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Dependent censoring arises in biomedical studies when the survival outcome of interest is 

censored by competing risks. In survival data with microarray gene expressions, gene 

selection based on the univariate Cox regression analyses has been used extensively in 

medical research, which however, is only valid under the independent censoring assumption. 

In this paper, we first consider a copula-based framework to investigate the bias caused by 

dependent censoring on gene selection. Then, we utilize the copula-based dependence model 

to develop an alternative gene selection procedure. Simulations show that the proposed 

procedure adjusts for the effect of dependent censoring and thus outperforms the existing 

method when dependent censoring is indeed present. The non-small-cell lung cancer data is 

analyzed to demonstrate the usefulness of our proposal. We implemented the proposed 

method in an R “compound.Cox” package. 
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1. Introduction 

For survival data with microarrays, the primary task is selecting a small fraction of genes 

that are relevant to survival. To handle the censoring that is ubiquitous in survival data, most 

available approaches use Cox regression analysis1 to select relevant genes. The simplest 

approach is to select subsets of genes by using univariate Cox regression analyses2-5, This 

approach is called univariate selection and used extensively in medical research. A predictor 

based on the linear combinations of the selected genes, often called the compound covariate 

predictor6-7, has been shown to be useful for survival prediction with high-dimensional 

settings of microarrays3, 4, 5, 8, 9.  

The aforementioned univariate selection critically relies on the independent censoring 

assumption; survival time and censoring time need to be statistically independent at a given 

gene. As further elaborated below in Section 2.2, such an independence assumption in 

univariate analysis is even more stringent than its counterpart in multivariate analysis. 

If the independent censoring assumption is violated, univariate Cox regression analyses 

may not correctly identify the effect of each gene and thus may fail to select truly effective 

genes. In the presence of dependent censoring, the univariate Cox regression may instead 

identify the effective genes on the cause-specific hazard for the survival outcome10. However, 

the effect of a gene on the cause-specific hazard may not reflect well the effect of the same 

gene on the cumulative incidence, a typical phenomenon in the competing risks literature10-13. 

Therefore, the resultant predictor that uses the selected genes may have reduced ability to 

predict survival outcomes of interest. 

In the presence of dependent censoring, a natural approach is to select genes that influence 

the cumulative incidence function. For low-dimensional settings, this approach is 
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implemented by fitting the Cox proportional hazards model on the sub-distribution hazard, the 

hazard for the cumulative incidence function11.  Adapted to the high-dimensionality of 

microarrays, Binder, et al.12 proposes a boosting algorithm under the proportional sub-

distribution hazards model, which provides a short list of relevant genes. Another approach 

for high-dimensionality is to perform a random forest algorithm for the competing risks data 

after imputing unknown event status for censored individuals14. 

 In this paper, we follow a different approach that selects relevant genes on the marginal 

survival function, where the nuisance aspects of dependent censoring are removed.  For the 

marginal survival to be identifiable, it is necessary to specify either the dependence structure 

(i.e., copula15) between the survival and censoring times16 or the marginal regression models17 

(e.g., proportional hazard models). Unfortunately, there are still no practical method for 

simultaneously estimating the dependence structure and the marginal regression models. So 

far, statistical inference for the marginal models relies on the sensitivity analysis under an 

assumed copula18-19. Despite the technical difficulty, the major attraction of the present 

approach is to offer a way for selecting genes that are predictive of a well-defined survival 

endpoint free of the nuisance aspects. The predictive values of the selected genes are simple 

to interpret within the framework of traditional survival analysis. In the following, we propose 

a gene selection method that fits a copula model for the dependence structure and fits the 

proportional hazards model on the marginal survival based on the method of Chen19. We also 

propose a novel approach to estimate the dependence parameter by using cross-validation, 

which is useful for both gene selection and survival prediction. We choose the copula-based 

approach since it not only gives a practical framework for both gene selection and prediction, 

but also an analytical tool to investigate the bias of univariate selection under dependent 

censoring. 
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In Section 2, we review univariate selection and study the potential bias of univariate 

selection due to dependent censoring. To study that bias, we specifically model the 

dependency between survival time and censoring time via copulas15. In Section 3, we 

consider a new gene selection method that adjusts for dependent censoring using the copula 

model. Section 4 compares the performance of univariate selection with the new method via 

simulations. Section 5 includes the analysis of the non-small-cell lung cancer data for 

illustration. Section 6 concludes the paper. 

2. Univariate selection under dependent censoring 

2.1  Univariate selection for censored survival data 

The approach called univariate selection is performed using the following procedure. As the 

initial step, a univariate Cox regression is performed for each gene, one-by-one. Then a subset 

of genes that have low P-values is selected from the univariate analysis. 

