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Abstract 
 
The discovery of the dynamics of a time series requires 
construction of the transition density, 1-point densities and 
scaling exponents provide no knowledge of the dynamics. 
Time series require some sort of statistical regularity, 
otherwise there is no basis for analysis. We state the possible 
tests for statistical regularity in terms of increments.  The 
condition for stationary increments, not scaling, detemines 
long time pair autocorrelations. An incorrect assumption of 
stationary increments generates spurious stylized facts, fat 
tails and a Hurst exponent Hs=1/2, when the increments are 
nonstationary, as they are in FX markets. The 
nonstationarity arises from systematic uneveness in noise 
traders’ behavior. Spurious results arise mathematically 
from using a log increment with a ‘sliding window’. The 



Hurst exponent Hs generated by the using the sliding 
window technique on a time series plays the same role as 
Mandelbrot’s Joseph exponent. Mandelbrot originally 
assumed that the ‘badly behaved second moment of cotton 
returns is due to fat tails, but that nonconvergent behavior 
providess instead direct evidence for nonstationary 
increments.  
 
 
1. Introduction 
 
The finance and physics literature contains many papers 
claiming scaling via Hurst exponents on the one hand, and 
fat tailed distributions on the other. The expectations of 
Hurst exponent scaling, fat tailed distributions, and 
exponent universality have played a central in econophysics. 
The question what are the underlying market dynamics has 
remained controversial, but we provide strong evidence for 
a martingale [1], i.e., diffusive dynamics. 
 
This paper explains in more detail our recent foreign 
exchange (FX) data analysis [2]. The mainl expectations of 
econophysics, Hurst exponent scaling, universality, and fat 
tails are not exhibited by FX markets when nonstationary the 
increments are correctly treated. Correspondingly, we 
explain why most existing data analysis claiming fat tails 
and scaling are wrong, including the original paper on 
reporting fat tails in cotton returns.  
 
The analysis of this paper can be understood as a tale told by 
two different variables: First, there is what we define [1,2] as 
the log return 
 

    x(t) = ln p(t)/p
c
(t) (1) 

 



where p(t) is the price of a stock, bond, or foreign exchange 
at time t, and pc(t) can be understood as ‘value’ [3], the most 
probable price, the price that locates the peak of the 1-point 
returns density f1(x,t) at time t. Then, there is what most 
other theorists (beginning with Osborne) mean by log 
returns, 
 

    x(t,T) = x(t+T)"x(t) = ln p(t+T)/p(t),   (2) 
 
but which is clearly an increment of the log return. The log 
return x(t) is always a ‘good’ variable both in theory and 
data analysis, but the use of the log increment x(t,T) in data 
analysis leads to spurious stylized facts, to spurious scaling 
with exponent Hs=1/2 and spurious fat tails in a wrongly 
extracted 1-point returns density fs, where the subscript “s” 
denotes ‘sliding window’. The two variables will yield 
identical results iff. a data set or model generates stationary 
increments x(t,T)=x(T). We show correspondingly that the 1-
point returns density f1(x,t) correctly extracted from FX 
market time series gives evidence neither for scaling with H 
over a time scale of a day, nor for fat tails. We speculate that 
stock prices, in contrast, may exhibit fat tails (but not Hurst 
exponent scaling) over the same time scale. There is no 
evidence for market universality, and in far from 
equilibrium dynamics there is no reason to expect 
universality. 
 
Drift-free Markov, and more generally martingale processes 
generate uncorrelated increments that are generally 
nonstationary, reflecting a hard to beat market:         
<x(t,T)x(t,-T)>=0 where x(t,-T)=x(t)-x(t-T). If the mean square 
fluctuation <x2(t,T)> depends on the starting time t then the 
increments are nonstationary. In FX (and in most other) data 
analyses stationary increments have been implicitly assumed 
by the use of a technique called a “sliding window”. A 
‘sliding window’ is used to build histograms by reading a 



time series while varying t in the increment x(t,T) with T 
fixed, and in the presence of nonstationary increments this 
method cannot generate the correct density f1(x,t). Instead, 
the method at best generates a spurious density fs(z,t,T) that 
we will define precisely below. The sliding window 
technique would be legitimate, would yield f1(z,T) 
independent of starting time t iff. the increments were 
stationary, iff. z=x(t,T)=x(T) independent of the starting time 
t. But the increments in finance data are not stationary [2], 
and there is no ergodicity in a nonstationary (i.e., far from 
statistical equilibrium) time series, so that the sliding 
window method produces ‘significant artifacts’, spurious 
stylized facts.  
 
Another conclusion is that scaling doesn’t matter anyway 
[1], scaling gives us no information whatsoever about either the 
underlying market dynamics or memory. The purpose of this 
paper is to explain how to analyze random time series 
without generating spurious stylized facts. Our method and 
conclusions are not restricted to finance data but have 
application to the analysis of stocastically generated time 
series, whether in physics, economics, biology, or elsewhere. 
We offer a new viewpoint in the theory of stochastic 
processes and in data analysis. This paper defines the 
requireents from extracting knowledge of dynamics from 
empirically generated time series, whether in the social 
sciences, turbulence, or elsewhere.   
 
 
2. Hurst exponent scaling 
 
We define selfsimilar stochastic processes and then show 
that selfsimilarity is restricted to 1-point densities. A 
stochastic process x(t) is said be selfsimilar with scaling 
exponent H, 0<H<1,  if [4,5] 
 



    x(t) = t
H

x(1),   (3) 
 
