
Munich Personal RePEc Archive

Ito Processes with Finitely Many States

of Memory

McCauley, Joseph L.

University of Houston

16 November 2007

Online at https://mpra.ub.uni-muenchen.de/5811/

MPRA Paper No. 5811, posted 18 Nov 2007 16:50 UTC



 1 

Ito Processes with Finitely Many States of Memory 
 

Joseph L. McCauley 
Physics Department 

University of Houston 
Houston, Tx. 77204-5005 

jmccauley@uh.edu 
 

 
Abstract 

 
We show that Ito processes imply the Fokker-Planck (K2) 
and Kolmogorov backward time (K1) partial differential 
eqns. (pde) for transition densities, which in turn imply the 
Chapman-Kolmogorov equation without approximations. 
This result is not restricted to Markov processes. We define 
‘finite memory’ and show that Ito processes admit finitely 
many states of memory. We then provide an example of a 
Gaussian transition density depending on two past states 
that satisfies both K1, K2, and the Chapman-Kolmogorov 
eqn. Finally, we show that transition densities of Black-
Scholes type pdes with finite memory are martingales and 
also satisfy the Chapman-Kolmogorov equation. This leads 
to the shortest possible proof that the transition density of 
the Black-Scholes pde provides the so-called ‘martingale 
measure’ of option pricing. 
 
Key Words: Ito process, martingale, stochastic differential 
eqn., Langevin eqn., memory, nonMarkov process, Fokker-
Planck eqn., Kolmogorov’s backward time eqn., Chapman-
Kolmogorov eqn., Black-Scholes eqn. 
 
1. Stochastic processes with finite memory 
 
Much unnecessary confusion has been introduced into the 
literature under the terms ‘nonlinear Markov process’ and 
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‘nonlinear Fokker-Planck equation’. We’ve pointed out that 
one particular model labeled as a ‘nonlinear Markov 
process’, the Shimizu-Yamata model, is an Ito process with 
finite memory [1]. Here, we prove that assertion in all detail.  
 
An Ito process x is a martingale M(t) plus a drift A(t), 
x(t)=A(t)+M(t), and is generated locally by an Ito sde 
(Langevin eqn.) 
 

     dx = R(x,t)dt+ D(x,t)dB (1) 
 
where B(t) is the Wiener process, a Gaussian process with 
uncorrelated, stationary increments B(t,T)=B(t+T)-B(t)=B(T),        
B(t,-T)-B(t)-B(t-T)=B(-T), <B(t,T)B(t,-T)>=0 so that 
<B(t+T)B(t)>=<B2(t)>=t if T>0. The conditions 
<B(t+T)B(t)>=<B2(t)> and <B(t,T)B(t,-T)>=0 are actually the 
same condition and simply reflect that the Wiener process is 
a martingale [2].  
 
The Langevin eqns. studied in the 1970s in the context of the 
fluctuation-dissipation theorem for systems near statistical 
equilibrium are generated locally by correlated noise [3]. 
Those processes are Gaussian with infinite memory, 
memory of a continuum of past states traced back to x(0)=0. 
Fractional Brownian motion (fBm) has infinite memory 
extending back to x=-∞ but is generated locally by 
uncorrelated noise, is a stochastic integral over a Wiener 
process [4,5]. Neither of those processes is an Ito process.  
 
We offer here the mathematical formalism of stochastic 
processes with finitely many states of memory. This 
formulation, based as it is on martingales, is applicable to 
financial markets [6]. Our line of thought is motivated by A. 
Friedman’s treatment of Ito processes and related partial 
differential equations [7], because one essential result is 
proven therein while another is listed as an exercise, but the 
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author asserted that he had assumed a Markov process. We 
will see that nowhere is the assumption of a Markov process 
necessary in the derivations. 
 