More specifically, let )...,,( 1
 ipii xxx  be a p -vector of genes from individual i . Also, 

let iT  and iU  be survival time and censoring time, respectively. We observe ),,( iiit x , 

where },min{ iii UTt   and }{ iii UT  I , where }{ I  is the indicator function. In 

univariate selection, a Cox regression1 based on the univariate models  

ijj x

jij ethxth


)()|( 0 ,      pj ...,,1 ,                                   (1) 

 is performed one-by-one for each j . The resultant estimator j̂  is used to obtain the P-value 

for the Wald test for 0: jojH  . One selects genes that exhibit smaller P-values than a 

threshold value that can be determined by various different criteria, such as cross-validation3, 

20 and false discovery rate21, which are often complemented by biological consideration. 
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The estimator j̂  can correctly identify the true value of j  under the so-called 

“independent censoring” assumption22, 23: 

Assumption I: The survival time T  and censoring time U  are conditionally independent 

given a gene jx  for all pj ...,,1 . 

Even when the model (1) is incorrect, the univariate estimate j̂  still possesses a valid 

meaning under Assumption I. To understand why, we consider dichotomous covariates with 

ijx 0 or 1. It follows that  




)(/)()(

)(/)()(
logˆ

00ˆ

11ˆ

tYtNdtW

tYtNdtW

j

j

j



 , 

where 



n

i

ijii xtttN
1

),1,()(  I , 



n

i

iji xtttY
1

),()(  I  for  0, 1, and 

})()(/{)()()( 0101 uYuYeuYuYuW j

j
 

 . This implies that j̂  is the log of the cumulative 

observed hazard rate for those with ijx 1 relative to that for ijx 0. If Assumption I is valid, 

the underlying (net) hazard ),|Pr()|(   jjjj xttdttttdtxth  can be correctly 

estimated by )(/)( tYtNd  . Hence, the statistic j̂  still makes sense as the univariate effect of 

jx  1 over jx  0 under Assumption I. This interpretation is irrelevant to the correctness of 

the model assumption (1). For continuous covariates, we refer to the results of the 

misspecified Cox model9, 24 . 

Thus, it should be stressed that Assumption I is even more important than the model 

assumption (1) in applying univariate selection. 
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2.2  Models for dependent censoring 

Assumption I will be shown to be a fairly strong assumption. A more reasonable assumption 

is the conditional independence in which T  and U  are conditionally independent given all 

components of x , which is routinely imposed for Cox regression models (e.g., Sec. VII.2 of 

Andersen et al.
22; Sec. 8.4 of Fleming and Harrington23). 

Figure 1 offers an example of how Assumption I fails to hold, yet the conditional 

independence still holds. Suppose that two genes, x21, xx , relate to both T  and U . Then, 

T  and U  are not conditionally independent given only 1x , since the variation in 2x  induces 

the observed dependence. Here, the variant 2x  can be interpreted as a frailty, a popular 

concept to construct bivariate survival models25. This example implies that Assumption I 

may not hold when x  relates to both T  and U . 

 

 

Figure 1  An example that T  and U  are not conditionally independent given only 1x . The 

dependency between T  and U  are induced by 2x , which affects both  T  and U . 

 

The violation of Assumption I is seen by using a more formal argument based on copulas. 

Specifically, suppose that T  and U  are conditionally independent given x , and their 

Survival time 

Censoring time 

x1   ( gene 1; given ) 

x2  ( gene 2; not given ) 

Dependency 

 induced by x2 
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marginal cumulative hazard functions are )(te T
xβ  and )(ue U

xγ , respectively. It follows 

that, for a given jx , 

]})|Pr({},)|Pr({[)|,Pr( 1
)(

1
)()(),( jjjjjjj xuUxtTxuUtT  



 γβγβ       (2) 

where )(),( jj  γβ , )( jβ  and )( jγ  are Laplace transforms defined in Appendix A of the 

Supplementary Materials and )( jβ  is β  excluding j  with )( jγ  similarly defined. For the 

special case where γβ  , we obtain an Archimedean copula model 

]})|Pr({})|Pr({[)|,Pr( 1
)(

1
)()( jjjjjj xuUxtTxuUtT  



 βββ  .         (3) 

The above analysis indicates that the conditional independence yields dependency between T  

and U  given only jx , and thus Assumption I does not hold.  

   In general, T  and U  may be dependent for any given jx  with an unknown dependence 

structure. Sklar’s theorem (Nelsen15, p.18) guarantees that the joint survival function is 

always written as 

})|Pr(,)|Pr({)|,Pr( jjjj xuUxtTCxuUtT  ,                             

where jC  is called copula and describes the dependency between T  and U . Assumption I 

corresponds to uvvuC j ),( . This is clearly a strong assumption in light of equations (2) 

and (3). Although the form of jC  is fairly difficult to specify, we consider applying certain 

parametric copulas to relax Assumption I below.  

2.3  Effect of dependent censoring 

Performing univariate selection under dependent censoring may lead to a bias in estimation 

and hence the inability to select genes of interest. Here, we provide an analytic framework to 

study the bias when the dependence is modeled via copulas.  
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The cause-specific hazard 

dtxuUtTUTdttTtxth jj /),,|,Pr()|(#   

describes the “apparent” hazard rate for death in the presence of dependent censoring (p.251, 

Kalbfleisch and Prentice26). If Assumption I holds, then  

dtxtTdttTtxthxth jjj /),|,Pr()|()|(#  . 