where by equality we mean equality ‘in distribution’. Note 
first that scaling trajectories necessarily pass through the 
‘filter’ x(0)=0, trajectories with x(0)≠0 cannot possibly scale. 
Second, a method designed by Hurst to detect trends was 
originally used to define a different scaling exponent that 
Mandelbrot and Taqqu labeled the Joseph exponent J  [6]. 
However, the notation “H” was used by Mandelbrot and 
van Ness [5] to describe fractional Brownian motion (fBm), a 
selfsimilar process that does produce the trends of the Hurst-
Mandelbrot ‘Joseph Effect’ via long time pair correlations 
arising from stationarity of the increments. Mandelbrot and 
Taqqu distinguished H from J on the basis of Hurst’s (highly 
nontransparent) R/S analysis, and noted that while H=J for 
fBm, for processes without long time increment 
autocorrelations, like Levy processes and drift free Markov 
processes, H≠J=1/2. Embrechts [4] denotes the selfsimilarity 
exponent by H, but stops short of writing H(urst). Because of 
the vast confusion in the  scientific literature, wherein H≠1/2 
is too often but wrongly thought to imply long time pair 
correlations, we will call the selfsimilarity exponent H “the 
Hurst exponent” and explain that selfsimilarity, taken alone, 
does not and cannot generate long time pair autocorrelations 
like those of fBm. We will introduce a second scaling 
exponent, the ‘sliding window Hurst exponent’ Hs, and will 
see that Hs plays essentially the same role as does the Joseph 
exponent: H≠Hs=1/2 whenever there is selfsimilarity 
without long time pair correlations, but H=Hs≠1/2 in the 
presence of long time pair correlations combined with 
selfsimilarity. The essential requirement for long time pair 
correlations will be seen to be stationarity of the increments with 
variance nonlinear in t, not selfsimilarity. Selfsimilarity and 
stationarity of the increments are confused together into an 
unhealthy and misleading soup too often in the literature 
(see. e.g., the definition of the Hurst exponent in Wikipedia, 



http://en.wikipedia.org/wiki/Hurst_exponent, where the 
note added Oct., 2007, is ours). Next, we define selfsimilarity 
in terms of probability densities, which explains what is 
meant by asserting that x(t)=tHx(1) ‘in distribution’. 
 
The 1-point density f1(x,t) reflects the statistics collected from 
many different runs of the time evolution of x(t) from a 
specified initial condition x(to), where x(0)=0 is required for 
scaling, but cannot describe correlations or the lack of same. 
Given a dynamical variable A(x,t),the absolute (as opposed 
to conditional) average of A is 
 

  
A(t) = A(x,t)f

1
(x,t)dx

"#

#

$
.  (4) 

 
From (1), the moments of x must obey 
 

 
  
x
n(t) = t

nH

x
n(1) = c

n
t
nH (5) 

 
Combining this with  
 

   
x n (t) = x nf

1
(x,t)dx"  (6) 

 
we obtain 
 

    f1
(x,t) = t"HF(u),  (7) 

 
where the scaling variable is u=x/tH [1,7].  
 
In contrast, the conditional averages <A(x,t)>cond needed in 
finance require the 2-point density 
 

   f2
(x,t+T;y,t) = p

2
(x,t+T y,t)f

1
(y,t),  (8) 

 



or, more to the point, the 2-point transition density 
(conditional probability density) p2(x,t+T:y,t).  
 
If the absolute average of x(t) vanishes, then the variance is 
simply 
 

  
"

2
= x

2(t) = x
2(1) t2H .  (9) 

 
This explains what is meant by Hurst exponent scaling, and 
also specifies what’s meant by asserting that eqn. (1) holds 
‘in distribution’. There, ‘in distribution’ refers strictly to the 
1-point density, a quantity that tells us nothing about the 
underlying dynamics.  
 
The vanishing of the absolute average of x does not mean 
that there’s no conditional trend: in fractional Brownian 
motion (fBm), e.g., where <x(t)>=x(0)=0 by construction, the 
conditional average of x does not vanish and depends on t 
[7], reflecting either a trend or an anti-trend. In a Markov 
process, scaling requires that the drift rate depends at worst 
on t (is independent of x) and has been subtracted, that by 
“x” we really mean the detrended variable x(t)-∫R(s)ds. 
Markov processes with x-independent drift can be 
detrended over a definite time scale, but any attempt to 
detrend fBm is an illusion because the ‘trend’ is due to long 
time autocorrelations, not to a removable additive drift term 
[1]. The attempt to detrend a time series x(t) implicitly 
assumes an underlying martingale M(t) plus drift A(t), 
x(t)=A(t)+M(t), and fBm is by construction not of that form 
[1,7]. 
 
Hurst exponent scaling is restricted to 1-point densities and 
simple averages, and 1-point densities cannot be used to identify 
the underlying stochastic dynamics [1,7,9]. Even if scaling holds 
at the 1-point level as in fBm, the 2-point density (the 
transition density p2) and the pair correlations <x(t+T)x(t)> 



do not scale, and it’s the transition density p2, or at least the 
pair correlations, that’s required to give a minimal 
description of the underlying dynamics1. In particular, 
scaling, taken alone, implies neither the presence nor absence of 
autocorrelations in increments/displacements taken over 
nonoverlapping time intervals. That is, scaling has nothing 
whatsoever to say about whether a market is effectively 
efficient (hard to beat), or is easily beatable, in contrast to 
what at least one of us incorrectly assumed earlier [3,10]. 
 
The financial economics literature reflects wrong claims and 
wrong assumptions about financial time series. In Fama [11], 
e.g., the claim is made that returns are uncorrelated, 
<x(t+T)x(t)>=0. The correct statement, explained below, is 
that both prices and returns are always correlated, 
<p(t+T)p(t)>≠0, <x(t+T)x(t)>≠0, but increments in returns 
approximately vanish after a trading time of 10 minutes: 
<x(t,T)x(t,-T)>≈0 for T≥10 min. of trading [2]. The latter is 
effectively the efficient market hypothesis: one cannot make 
money systematically by trading on either simple averages 
or pair correlations [1]. Note that an assumption of 
stationary increments, the confusion of x(t,T) with x(T), 
would lead one wrongly to assert that returns are 
uncorrelated. Some statisticians and financial economists 
[12] treat nonstationary time series as if they cold be 
transformed into stationary ones, but as we show below this 
is topologically impossible. 
 
 
3. Stationary vs. nonstationary increments 
 
Stationary processes are often confused with stationary 
increments in the literature (see [8] for a discussion). 
Stationary increments are implicitly assumed in data 
                                         

1
 For a Gaussian process, pair correlations and p2 provide a complete description. But for nonGaussian processes like 

FX markets all of the transition densities pn, n=2,3,… are required to pin down the dynamics. In practice, we usually do 

not know any more about the dynamics than can be extracted from pair correlations. 



analyses and simulations whenever a sliding window 
method is used to extract histograms, and the sliding 
window method is implicitly assumed whenever x(t,T) is 
treated as the variable in data analysis (see, e.g., [13]). We 
define stationary and nonstationary increments and exhibit 
their implications for the question of long time 
autocorrelations, or complete lack of autocorrelations. We 
emphasize that the question of stationary increments, not 
scaling, is central for the existence of long time correlations. 
 
