that of the indirect 
seasonal adjustment. This document presents a consistent framework to identify and track down the 
sources of seasonal effects to its components in an aggregate measure chain-linked using the annual 
overlap method. This is done based on the decomposition of component’s contributions and the 
indirect seasonal adjustment. The framework allows separating the effects on growth rates into non-
systematic seasonal effects, systematic seasonality and changes in systematic seasonality. 

                                                           
* The ideas expressed in this paper were developed while working at the Central Bank of Chile. The contents, however, by no 
means represent views of the Bank. Any opinions and mistakes are the authors responsibility. Email: mcobb@uc.cl    
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1. Introduction 
Macroeconomic analysis devotes a fair amount of effort to the economy’s real variables, thus generating a need 
for aggregate measurements of volumes and quantities. When evaluating the economy’s performance, Gross 
Domestic Product (GDP) is the most often used indicator. Traditionally, GDP and other real variables have been 
measured using the fixed-base-year method; however, in the last decades its shortcomings have become obvious 
and difficult to ignore (Steindel, 1995).         
 
In line with the recommendations of the System of National Accounts (SNA, 1993) many countries have moved 
to an annual update of the relative price structure for their real output series through the generation of chain-
linked series. This procedure greatly reduces the problem of price structure obsolescence but introduces a new 
dimension into the analysis that makes understanding the evolution of the series less straightforward. Probably the 
most notorious difficulty has been that an aggregate is not the direct sum of its components, known as non-
additivity, and therefore the fixed base accounting identities do not hold for the chain-linked levels. This induces 
some practical issues, makes working with the series less straightforward and may blur the analysis. It is 
unadvisable, however, to ignore the fact and continue working as if the accounting properties of the fixed base 
methodology are still valid because it could lead to significant error if the environment has suffered relevant 
changes in its price structure (OECD, 2006a).  
 
In this context all processes that rely on the fixed-base accounting identities, like the case of the national 
accounting identities of GDP, may be affected to a varying degree. Cobb (2014a) illustrates this in a forecasting 
context showing that the discrepancy between an aggregate forecast generated by proper chain-linking and the one 
resulting of using the fixed-base identities directly may be significant and that these differences due to inaccurate 
aggregation are not necessarily small compared to the forecasting error. Another process that could be affected is 
indirect seasonal adjustment.  
 
The process of seasonal adjustment is performed to aid economic analysis in uncovering the underlying 
movements of a series by removing systematic intra-annual movements and other effects that contribute to hide 
them. There are a number of approaches and methods used to perform this task. One of them, the indirect 
seasonal adjustment, involves generating the aggregate from the seasonal adjustment of its components. By doing 
so, this method generates an aggregate that is consistent with the adjusted components and, therefore, the 
aggregate performance may be broken down precisely to be accounted for by the components. This means that 
specific developments may be tracked down to their source and given a meaningful explanation. The loss of 
additivity due to the adoption of the chain-linked method, however, makes this process more cumbersome.1        
 
To alleviate the problem of explaining a chain-linked aggregate’s performance in terms of its components, 
publishing bodies generally accompany the aggregate measure with the contributions of each component to its 
growth, where these contributions do sum up to the total. These contributions have become the standard way of 
breaking down the performance of an aggregate and in this document we rely on them to break down the seasonal 
effects of an aggregate measure so they can be explained based on the properties of the individual components. 
Section 2 briefly explains the process of seasonal adjustment and the identification the seasonal effects for a series 
that is adjusted directly. Section 3 presents a framework for obtaining consistent indirectly adjusted aggregates in 
the context of the annual overlap methodology. Section 4 presents the derivation necessary to identify the sources 
of seasonal effects in a annual overlap chain-linked aggregate. Section 5 presents an example for the identification 
of seasonal effects using Chilean GDP data and Section 6 summarizes the main findings. 
 
 

2. Direct seasonal adjustment and identifying the seasonal effects involved  
Time series are at the heart of economic analysis and policy decision. However, often relevant series exhibit 
systematic patterns and other effects that mask their underlying movement. When these movements are the focus 
of interest, it is common to try to identify and remove these patterns and effects in order to allow for a more 
straightforward analysis. 
  

                                                           
1 It is worth noting that other approaches to seasonal adjustment methods may be preferred when disaggregate consistency is 
not required. 
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2.1. Seasonal adjustment of a time-series 
The seasonal adjustment process relies on the assumption that a time-series may be expressed as a combination of 
three distinctive unobservable components, where one of them reflects all the seasonal movements. The other 
two components are the trend and the irregular component, where the first reflects the underlying movement of 
the series and its general direction while the second contains all the erratic behaviour, both the regular unexplained 
non-systematic movement and specific, normally significant, non-periodic shocks that may result from natural 
disasters or civil events.  
 
The seasonal component reflects the movement that is attributable to the features of a given period and may be 
separated into systematic and non-systematic. The systematic portion contains the intra-annual fluctuations that 
occur regularly every year. They are generally associated with weather conditions or certain aspects of the specific 
season. An example is an increase in the consumption of heating oil in winter. The non-systematic portion refers 
to the effects of differing daily composition of the periods being compared, like number of holydays, working 
days, etc. This component also contains events that occur systematically but with a frequency different form a 
year, like leap years that occur every four. An example of the effects or daily composition could be an increase of 
attendance to theatres and cinemas in months with more weekends and holidays.        
 
Although the components could interact in a number of ways, the standard methods assume that yt, either in its 
original form or as a transformation,2 may be written as:   

   t t t t ty T S K I  (2.1) 

where Tt  is the trend, St is the systematic seasonality, Kt is the non-systematic seasonality and It is the irregular 
component. The seasonally adjusted series is then:  

( )    SA
t t t t t ty y S K T I  (2.2) 

The outcome of the seasonal adjustment of an example series is presented in Chart 2.1. As it can be appreciated, 
the trend retains the unadjusted overall growth and level and the seasonal and irregular components are expressed 
as deviations from it. The seasonally adjusted series is generated as the sum of the trend and the irregular.  
 

Chart 2.1: Example of the identification of unobserved components 
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Regarding the actual method used to identify the unobserved components, there are a number of approaches; 
however, two relatively similar time series methods stand out as the most used.3 One of them is the non-
parametric X12-ARIMA method (Findley, et. al., 1998) that relies on moving averages of different lengths to 
identify the components and the other is the parametric TRAMO-SEATS (Gómez and Maravall, 1997) that tries 

                                                           
2 Economic series in levels are typically modelled in logarithms. 
3 Foldesi et al. (2007) provide a complete survey of the different methods. OECD (2009) presents a survey of the methods 
that are used in each of the OECD countries.  
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to identify a unique model for each component. Although, both methods are based on different theoretical 
assumptions, in practice they are very similar. In fact, in the more recent implementations both methods have 
relied on the same procedure to identify models and perform prior adjustments and only differ in the actual 
unobserved component identification. In the most recent release of the X12-ARIMA family, that is the X13-
ARIMA-SEATS (U.S. Census Bureau, 2013); both methods are contained in the same program and may be 
chosen depending on the analyst’s preference. For the purpose of this document both methods provide the 
necessary information.4     
 

2.2. Identifying seasonal effects in a time-series 
In the process of analysing time-series one would typically wish to be able to identify the different effects that are 
at play. When examining a series, one might wonder how much of the level in a certain period is solely due to a 
seasonal phenomenon and what is responsible for it. When analysing the economy’s performance, on the other 
hand, one might be more interested in knowing how much of the registered growth is only due to seasonal factors 
or how much is due to the specific calendar composition of the examined period. At least in regards to these 
factors, the seasonal adjustment process allows to separate a number of effects. 
  