Otherwise, )|(#
jxth  and )|( jxth  are usually different. This implies that the data with 

dependent censoring give misleading information about the underlying (net) hazard )|( jxth . 

We formulate the effect of dependent censoring under the copula models as 

})|(),|({)|,Pr( jUjTj xuSxtSCxuUtT  , 

where )|Pr()|( jjT xtTxtS   and )|Pr()|( jjU xuUxuS   are the marginal survival 

functions, and   is the dependence parameter. As indicated in Rivest and Wells18, the 

cause-specific hazard becomes )|()|()|(#
jjj xthxtrxth   , where 

})|(),|({

)|(})|(),|({
)|(

]0,1[

jUjT

jTjUjT

j
xtSxtSC

xtSxtSxtSC
xtr




  , 

and uvuCvuC  /),(),(]0,1[
 . We define the “apparent effect” of gene jx  as  

)0|(

)1|(
log

)0|(

)1|(
log

)0|(

)1|(
log)(

#

#

#
















j

j

j

j

j

j

xtr

xtr

xth

xth

xth

xth
t








 . 

This equation shows that the apparent effect can be partitioned into the true (net) effect and 

the bias due to dependent censoring. Here, the copula structure only enters in the bias term. 

The bias vanishes if 0 , the value leading to uvvuC ),( . If 0 , then the bias is 

usually nonzero except for some special copulas. 
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We conducted numerical analysis to gain insight into how dependent censoring affects 

the apparent effect )(#
t under the Clayton, Frank and Gumbel copulas. We set marginal 

distributions as 
)exp(

)0|()|( jtSxtS TjT

 , 
)exp(

)0|()|( jtSxtS UjU

  and 

)1/()0|()0|( CC pp

TU tStS
 , where 100Cp  (%) is the censoring percentage, using 0, 40, 50 

and 60 percentiles, and t  is fixed by setting 5.0)0|( tST . 

Figure 2 displays the apparent effect )(#
t  under the Clayton copula model. If the 

censoring probability is high (60%), the apparent effect differs significantly from the true 

(net) effect. Furthermore, the difference inflates as the association parameter   deviates 

from zero. The signs of the apparent and true effects are even different for 2 . For 

censoring probability 40% or 50%, the apparent effect is still different from the true effect, 

but the difference becomes more modest. The apparent effect is identical to the true effect 

when no censoring is present (0%). 

Figure 3 displays the apparent effect )(#
t  under the Frank copula model. Overall, the 

characteristics of )(#
t  is similar to those under the Clayton copula. The difference between 

the apparent and true effects is remarkably large under high censoring probability (60%) but 

mild under moderate (50%) or low censoring (40 %) probability. 

The characteristics of the Gumbel copula are completely different from the Clayton and 

Frank copulas. There is no difference between the apparent and the true effects under any 

censoring probability or association parameter. Why this result occurs is not completely 

clear at this stage, but such a property seems to be a rather special circumstance. 
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Figure 2  The plots for the apparent effect )(#
t  against the association parameter   under 

the Clayton copula model with censored percentages 0, 40, 50 and 60 %. 

 

Figure 3  The plots for the apparent covariate effect )(#
t  against the association parameter 

  under the Frank copula model with censored percentages 0, 40, 50 and 60 %.  
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3. Gene selection method under dependent censoring 

3.1  Copula-based adjustment for dependent censoring  

We propose adjusting for the effect of dependent censoring by modeling the dependency 

with a given copula16, 18, 19, 27, 28 . Specifically, we impose a copula model 

})|Pr(),|Pr({)|,Pr( ijiijiijii xuUxtTCxuUtT   ,                       

where a copula C  is assumed to be the same across all j  and indexed by a single 

parameter  . The most convenient example is the Clayton copula, 

0,)1(),( /1   
 vuvuC .                                    

In this way, Assumption I is relaxed by free parameter  . For marginal distributions, we 

assume the proportional hazard models 

})(exp{)|Pr( 0
ijj x

jiji etxtT
 ,    })(exp{)|Pr( 0

ijj x

jiji euxuU
 , 

where j  and j  are regression coefficients and j0  and j0  are baseline cumulative hazard 

functions. 

For estimation, we apply the semiparametric maximum likelihood estimator in which j0  

and j0  are unspecified19. For any given  , we maximize the full likelihood 

,}])(exp{},)(exp{[                                      

])(log)|,,,;(log)[1(                                      

])(log)|,,,;(log[)|,,,(

00

0002

000100













i

x

ij

x

ij

i

ijjjjjiijijji

i

ijjjjjiijijjijjjj

ijjijj etet

tdtx

tdtx








  (4) 

where,  

})(exp{}])(exp{},)(exp{[)|,,,;( 0001,001
ijjijjijj x

j

x

j

x

jjjjjij etetetDt


  , 

})(exp{}])(exp{},)(exp{[)|,,,;( 0002,002
ijjijjijj x

j

x

j

x

jjjjjij etetetDt


  , 
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 Clog , and kk uuuuuD  /),(),( 2121,   for 2,1k .  