Consider an arbitrary stochastic process x(t). The probability 
density for n points fn(xn,tn; ….; x1,t1) is defined by 
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probability, or transition density, depending on a history of 
n-1 points [8,9]. That is, pn is the probability density to 
observe xn at time tn, given that the n-1 points (xn-1,…x1) were 
observed to have occurred at times (tn-1,…,t1) in the past. The 
states  (xn-1,…x1) are therefore the known part of the history 
of one trajectory x(t). By ‘finite history’ we mean that the n-2 
points actually were observed at the respective n-2 different 
times prior to the occurrence of the last observed point xn-1.  
 
The memory in fBm [5] is qualitatively different. All 
trajectories are ‘filtered’ through one single point x(0)=0 
(required by scaling x(t)=tHx(1)) and there is  strong 
correlation of any point x at present time t with the 
trajectory’s entire past. Since fBm is Gaussian with 
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so that pn depends on all n of the states xk considered all the 
way to n=∞. This is what we mean by ‘infinite memory’. 
This long time autocorrelation follows from stationarity of 
the increments [2,4,5].  
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A drift term A(t) can be locally subtracted from a time series 
generated by an Ito process, but fBm is not a martingale plus 
a drift and cannot be detrended: the ‘trend’ d<x(t)>/dt≠0 in 
fBm is due to the long time autocorrelations that cannot be 
removed [5]. In a Markov process only the last observed 
state is remembered, the transition densities obey pn=p2, n≥2. 
Because the 2-point transition density determines the drift 
and diffusion coefficients R(x,t), D(x,t), those coefficients for 
a Markov process cannot depend on any state other than the 
present state (x,t). If other states appear in R and D, then the 
process has finite memory [2,10]. The latter fact is completely 
ignored where unjustified claims have been made of 
‘nonlinear Markov processes’ [11]. 
 
Following Kolmogorov’s definition of a stochastic process 
[7], one needs the entire hierarchy of transition densities pn, 
n=2,3, …. , in order to completely specify or completely 
identify the stochastic process. The hierarchy will truncate at 
finite n iff. the memory string is finite. For Gaussian 
processes the conditional density of any and all finite orders 
n can be constructed once the pair correlations <x(tk)x(tl)> 
for times tk≠tl are known [10]. For Markov processes, pn=p2 
for all n=3,4, …. , because a Markov process erases all history 
except that of the last observed point (xn-1,tn-1) [8,9,10]. Our 
point is that this is far more restrictive than the history 
dependence that is allowed for a general Ito process. 
 
The fundamental problem in finance, as in empirically based 
modeling in any science, is how to identify the underlying 
stochastic dynamics, given some collection of time series 
representing repeated runs of the same process. In finance, 
we’ve shown that we can treat daily trading as a rerun of the 
same uncontrolled ‘experiment’ [6]. Hänggi and Thomas 
pointed out long ago [3] that the equation of motion for a 1-
point density f1(x,t) tells us nothing about the underlying 
dynamics. E.g., both scaling Gaussian Markov processes and 
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fractional Brownian motion (fBm) have exactly the same 1-
point Gaussian density [1,2,3] although their pair 
correlations are completely different. The transition density 
for a Markov process obeys a diffusion eqn., the transition 
density for fBm does not. Therefore the minimal knowledge 
of dynamics requires either p2 or at least the discovery of 
pair correlations <x(t+T)x(t)>, nothing less will suffice. 
Hence, all the literature about ‘nonlinear Fokker-Planck 
pdes’ for 1-point densities is irrelevant, it’s the time 
evolution of the 2-point density that reflects the stochastic 
process, and in an Ito process that time evolution is given by 
a linear pde, the usual Fokker-Planck pde. Next, we point 
our that transition densities do not scale even if the process is 
selfsimilar, so that scaling cannot be used to identify a 
stochastic process.  
 