By increments, we mean displacements x(t,T)=x(t+T)-x(t). 
Stationary increments of a nonstationary process x(t) are 
defined by [4,5,7] 
 
    x(t + T) " x(t) = x(T),  (10) 
 
and by nonstationary increments [1,7,15] we mean that the 
difference 
 
    x(t + T) " x(t) # x(T)  (11) 
 
depends on both (t,T), not on T alone. The implications of 
this distinction for data analysis, and for understanding 
Hurst exponents, are central. Although the correct 1-point 
density is f1(x,t)=∫dyf2(y,t+T;x,t) by definition, in the 
nonstationary increment case the density of increments 
z=x(t,T) must be obtained from the two-point density via 
 

   fs
(z,t,T) = dxdyf

2
(y,t+T;x,t)"(z# y+x)$   (12) 

 
and depends on t. In general we cannot assume time-
translational invariance, f2(y,t+T;x,t)≠f2(y,T;x,0), even for a 
stationary increment process like fBm [7], even though for 
stationary increments the 1-point density (12) is independent 
of t, fs(x,t,T)=f1(z,T). In this case sliding windows can be used 



to obtain histograms for the correct 1-point density f1(z,T) 
from a single long time series. 
 
The efficient market hypothesis (EMH) is sometimes 
interpreted to mean that the market is impossible to beat 
[12], that there are no correlations at all (no systematically 
repeated price/returns patterns) that can be exploited for 
profit. Real markets are certainly hard to beat. A Markov 
market satisfies the condition of an impossible to beat 
market. But because real markets are very hard if not 
necessarily impossible to beat, models that generate no 
autocorrelations in increments are a good zeroth order 
approximation to real markets [1]. In such models, the 
autocorrelations in increments  x(t,T) and x(t,-T) vanish 
 

  
(x(t

1
) " x(t

1
" T

1
))(x(t

2
+ T

2
) " x(t

2
)) = 0, (13) 

   
 
if there is no time interval overlap, 
 

    [t1 " T1
, t

1
]#[t

2
, t

2
+ T

2
] = $,  (14) 

 
where Φ denotes the empty set on the line. This is a much 
weaker and more pregnant condition than would be 
asserting that the increments are statistically independent. 
Condition (14) is in fact a martingale condition in weak 
disguise. Eqn. (14) means that nothing that happened in an 
earlier time interval can be used to predict systematically the 
returns in a later time interval at the level of (simple averages 
and) pair correlations. That is, the market is ‘effectively 
efficient’ in the sense that simple averages and pair 
correlations look Markovian, unlike fBm there is no memory 
in pair correlations to be exploited. This may not rule out 
higher order correlations that might be used for technical 
trading. I.e., a Markovian market is ‘efficient’ in the strictest 



sense, is impossible to beat, whereas a martingale market 
looks Markovian to lowest order (at the level of simple 
averages and pair correlations), but might be systematically 
beatable at some higher level of insight. This defines 
precisely what we mean by “lowest order”. It was 
Mandelbrot who suggested martingales as reflecting the 
EMH [15], a real market may exhibit memory but that 
memory will be hard to find and exploit for profit. 
 
Consider a stochastic process x(t) where the increments are 
uncorrelated. From this condition we easily obtain the 
autocorrelation function for returns x(t) 
 

  
x(t)x(s) = (x(t) " x(s))x(s) + x

2(s) = x
2(s) > 0,  (15) 

 
since x(s)-x(to)=x(s), so that <x(s)x(t)>=<x2(s)>=σ2 is simply 
the variance in x. This is a martingale condition, 
 

    
x(t+T)

cond
= x(t),   (16) 

 
or 
 

    dyyp
2" (y,t+T x,t) = x . (17) 

 
The result has a nice interpretation: since <x(t,T)x(s)>=0 for 
s≤t<t+T, future ‘gains’ x(t,T) are uncorrelated with all past 
returns. We interpret an efficient market to mean that thee 
are no pair correlations that can be exploited for profit. This 
doesn’t rule out higher order correlations in a martingale. 
 
We next obtain another central result. Combining 
 

  
(x(t + T) " x(t))2

= + (x2(t + T) + x
2(t) "2 x(t + T)x(t)  

(18) 



 
with (14), we get 
 

 
  
(x(t + T) " x(t))2

= x
2(t + T) " x

2(t)   (19) 

 
which depends on both t and T, excepting the rare case 
where the variance <x2(t)> is linear in t. Martingale increments 
are uncorrelated and are generally nonstationary. I.e., we must 
expect nonstationary increments in effectively efficient 
markets.  The variance <x2(t)> of a real FX market is not 
linear in t, it has instead very complicated variation with 
time. 
 
Consider next the class of all stochastic processes with 
stationary increments, x(t,T)=x(T) ‘in distribution’. Here, we 
begin with 
 

  
"2 x(t + T)x(t) = (x(t + T) " x(t))2

" (x2(t + T) " x
2(t) , 

 (20) 
 
and then using (8) on the right hand side of (18) we obtain 
 

  
"2 x(t + T)x(t) = (x2(T) " (x2(t + T) " x

2(t)  (21) 

 
which differs from (13). The increment autocorrelation 
function is 
 

  
2 (x(t)"x(t"T))(x(t+T)"x(t)) = x2 (2T) "2 x2 (T)

 (22) 
 
which vanishes iff. the variance <(x2(t)> is linear in t. 
Stationary increments are typically strongly correlated. E.g., if 
scaling (1) holds then we obtain the prediction of infinitely 
long time autocorrelations 
 



  
(x(t)" x(t " T))(x(t + T)" x(t)) = x

2(T) (22H"1 "1). 