The maximizer of equation (4) with respect to j  is denoted by )(ˆ  j . The standard error 

})(ˆ{  jse  can be computed from the observed information matrix19. We implement the 

computation in an R compound.Cox package29. Computational details under the Clayton 

copula are given in Appendix B of the Supplementary Materials.  

The P-value for gene j  is computed by the Wald test based on a Z-statistic 

})(ˆ{/)(ˆ  jj sd . If 0 , a value that leads to uvvuC ),( , the resultant P-value is the 

same as the P-value from univariate Cox analysis.  

For a future subject with covariate vector ),,( 1
 pxx x , the survival prediction can be 

made by the prognostic index (PI) defined as xβ )(ˆ  , where ))(ˆ,),(ˆ()(ˆ
1  pβ . If 

0 , the resultant prediction method is equal to the compound covariate prediction3, 9. 

3.2 Choosing association parameters by cross-validation 

Due to the nonidentifiability of competing risks data30, the likelihood (4) may provide little 

information about the true parameter  . A more practical approach is to choose an   that 

maximizes prediction power. A widely used predictive measure for this purpose is cross 

validated partial likelihood31. Unfortunately, the form of Cox’s partial likelihood is derived 

under independent censoring, which renders it unsuitable for dependent censoring. 

A more robust predictive measure under dependent censoring is Harrell’s concordance 

measure, known as c-index32, 33. The interpretation of c-index does not depend on a specific 

model. To perform a K -fold cross validation, we first divide n  individuals into K  groups of 

approximately equal sample sizes and label them as k  for Kk ...,,1 . The estimator based 
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on all individuals not in k  is calculated and denoted by )(ˆ
)( kβ . For a subject ki  , we 

consider iki x)(ˆ)(PI )(   β ,  a predictor of the survival outcome ),( iit  . We choose an   

that maximizes the cross-validated c-index: 













ji

jijiji

ji

jijijijiji

tttt

tttt

CV
})()({

}))(PI)(PI()())(PI)(PI()({

)(





II

IIII

. 

Finally, we find the ̂  value that maximizes )(CV . We recommend 5K , which is often 

used when n  or p  is large. 

   The cross-validation curve may be used as a heuristic way to test the presence of dependent 

censoring. The subsequent simulations will show that, if dependent censoring is present, then 

the curve may have an ̂  value that is far from 0 . We will also demonstrate this method 

using data analysis. 

 

4. Simulations 

We compare the performance of the two gene selection strategies, namely univariate selection 

and the proposed method in Section 3, in the presence of dependent censoring. 

4.1  Simulation set-up 

We generate 100n  random samples ),( ii UT  either from the Clayton copula model 

0,)1}exp{}exp{()|,Pr( /1    ii ueteuUtT iii

xγxβ
x ,        (5) 

or the Frank copula model 

.0},)1/()1)(1(1{log)|,Pr( )exp()exp( 
  

uete

iii

ii

uUtT
xγxβ

x    (6) 
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We choose   so that Kendall’s   between iT  and iU  given ix  is 5.0 . Let 

)...,,,...,,( 11 pqq  β , where the first q 5, 10 or 20 genes are related to survival 

among the p = 100 coefficients; the coefficients of the first q genes are nonzero (non-null 

genes) and those of the remaining p - q genes are zero (null genes). We introduce the blocks 

of correlated genes )...,,,...,,( 11 pqq xxxx x  by mimicking the microarray structure of “tag 

gene sequence” and “gene pathway” as in Binder et al.
12 and Emura et al.

9. More details for 

generating x  are given in Appendix C of the Supplementary Materials. We consider the 

model that non-null genes influence both  iT  and iU   by setting γβ  . Under this setting, 

there are approximately 50% censored samples. 

For each gene j , we obtained the univariate estimator j̂  and the proposed estimator 

)ˆ(ˆ  j  calculated under the Clayton copula model. The fitted Clayton copula is misspecified 

since the true models in equations (5) and (6) involve multiple genes while the fitted model 

involves only a single gene at a time. Here, ̂  is calculated from the 5K  cross-validation 

curve on the grid   (0, 0.5, 1.33, 3, 8), which corresponds to Kendall’s tau (0, 0.2, 0.4, 0.6, 

0.8). Then, the P-value for each gene is computed with the Wald test.  

We compare the performance of gene selection in terms of sensitivity and specificity. Let 

),,( 1 pPP   be a vector of P-values obtained by a gene selection method (univariate selection 

or proposed method) and let )(cP  be the cth  smallest P-value. Then,  

Sensitivity ) % (  100

)0(

)0,(

1

1
)(














p

j

j

p

j

jqj PP





I

I

 

is the percentage of selecting truly informative genes while 
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Specificity ) % (  100

)0(

)0,(

1

1
)(














p

j

j

p

j

jqj PP





I

I

 

is the percentage of not selecting uninformative genes. Larger values of sensitivity and 

specificity correspond to better gene selection ability. We report the results in terms of the 

average of 50 Monte Carlo replications. 