Hurst exponent scaling, when it exists, is defined by 
trajectories obeying x(t)=tHx(1), x(0)=0 [2]. Because scaling is 
confined to 1-point densities, f1(x,t)=t-HF(x/tH), scaling 
exponents H cannot be used to identify an underlying 
stochastic process. Another way to say it is that, even if we 
could and would restrict our considerations to trajectories 
that scale, neither pair correlations,<x(t+T)x(t)> nor 2-point 
densities p2(y,t+T:x,t) will scale.  That is, the naïve 
replacement <x(t)x(s)>=(st)H<x2(1)>, where 
<x(s)x(t)>=∫dydxyx  p2

(y,s x,t)f1(x,t), is wrong because p2 

does not scale with H: pair correlations destroy the scaling 
even for drift-free Markov processes. One sees the lack of 
scaling of pair correlations explicitly for fBm, where it is 
very easy to construct both the pair correlations <x(s)x(t)> 
and the Gaussian conditional density p2 explicitly [5]. One 
sees lack of scaling of p2 for martingales (including drift-free 
Markov processes) because <x(t+T)x(t)>=<x2(t)> if T>0 [2]. 
So in data analysis (or in modeling) we must extract (or 
specify) either the pair correlations or else p2 in order to 
exhibit any knowledge at all of the nature of the dynamics of 
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the underlying process; scaling, even if it occurs, is 
irrelevant. In FX markets, e.g., we have verified that the pair 
correlations are those of a martingale after 10 min. of 
trading, <x(t+T)x(t)>=<x2(t)> if T≥10min. [6]. We come now 
to the main point of this article: the existence of ‘finite 
memory’ in a general Ito process. Martingales are Ito 
processes, are the basis for Ito processes. 
 
 
2. The Chapman-Kolmogorov Equation 
 
By ‘finite memory’ we mean that the hierarchy of transition 
densities truncates, that pk=pn for k≥n with n finite so that 
we obtain from the rule 
 

  pk"1(xk , tk xk"2 , tk"2 ;...;x1 , t1) = dxk"1pk (xk , tk xk"1 , tk"1 ;...;x1 , t1)# pk"1(xk"1 , tk"1 xk"2 , tk"2 ;...;x1 , t1) 

(4) 
 
the Chapman-Kolmogorov equation 
 

  pn(xn , tn xn"1 , tn"1 ;...;x1 , t1) = dypn(xn , tn y,s;xn"2 , tn"2 ;...;x1 , t1)# pn(y,s xn"1 , tn"1 ;...;x1 , t1)

(5) 
 
for the 2-point transition density with a nontrivial history of 
n-2 points. The process is Markovian iff. n=2. As both Doob 
and Feller pointed out [12,13], the Chapman-Kolmogorov 
equation is a necessary but insufficient condition for a 
Markov process. Feller provided a non-Ito process as 
example where a Chapman-Kolmogorov eqn. holds. Below, 
we will provide an example of an Ito process with memory 
that does the job. 
 
If there is one nontrivial state of memory, if e.g. the initial 
condition is  f1(x,to)=u(x) and xo=∫xu(x)dx, then due to 
memory in the initial data f1(x,t) [14] we obtain 
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Memory appears in (18) if, e.g., at time to f1(x)=δ(x-xo) with 
xo≠0 [14]. In this case, by the 2-point transition density we 
must understand   p2

(x,t y,s) = p
3
(x,t y,s;x

o
, t

1
), it’s p3 that 

satisfies the Chapman-Kolmogorov eqn. That is, in the 
simplest case of memory p3 is required to describe the 
stochastic process. The main idea is that we are dealing quite 
generally with Ito sdes and corresponding pdes for 
transition densities with memory of a finite nr. n-2 of states, 
so that the 2-point transition density depends on n-2 earlier 
states. 
 