Recalling expression (2.1), we have that a series may be written as the sum of its trend, its systematic seasonality, 
its non-systematic seasonality and its irregular component, and that the seasonally adjusted series is simply the sum 
of the trend and the irregular component. By comparing the behaviour of both series, that is yt and yt

SA, it is 
possible to determine how important the seasonal effects are. Regarding the level of a series at any point in time t, 
it is only necessary to look at the ratio between the both to obtain the percentage of the original that is estimated 
to be seasonal and by comparing the growth rates of both series over an interval it is possible to obtain the 
percentage points of growth that are attributable to seasonal factors, that is: 

1SA t
t SA

t

yL
y

   (2.3) 

and 
SA

SA t t
t SA

t s t s

y yC
y y 

   (2.4) 

where Lt
SA is the estimated percentage seasonal deviation in t and Ct

SA is the estimated growth from t-s to t that is 
attributable solely to seasonal factors. The effects may be broken down further by building intermediate-steps in 
the adjustment process to infer the effect of each one of them. For the non-systematic seasonality we may build a 
series that only removes this effect. Let us define the original series excluding non-systematic seasonality as: 

exNSS
t t ty y K   (2.5) 

Then it is easy to see how from (2.3) the estimated percentage seasonal deviation in t may be separated into non-
systematic and systematic by using (2.5): 

1

NSS SS
t t

exNSS exNSS SA
SA t t t t t
t SA SA SA

t t t

L L

y y y y yL
y y y

    
      

    

 (2.6) 

where Lt
NSS and Lt

SS are the percentage points of Lt
SA that are attributable to non-systematic and systematic 

seasonal effects. 
 
An analogous separation may be performed for growth rates, where the difference between both of them is the 
percentage points of growth that are attributable to each seasonal effect, that is:   

NSS SS
t t

exNSS exNSS SA
SA t t t t
t exNSS exNSS SA

t s t s t s t s

C C

y y y yC
y y y y   

   
      

    

 (2.7) 

                                                           
4 For a detailed and comprehensive explanation of the seasonal adjustment process refer to ONS UK (2007).  
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where Ct
NSS and Ct

SS are the percentage points of Ct
SA that are attributable to non-systematic and systematic 

seasonal effects. However, because seasonal patterns may change over time due to a number of reasons, like 
technological advancements and changes in the composition of the series, solely for the purpose of comparing 
growth rates it may be informative to isolate the changes in seasonal patterns. The desirability of this separation 
becomes apparent when looking at annual change, because one would expect yearly growth rates to be unaffected 
by the systematic seasonal effects. If the systematic seasonality evolves, however, it is not entirely neutral. 
 
Accounting for the change in seasonal patterns is not that straightforward due to the fact that all of the 
components of expression (2.1) are unobservable and need to be estimated from the data. This means that they 
may change with the addition of new information. For the purpose of this document we will confine the change 
in the seasonal pattern to the difference between the patterns that are estimated concurrently. That is, the 
difference between the deviation estimated for t-s in t-s and the one estimated for t-s using the data available up 
to and including t. This approach focuses on singling out the update of the seasonal deviation.     
 
This subdivision is not straightforward due to the fact that with every run of the seasonal adjustment program the 
systematic seasonal component is updated for the whole series. To perform this division then, it is necessary to 
have access to the systematic components of the adjustment performed with data up to t-s. Having that, we 
define:  

OSS exNSS SA t
t t ty y S    (2.8) 

That is, yt-s
OSS is the value of y in period t-s that excludes non-systematic seasonality as estimated in the most 

recent seasonal adjustment, say in t, and is adjusted according to the systematic seasonality that was estimated with 
the series ending in t-s. Then the systematic portion of expression (2.7) may be written as:  

exNSS SA SA SA
SS t t t t
t exNSS OSS OSS SA

t s t s t s t s

y y y yC
y y y y   

   
      

   
 (2.9) 

The need for a number of different estimations of the systematic components may prove to be rather 
cumbersome and, therefore, an alternative way of approaching the problem is by focusing on the update in the 
seasonal component in t due to the informational content of the information in t, instead of focusing on the 
update in t-s. This means comparing the systematic seasonality that was expected for t in t-s with the one 
effectively estimated in t. 
 
This, in itself, would not reduce the effort implied because it would require keeping a log of forecasted systematic 
seasonality instead of the previously estimated systematic seasonality. However, as the series used to estimate the 
systematic seasonality is already free from non-systematic seasonality, that is yexNSS, and that a forecast in t-s would 
only contain information up to that period, the systematic seasonality for the same period of the previous year 
estimated in t should be almost the same as the forecast for t made in t-s.5  
 
Under this simplifying assumption we define yt corrected by the systematic seasonality of the previous year as: 

4
SSPY exNSS
t t ty y S    (2.10) 

and write the systematic portion of expression (2.7) as:      

SSPY SS
t t

exNSS SSPY SSPY SA
SS t t t t
t exNSS SA SA SA

t s t s t s t s

C C

y y y yC
y y y y



   

   
      

    

 (2.11) 

From expression (2.11) it becomes clear that, at least for yearly growth, all the effects of updating the seasonality 
are picked up in Ct

∆SS. That is because in this case the exact same systematic seasonality is removed from yt
SSPY 

and yt-4
SA.  

                                                           
5 It is worth noting that all the unobserved components, except for the trend, are estimate as a deviation from the trend and 
centred on the mean. Then, if the last available estimated systematic deviation of any given period is x, in absence of any new 
relevant information, x is probably the best forecast for the unknown given period in the following year. 
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Using expression (2.11) instead of (2.9) simplifies things greatly in the sense of only having to work with the 
outcome of one seasonal adjustment; therefore, we choose to express the contributions of the seasonal effects as:      

NSS SSPY SS
t t t

exNSS exNSS SSPY SSPY SA
SA t t t t t t
t exNSS exNSS SA SA SA

t s t s t s t s t s t s

C C C

y y y y y yC
y y y y y y



     

     
          

       

 (2.12) 

At first, it might seem that expression (2.6) and (2.12) are just different ways of presenting the unobserved 
components that are directly identified in the seasonal adjustment process. That is true for a series that is adjusted 
directly, but these expressions are valid for any series. For the aggregate series that are adjusted indirectly, 
however, it is necessary to construct the distinct unobservable components.      
 
 

3. Indirect seasonal adjustment of an annual overlap chain-linked aggregate  
The process of seasonal adjustment is performed to aid economic analysis in uncovering the underlying 
movements of a series by removing systematic intra-annual movements and other effects that contribute to hide 
them. The approaches and methods used will depend on which is the most appropriate for the final objective. 
When it comes to explaining economic performance, the indirect seasonal adjustment, which involves generating 
the adjusted aggregate from the seasonal adjustment of its components, generates an aggregate that is consistent 
with its components. This means the aggregate performance may be broken down to be accounted for by the 
components and, therefore, that developments may be given a meaningful explanation. The loss of additivity due 
to the adoption of the chain-linked method, however, makes this process more cumbersome. By following a 
procedure analogous to that of the non-adjusted series, it is possible to generate a chain-linked seasonally adjusted 
aggregate.6 
 

3.1. The annual overlap method for quarterly series 
There are various methodologies to implement the annual update of prices being the annual overlap method of 
Laspeyres indices one of the more popular ones. This technique involves creating a set of fixed-base overlapping 
links with a length of two years, where in each link both the quantities of the relevant year (y) and the previous 
one (y-1) are valued using average prices of the previous year (y-1). Then, using the growth rates of these links an 
annual time series is built starting from the first link. The quarterly series are then built based on the annual 
structures in a consistent way.7 That means that the quarterly aggregate may be expressed in the following way:  

 1
,1 1

1 Jy y y
t j j ty j

Q

Q p q
P


 

    (3.1) 

where, 

 1

,

1

: chain-linked aggregate in quarter  that belongs to year 
: implicit price deflator of the aggregate in year 1

: component   in quarter  that belongs to year 

: implicit price defla

y
t
y

Q

y
j t

y
j

t yQ
yP

j t yq

p







tor of component   in year 1j y 

 

 
Expression (3.1) shows that to obtain the chain-linked aggregate in period t, it is necessary to know the value of 
the J components in quarter t and both the component’s and aggregate price deflators for the year before the one 
quarter t belongs to. An annual deflator is calculated as the annual nominal value divided by the annual real or 
chain-linked value.8 However, the annual value of the components and the chain-linked aggregate are equal to the 
sum of the respective quarters and, also, the value of the nominal aggregate is equal to the sum of the nominal 
components. This means that to build a chain-linked aggregate it is only necessary to have the quarterly real series 
and the annual nominal series of the J components.   