We also compare the 1st component of the regression estimates, namely 1̂  and )ˆ(1̂  . In 

particular, we calculate their mean and standard deviation to assess the performance of the 

Wald test. 

4.2  Simulation results 

Table 1 summarizes gene selection performance under the tag gene sequence. In terms of 

sensitivity and specificity, the proposed method outperforms univariate selection in all 

configurations. The proposed method improves sensitivity by up to 12.8~13.2% when the 

number of nonzero coefficients is small (q = 5) and 4.7~7.9% when the number of nonzero 

coefficients is large (q = 20). The columns of ]ˆ[ 1E  show that the proposed estimates of the 

nonzero 1  tend to be larger the estimates of univariate selection. Also, the standard 

deviations of the proposed estimates are smaller than that of the univariate estimates. This 

explains the improved power of the Wald test in our proposal. The columns of ]ˆ[E  vary 

between 3.9 and 4.8, which corresponds to Kendall’s tau between 0.66 and 0.71. Hence, on 

average, the proposed method fits the Clayton copula with strongly positive association. 

 Note that the fitted Clayton model is misspecified under the present simulation setups. As 

inferred from Section 2.2, the true copula structure is fairly complicated for a given ijx  only, 

which is difficult to specify in practice. In addition, the Cox proportional hazard models may 
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not hold for a given ijx  only. Hence, one cannot expect that ]ˆ[ 1E  and ]ˆ[E  are close to the 

true value in equations (5) and (6). Nevertheless, the simulation results exhibit the good 

performance of the proposed method in terms of selection of true non-null genes. This 

robustness to the model misspecification is important since the strong model assumptions are 

often controversial in the marginal approaches.  

Table 2 summarizes gene selection performance under the gene pathway. Similar to Table 

1, the proposed method produces higher sensitivity and specificity than those of univariate 

selection in all configurations. The improvement in sensitivity becomes more evident (up to 

12.1~16.6%) when both the positive and negative coefficients exist. The proposed method 

enjoys the higher power of the Wald test, as implied from the large magnitude of ]ˆ[ 1E . 

Compared to the tag gene sequence of Table 1, sensitivity and specificity in Table 2 

substantially increases under the gene pathway for both univariate selection and the proposed 

method. This is due to the presence of a positively correlated blocks of genes among non-zero 

coefficients, which enlarge the regression estimates 1̂  and hence the power. 

Insert Tables 1, 2 

5. Data analysis 

We revisit the 128 non-small-cell lung cancer patients of Chen et al.
4 available at 

http://www.ncbi.nlm.nih.gov/projects/geo/, with accession number GSE4882. In this study, 

the primary endpoint is overall survival, i.e., death from any cause. During the follow-up, 38 

patients died (35 patients due to recurrence of cancer and 3 patients due to other causes). The 

remaining 87 patients are censored, i.e., survived at the end of their follow-up times. 

Dependent censoring may arise in univariate selection due to the unadjusted effect of genes as 
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demonstrated in Section 2.2 (see Figure 1). In addition, it is suspicious that some early 

dropouts were related to patients’ health status. 

We split the 125 lung cancer patients into 63 training and 62 testing samples. Chen et al. 4 

used univariate selection on the 63 training patients to identify a 16 gene-signature, which led 

to a highly accurate separation of the patients with a good prognosis from those with a poor 

prognosis among the 62 testing patients. This univariate analysis relies on the independent 

censoring assumption (Assumption I). 

Figure 4 plots the cross-validated c-index )(CV  using the training samples. The c-index 

is maximized at the association parameter ̂ =18 ( Kendall’s tau = 0.90 ). This implies the 

possible gain in prediction for testing samples by considering dependent censoring models.  

 

Figure 4  The cross-validated c-index for the 63 training set from the lung cancer data. The 

cross-validated c-index is maximized at  =18, which corresponds to Kendall’s tau = 0.90. 

The c-index is calculated based on the top p = 97 genes based on univariate pre-filtering with 

P-value = 0.20.  
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We compare univariate selection with our proposed method in terms of selecting the top 

 =16 genes among the 485 genes. The two gene selection methods used on the training 

samples resulted in two different lists of the top 16 genes as given in Table 3. We find that the 

gene list from univariate selection is the same as Chen et al.
4. Among the 16 genes, six genes 

are selected by both methods, while the other 10 genes differ between the two methods. 

We compare the predictive value of the two methods based on the prognostic index (PI). 

The PI of univariate selection is 

PI (univariate selection) = 

(-1.09*ANXA5) + (1.32*DLG2) + (0.55*ZNF264) + (0.75*DUSP6) + (0.59*CPEB4) 

+ (-0.84*LCK) + (-0.58*STAT1) + (0.65*RNF4) + (0.52*IRF4) + (0.58*STAT2) +  

(0.51*HGF) + (0.55*ERBB3) + (0.47*NF1) + (-0.77*FRAP1) + (0.92*MMD) 

+ (0.52*HMMR). 