We proceed with nonstandard derivations of Kolmogorov’s 
two partial differential equations (pdes) and the Chapman-
Kolmogorov equation. In order to show that the resulting 
formalism is not vacuous, we then provide an example of a 
stochastic process with nontrivial memory satisfying all 
three of those equations. Some of the details to be presented 
below can be found scattered disconnected throughout the 
literature. Their marriage into a unity and the interpretation 
in terms of finite memory are new, as is the proof that the 
Shimizu-Yamata model is a nonMarkovian Ito process with 
one nontrivial state of memory. Our new viewpoint informs 
us, in particular, that martingale dynamics in particular, 
with or without memory, is Fokker-Planck dynamics for the 
case where both x and t vary continuously.  
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3. Ito processes with finite memory 
 
Consider a diffusive process described by an Ito stochastic 
differential equation (sde)  
 

    dx = R(x,t)dt+ D(x,t)dB(t) (1) 
 
with or without finite memory in the drift and diffusion 
coefficients. 
 
Consider first the Markov case. From 
 

 
  
x(t+T) = x(t)+ R(x(s),s)ds+

t

t+T

" D(x(s),s)dB(s)
t

t+T

"  (7) 

 
and ignoring the drift, which is O(T2) for small T, we obtain 
the mean square fluctuation for small time lags T as 
 

 
  
(x(t+T)"x(t))2 # D(x(s),s)

t

t+T

$ # TD(x,t)  (8) 

     
on the one hand, since p2(y,t+T:x,t) ≈δ(y-x) as T vanishes, but 
also 
 
    (x(t+T)"x(t))2 # dy(y"x)2 p

2
(y,t+ x,t)$  (9) 

  
on the other. This yields the standard definition 
 

  
  
D(x,t) "

1

T
dy(y#x)2 p

2$ (y,t+T x,t) (10) 

 
as T vanishes.  
 
Now, we generalize: from (10) we see that memory of n-2 
states in the transition density will appear in the diffusion 
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coefficient, and in the drift coefficient R for the same reason. 
That is, for a general Ito process we should replace (1) by 
 

  dx = R(x,t;x
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That is, Ito processes are not restricted to Markov processes 
but include the generalization to finite memory. We’ll 
provide an explicit example with n=3 below. There, the drift 
coefficient has memory of one notrivial state but the 
diffusion coefficient is constant because the process is 
Gaussian.  
 
 
4. The meaning of Kolmogorov’s first pde 
 
Consider a twice differentiable dynamical variable A(x,t). 
The sde for A follows from Ito’s lemma, 
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A martingale is defined by the conditional average 
<A(x,t+T)>c=A(x,t). From (14) we see that a backward in 
time average 
 
    A(x,t) = p+

" (x,t : y,t+T)A(y,t+T)dy (15) 
 
is required. We want to obtain the generator for the 
backward time transition density, which we denote as 

  p
+(x,t y,t+T). Setting the drift term in (14) equal to zero, 

yields the backward time diffusion eqn. 
 

 
  
0 =

"A(x,t)

"t
+R(x,t)

"A(x,t)

"x
+

D(x,t)

2

"
2A(x,t)

"x2
. (16) 

 
 
We’ve made no assumption that A is positive. I.e., A is 
generally not a 1-point probability density, A(x,t) is simply 
any martingale, and an infinity of martingales can be so 
constructed depending on the choice of forward time initial 
conditions specified on A (either an initial value or 
boundary value problem backward in time is to be solved).  
 
The required transition density is the Green function of (16), 
  

  
0 =

"g+(x,t y,s)

"t
+R(x,t)

"g+(x,t y,s)

"x
+

D(x,t)

2

"
2g+(x,t y,s)

"x2
 (17) 

 
where   g

+(x,t y,t)=δ(x-y) where t≤s. The conditions under 

which g+ exists, is unique and nonnegative definite are 
stated in Friedman [7]. Eqn. (17) is called Kolmogorov’s first 
pde (K1) [8]. If g+ is nonnegative and normalizable, the g+ 
may be identified as the backward time transition density p+ 
for the Ito process. 
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What does K1 mean? Simply that martingales can be 
constructed via Ito’s lemma. 
 