                                                           
6 It is worth noting that direct seasonal adjustment methods may be preferred when disaggregate consistency is not required. 
7 Annex 1 provides an example.  
8 The procedure is the same irrespective of whether the components are measured in physical quantities, as fixed base indices 
or as chain-linked sub-indices. These will be referred to simply as components, as opposed to variables valued at current 
prices, referred to as nominal, and those valued at previous year annual prices. 
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3.2. An indirect method for seasonally adjusting an annual overlap chain-linked aggregate  
There are two alternatives to seasonally adjust an aggregate; to obtain it by adjusting it directly or to generate it 
from its seasonally adjusted components, the indirect approach. The discussion on which method is better is 
ongoing and depends crucially on the final objective.9 Anyhow, the indirect method has a very desirable property 
in that it guarantees consistency between the aggregate and the components and allows, therefore, explaining its 
performance in terms of the latter.      
 
The process of generating the seasonally adjusted aggregate is very similar to the chain-linking of the unadjusted 
one. However, it is necessary to provide seasonally adjusted nominal annual figures that are consistent with the 
adjusted component series. These adjusted annual figures may differ slightly from the unadjusted. This may 
initially seem counterintuitive due to the fact that one would expect the systematic portion of the seasonal 
component to cancel out within a year, however, the non-systematic portion does not necessarily. Fortunately, the 
process of adjusting the components provides the necessary information to be able to construct these seasonally 
adjusted nominal annual series. It is only necessary to make the reasonable assumption that the annual implicit 
price deflators are not affected by the non-systematic seasonal component. Based on this assumption and that the 
seasonal adjustment program provides the systematic and non-systematic seasonal component separately, it is 
fairly straightforward to aggregate the seasonally adjusted components. Chart 3.1 shows the process.            
 
Chart 3.1: Example of the identification of unobserved components 

 

 
Source: Cobb and Jara (2013) 

 

 

The process is as follows: 
 

1- The unadjusted quarterly components are seasonally adjusted.  
2- The component’s unadjusted annual price deflators are obtained by dividing the unadjusted annual 

nominal components by the annual unadjusted components. 
3- The adjusted annual nominal components are obtained by multiplying the annual adjusted components by 

the respective unadjusted annual price deflators. 
4- The adjusted annual nominal aggregate is obtained by adding up the adjusted annual nominal 

components. 
5- The adjusted quarterly components are valued at previous year prices using the component’s unadjusted 

annual price deflators. 
6- The adjusted quarterly aggregate valued at previous year prices is generated by adding the adjusted 

quarterly components valued at previous year prices. 
7- The adjusted quarterly chain-linked aggregate is obtained by dividing the adjusted quarterly aggregate 

valued at previous year prices by the previous year adjusted annual aggregate price deflator. This deflator 
is obtained from dividing the adjusted annual nominal aggregate by the adjusted annual chain-linked 
aggregate. 

                                                           
9 Astolfi (2001) provides a brief exposition on the subject.  
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This procedure allows to generate the aggregate seasonally adjusted series but it may also be used to build the 
intermediate aggregate series that are needed to identify the seasonal effects, which are the original series excluding 
non-systematic seasonality and the series adjusted using the previous year seasonal pattern.  
 
 

4. Explaining aggregate unobserved components in terms of the dissagregate 
series 

When it comes to analysing an aggregate time series, the same questions regarding seasonal influences on the 
different measures may arise. However, the composite nature of the aggregate means that the aggregate seasonal 
effects are not the result of the economy’s response to changing circumstances but are a combination of effects 
sourced in the underlying component’s movements and, therefore, an explanation for aggregate performance 
should ideally be rooted in the specifics of the components. This makes being able to track down the sources of 
the aggregate effects desirable. 
 
As with any chain-linked aggregate, however, the seasonally adjusted aggregate will not be equal to the sum of the 
seasonally adjusted components making the breakdown less straightforward. This difficulty is fairly easy to tackle 
when analysing the levels and for growth rates, as with the unadjusted series, the contributions may be used to 
explain the aggregate performance in terms of the components.  
 

4.1. Identifying the sources of seasonal effects in aggregate levels  
The analysis of the aggregate level is not very different from that of a component’s only that, to be able to break it 
down to the component level, the annual updating of relative prices must be accounted for. Starting from 
expression (3.1) we may express the aggregate as the weighted sum of the components: 

 
1

,
, , , 11

,

with 
y

J j t
t j t j t j t yj

Q t

p
y w q w

P




    (4.1) 

where,   
qj,t     : Component j in quarter t 
wj,t     : Chain-linking weight of component j in quarter t 
pj,t

y-1
   : Component’s j annual price deflator of the year before the year to which quarter t belongs. 

PQ,t
y-1 : Annual aggregate price deflator of the year before the year to which quarter t belongs. 

  
Using (4.1), expression (2.6) may be rewritten in terms of the components: 

   , , , , , , , ,1 1

1 1

NSS SS
t t

J JSA exNSS exNSS exNSS exNSS SA SA
t j t j t j t j t j t j t j t j tSA SAj j

t t

L L

L w q w q w q w q
y y 

   
            

   
 

 

 (4.2) 

Then, the percentage points of the aggregate seasonal deviation in t that are attributable to non-systematic and 
systematic seasonality of component j may be calculated as: 

 , , , , ,
1NSS exNSS exNSS

j t j t j t j t j tSA
t

L w q w q
y

        and    , , , , ,
1SS exNSS exNSS SA SA

j t j t j t j t j tSA
t

L w q w q
y

      (4.3) 

As it can be seen, both expressions simply reflect the difference between the component’s levels in each measure 
weighted by the corresponding relative price. In practice, wj,t, wj,t

exNSS and wj,t
SA are very similar but not necessarily 

identical due to the fact that the component’s prices used to construct each of them are the same but the 
aggregate price deflator may not be given the differing aggregate compositions.  
 

4.2. Identifying the sources of seasonal effects on aggregate growth rates  
With the adoption of chain-linking, explaining aggregate growth in terms of the components has become less 
straightforward due to the annual change in the structure of relative prices. In this context, contributions have 
become the standard way of breaking down the performance of a chain-linked aggregate; however, the way of 
calculating these contributions is not unique and depends on which of the annual chain-linking methods is 
implemented. In the case of contributions to quarterly growth, IMF (2001) provides a unique formula for the 
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quarterly overlap technique but none for the annual overlap technique. This is probably due to the fact that 
finding the right weights that permit the quarterly contributions to sum up to the total is far from direct. 
 
This is quite inconvenient given that the annual overlap method is the most popular method in the OECD.10 In 
this context, according to Eurostat (2008), at least six different formulas have been proposed to fill this gap. Some 
countries find the contributions from using pair of years valued at the first year’s prices. Others, like France and 
Germany have proposed their own way. The OECD simply relies on an approximation to calculate its global 
contributions acknowledging that it is not right in a strict sense (OECD, 2013). The measures presented in 
Eurostat (2008) are basically a compromise between user friendliness, interpretability and core properties. The 
problem with all but one of them is that they do not necessarily produce additive contributions. This core 
property is fundamental when contributions are to be calculated as a difference and this, as it will become obvious 
later on, is a necessary feature for the identifications of effects.    
 