This 16-gene signature leads to the same risk score reported in the original work of Chen et al. 

4 (their supplemental, p.4). On the other hand, the proposed method yields a different PI: 

PI (proposed method) =                         

(0.51*ZNF264) + (0.50*MMP16) + (0.50*HGF) + (-0.49*HCK) + (0.47*NF1) 

+ (0.46*ERBB3) + (0.57*NR2F6) + (0.77*AXL) + (0.51*CDC23) + (0.92*DLG2) 

+ (-0.34*IGF2) + (0.54*RBBP6) + (0.51*COX11) + (0.40*DUSP6) + (-0.37*CKMT1A) 

+ (-0.41*ENG). 

We begin our analysis by comparing the cumulative incidence curves for the good (or 

poor) prognosis groups separated by the low (or high) values of the PI’s on the testing 

samples (Figure 5). Gray’s two-sample test is used to the measure of the separation between 
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the two curves. The proposed method leads to a slightly poorer separation of the good and 

poor prognoses (P-value = 0.256) compared to that of the univariate selection (P-value = 

0.247). Although prediction in terms of the cumulative incidence probability is the standard in 

the presence of dependent censoring, the goal of Chen et al. 4 is to identify genes that are 

predictive for overall survival. 

 

 

Figure 5  The cumulative incidence curves for the good (or poor) prognosis group separated 

by the top 16 genes. The good (or poor) group is determined by the low (or high) values of 

the 16-gene prognostic index with equal sample sizes. 

 

To validate the predictive ability of the top 16 genes on overall survival, we draw the 

survival curves for the good (or poor) prognosis groups separated by the low (or high) values 

of the PI’s (Figure 6). Since the Kaplan-Meier survival curve is biased under dependent 
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censoring, we apply the copula-graphic estimator16, 18 of the survival curves adjusted under 

the Clayton copula at ̂ =18 ( Kendall’s tau = 0.90 ). Figure 6 shows that the proposed 

method appears to give a clearer separation between the good and poor groups than univariate 

selection does. The separation of the two curves is measured by the average vertical 

difference in the survival curves over the study period, and the corresponding P-value is 

obtained using the permutation test34, 35. The proposed method leads to a significantly better 

separation of the good and poor prognoses (Average difference = 0.230; P-value = 0.02) 

compared to that for the univariate selection (Average difference = 0.162; P-value = 0.10). 

We perform the same prediction analysis as above for the different cut-off numbers for the 

top   genes. The results for  =10, 20, 30, …, 80, 90 are summarized in Table 4. In most 

cases, the proposed method produces significant separation between the patients with a good 

prognosis and those with a poor prognosis (P-value < 0.05) while univariate selection seldom 

reaches 5% significance level for that. Both methods produce the best separation at  = 80. In 

this case, the proposed method provides an extremely clear separation between the good and 

poor prognosis patients (P-value = 0.001; Figure 7). In terms of cumulative incidence, the 

proposed method leads to a clearly better separation of the good and poor prognoses (P-value 

=0.082; Figure 8) compared to that for univariate selection (P-value =0.230). Hence, the list 

of genes selected by the proposed methods is consistently more predictive than those by 

univariate selection. 

 

Insert Tables 3 and 4 
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Figure 6  The marginal survival curves for the good (or poor) prognosis group separated by 

the top 16 genes. The good (or poor) group is determined by the low (or high) values of the 

16-gene prognostic index with equal sample sizes. 

 

Figure 7  The marginal survival curves for the good (or poor) prognosis group separated by 

the top 80 genes. The good (or poor) group is determined by the low (or high) values of the 

80-gene prognostic index with equal sample sizes. 
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Figure 8  The cumulative incidence curves for the good (or poor) prognosis group separated 

by the top 80 genes. The good (or poor) group is determined by the low (or high) values of 

the 80-gene prognostic index with equal sample sizes. 

 

6. Conclusion 

In this paper, we consider gene selection procedures for survival data with dependent 

censoring. We first develop a copula-based analytic tool to investigate the effect of dependent 

censoring on univariate gene selection. This tool facilitates the understanding of the bias due 

to dependent censoring under various types of dependence structures. Our analysis reveals 

that the bias grows when the censoring percentage and the degree of dependence increase. In 

addition, we find that the qualitative natures of the bias due to different copulas, namely 

Clayton, Frank and Gumbel copulas, are remarkably different. 

We also utilize the copula models to develop a new gene selection method for dependent 

censoring. This method, in contrast to univariate selection, does not require the strong 
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independence assumption (Assumption I). Although the paper focuses on fitting the Clayton 

copula for dependence structure, the method can be applicable to other copulas and hence 

provides a very flexible framework for various different types of dependent censoring. The 

simulations show that the proposed method offers a higher percentage of selecting nonnull 

genes of interest than the traditional univariate selection when dependent censoring is indeed 

present. In addition, the method exhibits good performance even if the fitted model is 

misspecified. This robustness is particularly important for the copula-based approach, in 

which it is fairly difficult to specify the correct form of copulas. When applied to the 

aforementioned lung cancer data, the genes selected by using the proposed method have better 

predictive performance than the ones using univariate selection. The proposed method would 

be generally useful in datasets where dependent censoring is suspected. 