(23) 
 
characteristic of fBm [5,7]. This autocorrelation vanishes iff. 
H=1/2, otherwise the autocorrelations are strong for all time 
scales T. Such fluctuations violate the EMH, especially if H 
cannot be approximated as H≈1/2. Note that scaling is not 
the essential point, is in fact irrelevant: stationarity of the 
increments, reflected in the t-independent pair correlations (21), is 
the central requirement for long time increment autocorrelations. 
 
Summarizing, the Hurst exponent H tells us nothing 
whatsoever about autocorrelations in increments, tells us 
nothing whatsover about the underlying dynamics apart 
from scaling itself, and tells us nothing whatsoever about the 
effficiency or lack of same of a market. In the next two 
sections we will sharpen the distinction by exhibiting both 
scaling Markov processes and fBm where H≠1/2.  
 
 
4. Selfsimilar Ito Processes  
 
An Ito process is generated locally by the stochastic 
diffferential equation (sde)  
 
 

  dx = R(x, t)+ D(x,t)dB(t)    (24) 
 
where B(t) is the Wiener process. A Wiener process is an 
uncorrelated Gaussian process scaling with H=1/2, so that 
the increments are stationary and (from Ito’s theorem) 
dB2=dt=<dB2>. Iff. R(x,t)=R(t) is independent of x can we 
detrend all trajectories once and for all by replacing x(t) by 
x(t)-∫R(s)ds. With this substitution, the Ito process is a 
martingale. The absolute average gives <x(t)>=0 and there is 



no trend. Finite memory may be present but we will not 
write the possible memory explicitly. Instead,  
 
The variance can be calculated from the stochastic integral of 
(24) as 
 

  
"2

= ds
0

t

# dxf
1
(x,s)D(x,s)

$%

%

#
,   (25)    

 
where x(0)=0, so that scaling of the density and the variance 
imply that the diffusion coefficient scales as well [8]: 
 

  D(x, t) = t2H"1D(u),u = x/tH .  (26) 
 

Note that scaling of D does not imply scaling of the 
transition density p2(x,t+T;xo,t). 
 
We can also write the mean square fluctuation about an 
arbitrary point x(t) globally as 
 

  
(x(t+T)"x(t)

2

= ds
t

t +T

# dxf
1
(x,s)D(x,s)

"$

$

# = x2 (1) ((t+T)2H " t2H )
 

(27)    
 
and locally for t>>T as  
 

    
(x(t+T)"x(t)

2

# t2H"1 D(u)T .  (28) 
 
Both the global and local mean square fluctuations are useful 
in FX data analysis. In particular, in () the mean square 
fluctuation scales with T with Hs=1/2. 
 
An Ito stochastic process may have finite memory. By ‘finite 
memory’ we mean a ‘filtration’ (xn-1,xn-2,…,x1) that every 
trajectory must pass through. An example with n=2 is given 
in [16,17].  



 
Ito processes are 1-1 with Fokker-Planck pdes [8,18] so we 
work with the drift free Fokker-Planck pde 
  

    

"p
2

"t
=

1

2

"
2

"x2
(Dp

2
)
,  (29) 

 
where scaling may occur at best only for f1(x,t)=p2(x,t:0,0,). 
 
Model 1-point densities that scale with H are easily 
calculated [8,18,19]. With 
 
 

  f1
(x,t) = t"HF(u);u = x/tH

  (30) 
 
 
and 
 

  D(x, t) = t2H"1D(u),u = x/tH   (31) 
 
 
the Fokker-Planck pde (32) yields 
 

  2H(uF(u) " ) + (D(u)F(u) " " ) = 0     (32) 
 
which we integrate to obtain 
 

  
F(u) =

C

D(u)
e"2H udu/D(u)#   (33) 

 
 
For H≠1/2 all of these processes generate nonstationary 
increments. 
 
If 



 

  
D(u) = (1+ u)/2H  (34) 

 
Then we  get the exponential density 
 

  F(u) =Ce
" u ,  (35) 

 
where C is the normalization constant. For FX data a 2-sided 
exponential density is needed and is easily derived. 
 
 
5. The Minimal Description of Dynamics 
 
A 1-point density cannot be used to identify the underlying 
dynamics. Given a 1-point density or a diffusive pde for a 1-
point density, we cannot even conclude that we have a 
diffusive process. The 1-point density for fBm, a 
nondiffusive process with long time increment 
autocorrelations, satisfies exactly the same diffusive pde as 
does a Gaussian Markov process, whereas the transition 
density for fBm satisfies no pde. A detrended diffusive 
process has no increment autocorrelations, so that the pde 
for the transition density is also diffusive (Fokker-Planck). 
Therefore, the minimal knowledge needed to identify the c 
of dynamics is either the transition density depending on 2 
points, or else the specification of the pair correlations 
<x(t)x(s)> or increment autocorrelations. Nothing less will 
suffice. 
 
For a general stochastic process, transition densities 
depending on historiesof all orders n are required. Pair 
correlations are adequate to determine all of those densities 
in exactly two cases. For a drift-free process with 
<x(t)x(s)>=<x2(s)>, s<t, the process is either Markovian (is 
memory-free) or else is a martingale with finite memory. In 
either case the process is diffusive and pn=p2, n≥2. The other 



case where pair correlations determine the process is for 
Gaussian processes. There, the pair correlations specify the 
required Gaussian densities of all orders [20]. 
 
Here, we cannot determine whether an underlying 
stochastic process is diffusive, has long time memory like 
fBm, or arises from correlated noise as in statistical physics 
near thermal equilibrium without specifying <x(t)x(s)>. Two 
of these three cases are treated below in the text.  
 
 
6. Inequivalence of stationary and nonstationary processes 
 
We showed earlier that, incontrast with claims made in 
many financial math texts, an arbitrary martingale is 
topologically inequivalent to a Wiener process [1]. By a 
similar path we can show that nonstationary time series are 
topologically inequivalnt to stationary ones. By treating time 
series as if the noise would always be white, this problem 
has been seriously mishandled in regression analysis [12]. 
 
In regression analysis it’s sometimes assumed that a 
nonstationary time series can be transformed into a 
stationary one. This is generally impossible. Stationarity is 
an analog of the notion of “integrability” in nonlinear 
dynamics [1]. We show next that global transformations 
from nonstationarity to stationarity are topologically 
impossible.  
 