The only measure contained in Eurostat (2008) that produces additive contributions is the one proposed for 
French Quarterly National Accounts (INSEE, 2007).11 More recently the Chilean Quarterly National Accounts 
have adopted a similar measure suggested in Cobb (2013), which is also additive. Either measure fulfil the 
necessary requirements to be used for the analysis of the following sections, however, the measure proposed in 
INSEE (2007) does show some undesirable properties under seasonality or strong volatility and, therefore, we 
proceed by using the measure suggested in Cobb (2013).12  
 
The contribution of component j to aggregate growth between t-s and t is defined as:13 

 
1 1

, , , , ,
, , , , , 1

,

1 with 
4

y y
j t j t s j t s j t j t

j t j t j t j t s j t y
t s t s t s Q t

q q q q p
c w w w w

Q Q Q P

 
 

 
  

 
         

 
 (4.4) 

where,   
qj,t     : Component j in quarter t 
Qt : Aggregate chain-linked series in quarter t 
qj,t

y-1 : Annual value for component  j the year before the year to which quarter t belongs. 
Qt

y-1 : Annual chain-linked aggregate the year before the year to which quarter t belongs. 
wj,t     : Chain-linking weight of component j in quarter t 
pj,t

y-1
   : Component’s j annual price deflator of the year before the year to which quarter t belongs. 

PQ,t
y-1 : Annual aggregate price deflator of the year before the year to which quarter t belongs. 

 
It is worth noting that, due to the nature of the linking method, expression (4.4) is only valid for comparisons 
within the same year or between consecutive years. This, however, should not be a major problem given that it 
covers the most common comparisons, which are comparing with the period immediately before and respect to 
the same period the previous year.     
 
Taking that caveat into consideration, expression (2.7) and its individual parts may be broken down to component 
level by means of expression (4.4). We have that:  

,1
1 Jt

j tj
t s

y c
y 


     ,  ,1
1

exNSS
J exNSSt

j texNSS j
t s

y c
y 


     and  ,1
1

SA
J SAt

j tSA j
t s

y c
y 


    (4.5) 

                                                           
10 According to the last available survey of OECD (2009) updated to May 2014, out of the 37 OECD countries plus Brazil 
and Russian Federation, 27 use the annual overlap method, 5 use the quarterly overlap method, 4 use an unspecified indirect 
method and one still uses a fixed-base method. It’s worth mentioning that the five countries that use the quarterly overlap 
method are Australia, Canada, Japan, United Kingdom and United States. The popularity is probably due to its desirable 
temporal aggregation properties. Annual figures are the simple sum of the quarterly figures. With the Quarterly Overlap 
method, if consistency is required, a benchmarking procedure is required. 
11 The same measure is used by Belgium (Banque Nationale de Belgique, 2010). 
12 Annex 2 presents an example of the issue. For a full comparison of methods, refer to Cobb (2014b). 
13 The expression from Cobb (2013) is reordered to show it as the contributions from the Laspeyres links plus a correction. 
The additivity and consistency properties of this measure are shown in Cobb (2014b). The measure not only produces 
additive contributions but these are consistent with those calculated with the formula for annual frequency. 
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where,   
cj,t     : contribution of component j to the growth of unadjusted aggregate in quarter t 
cj,t

exNSS
 : contribution of component j to the growth of the unadjusted aggregate corrected for non-

systematic seasonality in quarter t 
cj,t

SA
 : contribution of component j to the growth of the seasonally adjusted aggregate in quarter t 

 
Then, the aggregate non-systematic seasonal effect may be written as:  

 , ,1

JNSS exNSS
t j t j tj

C c c


    

and the contribution of component j to the aggregate non-systematic seasonal effect as:  

, , ,
NSS exNSS
j t j t j tc c c   (4.6) 

In the same way, the contribution of component j to the aggregate systematic seasonal effect may be written as:  

, , ,
SS exNSS SA
j t j t j tc c c   (4.7) 

As it was the case of the single series, an aggregate series is also affected by changes in its seasonal pattern.  
Unfortunately, the division proposed in expression (2.11) is not as direct and, therefore, the derivation is provided 
in Annex 3. The formulas for the contributions are the following:      

 
 0

0
, , , , 2

1 t t s
SSPY exNSS SSPY SSPY SA SA
j t j t j g g s j g s g sSA

g t st s

c c c y c y
y



  
 

 
      
 
 
  (4.8) 

and: 

 
 0

0
, , ,

1 t t s
SS SSPY SSPY SA SA

j t j g g s j g g sSA
g t st s

c c y c y
y




 
 

 
     
 
 
  (4.9) 

where t0 is the same quarter as t but in the reference year. 
 
This means that the overall contribution of seasonal effects to aggregate growth may be traced down to the 
components:  

     , , ,

NSS SSPY SS
t t t

J J JSA NSS SSPY SS
t j t j t j tj j j

C C C

C c c c


    
  

 (4.10) 

Then, based on this expression it is possible to track down the sources of seasonal effects on growth rates. This 
should be especially useful for institutions that publish both original and seasonally adjusted series of the same 
variable.  

 
 

5. An example using Chilean GDP 
The previous section presents an expression to breakdown the contribution of seasonal effects to aggregate 
growth in order to identify their sources. In this section we perform the exercise with Chilean data. Chile adopted 
chain-linking for its accounts in 2012 and implemented the annual overlap method for Laspeyres indices 
(Guerrero et. al., 2012). Since then, it has adopted the indirect method for seasonal adjustment (Cobb and Jara, 
2013). For the purpose of this exercise we used quarterly production data.14  
 
Chart 5.1 shows the original and seasonally adjusted components of GDP. As it can be seen, the different 
components show very different seasonal patterns. In particular, peaks and troughs do not necessarily coincide in 

                                                           
14 The level of aggregation is the following; Agriculture, forestry and fishery, Mining, Manufacturing and the Rest. The 
selection of components is done specifically to allow for a diversity of seasonal patterns and effects among components but 
maintaining only a reduced number of them. It is worth mentioning that we perform a default seasonal adjustment in order to 
have the separate unobserved components and, therefore, it will not coincide with the official publication.  
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timings. Agriculture, forestry and fishery, for example, peaks in the first quarter while for the Rest that quarter is a 
seasonal low.  
 
Chart 5.1: Original and seasonally adjusted components of Chilean GDP 
(Levels, reference year 2003=100) 
 

 Agriculture, forestry Mining Manufacturing Rest  
 and fishery    

0

100

200

300

06 08 10 12
80

90

100

110

120

06 08 10 12
90

110

130

150

06 08 10 12
80

110

140

170

200

06 08 10 12  
Original SA  

 
As one would expect these individual seasonal patterns are then transferred to the aggregate as reported in the 
first graph of Chart 5.2. Also in this chart the estimated systematic and non-systematic seasonal components are 
presented. As one would expect, from the chart one can appreciate the significant systematic seasonality and, 
when observed on the same scale, the relatively less important non-systematic portion.15 By examining the 
systematic seasonality it becomes obvious that the relative importance of the Rest overshadows in the aggregate 
the strong seasonal component of Agriculture. However, it is worth noting that, all the same, Agriculture’s 
performance has a larger effect on the aggregate in the first quarter than in the other periods.  
 
Chart 5.2: Original and seasonally adjusted Chilean GDP and its seasonal unobserved components 
(Levels reference year 2003=100; deviation from trend in percentage) 
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To quantify this it is necessary to breakdown the aggregate growth down to the different sources of contributions. 
Chart 5.3 shows the exact breakdown of both the systematic and non-systematic seasonal effects for each quarter 
for the final four years of the series. Thanks to the breakdown it is possible to appreciate that of the -2.4% average 
systematic deviation of the first quarter, -3.5 pp. are attributable to the Rest, -0.8 pp. to Mining, -0.2 to 
Manufacturing and +2.2 to Agriculture. Also, most of the negative deviation of the third quarter is due to 
Agriculture (-1.3 pp. out of a total of -1.5%). Regarding the non-systematic effects one can appreciate that the 
1.0% positive effect in the first quarter 2012 is mainly due to Manufacturing (+0.5 pp.) while the negative 0.5% of 
the third quarter is equally shared by Manufacturing and the Rest. This positive effect is probably partly due to the 
leap year effect that also becomes apparent in the first quarter of 2008. This overall breakdown is not in itself an 
explanation for the seasonal pattern but it provides the link between the component’s specific features and the 
aggregate.   
 