The objective of the proposed approach is to select genes that are relevant to marginal 

survival, where the effect of dependent censoring is removed. While the simulations and data 

analysis provide firm evidence that the method selects effective genes on the marginal 

survival, it does not necessarily select relevant genes on the cumulative incidence function for 

the survival. As demonstrated in the data analysis, the selected genes that are highly 

predictive on marginal survival become somewhat offset in terms of the cumulative incidence. 

To investigate the predictive power of the selected genes, plotting both cumulative incidence 

function and the estimator of survival function for the validation samples would be 

informative, as demonstrated in Section 5. For estimating survival functions, the copula-

graphic estimator adjusted for dependent censoring is suitable to reduce the bias caused by the 

traditional Kaplan–Meier estimator. The plots of these different curves are useful to clarify 

the benefit of the selected genes on survival prediction and to build risk prediction models 

involving high-dimensional microarrays. We note that in a true competing risks situation, e.g., 
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when studying the risk of relapse, with death without prior relapse acting as a competing risk, 

the marginal survival is usually not of interest. 

Supplementary material 

Supplementary materials include Appendix A (Laplace transforms), Appendix B 

(Implementation of Chen19 under the Clayton model), and Appendix C (Data generation for 

the covariates x ). 
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Table 1  Comparison of univariate selection and the proposed method based on n = 100 

samples and 50 replications with tag gene sequences. 

 
Case 1: )0...,,0,8.0...,,8.0(

955




β ;  s = 4,   1  = 0.8 

 
Underlying 

model 
Sensitivity % 

( Specificity % ) 
]ˆ[ 1E  ( + SD ) ]ˆ[E  

Univariate selection 
 

Clayton 47.60 ( 97.24 ) 0.36 ( + 0.15 ) / 
Frank 49.60 ( 97.35 ) 0.38 ( + 0.17 ) / 

Proposed method 
 

Clayton 60.80 ( 97.94 ) 0.41 ( + 0.13 ) 4.0 
Frank 62.40 ( 98.02 ) 0.43 ( + 0.14 ) 4.0 

 
Case 2: )0...,,0,4.0,...,4.0,4.0...,,4.0(

9055




β ; s = 4,   1  = 0.4 

 
Underlying 

model 
Sensitivity % 

( Specificity % ) 
]ˆ[ 1E  ( + SD ) ]ˆ[E  

Univariate selection 
 

Clayton 33.80 ( 92.64 ) 0.25 ( + 0.18 ) / 
Frank 34.20 ( 92.69 ) 0.27 ( + 0.17 ) / 

Proposed method 
 

Clayton 39.60 ( 93.29 ) 0.28 ( + 0.16 ) 4.0 
Frank 41.20 ( 93.47 ) 0.28 ( + 0.15 ) 4.3 

 
Case 3: )0...,,0,4.0...,,4.0(

9010




β ; s = 2,   1  = 0.4 

 
Underlying 

model 
Sensitivity % 

( Specificity % ) 
]ˆ[ 1E  ( + SD ) ]ˆ[E  

Univariate selection 
 

Clayton 32.80 ( 92.53 ) 0.23 ( + 0.17 ) / 
Frank 36.40 ( 92.93 ) 0.25 ( + 0.17 ) / 

Proposed method 
 

Clayton 42.80 ( 93.64 ) 0.26 ( + 0.13 ) 4.5 
Frank 44.00 ( 93.78 ) 0.27 ( + 0.14 ) 4.5 

 
Case 4: )0...,,0,2.0,...,2.0,2.0...,,2.0(

801010




β ; s = 2,   1  = 0.2 

 
Underlying 

model 
Sensitivity % 

( Specificity % ) 
]ˆ[ 1E  ( + SD ) ]ˆ[E  

Univariate selection 
 

Clayton 30.60 ( 82.65 ) 0.11 ( + 0.17 ) / 
Frank 30.20 ( 82.55 ) 0.12 ( + 0.17 ) / 

Proposed method 
 

Clayton 35.30 ( 83.83 ) 0.13 ( + 0.15 ) 3.9 
Frank 38.10 ( 84.53 ) 0.13 ( + 0.16 ) 4.8 

Higher sensitivity and specificity correspond to better gene selection performance. 
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Table 2  Comparison of univariate selection and the proposed method based on n = 100 

samples and 50 replications with gene pathways. 

