On the stability of recursive least squares in the Gauss-Markov model

Salies, Evens

6 September 2004

Online at https://mpra.ub.uni-muenchen.de/58036/
MPRA Paper No. 58036, posted 21 Aug 2014 07:48 UTC

On the stability of recursive least squares in the Gauss-markov model

Evens Salies
University of Paris 1 - Panthéon Sorbonne.
e.salies@caramail.com

Problem and Motivation

Consider the classical model $\boldsymbol{y}_{n}=\boldsymbol{X}_{n} \boldsymbol{\beta}+\boldsymbol{\varepsilon}_{n}$ where \boldsymbol{X}_{n} is an $n \times p$ real matrix of fixed regressors, $\boldsymbol{y}_{n}(n \times 1)$ a response vector, $\boldsymbol{\beta}$ is a $p \times 1$ vector of unknown coefficients, $\operatorname{rk}\left(\boldsymbol{X}_{n}\right)=p$ for $n \geq p$. Let $\hat{\boldsymbol{\beta}}(n)$ denote the ordinary least squares estimate of $\boldsymbol{\beta}$ obtained from n observations, with $n \geq p$, and assume $\boldsymbol{\varepsilon}_{n}(n \times 1)$ is a vector of non-observable random disturbances with expectation $\mathbf{0}$ and variance $\sigma^{2} \boldsymbol{I}_{n}$.

An updating formula for $\hat{\boldsymbol{\beta}}(n+1)$ as a function of $\hat{\boldsymbol{\beta}}(n)$ is

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}(n+1)-\boldsymbol{\beta}=\boldsymbol{W}^{-1} \boldsymbol{V}(\hat{\boldsymbol{\beta}}(n)-\boldsymbol{\beta})+\boldsymbol{w}, n=p, p+1, \ldots \tag{1}
\end{equation*}
$$

where $\boldsymbol{V} \equiv \boldsymbol{X}_{n}^{\prime} \boldsymbol{X}_{n}, \boldsymbol{W} \equiv \boldsymbol{X}_{n+1}^{\prime} \boldsymbol{X}_{n+1}, \boldsymbol{w} \equiv \boldsymbol{W}^{-1} \boldsymbol{x} \varepsilon_{n+1}$, and \boldsymbol{x} denotes the vector of new observations at the values of the explanatory variables. Eq. (1) arises for example in Kalman filtering and recursive least squares theories, where the unknown $\boldsymbol{\beta}$ is considered as time-varying states of dynamic system (see the discussion in Kianifard and Swallow, 1996) and $\boldsymbol{W}^{-1} \boldsymbol{V}$ is often developed as $\boldsymbol{I}_{p}-(1+c)^{-1} \boldsymbol{V}^{-1} \boldsymbol{x} \boldsymbol{x}^{\prime} ; c$ equals $\boldsymbol{x}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{x}$.

This exercice provides some properties of $\boldsymbol{W}^{-1} \boldsymbol{V}$, with all its eigenvalues and eigenvectors. Let $\boldsymbol{A} \equiv \boldsymbol{W}^{-1} \boldsymbol{V}$ have eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{p}$. Show that
(i) these eigenvalues are real, and that
(ii) $\lambda_{1}=1 /(1+c), \lambda_{2}=\lambda_{3}=\cdots=\lambda_{p}=1$.

Solution and Discussion

(i) \boldsymbol{A} is the product between two real symmetric matrices. Let λ be an eigenvalue of \boldsymbol{A}, and $\boldsymbol{u}+i \boldsymbol{v}$ an associated eigenvector, where $i^{2}=-1$. Then

$$
\boldsymbol{A}(\boldsymbol{u}+i \boldsymbol{v})=\lambda(\boldsymbol{u}+i \boldsymbol{v})
$$

Premultiplying both sides of this equation with \boldsymbol{W} leads to

$$
\boldsymbol{V}(\boldsymbol{u}+i \boldsymbol{v})=\lambda \boldsymbol{W}(\boldsymbol{u}+i \boldsymbol{v})
$$

As $\boldsymbol{W}=\boldsymbol{V}+\boldsymbol{x} \boldsymbol{x}^{\prime}$ therefore the previous equation becomes

$$
(1-\lambda) \boldsymbol{V}(\boldsymbol{u}+i \boldsymbol{v})=\lambda \boldsymbol{x} \boldsymbol{x}^{\prime}(\boldsymbol{u}+i \boldsymbol{v})
$$

Premultiply both sides with $(\boldsymbol{u}-i \boldsymbol{v})^{\prime}$. Because of the symmetry of \boldsymbol{V} we obtain

$$
(1-\lambda)\left(\boldsymbol{u}^{\prime} \boldsymbol{V} \boldsymbol{u}+\boldsymbol{v}^{\prime} \boldsymbol{V} \boldsymbol{v}\right)=\lambda\left(\left(\boldsymbol{u}^{\prime} \boldsymbol{x}\right)^{2}+\left(\boldsymbol{v}^{\prime} \boldsymbol{x}\right)^{2}\right)
$$