Locally seen, every sde is a Wiener process (the noise is 
always locally whilte): with 
 

  dx = R(x,t)dt+ D(x,t)dB (36) 
 
the local solution, meaning the solution over a very short 
finite time interval δt=t-to is 



 

  x(t) " x
o
+R(x

o
, t

o
)#t+ D(x

o
, t

o
)#B . (37) 

 
With the transformation y=(x-xo)/(√D(xo,to))δt we get a 
stationary process: <y2>=1, <y>=0, and the density of y is a 
stationary Gaussian (see also [12], which goes no further 
than this). Next, we ask if such a transformation is globally 
possible. As in nonlinear dynamics or differential geometry, 
this is an integrability question. 
 
The integrability problem can easily be formulated by using 
Ito calculus.  Starting with the sde for x(t) we ask for a global 
transformation y=G(x,t) to a Wiener process. From a Wiener 
process B(t) one can trivially transform to a stationary 
process B(1)=t-1/2B(t). Given the sde 
 

  
dy = (

"G

"t
+R

"G

"x
+

1

2

"
2G

"x2
)dt+

"G

"x
DdB

, (38) 
 
the condition for a Wiener process is 
 

  

"G

"t
+R

"G

"x
+

1

2

"
2G

"x2
= µ(t),

"G

"x
D = c = cons tan t

 (39) 
 
The required integrability conditions (the conditions that G 
exists globally) are 
 

  

"
2

G

"x"t
=
"

2

G

"t"x   (40) 
 
with 
 



  

"G

"t
= µ(t)# cR/ D +

1

4

"D

"x
/D3/2 ,

"G

"x
= c/ D

  (41) 
 
An easy calculation shows that the only process satisfying 
global integrability is another Wiener process y=µt+cB. A 
nonstationary process with D(x,t) depending on x cannot be 
transformed to a Wiener process! Processes with R and D 
depending only on t are trivially Wiener by a simple 
transformation of variables. 
 
One can ask more generally if a nonstationary process can be 
transformed into an asymptotically stationary process like 
Ornstein-Uhlenbeck. This can also be formulated as an 
integrability question, and there is at this stage no general 
answer. Given some asymptotically stationary process  
 

  dy = "#(y)dt+ E(y)dB   (42) 
 
with the appropriate condition on γ , the conditions are then 
 

  

"G

"t
+#

1
R/ D $

1

4

"D

"x
/D3/2

= $%(y),

"G

"x
D = E(y)

  (43) 
 
 
where we must know G in advance and then invert to obtain 
x=H(y,t) in order to test for integrability. No general theory 
is available, and our conjecture is that the procedure is 
generally impossible. The deterministic analog is that 
nonintegrable deterministic systems cannot be transformed 
into integrable ones. In any case, there is no reason to believe 



a priori that an arbitrary nonstationary process can be 
transformed into a stationary one. 
 
A scaling 1-point density can be transformed into a 
stationary 1-point density, F(u)=tHf1(x,t).  However, both the 
transition density p2 (which does not scale) and the Ito sde 
[21] shows that the u-process is nonstationary.  
 
 
7. Time Seris Analysis 
 
One needs many runs of the same identical experiment in 
order to obtain good histograms/statistics and averages. 
This means that for data analysis we need different N 
realizations of the time series xk(t), k=1,…,N, where for good 
statistics N>>1. At time t each point in each run provides 
one point in a histrogram. The average of a dynamical 
variable A(x,t) is then given by 
 

  
  
A(x,t) =

1

N
A(x

k
k=1

N

" (t),t)  (44) 

 
where the N values xk(t) are taken from different runs at the 
same time t. Suppose that the outcome xm(t) occurs Fm times 
during the N runs, and denote fm=Fm/N with  
 

  
  
N = F

m

m=1

n

" .  (45) 

 
 Then 
 

  
  
A(x,t) = f

m
A(x

m
m=1

n

" (t),t).   (46) 

 
The fm are what we mean by the histograms for the 1-point 
density. If the histograms can be approximated by a smooth 
density f1(x,t), then (46) becomes 



 
  

  
A(x,t) = dxf

1
(x,t)A(x,t)" . (47) 

 
This is the absolute average. In finance, for calculating 
option prices, e.g., we always want instead the conditional 
average starting from a specific initial condition (xo,to). This 
would require histograms for f2(y,t:x,s), whereby p2=f2/f1 
could then be constructed. In practice this is hard. What one 
does instead is to first check the increment autocorrelations. 
If the increment autocorrelations vanish then we have a 
martingale. Martingales obey diffusive dynamics. If f1 has 
been extracted, then the diffusion coefficient D(x,t) can be 
found by solving the inverse problem in the diffusion pde 
[10,18], both p2 and f1 satisfy the same pde for Ito processes 
[16,17]. This requires first that one knows the time 
dependence of f1. If scaling holds then this is easy, one need 
only find the Hurst exponent H for the variance. But scaling 
generally does not hold. FX data are traded 24 hours/day. In 
that case, when we analyze one market, e.g. the London 
market, then the we must reset the clock and take an 
arbitrary time, say 9AM, as the starting time each day [2]. 
 
 
A single time series provides no statistics, no histograms: 
there is only one point at each time t. Dynamics cannot be 
deduced from a single time series unless very special 
conditions are first met. There are only two special cases 
where we can avoid N runs of the experiment and obtain 
histograms and averages from a single, long time series like 
a 6-7 year price series converted to returns x(t). The first two 
methods are inapplicable in finance, and we state them in 
order to warn the reader to avoid the mistakes that follow 
from their widespread misapplication. 
 



First, if the time series is stationary then the 1-point density 
and all absolute averages are t-independent [14]. In this case 
we have the ergodic theorem [20,22], 
 

  
  
A(x) =

1

N
A(x

k
(t)

k=1

N

" = dxA(x)f
1
(x)#  (48) 

 
where the 1-point density is obtained from the time series 
from ergodicity: Equally sized regions in the one 
dimensional phase space x are visited equally frequently, so 
we can obtain coarsegrain the interval xmin<x<xmax into cells 
and obtain fk by counting how often xk occurs in the time 
series. If there is no drift and the motion is bounded (takes 
place in a box) then f1(x)=constant. But finance markets are 
nonstationary, are very far from statistical equilirium. The 
equations that describe finance markets do not even admit 
statistical equilibrium as a possibility. 
 