 
Case 1: )0...,,0,4.0...,,4.0(

955




β ,   1  = 0.4 

 
Underlying 

model 
Sensitivity % 

( Specificity % ) 
]ˆ[ 1E  ( + SD ) ]ˆ[E  

Univariate selection 
 

Clayton 98.40 ( 99.92 ) 0.75 ( + 0.15 ) / 
Frank 98.80 ( 99.94 ) 0.81 ( + 0.15 ) / 

Proposed method 
 

Clayton 99.60 ( 99.98 ) 0.83 ( + 0.13 ) 4.8 
Frank 100.00 ( 100.00 ) 0.91 ( + 0.15 ) 6.2 

 
Case 2: )0...,,0,2.0,...,2.0,2.0...,,2.0(

9055




β ,   1  = 0.2 

 
Underlying 

model 
Sensitivity % 

( Specificity % ) 
]ˆ[ 1E  ( + SD ) ]ˆ[E  

Univariate selection 
 

Clayton 64.40 ( 96.04 ) 0.34 ( + 0.13 ) / 
Frank 69.40 ( 96.60 ) 0.38 ( + 0.14 ) / 

Proposed method 
 

Clayton 81.00 ( 97.89 ) 0.41 ( + 0.13 ) 4.2 
Frank 85.60 ( 98.40 ) 0.43 ( + 0.13 ) 4.7 

 
Case 3: )0...,,0,2.0...,,2.0(

9010




β ,   1  = 0.2 

 
Underlying 

model 
Sensitivity % 

( Specificity % ) 
]ˆ[ 1E  ( + SD ) ]ˆ[E  

Univariate selection 
 

Clayton 95.20 ( 99.47 ) 0.67 ( + 0.15 ) / 
Frank 95.80 ( 99.53 ) 0.72 ( + 0.16 ) / 

Proposed method 
 

Clayton 98.80 ( 99.87 ) 0.75 ( + 0.14 ) 3.5 
Frank 99.80 ( 99.98 ) 0.81 ( + 0.13 ) 4.3 

 
Case 4: )0...,,0,1.0,...,1.0,1.0...,,1.0(

801010




β ,   1  = 0.1 

 
Underlying 

model 
Sensitivity % 

( Specificity % ) 
]ˆ[ 1E  ( + SD ) ]ˆ[E  

Univariate selection 
 

Clayton 71.50 ( 92.88 ) 0.36 ( + 0.15 ) / 
Frank 74.10 ( 93.53 ) 0.38 ( + 0.15 ) / 

Proposed method 
 

Clayton 83.80 ( 95.95 ) 0.41 ( + 0.13 ) 4.4 
Frank 86.20 ( 96.55 ) 0.45 ( + 0.14 ) 3.9 

Higher sensitivity and specificity correspond to better gene selection performance. 
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Table 3  The 16 most strongly associated genes based on two methods: univariate selection 

and the proposed method. The genes are ordered according to the P-values. 

 Univariate selection  Proposed method 

No. 
Gene 

symbol 
Coefficient P-value 

 Gene 

symbol 
Coefficient P-value 

1 ANXA5 -1.09 0.0039  ZNF264 0.51 0.0004 

2 DLG2 1.32 0.0041  MMP16 0.50 0.0005 

3 ZNF264 0.55 0.0079  HGF 0.50 0.0010 

4 DUSP6 0.75 0.0086  HCK -0.49 0.0012 

5 CPEB4 0.59 0.0162  NF1 0.47 0.0016 

6 LCK -0.84 0.0171  ERBB3 0.46 0.0016 

7 STAT1 -0.58 0.0198  NR2F6 0.57 0.0030 

8 RNF4 0.65 0.0220  AXL 0.77 0.0035 

9 IRF4 0.52 0.0299  CDC23 0.51 0.0050 

10 STAT2 0.58 0.0311  DLG2 0.92 0.0055 

11 HGF 0.51 0.0334  IGF2 -0.34 0.0081 

12 ERBB3 0.55 0.0335  RBBP6 0.54 0.0082 

13 NF1 0.47 0.0380  COX11 0.51 0.0118 

14 FRAP1 -0.77 0.0408  DUSP6 0.40 0.0121 

15 MMD 0.92 0.0419  ENG -0.37 0.0139 

16 HMMR 0.52 0.0481  CKMT1A -0.41 0.0155 

Gray shading signifies genes that appear in both univariate selection and the proposed method. 
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Table 4  The average vertical difference in the survival curves between good and poor 

prognosis groups in the test dataset, where the good or poor prognosis is determined by the 

prognostic index based on the top  =10, 20, …, 90 genes. The corresponding P-value is 

obtained using the permutation test for the weighted Kaplan-Meier statistics. 

 Univariate selection Proposed method 

  Difference in survival (P-value)  Difference in survival (P-value)  

10 0.072 ( 0.453 )  0.185 ( 0.062 )  

20 0.114 ( 0.249 )  0.154 ( 0.120 )  

30 0.025 ( 0.806 )  0.251 ( 0.012 )  

40 0.102 ( 0.301 )  0.230 ( 0.021 )  

50 0.131 ( 0.186 )  0.210 ( 0.035 )  

60 0.136 ( 0.162 )  0.252  ( 0.012 )  

70 0.112 ( 0.253 )  0.322 ( 0.002 )  

80 0.226 ( 0.023 )  0.335 ( 0.001 )  

90 0.177 ( 0.072 )  0.335 ( 0.001 )  

Smaller P-values correspond to a better separation of the patients with a good prognosis from 

those with a poor prognosis. 

 

 

 

 

 

 

 

 


