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Problem and Motivation

Consider the classical model vy, = X,3 + €, where X, is an n X p real
matrix of fixed regressors, y,, (n x 1) a response vector, 3 is a p x 1 vector of
unknown coefficients, rk(X,,) = p for n > p. Let 8(n) denote the ordinary
least squares estimate of 3 obtained from n observations, with n > p, and
assume &, (n x 1) is a vector of non-observable random disturbances with

expectation 0 and variance o21,.

An updating formula for 3(n + 1) as a function of B(n) is

where V = X)X, W = X X1, w = W ~lxe,, 1, and x denotes the
vector of new observations at the values of the explanatory variables. Eq.
(1) arises for example in Kalman filtering and recursive least squares theo-
ries, where the unknown 3 is considered as time-varying states of dynamic
system (see the discussion in Kianifard and Swallow, 1996) and W1V is
often developed as I, — (1 + ¢) "'V~ lza’; ¢ equals 'V ~lz.

This exercice provides some properties of W1V, with all its eigenvalues
and eigenvectors. Let A = W1V have eigenvalues A\; < A < ... < A,
Show that

(7) these eigenvalues are real, and that

(Zl) )\1:1/(1—}—6), )\2:)\3:--':)\1721.



Solution and Discussion
(i) A is the product between two real symmetric matrices. Let A be an

eigenvalue of A, and u+4v an associated eigenvector, where 2 = —1. Then
A(u +iv) = Mu + iv).
Premultiplying both sides of this equation with W leads to
V(u+iv) = AW (u +iv).
As W =V + zx’ therefore the previous equation becomes
(1 =NV (u+iv) = dzx'(u + iv).

Premultiply both sides with (u — iv)’. Because of the symmetry of V' we
obtain

(1 =N (' Vu+v' Vo) = \(v'z)? + (v'z)?).

This implies that A is real.

(74) The following determinant

’IP_A’ = ’I/p_Wilv‘
= W (W -V)
= (W |aa’|
= ’W‘*l.o
=0

shows A = 1 is a root of the characteristic equation |AI, — A| = 0. Now,

let z be an eigenvector of A associated with the eigenvalue 1; therefore



W-Vz =z or Vz = Wz, which from the definition of W implies

0 =uzxx'z,
(px1)

showing z is orthogonal to . Remaining eigenvalues of A are given using

Wolkowicz and Styan’s inequalities. We need trace(A).

trace(A) = trace(W1V)
= trace(W (W — zz')
= trace(l, — W lza')

= p—ax'Wle.

Moreover, premultiplying W = V + xza’ by 2’ W ! and postmultiplying it
by V~lx implies ' W1z = ¢/(1+¢). Consequently

trace(A) =p —c¢/(1 +¢),

and it can be shown x is an eigenvector of A and 1/(1 + ¢) the associated

eigenvalue. Premultiplying A with @’ gives

A = z'(I,- W lzz)
= o — (W lz)z
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As A has real eigenvalues we can apply the inequalities of Wolkowicz and
Styan reproduced in Magnus and Neudecker (1991, p. 239) to find the order

of multiplicity of previously found eigenvalues:

s
(p—1)1/2
<A< mts(p—1)72,

m—s(p—l)l/2 <M< m-—
s

" o



where m = (1/p)trace(A) and s = (1/p)trace(A?) — m>.
We obtain
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Combination of Eq. (2) and this result gives \; = 1/(1 + ¢), which implies
equality holds on the left of Eq. (3), that is A\, = 1 and the p — 1 largest

eigenvalues are equal (Magnus and Neudecker, 1991, p. 239).
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