It is interesting to note that, although not immediately obvious, the aggregate systematic seasonality mutates 
slightly over the seven year span of the graph. It is not a smooth process but there is a noticeable difference 

                                                           
15 It is worth mentioning that the implementation of the seasonal adjustment process does not permit to separate the 
aggregate trend from the irregular. This is not a problem for this exercise, but might be one for other applications. Also, given 
that the purpose of this section is to provide an example of the application of contributions to explain seasonal effects, the 
actual seasonal adjustment has been left on default and that no further effort has been made to obtain the “best” seasonal 
adjustment. In a real setting, the explanation of the aggregates effects will only be meaningful as long as the components 
effects are properly identified.    
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between the estimated pattern in 2006 and the one of 2012. Just to look at the peaks, over the seven year period, 
the deviation of the first quarter increases in absolute terms from -2.2 to -2.8% while the deviation in the fourth 
quarter increases from 3.7 to 4.2%. From a careful inspection of Chart 5.3 it can be seen that the contributions of 
Agriculture shrink marginally while those of Mining and the Rest expand very slightly. This change in the 
aggregate seasonal pattern, although slight, will undoubtedly show up as differences between the annual growth 
rates of the original and seasonal series.      
 
Chart 5.3: Breakdown of the systematic and non-systematic seasonality in the aggregate level 
(percentage points) 
 

 Systematic seasonality Non-systematic seasonality 
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Regarding the economic performance, Chart 5.4 shows the annual growth rates of the original and seasonally 
adjusted and the difference between them separated in what is attributable to systematic and non-systematic 
effects.16 By examining the growth rates it is clear that the differences between them do not influence the overall 
assessment. However, in many periods the difference is in the vicinity of 0.5 pp. As one might expect, most of the 
difference is accounted for by the non-systematic seasonality, however, in some periods the influence of 
systematic seasonality is non negligible. As it was mentioned before, the only justification for this to happen is for 
the aggregate seasonal pattern to be changing. This change may be sourced in the component’s seasonal patterns 
evolving, in a change in aggregate composition or a combination of both.     
 
Chart 5.4: Annual growth of the original and seasonally adjusted Chilean GDP and the difference between them 
(percentage; percentage points) 

 
 
As with the levels, each one of the effects may be broken down to be accounted for by each component. Chart 
5.5 shows the component’s contributions to the difference in annual growth rates separated in what is attributable 
to systematic and non-systematic effects. By using expression (4.8) and (4.9), the difference due to the systematic 
effects is separated in what is attributable to the differences in the aggregate composition and what is due to the 
changes in the component’s seasonal patterns.  
 
The first thing that becomes apparent is that, by separating the difference due to systematic seasonality, it 
becomes clear that most of the effect is sourced in the differences between the compositions of the seasonally 
adjusted aggregate and the original. By looking at the three effects on the same scale, one can appreciate that the 
                                                           
16 The analysis is performed with annual growth rates but the method is directly applicable to quarterly rates. However, 
quarterly growth rates of original series or seldom looked at precisely due to the seasonal effects that affect them and in fact, 
examining the levels is a more straightforward way of measuring the seasonal effects that are present in a quarterly 
comparison.    
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differences due to the changes in the component’s systematic seasonality are almost negligible. This should not 
come as a surprise due to the way in which the component’s seasonal patterns are estimated. If these were directly 
observable it would be possible to observe a higher incidence. The second thing is that the non-systematic 
seasonality drives the overall differences. This is because the effects of the components on the aggregate 
composition tend to compensate each other and only in a couple of periods the total difference stands out.       
 
Chart 5.5: Breakdown of the systematic and non-systematic seasonality in the aggregate growth rate 
(percentage points) 
 

 Aggregate systematic seasonality  Non-systematic seasonality 
 
 Aggregate composition Change in component’s 
  systematic seasonality 

 
 
Up until now, all of the analysis has focused on building a general picture of how the component’s features 
determine the aggregate series. However, the possibility of identifying all the effects that are involved in the 
aggregate performance will be most useful when examining a specific phenomenon. This could be the case for 
individuals or institutions analysing both original and seasonally adjusted series of the same variable where the 
assessment based on each one of them differs slightly. In the example, such a period could be the first quarter of 
2012.I that based Graph 5.4 shows a relatively big difference between adjusted and original growth rates but also 
shows a significant systematic effect.     
 
The decomposition of effects for 2012.I is shown in Table 5.1. The first column shows the seasonal deviation of 
that quarter relative to the yearly average, the following set of columns show the annual growth rate of the four 
industries for the original and seasonally adjusted series as well as for the intermediate series; the original series 
excluding non-systematic seasonality and the series adjusted by the systematic seasonality of the previous year. 
The second set of columns show the contributions to aggregate growth of the four industries for the four 
measures calculated using expression (4.4). The third set of columns show the three seasonal effects as calculate 
from the contributions.  
 
Table 5.1: Annual growth, industry contributions and contributions to seasonal effects to Chilean GDP in 2012.I 
 

Seas. 
Level (%) Orig. ex NSS PYSS SA Orig. ex NSS PYSS SA

non-
system.

Agg. 
Comp.

Change 
comp SS Total

Agriculture, forestry and fishery 51.3 -6.02 -6.02 -6.02 -5.67 -0.38 -0.38 -0.20 -0.19 0.00 -0.18 -0.01 -0.19
Mining -7.4 1.38 -0.20 -0.20 -0.10 0.17 -0.06 -0.02 -0.01 0.23 -0.04 -0.01 0.18
Manufacturing 0.7 3.66 -0.23 -0.23 -0.12 0.42 -0.03 -0.03 -0.01 0.44 0.00 -0.01 0.43
Rest -6.2 7.07 6.76 6.76 6.71 4.87 4.66 4.76 4.73 0.21 -0.10 0.03 0.14

TOTAL -3.8 5.08 4.20 4.52 4.52 5.08 4.20 4.52 4.52 0.88 -0.32 -0.01 0.55

Annual Growth Contributions Seasonal Effects

 
 
The difference between the original and adjusted growth rates is +0.55 pp. From looking at the calculated 
seasonal effects, the first thing that becomes obvious is the relatively large non-systematic effects in Mining, 
Manufacturing and the Rest that account for more than the total difference (+0.88 pp.). To have solid explanation 
for this effect would require digging deeper into each sector. It is probable that, to some extent, the effect is due 
to 2012 being a leap year and that Easter fell in April meaning three extra working days relative to an average 
quarter. The compositional effects work in the opposite direction reducing the gap by -0.32 pp. From examining 
the seasonal level of the first quarter relative to the yearly average, we observe that Agriculture is at its seasonal 
high while Mining and the Rest are at a seasonal trough. This means that, in principle, Agriculture’s performance 
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affects the original relatively more than the adjusted series while for the other two sectors it is the other way 
around.17 This can be appreciated for Agriculture that falls 6% after removing the non-systematic effect and 
contributes -0.38 pp. to original growth and -0.20 pp. to adjusted aggregate growth. This is observable to a lesser 
degree for the Rest that grows 6.8% contributing +4.66 pp. to original growth and +4.76 pp. to adjusted growth. 
Finally, small changes in the component’s seasonal patterns do occur, but nearly cancel each other out making the 
total effect negligible.       
 
It is worth noting, that the findings regarding the relative importance of each effect are specific to this example 
and therefore may not be directly generalized to other datasets. The method however is.   
 