 
5. The Fokker-Planck pde with finite memory 
 
Consider next a twice-differentiable dynamical variable 
A(x(t)). A(x) is not assumed to be a martingale. The time 
evolution of A is given by Ito’s lemma [6] 
 

  
  
dA = (R
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"
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"x2
)dt+ D

"A

"x
dB .  (18) 

 
We can calculate the conditional average of A, conditioned 
on x(to)=xo at time to in x(t)=xo+∫R(x,s)ds+∫√D(x,s)dB(s), 
forward in time if we know the transition density 
p2(x,t:xo,to)) forward in time, 
 
   A(x(t)) = p

2" (x,t x
o
, t

o
)A(x)dx.  (19) 

 
 Note that this is not the rule for the time evolution of a 1-
point probability density. From 
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with <dA>/dt defined by (20), we obtain from (21), after 
integrating twice by parts and assuming that the boundary 
terms vanish, 
 
   

 
  

dxA(x)"
#p2

#t
+
#(Rp2 )

#x
$

1

2

#2 (Dp2 )

#x2

% 

& 
' 

( 

) 
* = 0, (22) 

 
so that the transition density is the Green function of the 
Fokker-Planck pde [8,7,9,15], or Kolmogorov’s second pde 
(K2) 
 

 
  

"p2

"t
= #

"(Rp2 )

"x
+

1

2

"
2 (Dp2 )

"x2
. (23) 

 
So far, no Markovian assumption was made. In particular, no 
assumption was made that R, D, and hence p2, are 
independent of memory of an initial state, or of finitely 
many earlier states. In particular, if D and R contain n-2 
points of memory, and with (6) in mind, then p2 must be 
understood as pn, with pk=pn for k≥n. In this case the pk with 
k <n obey (4) and pn obey (5).  
 
For the case where A(x) is a martingale then (19) must yield 
 
    A t

= p
2" (x,t : x

o
, t

o
)A(x)dx = A(x

o
), (24) 

 
and since (24) cannot differ from (15) if the theory is to be 
consistent, the backward and forward time transition 
densities p+ and p2. Comparing (19) with (5) we see that p+ 
and p2 must be adjoints,   p

+(x,t y,t+T) = p
n
(y,t+T x,t).  The 

Chapman-Kolmogorov eqn. was not used to derive 
Kolmogorov’s two pdes, nor has it been assumed. Next, we 
will show how an Ito process demands the Chapman-
Kolmogorov eqn., and finite memory is allowed. 
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6. The Chapman-Kolmogorov eqn. for finite memory 
processes 
 
That a Chapman-Kolmogorov eqn. is possible for finitely 
many states of memory follows from standard definitions of 
conditional probability densities. With an unstated, even 
infinite, number of states in memory the history-dependent 
2-point transition densities obey the hierarchy 
 
  pk"1(xk , tk xk"2 , tk"2 ;...;x1 , t1) = dxk"1pk (xk , tk xk"1 , tk"1 ;...;x1 , t1)# pk"1(xk"1 , tk"1 xk"2 , tk"2 ;...;x1 , t1)

. (25) 
 
For stochastic processes where the memory is finite and of 
number n-2, so that pk=pn for all k≥n, then from (25) we 
obtain the Chapman-Kolmogorov eqn. in the form 
 

  pn(xn , tn xn"1 , tn"1 ;...;x1 , t1) = dypn(xn , tn y,s;xn"2 , tn"2 ;...;x1 , t1)# pn(y,s xn"1 , tn"1 ;...;x1 , t1)

. 
(26) 
 
Next, we show that the pde K1 for an Ito process (21) with 
finite memory in R and/or D implies both the Fokker-Planck 
pde and the Chapman-Kolmogorov eqn. (26). This is the 
reverse of the usual derivation [8], where a Chapman-
Kolmogorov equation is assumed and approximations are 
made to derive Kolmogorov’s two pdes. One realizes in 
retrospect that a Markov process is not implied there either, 
all that is expressed is the necessity by the typical derivation, 
is the necessity, not the sufficiency, of the Chapman-
Kolmogorov eqn. for a Fokker-Planck pde. The two pdes 
describe a Markov process iff. one assumes in addition that 
there is no memory, or as the Russian translators [8] put it, 
‘no aftereffect’. 
 