This implies that λ is real.
(ii) The following determinant

$$
\begin{aligned}
\left|\boldsymbol{I}_{p}-\boldsymbol{A}\right| & =\left|\boldsymbol{I}_{p}-\boldsymbol{W}^{-1} \boldsymbol{V}\right| \\
& =\left|\boldsymbol{W}^{-1}(\boldsymbol{W}-\boldsymbol{V})\right| \\
& =\left|\boldsymbol{W}^{-1}\right| \cdot\left|\boldsymbol{x} \boldsymbol{x}^{\prime}\right| \\
& =|\boldsymbol{W}|^{-1} \cdot 0 \\
& =0
\end{aligned}
$$

shows $\lambda=1$ is a root of the characteristic equation $\left|\lambda \boldsymbol{I}_{p}-\boldsymbol{A}\right|=0$. Now, let \boldsymbol{z} be an eigenvector of \boldsymbol{A} associated with the eigenvalue 1 ; therefore
$\boldsymbol{W}^{-1} \boldsymbol{V} \boldsymbol{z}=\boldsymbol{z}$ or $\boldsymbol{V} \boldsymbol{z}=\boldsymbol{W} \boldsymbol{z}$, which from the definition of \boldsymbol{W} implies

$$
\underset{(p \times 1)}{\mathbf{0}}=\boldsymbol{x}^{\boldsymbol{x}} \boldsymbol{z}
$$

showing \boldsymbol{z} is orthogonal to \boldsymbol{x}. Remaining eigenvalues of \boldsymbol{A} are given using Wolkowicz and Styan's inequalities. We need $\operatorname{trace}(\boldsymbol{A})$.

$$
\begin{aligned}
\operatorname{trace}(\boldsymbol{A}) & =\operatorname{trace}\left(\boldsymbol{W}^{-1} \boldsymbol{V}\right) \\
& =\operatorname{trace}\left(\boldsymbol{W}^{-1}\left(\boldsymbol{W}-\boldsymbol{x} \boldsymbol{x}^{\prime}\right)\right. \\
& =\operatorname{trace}\left(\boldsymbol{I}_{p}-\boldsymbol{W}^{-1} \boldsymbol{x} \boldsymbol{x}^{\prime}\right) \\
& =p-\boldsymbol{x}^{\prime} \boldsymbol{W}^{-1} \boldsymbol{x}
\end{aligned}
$$

Moreover, premultiplying $\boldsymbol{W}=\boldsymbol{V}+\boldsymbol{x} \boldsymbol{x}^{\prime}$ by $\boldsymbol{x}^{\prime} \boldsymbol{W}^{-1}$ and postmultiplying it by $\boldsymbol{V}^{-1} \boldsymbol{x}$ implies $\boldsymbol{x}^{\prime} \boldsymbol{W}^{-1} \boldsymbol{x}=c /(1+c)$. Consequently

$$
\operatorname{trace}(\boldsymbol{A})=p-c /(1+c)
$$

and it can be shown \boldsymbol{x} is an eigenvector of \boldsymbol{A} and $1 /(1+c)$ the associated eigenvalue. Premultiplying \boldsymbol{A} with \boldsymbol{x}^{\prime} gives

$$
\begin{aligned}
\boldsymbol{x}^{\prime} \boldsymbol{A} & =\boldsymbol{x}^{\prime}\left(\boldsymbol{I}_{p}-\boldsymbol{W}^{-1} \boldsymbol{x} \boldsymbol{x}^{\prime}\right) \\
& =\boldsymbol{x}^{\prime}-\left(\boldsymbol{x}^{\prime} \boldsymbol{W}^{-1} \boldsymbol{x}\right) \boldsymbol{x}^{\prime} \\
& =\left(1-\frac{c}{1+c}\right) \boldsymbol{x}^{\prime} \\
& =\frac{1}{1+c} \boldsymbol{x}^{\prime} .
\end{aligned}
$$

As \boldsymbol{A} has real eigenvalues we can apply the inequalities of Wolkowicz and Styan reproduced in Magnus and Neudecker (1991, p. 239) to find the order of multiplicity of previously found eigenvalues:

$$
\begin{aligned}
m-s(p-1)^{1 / 2} & \leq \lambda_{1} \leq m-\frac{s}{(p-1)^{1 / 2}} \\
m+\frac{s}{(p-1)^{1 / 2}} & \leq \lambda_{p} \leq m+s(p-1)^{1 / 2}
\end{aligned}
$$

where $m=(1 / p) \operatorname{trace}(\boldsymbol{A})$ and $s^{2}=(1 / p) \operatorname{trace}\left(\boldsymbol{A}^{2}\right)-m^{2}$.
We obtain

$$
\begin{align*}
1 /(1+c) & \leq \lambda_{1} \leq 1-\frac{2}{p} \frac{c}{1+c} \tag{2}\\
1 & \leq \lambda_{p} \leq 1+\frac{(p-2)}{p} \frac{c}{1+c} . \tag{3}
\end{align*}
$$

From Theorem 4 in Magnus and Neudecker (1991, p. 203),

$$
\begin{array}{lccc}
& \lambda_{1} & \leq \frac{\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{\prime} \boldsymbol{x}} \leq \\
\Leftrightarrow & \lambda_{1} \leq \frac{\lambda_{p}}{\boldsymbol{x}^{\prime}\left(\boldsymbol{I}_{p}-\boldsymbol{W}^{-1} \boldsymbol{x} \boldsymbol{x}^{\prime}\right) \boldsymbol{x}} \\
\boldsymbol{x}^{\prime} \boldsymbol{x}
\end{array} \lambda_{p} . \lambda_{p} . \quad \lambda_{p} .
$$

Combination of Eq. (2) and this result gives $\lambda_{1}=1 /(1+c)$, which implies equality holds on the left of Eq. (3), that is $\lambda_{p}=1$ and the $p-1$ largest eigenvalues are equal (Magnus and Neudecker, 1991, p. 239).

References

Harvey, A. C. (1990). The Econometric analysis of time series. 2nd ed., Cambridge, MA: MIT Press.

Kianifard F., and Swallow, H. (1996). A review of the development and application of recursive residuals in linear models. Journal of the American Statistical Association, 91(433), pp. 391-400.

Magnus, J. R. and Neudecker, H. (1991). Matrix Differential Calculus with Applications in Statistics and Econometrics. John Wiley. Printed in Great Britain.