6. Final remarks 
The use of chain-linked methods reduces significantly the problem of price structure obsolescence present in fixed 
base environments, but introduces a new dimension that may produce confusion if not accounted for. The 
updating of the economy’s price structure results in lack of additivity for the levels of the series. This means that 
the traditional accounting identities are not directly applicable and, therefore, explaining aggregate performance 
from the disaggregate data is not straightforward.  
 
This document presents a consistent framework to identify the sources of seasonal effects in an aggregate measure 
chain-linked using the annual overlap method and adjusted through the indirect method. Based on the 
decomposition of component’s contributions, the framework allows separating by industry the contribution of the 
individual effects; that is non-systematic seasonal effects, systematic seasonality and the change in systematic 
seasonality.  
 
It is worth pointing out that the breakdown of the aggregate seasonal effects is just a procedure based on the 
outcome of the seasonal adjustment of the components. This means that the explanation for the aggregates 
effects will only be meaningful as long as the component’s effects are properly identified and the overall seasonal 
adjustment is acceptable. In cases where the adjustment of components is unreliable the use of the indirect 
seasonal adjustment method may not be advisable and, therefore, this method of identifying the sources of 
aggregate seasonal effects will also suffer. Being able to break down the aggregate effects, however, may permit 
tracking down the sources of the effects and validate whether the outcome of the seasonal adjustment process is 
sound. 
 
 

                                                           
17 For chain-linked series the causality is not direct. If the changes in aggregate composition are very small it holds relatively 
well, but chain-linked series are affected by discrete compositional changes due to the updating of relative prices and quarterly 
aggregates built using the annual overlap method also exhibit compositional effects due to the distribution of the updates. 
Annex 4 breaks down the effects even further to account for the chain-linking procedure.  
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Annex 1: Annual overlap chain-linked indices 

This technique of annual overlap involves calculating the variation between the current year (y) and the previous 
year (y-1) both valued using prices of the previous year (y-1) and building a time series from the variation between 
them. By definition, the annual overlap method links a series of consecutive overlapping two-period Laspeyres 
indices. Then aggregate growth in any given period is given by: 
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where, 
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The following table shows a simple example based on two components of an annual overlap chain-linked index 
and the equivalent fixed base index. Quantities A and B grow at a 2 and 5% annual rate respectively, while their 
prices vary 10 and -5%.  
 
Table A1.1: Annual series chain-linked using the Annual Overlap Method 

Year
B A B

2003 100 2.00 4.00
2004 105 2.20 3.80
2005 110 2.42 3.61
2006 116 2.66 3.43

Constant prices from:

Level Index yoy Level Index yoy Level Index yoy index yoy
600 100.0 600.0

624 104.0 4.00% 623 100.0 624.0 4.00%
648 103.9 3.92% 650 100.0 648.5 3.92%

675 103.8 3.84% 673.3 3.84%

Chain-linked

100 600

Quantities Prices Total at current
A prices

102 623
104 650
106 680

2004 2005
Year

2003
2004
2005
2006

2003

 
 
When it comes to quarterly series it becomes slightly different, given that it is the annual prices that are used for 
the chain-linking as opposed to the average of the quarterly prices.  
 
The annual overlap method expresses the quarterly aggregate in the following way:  

 1
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where, 
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: chain-linked aggregate in quarter  that belongs to year 
: component   in quarter  that belongs to year 
: implicit price deflator of the aggregate in year 1

y
t
y
j t
y

Q

Q t y
q j t y
P y 

 

 
It is relatively easy to show that expression (A1.2) is consistent with (A1.1) 
.  
Given that under the annual overlap method annual totals are the sum of the quarterly series we can decompose 
(A1.1) in the following way proving the point: 
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The equivalent exercise with quarterly figures is the following. Here, it becomes clear that the yearly growth rates 
of the chain-linked series differ from those of the constant price links. This is due to the fact that the aggregate 
composition of the aggregate and, therefore, the intra-annual dynamics, always depend on previous year prices 
while in each two-year link the aggregate composition depends on current year average prices for the first year of 
the link.     
 
Table A1.2: Quarterly series chain-linked using the Annual Overlap Method 

Constant prices from:
Year 2003 2004 2005

A B A B Level yoy Level yoy Level yoy index yoy
q1 24.8 24.5 1.9 4.1 147.8 147.8
q2 24.9 24.8 2.0 4.0 149.3 149.3
q3 25.1 25.2 2.0 4.0 150.7 150.7
q4 25.2 25.5 2.1 3.9 152.2 152.2
q1 25.3 25.8 2.1 3.9 153.7 3.99% 153.6 153.7 3.99%
q2 25.4 26.1 2.2 3.8 155.2 4.00% 155.1 155.2 4.00%
q3 25.6 26.4 2.2 3.8 156.8 4.00% 156.6 156.8 4.00%
q4 25.7 26.7 2.3 3.7 158.3 4.01% 158.1 158.3 4.01%
q1 25.8 27.1 2.3 3.7 159.6 3.91% 160.2 159.8 3.95%
q2 25.9 27.4 2.4 3.6 161.2 3.92% 161.7 161.3 3.93%
q3 26.1 27.7 2.4 3.6 162.7 3.92% 163.2 162.9 3.91%
q4 26.2 28.1 2.5 3.5 164.3 3.93% 164.7 164.5 3.89%
q1 26.3 28.4 2.6 3.5 166.3 3.83% 166.0 3.87%
q2 26.5 28.8 2.6 3.5 167.9 3.83% 167.5 3.85%
q3 26.6 29.1 2.7 3.4 169.5 3.84% 169.1 3.83%
q4 26.7 29.5 2.8 3.4 171.1 3.85% 170.7 3.81%

Total at
Chain-linked

161.5
163.3
165.1
166.9
168.9
170.8

149.3
150.7
152.1

155.1
156.6
158.2

20
04

20
05

20
06

20
03

153.5

159.8

172.9

Quantities Prices  current
prices
148.0
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Annex 2: Seasonality leakage in the distribution of contributions 
 
Cobb (2014b) performs a comparison between four measures for calculating contributions in an annual overlap 
chain-linking framework: traditional fixed-weight, previous year prices, INSEE (2007) and Cobb (2013). The last 
two produce additive results. Both are based on the previous year price measure but suggest a correction to 
guarantee additivity.  
 
The measure suggested by INSEE (2007) is the following:18  
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where,   
qj,t     : Component j in quarter t 
Qt : Aggregate chain-linked series in quarter t 
qj,t

y-1 : Annual value for component  j the year before the year to which quarter t belongs. 
Qt

y-1 : Annual chain-linked aggregate the year before the year to which quarter t belongs. 
wj,t     : Chain-linking weight of component j in quarter t 
pj,t

y-1
   : Component’s j annual price deflator of the year before the year to which quarter t belongs. 

PQ,t
y-1 : Annual aggregate price deflator of the year before the year to which quarter t belongs. 

 
while the measure suggested in Cobb (2013) is:19 
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 (A2.2) 

Although the difference between correction terms is quite small, the correction proposed by INSEE (2007) shows 
an undesirable transfer of volatility under seasonality or strong volatility. The transfer occurs because the 
distribution of the correction term in (A2.1) depends on the relative real importance of the component within the 
respective quarter as opposed to the annual real importance. This means that the aggregate correction is 
distributed between components according to their relative weights and not based on how much of the aggregate 
volatility comes from each. The measure proposed by Cobb (2013) confines volatility to the contribution of the 
components that presents it. This annex highlights this point through a simple comparative example. 
 
Consider an aggregate built from 2 components where quantities A and B grow at a 2 and 5% annual rate 
respectively, while their prices vary 10 and -5%.20 The parameters reflect heterogeneous real growth of the 
components and significant changes in price structure. Table A2.1 presents the overall annual information. 
Regarding quarterly dynamics, however, A’s quantity grows smoothly while B’s shows a significant seasonal 
pattern.21 These selected circumstances have an important effect on the quarterly aggregate dynamics. 
 