Consider the linear operators 
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   L
+
= "/"t+R(x,t)"/"x+ (D(x,t)/2)"2 /"x2   (27) 

 
 
and 
 
   Lu = "#u/#t+#(R(x,t)u)/#x "#2 (D(x,t)u/2)/#x2 , (28) 
 
acting on a function space of measurable, twice (not 
necessarily continuously) differentiable functions satisfying 
boundary conditions at t=∞, and at x=-∞ and x=∞ to be 
indicated below. Both operators follow from the Ito process 
(1), but we can start with (27) and then obtain (28) via 
 

  
uL+v" vLu =

#

#t
(uv)+

#

#x
(vRu+

1

2
uD

#v

#x
" v

1

2

#uD

#x
),  (29) 

 
which is a form of Green’s identity (see also [7] where the 
operator L is studied in standard elliptic rather than in 
Fokker-Planck form). With suitable boundary conditions on 
u,v [4] then L and L+ are adjoints of each other: 
 

  
  

dt
0

"

# (vLu$uL+v)
$"

"

# dx = 0.  (30) 

 
Starting with an Ito process (1) and K1, we have deduced K2. 
No Markovian assumption has been made. Again, the 
formal conditions under which (30) holds are stated in 
Friedman [7]. 
 
Next, let g+(x,t:ξ,τ) denote the Green function of K1, L+g+=0, 
and let g(x,t:ξ,τ) denote the Green function of K2, Lg=0. Let 
τ<s<t and assume also that τ+ε<s<t-ε, which avoids sitting 
on top of a delta function. Integrating (29) over y from -∞ to 
∞ and over s from τ+ε to t-ε with the choices v(y,s)=g+(y,s:x,t) 
and u(y,s)=g(y,s:ξ,τ), we obtain [7] 
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  g(y,t "# : $, %)g+
& (y,t "# : x,t)dy = g(y, %+# : $, %)g+

& (%+# : x,t)dy
. (31) 
 
With ε vanishing and using g(y,τ:ξ,τ)=δ(y-ξ), g+(y,t:x,t)=        
δ(y-x), we obtain the adjoint condition for the Green 
functions 
 
     g(x,t : ", #) = g+(", # : x,t).  (32) 
 
Next, apply the same argument but with times τ≤t”≤t’≤t to 
obtain (instead of (26)) 
  

  g(y, " t : #, $)g% (x,t : y, " t )dy = g(y, " " t : #, $)g% (x,t : y, " " t )dy. (33) 
 
If we let t” approach τ, then we obtain the Chapman-
Kolmogorov eqn.  
 
   g(x,t : ", #) = g$ (x,t : y, % t )g(y, % t : ", #)dy,  (34) 
 
again, without having made any Markovian assumption. The 
implication is that, with suitable boundary conditions on 
Green functions, an Ito sde implies both K1 and K2 and the 
Chapman-Kolmogorov eqn. 
 