Second, if the increments are stationary, x(t+T)=x(t)=x(T), 
then we can obtain f1(x,T) from a single ,long time series by 
sliding a window. We start at a point t, read the value of x at 
the point t+T, and thereby construct a histogram that yields 
f1(x,T). In this case the log increment 
x(t)=lnp(t+T)/p(t)=lnp(T)/p(0) is a ‘good’ variable, and a 
single long time series yields ‘good statistics’. We may test 
for stationary increments by breaking the time series up into 
N ‘runs’ of equal length, and then calculating the mean 
square fluctuation 
 

  
  
(x2 (t,T) =

1

N
x

k

2

k=1

N

" (t,T)  (49) 

 
for all different times tmin<t<tmax in a single run. If the 
increments are stationary then the mean square fluctuation 
is constant, independent of starting time t. Financial time 
series do not have stationary increments.  



 
The reader is now referred to a discussion in chapter 1 of 
[10] where it’s implicitly argued that nothing can be 
discovered unless something is periodic, or is in some sense 
syetematically repeated, or is invariant (period zero). The 
repetitiveness in ergodicity (quasiperiodicity) , and with 
stationary increments x(T) = x(t,T) the 2-point density (but 
not the 1-point density!) is time translationally invariant. 
 
What can we do if we have a single, long time series and the 
increments are nonstationary and uncorrelated? In this case 
we must start by making an ansatz. We assume, e.g., that the 
traders repeat the same stochastic dynamics each day. This is 
equivalent to asuming that the same diffusion coefficient 
D(x,t) describes the trading day after day. So each day is a 
regarded as a rerun of the same ‘experiment’. One can check 
this as follows. Calculate the mean square fluctuation 
<x2(t,T)> for one day. Then, calculate the same quantity on 
the time scale of a week. If the ansatz is true then the weekly 
plot of the mean square fluctuation will look like 5 
repetitions of the daily plot.  
 
If this fails, then there is no need to write finance or 
economics texts because there is no empirical basis, or any 
other bais, for discovering any lawful behavior whatsoever. 
The same argument applies to other social sciences. We 
would then be in the situation described by Wigner [11,23] 
where there may be laws of motion but we would have no 
way to discover them.  
 
In superficial contradition to Wigner’s observation, we’ve 
described how to discover an empirical model without any 
apparent underlying invariance principle, but that is not 
entirely true. Consider arbitrage on a single stock, say AMD. 
If there is no arbitrage from market to market, then the 
probability densities for AMD are the same at every location 



on the globe where AMD is traded (to within taxes and 
trading costs). This is the analog of rotational invariance in 
physics. There is no corresponding conservation law (there 
is no Lagrangian to which one can apply Noether’s Theorem 
[24]) but there is still the invariance that Wigner told us must 
be present for the effort to succeed. 
 

 
 
8. Spurious Stylized Facts 
 
We begin with ‘the observed stylized facts’ of FX markets as 
stated by Holmes [25]: (i) asset prices are persistent and 
have, or are close to having, a unit root and are thus (close 
to) nonstationary; (ii) asset returns are fairly unpredictable, 
and typically have little or no autocorrelations; (iii) asset 
returns have fat tails and exhibit volatility clustering and 
long memory. Autocorrelations of squared returns and 
absolute returns are significantly positive, even at high-order 
lags, and decay slowly; (iv) Trading volume is persistent and 
there is positive cross-correlation between volatility and 
volume. These statements reflect a fairly standard set of 
expectations. Next, we contrast those expected stylized facts 
with the hard results of our recent FX data analysis [2]. Our 
analysis is based on 6 years of Euro/dollar exchange rates 
taken at 1 min. intervals. 
 
In  point (i) above ‘unit root’ means that in 
p(t+T)=ap(t)+noise, a=1. That is a necessary condition for a 
martingale. That rules out persistence (like fBm), and prices 
are not ‘close to nonstationary’ prices are far from stationary. 
(ii) Increment autocorrelations in FX market returns will 
vanish after about 10 min. of trading, and a simple 
coordinate transformation x(t)=lnp(t) cannot erase 
persistence, whatever ‘persistence’ might be. Both prices and 
returns have positive autocorrelation, <x(t+T)x(t)>=<x2(t)> > 



0, and autocorrelations in increments are approximately zero 
after 20 min. of trading, <x(t,T)x(t,-T)>≈0. (iii) We find no 
evidence for fat tails, and no evidence for Hurst exponent 
scaling on the time scale of a day. Because of nonstationarity 
of the increments, a 7 yr. FX time series is far too short (the 
histograms have too much scatter due to too few points) to 
indicate what may happen on larger time scales. Although 
we do not present the proof here, volatility clustering does 
not indicate ‘long memory’ but is explained as a purely 
Markovian phenomenon for variable diffusion processes, 
stochastic processes with diffusion coefficients D(x,t) where 
the (x,t) dependence is inherently nonseparable [8,18,19]. 
About point (iv) above, we offer no comment in this paper. 
 
Our main point is: the data analyses used to arrive at the 
expected stylized facts have all used a technique called ‘sliding 
windows’ [2]. The aim of this section is to explain that sliding 
windows produce spurious, results because FX data are 
nonstationary processes with nonstationary increments. 
Only one previous FX data analysis [26] that we are aware of 
showed that sliding windows lead to a spurious Hurst 
exponent Hs=1/2, and correctly identified the cause as 
nonstationarity of the increments. We explain that result 
theoretically below. 
 