Table A2.1: Component’s chain-link weights for the example 

Year
B A B level yoy A B

2003 100 2.00 4.00 600 1.00 1.00
2004 105 2.20 3.80 624 4.00% 1.00 1.00
2005 110 2.42 3.61 648 3.92% 1.10 0.95
2006 116 2.66 3.43 673 3.84% 1.21 0.90

Chain-link 
weights

Chain-linked
(reference year=2003)

102
104
106

Quantities Prices
A

100

 
 
The quarterly series of the components and aggregate are presented as the three graphs to the left side of Figure 
A2.1. At a first glance, it seems that the seasonal properties of component B are transferred directly into the 

                                                           
18 A summarized exposition in English may be found in Banque Nationale de Belgique (2010). 
19 The expression from Cobb (2013) is reordered to show it as the contributions from the Laspeyres links plus a correction. 
20 It is worth noting that the parameters are chosen in such a way that chain-linking has a relevant effect. 
21 The seasonal pattern; 0.85, 1.0, 0.95 and 1.20, multiplies the respective quarter of the constant growth component B. The 
series are provided in Table A2.2 at the end of this annex. 
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aggregate and one would expect, therefore, a relatively smooth growth rate. However, the plotted aggregate annual 
growth rate is relatively volatile and appears to develop a seasonal pattern of its own.  
 
Figure A2.1: Chain-linked aggregate with a seasonal component  
(Levels, reference year 2003; growth rate, percentage) 
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As it turns out, the aggregate growth rate looks like this because the aggregate seasonal pattern is actually 
shrinking over time due to the relative decrease in the weights of B, as presented in Table A2.1, but it is not 
obvious due to the length of the series. By extending the series considerably the shrinking of the pattern becomes 
obvious. This is shown in Figure A2.2. The seasonal pattern that appears in the annual growth rate reflects the 
gradual shrinkage of the aggregate seasonal pattern and it looks seasonal because the reduction in relative 
importance is also systematic.   
 
Figure A2.2: Extended chain-linked aggregate with a seasonal component  
(Levels, reference year 2003; growth rate, percentage) 
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The ongoing decrease in relative importance of component B means that the volatility it contributes to the 
aggregate level decreases at the same rate every year and this fact is picked up in the annual growth rate. Although 
both components show smooth annual growth rates, their contributions should reflect this decrease in aggregate 
volatility. Figure A2.3 presents the example’s contributions calculated using both measures. As it can be seen, the 
measure by INSEE(2007) transfers seasonality from component B to A while the measure by Cobb(2013) assigns 
all the seasonality to component B. As mentioned before, this transfer occurs because of the way the correction 
terms distribute the compositional effects. 
 
Figure A2.3: Contribution to annual growth of an aggregate with a seasonal component 
(contributions in percentage points, growth as a percentage) 
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In the case of INSEE (2007) a larger share of the overall correction for the first quarter is assigned to component 
A given that component B is at a low seasonal level (seasonal factor 0.85), thus transferring B’s volatility to A. 
One could argue that many countries use seasonally adjusted data meaning that this feature could be regarded as 
unimportant. The problem, however, arises due to the general volatility of the components and not only due to 
seasonality. Figure A2.4 shows the resulting graphs of the previous exercise but where the seasonal pattern of B 
has been replaced by a random multiplicative factor. In this case, the volatility would not be removed by a process 
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of seasonal adjustment, and the transfer of volatility would happen anyway. This feature is probably undesirable 
under most circumstances. The series for both examples are provided in Table A2.2.22 
 
Figure A2.4: Contribution to annual growth of a quarterly aggregate with a volatile component  
(Levels reference year 2003, contributions in percentage points, growth as a percentage) 
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Quarterly contributions: 
 Component A Component BAggregate growth
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Table A2.2: Contribution to annual growth of a quarterly aggregate with a seasonal and a volatile component  

Annual 
Growth A B Pa Pb

2% 5% 10% -5%

INSEE 2007 Cobb 2013 INSEE 2007 Cobb 2013
A B A B A B A B

A B Total y/y A B Total y/y
Quarterly % (pp.) (pp.) (pp.) (pp.) % (pp.) (pp.) (pp.) (pp.)

Mar-03 50 83 133 50 107 157
Jun-03 50 99 149 50 94 144
Sep-03 50 96 146 50 75 126
Dec-03 50 122 172 50 124 174

Mar-04 51 88 138 3.88 0.75 3.14 0.75 3.14 51 115 166 5.70 0.63 5.06 0.63 5.06
Jun-04 51 104 155 4.00 0.67 3.33 0.67 3.33 51 100 151 5.05 0.69 4.35 0.69 4.35
Sep-04 51 100 151 3.97 0.69 3.28 0.69 3.28 51 83 134 6.75 0.80 5.95 0.80 5.95
Dec-04 51 128 179 4.12 0.59 3.54 0.59 3.54 51 122 173 -0.37 0.58 -0.95 0.58 -0.95

Mar-05 52 92 144 4.41 1.20 3.21 0.78 3.63 52 112 163 -1.32 0.46 -1.78 0.65 -1.97
Jun-05 52 110 161 3.93 0.73 3.20 0.71 3.22 52 129 180 19.22 0.84 18.38 0.73 18.49
Sep-05 52 105 158 4.05 0.85 3.20 0.75 3.30 52 97 150 11.68 1.39 10.29 0.85 10.83
Dec-05 52 134 185 3.42 0.23 3.19 0.65 2.77 52 103 155 -10.41 0.35 -10.76 0.67 -11.09

Mar-06 53 97 151 4.34 1.26 3.08 0.84 3.51 53 93 147 -10.02 0.71 -10.73 0.74 -10.76
Jun-06 53 115 168 3.85 0.78 3.06 0.77 3.08 53 112 165 -8.41 0.35 -8.76 0.69 -9.10
Sep-06 53 111 164 3.97 0.91 3.07 0.81 3.17 53 117 170 13.33 1.13 12.19 0.85 12.48
Dec-06 53 141 191 3.32 0.28 3.04 0.71 2.61 53 141 192 23.48 0.99 22.49 0.84 22.64

Contributions  with a seasonal component Contributions  with a volatile component 

 

                                                           
22 Neither INSEE (2007) nor Banque Nationale de Belgique (2010) explicitly warn the readers about using the correction 
method only with seasonally adjusted data but their implementation and examples only use adjusted data. This is 
understandable given that both countries deal mainly with seasonally adjusted data. The author acknowledges that due to his 
basic knowledge of French he could have overlooked a less than obvious warning in INSEE (2007).  
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Annex 3: Explaining the contribution to changes in the systematic seasonality based 
on the components contribution to aggregate level 

 
As it was mentioned in the body of this document, seasonal patterns may change over time due to a number of 
reasons, like technological advancements and changes in the composition of the series, and therefore, when 
comparing two periods, it might be desirable to divide the contribution of systematic seasonality in that which is 
attributable to a fixed identified seasonality and that which is attributable to the evolution of the systematic 
seasonality over time. In that context, we arrive at the following expression:      

SSPY SS
t t

exNSS SSPY SSPY SA
SS t t t t
t exNSS SA SA SA

t s t s t s t s

C C

y y y yC
y y y y



   

   
      

    

 (A3.1) 

The two terms of this expression, however, are not so easily broken down to the individual component’s 
contributions. That is because Ct

FSS and Ct
∆SS contain not only the growth rates of aggregate series but also the 

percentage difference between two series. This means that the formula for contributions is not directly applicable.  
However, there is a way around it that relies on the individual component’s contributions to the aggregate level. 
The derivation is presented here.23  
 
The expression for contribution of component j to aggregate growth, that is cj,t,24 may easily be transformed to 
represent the contribution to aggregate change in level by multiplying it by Qt-s. Then, it is possible to formulate 
the contribution of component j to the aggregate level in period t as the contribution to the aggregate level in the 
previous period plus the contribution to aggregate change. That is: 

, , ,j t j t s j t t sk k c Q     (A3.2) 