To show that this formalism is not vacuous finite memory is 
present, we next provide the simplest example, a Gaussian 
process with memory of one nontrivial state in the drift 
coefficient (there is no memory in D because D=constant for 
a Gausian process). We can offer no example for variable 
diffusion D(x,t) where the (x,t) dependence is not separable, 
because even for selfsimilar Markov processes [16] we do 
not yet know how to calculate a transition density 
analytically. 
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7. A Gaussian process with finite memory 
 
Consider first the 2-point transition density for an arbitrary 
Gaussian process in the form [15] 
 

  
p(x,t : y,s) =

1

2"K(t,s)
e#(x#m(t ,s)y#g(t ,s))2 /2 K(t ,s) . (35) 

 
Until the pair correlation function <x(t)x(s)> α m(t,s) is 
specified, no particular process is indicated by (35). 
Processes as wildly different and unrelated as fBm [5], 
scaling Gaussian Markov processes [5], Ornstein-Uhlenbeck 
processes [10] and other processes [14] are allowed. 
Depending on the pair correlation function <x(t)x(s)>, 
memory, including long time memory, may or may not 
appear. To obtain fBm, e.g., g=0 and <x(s)x(t)> must reflect 
the condition for stationary increments [5], which differs 
from a condition of time translational invariance whereby m, 
g, and K may depend on (s,t) only in the form s-t. 
Fortunately, Hänggi and Thomas [14] have stated the 
conditions for a Gaussian process (30) to satisfy a Chapman-
Kolmogorov eqn., namely, 
 

  

m(t,t1) =m(t,s)m(s,t1)

g(t,t1) = g(t,s)+m(t,s)g(s,t1)

K(t,t1) =K(t,s)+m 2 (t,s)K(s,t1)

.  (36) 

 
Actually, Hänggi and Thomas stated in [14] that (36) is the 
condition for a Markov process, but we will show that the 
Chapman-Kolmogorov condition (31) is satisfied by at least 
one Gaussian process with memory. 
 
Consider next the 1-point density p1(x,t) for a specific Ito 
process with simple memory in the drift coefficient, the 
Shimizu-Yamato model [1,12] 
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"p1

"t
=
"

"x
((#+$)x %$ x(t) +

Q

2

"

"x
)p1  (37) 

 
with initial data p(x,to)=f(x) and with <x(t)>=∫xp1(x,t)dx. The 
parameter Q is the diffusion constant. Since the drift 
coefficient in (1) is R=-(γ+κ)x+κ<x(t)>, and since we can use 
standard methods to show that 
 

  
  

d x

dt
= R = "# x ,   (38) 

 
we obtain  
 
   

  
x(t) = xoe

"#(t"t o )   (39) 

 
where 
 
    xo = xf(x)dx" .   (40) 
 
This provides us with a drift coefficient with initial state 
memory, 
 
   R(x,t;xo , to ) = "(#+$)x+$xoe

"#(t"t o ) .  (41) 
 
 
Because γ≠0 the memory cannot be eliminated via a simple 
coordinate transformation z=x-<x>.  
 
The Fokker-Planck pde for the transition density 
p2(x,t:y,s;xo,to) is 
 
  

 
  

"p2

"t
=
"

"x
((#+$)x %$xoe

%#(t%t o )
+

Q

2

"

"x
)p2   (42) 
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with p2(x,t:y,t;xo,to)=δ(x-y). The solution is a Gaussian (35) 
with 1-state memory where 
 

  

m(t,s) = e"(#+$)(t"s)

K(t,s) =
Q

#+$
(1"e"2(#+$)(t"s) )

g(t,s) = xo(e"#(t"t o ) "e"(#+$)t+#t o +$s )

.  (43) 

 
An easy calculation shows that the Chapman-Kolmogorov 
conditions (36) are satisfied with finite memory (xo,to). 
Furthermore, p+(y,s:x,t;xo,to)=p2(x,t:y,s;xo,to) satisfies the 
backward time diffusion pde K1 in the variables (y,s), 
 

 
  
0 =

"p+

"s
+R(y,s;xo , to )

"p+

"y
+

Q

2

"
2p+

"y2
  (44) 

 
with drift coefficient 
 
    R(y,s;xo , to ) = "(#+$)x+$xoe

"#(s"t o ) .  (45) 
 
This shows that backward time diffusion makes sense in the face of 
memory. The memory simply yields p+(y,to:xo,to;xo,to)=         
δ(y-xo). 
 