Here’s what’s meant by the sliding window method: one 
treats the increment z=x(t,T) as if it would be independet of 
time of day t, and attempts to construct histograms f1(z,T) for 
increments at differentlag times T by reading a time series of 
returns x(t).  There, one starts at initial time t and forms a 
window at time t+T. One assumes that the increment 
z=x(T,t)=x(t+T)-x(t) generates a 1-point density that is 
independent of t by sliding the window along the entire 
length of the time series, increasing t by one unit at a time 
while holding T fixed. For a long time series, one of at least 
tmax≈several years in length, this method is expected to 



produce good statistics because it picks up a lot of data 
points. But the histograms generated from varying t in the 
increments x(t,T) yield f1(z,T) independently of t iff. the 
increments are stationary, otherwise the assumption is false. 
And the assumption is false: first, fig, 1 shows that the 
increments are uncorrelated after about 10 min. Second, fig. 
2a shows that the mean square fluctuation <x2(t,T)> with T 
fixed at 10 min. depends very strongly on t throughtout the 
course of a trading day. This means simply that the traders’ 
noisy behavior is not independent of time of day. Our 
conclusion is that FX data, taken at 10 min. (or longer) intervals 
are described by a martingale with nonstationary increments in log 
returns. 
 
To illustrate how spurious stylized facts are generated by 
using a sliding window in data analysis, we apply that 
method to a time series with uncorrelated nonstationary 
increments, one with no fat tails and with a Hurst exponent 
H=.35, namely, a time series generated by the exponential 
density (16) with H=.35 (figure 3a) and linear diffusion (41). 
The process is Markovian. Fig. 3a was generated by taking 
5,000,000 independent runs of the Ito process, each starting 
from x(0)=0 for T=10, 100, and 1000. The sliding window 
result is shown as figure 3b. In this case, the sliding 
windows appear to yield a scale free density Fs(us), 
us=xs(T)/THs, from an empirical average over t that one 
cannot formulate theoretically, because for a nonstationary 
process there is no ergodic theorem. Not only are fat tails 
generated artificially, but we get a spurious Hurst exponent 
HS=1/2 as well. This is the method that has  been usedto generate 
stylized fact’ in nearly all existing finance data analyses.  
 
Next, we describe our study of a six year time series of Euro-
Dollar exchange rates from Olsen & Associates [2]. The 
increments x(t,T)=x(t+T)-x(t)=lm(p(t+T)/p(t)) are 
nonstationary, as is shown by the root mean square fluctuation in 



increments plotted against t in figure 2a, where T=10 min. to 
insure that there are no autocorrelations in increments (Fig. 
1). Second, note that the returns data do not scale with a 
Hurst exponent H or even with several different Hurst 
exponents over the course of a trading day (we define a 
trading day in a 24 hour market by resetting the clock at the 
same time each morning). Fig. 2b shows that the same 
stochastic process is repeated on different days of the week, 
so that we can assume a single, definite intraday stochastic 
process x(t) in intraday returns. In fig. 2a  we see that scaling 
is observed at best within four disjoint time intervals during 
the day, and even then with four different Hurst exponents 
(H<1/2 in three of the intervals, H>1/2 in the other). That is, 
the intraday stochastic process x(t) generally does not scale and 
will exhibit a complicated time dependence in the variance <x2(t)>.  
 
Within the three windows where a data collapse F(u)=tHf(x,t) 
is weakly but inadequately indicated, we see that the scaling 
function F(u) has no fat tails, is instead approximately 
exponential (figure 4a). If we apply the method of sliding 
windows to the finance time series within the interval I 
shown in fig. 2a, then we get figure 4b, which has artificially 
generated fat tails and also a  spurious Hurst exponent 
HS=1/2, just as with our numerical simulation using time 
series generated via the exponential density  to generate a 
Markov time series (fig. 3a,b). This shows how sliding windows 
can generate artificial fat tails and spurious Hurst exponents of 
1/2 in data analysis. That is, the use of sliding windows 
generates ‘spurious stylized facts’ when the increments are 
nonstationary. This observation has far reaching 
consequences for the analysis of random time series, 
whether in  physics, economics/finance, and biology. 
 
 



Using the short time approximation T<<t, where t ranges 
from opening to closing time over a day, we obtain from (27) 
the mean square fluctuation  
 

   
x2 (t,T) " D(x,t)T = t2H#1 D(u)T  . (50).  

 
 
With uncorrelated nonstationary increments, in a scaling 
region we have more generally from (34) that 
 

  
x2 (t,T) = (x(t+T)"x(t))2

= x2 (1) [(t+T)2H
" t2H )]  (51) 

 
independent of the details of the diffusion coefficient D(x,t). 
In most existing data analyses we generally have T/t<<1 
when sliding windows are applied to the increments x(T,t), 
yielding 
 

   
x2 (t,T) " x2 (1) 2Ht2H#1T .  (52) 

 
Sliding windows then average empirically over t, 
 

    
x2 (t,T)

S
" x2 (1) 2H t2H#1

S
T  (53) 

 
yielding <x2(t,T)>S≈T2Hs with 2HS=1. Sliding window Hurst 
exponents HS=1/2  have been reported often enough in the 
literature [27], but without any correct explanation how they 
arise from models where increments are uncorrelated with 
H≠1/2. That HS=1/2 is a consequence of using sliding 
windows was first reported by Galluccio et al [26] in 1997 in 
a paper that we did not appreciate at all until we 
rediscovered the implications of nonstationary increments 
for ourselves.  In 1996 there was no theory available as 
guide.  
 



Our exponent sliding window Hs plays the same role for 
scaling martingales and fBm as does the Joseph exponent J: 
when there is scaling with H≠1/2 and with no increment 
autocorrelations then H≠Hs=1/2, whereas for stationary 
increments with nonlinear variance that scales with H then 
H=Hs. One need not use R/S analysis [6,28] to look for long 
time correlations, one need only check the mean square 
fluctuation <x2(t,T)> for lack of t-dependence, for stationary 
increments. 
 
9. Are cotton returns fat, or simply nonstationary? 
 
Finally, consider figure 2  in Mandelbrot [29], where fat tails 
with infinite variance were deduced for cotton returns. He 
plots what he calls a 2nd moment, but is actually a mean 
square fluctuation analogous to the mean square fluctuation 
in our fig. 2a (see also our eqn. (38)). In our notation, the 
exact quantity analyzed is for a single long time series 
starting with time to and running through time t is 
 

  
  
x2 (s,T)

t"avg
=

1

t " t
o

x2 (s,T)
s= to

t

#   (54) 

 
with T fixed at 1 day by using a sliding window. For either a 
stationary process or for a nonstationary process with finite 
increments and finite variance this quantity would be 
expected to ‘converge’ to a constant in probability. 
 