Then expression (A3.2) may be substituted recursively one interval, of length s, at a time until the reference year. 
In the reference year, y=0, the contribution to the aggregate level in any quarter is simply the level of component j 
in that quarter. Then component j in quarter t0 of the reference year may be used as the initial condition to 
determine the contribution to the aggregate level in t: 
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Then (A3.3) may be used to describe percentage difference between ySSPY and ySA. That is:      
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 (A3.4) 

It can be observed that expression (A3.4) contains the component j excluding non-systematic seasonality in t0 
corrected by the systematic seasonality of the previous year, that is qj,t0

SSPY. However, as t0 belongs to the first year 
of the series, that is the reference year, there is no systematic seasonality of the previous year to correct with and 
therefore a backcast would be required. Following the same logic that was used to derive expression (2.11), that is 

                                                           
23 The derivation relies on the temporal consistency of the measure for contributions that is shown in Cobb (2014b).   
24 It is worth remembering that, due to the nature of the linking method, the expression for contribution of component j to 
aggregate growth is valid for comparisons within the same year or between consecutive years. s is assumed to fulfil this 
requirement. Also, all contributions refer to the growth rate between t-s and t.  
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that the series of interest is already free from non-systematic seasonality and that a backcast in t0 would not 
contain any information prior to that period, the systematic seasonality estimated for t0 should be almost the same 
as the backcast of t0-s.25 This means that only for periods of the reference year, the initial value, yt0, corrected by 
the backcasted systematic seasonality of the previous year may be approximated by the estimated systematic 
seasonality of that period: 

0 0 0 0
SSPY exNSS SA
t t t t

y y S y    (A3.5) 

This fact can be substituted in (A3.4) resulting in:      
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Then the contribution of a previous year systematic seasonality may be expressed as:      
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 (A3.7) 

and the contribution of component j to it may be written as:  
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Proceeding in the same way with the contribution of the change in aggregate systematic seasonality the 
contribution of component j to it may be written as: 
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25 This is particularly the case given that all the unobserved components, except for the trend, are estimate as a deviation from 
the trend. 
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Annex 4: Seasonality and chain-linking effects  
 
In the chain-linking framework the aggregate may be affected by a number of different effects. In first place, in 
the same way that fixed base indicators are affected, the aggregate may suffer compositional effects due to 
components growing at different rates. Additionally, the annual update of the structure of relative prices alters its 
composition in a discrete fashion. These sudden changes may not only dampen or reinforce the compositional 
effects due to differing component’s growth rates but actually exceed them in magnitude making the overall effect 
go in the opposite direction.       
 
In the context of explaining the seasonal features of chain-linked series the problem arises from comparing 
periods with different structures of relative prices. Given that many different things may be occurring at the same 
time, it can be useful to isolate the less intuitive chain-linking effects from the more familiar fixed weight effects.     
 
To this we take expression (4.4) and separate three distinctive effects. The contribution may be written as follows:       
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 (A4.1) 

The first term reflects the impact of each component if the price structure continued to be exactly that of the 
reference year, making it equivalent to a fixed-base measure and in a sense more intuitive. The second term 
contains the effect of updating the economy’s relative price structure. The sum of both these terms is equal to the 
contribution of the Laspeyres link that is used to build the chain-linked series (presented in Annex 1). The third 
term contains the compositional effects that occur in the process of transforming the separate links into a time-
series. This third effect might at times be unintuitive due to it being directly the result of an aggregate correction. 
It is sourced in forcing a quarterly series to be consistent with an annual one and reflects, therefore, the effects of 
the movement of all the other components of the economy on the specific one.   
   
From section 4 we have that the contribution of component j to the aggregate seasonal effects as:      
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 (A4.2) 

then, thanks to the additivity of the contributions each of the component’s contribution to the specific seasonal 
effect, presented in expression (4.10), may be further broken down to account for how all of the nine effects 
interact. That means that the contribution of seasonal effects may be written as:26      

     , , , , , , , , ,
, , , , , , , , ,

JSA NSS RYW NSS PU NSS CL SSPY RYW SSPY PU SSPY CL SS RYW SS PU SS CL
t j t j t j t j t j t j t j t j t j tj

C c c c c c c c c c              (A4.3) 

This expression should provide enough information to pinpoint the sources of most of the forces involved in the 
contribution of seasonal effects to aggregate growth. It is quite probable that in most occasions that aggregate 
phenomena will be explained by a few aspects. To see this, we revisit the analysis of annual growth in the first 
quarter of 2012 performed in section 5 of the main text.     
 
The decomposition of effects for 2012.I, where the difference between the original and adjusted growth rates is 
+0.55 pp., is shown in Table A4.1. The further breakdown shows that the non-systematic effects are contained 
mostly in the reference-year-weights component. These effects are compensated by the fact that Agriculture is at a 
seasonal high (51% above the annual average) but shows a negative growth rate, therefore reducing the original 
aggregate growth rate relatively more than the adjusted rate. Contributing in the same direction, the Rest is at a 
seasonal low (6% below the annual average) but shows a positive growth rate. The effect of updating prices 
reveals that, due to the compositional effects, both Agriculture and Mining contribute to reduce the gap between 

                                                           
26 The actual expressions are presented at the end of this annex. 
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original and adjusted while the Rest contributes to increase it. The effects of chain-linking in this case are relatively 
small. 
 
Table A4.1: Annual growth, industry contributions and contributions to seasonal effects to Chilean GDP in 2012.I 
 

Seas. 
Level (%) Orig. ex NSS PYSS SA Orig. ex NSS PYSS SA

non-
system.

Agg. 
Comp.

Change 
comp SS Total

Agriculture, forestry and fishery 51.3 -6.02 -6.02 -6.02 -5.67 -0.38 -0.38 -0.20 -0.19 0.00 -0.18 -0.01 -0.19
Mining -7.4 1.38 -0.20 -0.20 -0.10 0.17 -0.06 -0.02 -0.01 0.23 -0.04 -0.01 0.18
Manufacturing 0.7 3.66 -0.23 -0.23 -0.12 0.42 -0.03 -0.03 -0.01 0.44 0.00 -0.01 0.43
Rest -6.2 7.07 6.76 6.76 6.71 4.87 4.66 4.76 4.73 0.21 -0.10 0.03 0.14

TOTAL -3.8 5.08 4.20 4.52 4.52 5.08 4.20 4.52 4.52 0.88 -0.32 -0.01 0.55

Annual Growth Contributions Seasonal Effects

 
 

Seas 
level

Orig. SA % 2010 2011 NSS SSPY ∆SS Total NSS SSPY ∆SS Total NSS SSPY ∆SS Total Total 
diff.

Agriculture, f & f. 5.3 3.2 51.3 1.06 1.03 0.00 -0.12 -0.01 -0.13 0.00 -0.08 0.00 -0.08 0.00 0.02 0.00 0.02 -0.19
Mining 11.9 12.4 -7.4 1.19 1.23 0.19 0.00 -0.01 0.18 0.04 -0.07 -0.02 -0.04 0.00 0.03 0.02 0.05 0.18
Manufacturing 11.1 10.8 0.7 1.03 1.03 0.43 0.00 -0.01 0.42 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.43
Rest 71.8 73.8 -6.2 0.96 0.95 0.22 -0.13 0.03 0.12 -0.01 0.05 0.00 0.04 0.00 -0.02 0.00 -0.02 0.14

TOTAL 100.0 100.0 -3.8 1.00 1.00 0.84 -0.25 0.00 0.59 0.04 -0.09 -0.02 -0.08 0.00 0.03 0.02 0.04 0.55

Chain-linking 
effect

Annual 
relative prices

Reference year 
weights Price updating

weight in 
total

 
 

Figure A4.1: Formulas for the nine individual effects: 
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* It is worth noting that in a spreadsheet environment it is easier to calculate each effect form the contribution to the aggregate levels, built 
using the ideas explained in Annex 3. 