 
8. Black-Scholes type pdes 
 
Consider more generally Green functions of pdes of the 
Black-Scholes type 
 

  L
+v = "v/"t+ c(x,t)v+R(x,t)"v/"x+ (D(x,t)/2)"2v/"x2

= 0 
(46) 
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and its adjoint 
 
   Lu = cu"#u/#t+#(R(x,t)u)/#x "#2 (D(x,t)u/2)/#x2 . (47) 
 
We can prove exactly as in part 6 above that the Green 
functions of these pdes satisfy the Chapman-Kolmogorov 
equation (34). The proof appears as an exercise in Friedman 
[7].  
 
The underlying Ito process is given by (1). Next follows the 
shortest possible proof that transition densities of the 
Fokker-Planck pde for stock returns, where R(x,t)=µ-D(x,t)/2 
but with the unknown stock interest rate µ replaced by the 
risk neutral rate r [17], generates martingale option price and 
thereby provides the so-called ‘martingale measure’ of 
financial engineering. A proof via Girsanov’s theorem [18] 
that Black-Scholes predicts fair option prices is therefore 
superfluous. 
 
Initial value problems of (46), where v(x,T) is specified at a 
forward time T>t, are solved by a Martingale construction 
that results in the Feynman-Kac formula [7]. Defining 
M(s)=v(x,s)I(s), with dv(x,s) given by Ito’s lemma and using 
(46) in Ito’s lemma for dv we obtain 
 

  
dM = dvI+ vdI = "c(x,s)v(x,s)ds+ v(x,s)dI(s)+ D(x(s),s)

#v

#x
I(s)dB(s)

. (48) 
 
We obtain a martingale M(s)=v(x,s) with the choice 
 

    I(s) = e
" c(x(q),q)dq

s

t

#
 , (49) 

 
so that the solution of (46) is given by the martingale 
condition M(t)=<M(T)>, 
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v(x,t) = v(x(T),T)e
c(x(s),s)ds

t

T

"
   (50) 

 
where the Feynman-Katz average (50) at time T is calculated 
using a functional integral based on the Green function 

  g
+(x,t y,s) of (46) with c=0, i.e., the Green function of K1. 

This martingale construction for solutions of Black-Scholes 
type pdes (46) is given in [19]1 using unnecessarily 
complicated notation, and without the explanation of the 
connection of the Black-Scholes pde with K1, K2, and the 
Chapman-Kolmogorov eqn. The result () for Black-Scholes 
type pdes was derived by Friedman [3] over twenty years 
before it was rediscovered in financial economics by Duffie 
[20].  
 
The Feynman-Katz formula is discussed in the financial 
math literature, but it is not used there to prove that the 
Black-Scholes transition density generates a martingale 
option price. With x=lnp(t)/pc, c=r and R=r-D/2, where r is 
the risk neutral interest rate, then we obtain the Black-
Scholes pde written in the returns variable x. It follows that 
the initial value problem for pricing a call C(p,t)=v, 
 
    v(x

T
,T) = (pexT "K)#(pexT "K), (51) 

 
is solved by 
 

  
  
e" rt v(x,t) = e" rT dx

T
"#

#

$ v(x
T
,T)p

2
(x

T
,T x,t) (52) 

 

                                     
1 In [19], eqns. (15.25) and (15.27) are inconsistent with each other, (15.25) cannot 
be obtained from (15.27) by a shift of coordinate origin because the x-dependent 
drift and diffusion coefficients break translation invariance. A careful treatment 
of solving elliptic and parabolic pdes by running an Ito process is provided by 
Friedman [7]. 
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where p=pce
x is the present price at time t and pc is the 

consensus price (‘value’) [21], showing that the risk neutral 
discounted call price is a martingale. This result was proven 
in a different way earlier [17]. 
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