Mandelbrot correctly observed the quantity (54) is ‘badly 
behaved’: it doesn’t ‘converge’. He then assumes without 
proof that the cause of the wild fluctuations is Levy-like fat 
tails (in a Levy density the variance is strictly infinite) because 
he assumed without evidence that the underlying time series is 
stationary. In fact, no direct evidence either for stationarity or 
fat tails was presented. Here, in contrast, is how we interpret 
his figure 2. 



 
Markets are nonstationary, are very far from statistical 
equilibrium, and in that case the assumption about the of 
ergodicity for the empirical time average in eqn. (38) fails. 
The mean square fluctuation in (54) will not ‘converge’ but 
will fluctuate eradically if the increments are nonstationary. 
The ‘bad behavior’ observed by Mandelbrot has nothing to do with 
fat tails and is instead direct evidence for nonstationarity of the 
increments. His figure 2 reminds us of the daily uneveness 
exhibited by noise traders’ behavior in our fig. 2a. We now 
explain the basis for our assertion? 
 
For the case of FX data, consider the ensemble average over 
different trading days. This yields the quantity <x2(t,T)> of 
our fig. 2a. Next, sum this over different times of day, t-to≤24 
hrs., as in (54)) to obtain 
 

  
x2 (s,T)

t"avg
=

1

t " t
o

x2 (s,T)
s= to

t

# . (55) 

 
As t is increased, according to fig. 2a this quantity should 
fluctuate wildly due to nonstationarity of the increments. If 
we would take the quantity (54), without the ensemble 
average over different trading days, then the fluctuations 
will be more wild, not less. Mandelbrot’s cotton price 
fluctuations shown as his fig. 2 are due to nonstationary 
increments, not fat tails. The cotton variance <x2(t)> is both 
finite and nonlinear in t, because the increments are 
nonstationary, 
 

  
x2 (t,T) = x2 (t+T) " x2 (t) ,  (56) 

 
where the right hand side depends on t and is simply the 
difference in the variance at two different times. Were the 
variance linear in t, then Mandelbrot’s fig. 2 would be 



constant ‘in probability’, not wildly fluctuating and 
‘nonconvergent’. 
 
Instead of addition of variances, for nonstationary 
increments we have 
 
  

  
"

2 (t+T) = "2 (t)+ x2 (t,T) ,  (57) 

 
Whereas for stationary increments one obtains 
 
    "

2 (t+T) = "2 (t)+"2 (T).  (58) 
 
These rules are not like the combination rules for eithe the 
central limit theorem or for aggregating Levy processes. 
    
For cotton returns, the natural time scale for a correct data 
analysis may be one year, with nonstationarity of increments 
reflecting unevenness of trading during the course of a year. 
One coiuld only check this speculation by reanalyzing the 
data used in [29]. Such ‘seasonal variations’ as are exhibited 
in Mandelbrot’s fig. 2 and our fig. 2a cannot be smoothed 
without masking the essence of the underlying market 
dynamics. It would be of interest to check cotton market 
returns for uncorrelated increments, i.e., to check for a 
martingale, where the diffusion coefficient (as is explained 
above) would then describe the uneveness in the volatility of 
trading (the nonstationarity of the increments) over the time 
scale of a year. But a reliable cotton market analysis is even 
more difficult than FX because cotton price statistics are 
much more sparse, and will yield far more scatter in 
histograms than do FX market statistics. In the latter case we 
do not really get adequate daily returns histograms from 6 
years of trading taken at 10 min. intervals. We would expect 
agricultural commodities in general to exhibit nonstationary 
increments with nonlinear variance, reflecting underlying 
martingale dynamics. 



 
Instead of asking ‘is cotton fat?’ it would have been better to 
ask ‘is cotton a martingale?’ but neither question can be 
answered by using the sliding window technique implicit in 
eqn. (54). 
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Figure Captions 
 
 

 
 
 
Fig. 1. Normalized autocorrelations in increments               
AT(t1,t2)=<x(t1,T)x(t2,T)>/(<x2(t1)><x2(t2)>)1/2 for two 



nonoverlapping time intervals [t1,t1+T], [t2,t2+T] decay 
rapidly toward zero for T≥10 min. of trading.  
 
 
 

 
 
Fig. 2(a). The root mean square fluctuation <x2(t,T)>1/2  of the 
daily Euro-Dollar exchange rate is plotted against time of 
day t, with T=10 min. to insure that autocorrelations in 
increments have died out (fig. 3).  
 



 
 
 
 
 

 
 
 
Fig. 2(b) We observe that the same intraday stochastic 
process occurs during each trading day. Both of the plots (a) 
and (b) would be flat were the increments x(t,T) stationary. 
Instead, the rms fluctuation of x(t,T) varies by a factor of 3 



each day as t is varied, exhibiting strongly nonstationary 
increments. In (a) that we find scaling with H at best in the 
four disjoint colored regions, and with different values of H 
in each region. 
 
 

 
 
Fig. 3(a). The scaling function F(u) is calculated from a 
simulated time series generated via the exponential model, 
D(u)=1+abs(u)  with H=.35. 5,000,000 independent runs of 
the exponential stochastic process were used.  
 



 
 
Fig. 3(b) The ‘sliding window scaling function’ FS(us), 
us=xs(T)/THs was calculated for the same simulated data. 
Note that FS has fat tails whereas F does not, and that HS=1/2 
aprears contradicting the fact that H=.35 was used to 
generate the time series. That is, sliding windows produce 
two significantly spurious results. 
 



 
 
Fig. 4(a). Our scaling analysis uses the small window I 
shown in fig. 4a. We plot the scaling function F(u) for H=.35 
with 10 min. ≤ T ≤ 160 min. Note that F(u) is slightly 
asymmetric and is approximately exponential, showing that 
the variance is finite.  



 
 
Fig. 4(b) The ‘sliding interval scaling function’ Fs(us), 
us=xs(T)/THs, is constructed empirically from the same 
interval I for T=10, 20, and 40 min. Note that fat tails have 
been generated spuriously by the sliding windows, and that 
a spurious Hurst exponent Hs=1/2 has been generated as 
well, just as in the simulation data shown as fig. 3a,b. 
 
 
 


