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Abstract 
 

 

This report presents an application of a macro stress testing procedure on credit risk in the 

Romanian banking system.  

Macro stress testing, i.e. assessing the vulnerability of financial systems to exceptional but 

plausible macroeconomic scenarios, maintains a central role in macro-prudential and crisis 

management frameworks of central banks and international institutions around the globe.  

Credit risk remains the dominant risk challenging financial stability in the Romanian financial 

system, and thus this report analyses the potential impact of macroeconomic shocks scenarios 

on default rates in the corporate and household loan portfolios in the domestic banking system.  

A well-established reduced form model is proposed and tested as the core component of the 

modelling approach. The resulting models generally confirm the influence of macroeconomic 

factors on credit risk as documented in previous research including applications for Romania, 

but convey also specific and novel findings, such as inclusion of leading variables and 

construction activity level for corporate credit risk. 

Using the estimated model, a stress testing simulation procedure is undertaken. The simulation 

shows that under adverse shock scenarios, corporate default rates can increase substantially 

more than the expected evolution under the baseline scenario, especially in case of GDP shock, 

construction activity shock or interest rate shocks. Under the assumptions of these adverse 



scenarios, given also the large share of corporate loans in the banks’ balance sheet, the default 

rates evolution could have a substantial impact on banks’ loan losses. 

The households sector stress testing simulation show that this sector is more resilient to 

macroeconomic adverse evolutions, with stressed default rates higher than expected values 

under baseline scenario, but with substantially lower deviations. 

The proposed macro-perspective model and its findings can be incorporated by private banks in 

their micro-level portfolio risk management tools. Additionally, supplementing the authorities’ 

stress tests with independent approaches can enhance credibility of such financial stability 

assessment. 
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1. Introduction 

1.1. Macro stress-testing background  

 

Macro stress-testing comprises a set of techniques designed to assess potential vulnerabilities 

of a financial system, or a sub-set thereof, to “exceptional but plausible” macroeconomic 

shocks (I.M.F. and the World Bank, 2003, p. 3, Jobst et al, 2013). Whereas stress-testing at 

micro levels (e.g. at portfolio or institution level) has been extensively used by international 

banks since 1990, macro stress-testing of entire financial systems is a more recent approach 

(Borio et al, 2012; Sorge and Virolainen, 2006). It has maintained a key role within Financial 

Sector Assessment Programs (F.S.A.P.) macro-surveillance framework initiated by International 

Monetary Fund (IMF) and the World Bank in 1999 (Sorge and Virolainen, 2006) and has 

gradually become an important part of the macro-prudential toolbox used by authorities 

around the globe (especially central banks and international financial institutions, F.S.B.-I.M.F.-

B.I.S., 2011, Drehmann, 2008). Following the onset of the current crisis, macro stress-testing 

has gained a new role of effective crisis management and resolution tool, guiding bank 

recapitalization processes and contributing to restoring confidence within financial systems 

(I.M.F., 2012a, Borio et al, 2012).  

Aside I.M.F.’s F.S.A.P. programs, illustrative examples of usage of macro stress-testing, applied 

within broader crisis-management stress-testing procedures and focusing on financial 

institutions of systemic importance, include (i) U.S. Federal Reserve Supervisory Capital 

Assessment Program performed in 2009, (ii) E.U.-wide stress-testing performed by the 
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Committee of European Banking Supervisors and the European Banking Association (E.B.A.) in 

2010, and (iii) E.B.A. Capital Exercise in 2011-2012. (I.M.F., 2012a; E.B.A. 2011). 

The main intended value added of macro stress testing is derived from the consultative 

approach of the process and the integration of “a forward-looking macroeconomic perspective, 

a focus on the financial system as a whole, and a uniform approach to the assessment of risk 

exposures across institutions” (I.M.F. and the World Bank, 2003, p. 3, Foglia, 2009). 

1.2. Stress test application in the Romanian banking system 

 

The latest financial stability report issued by the National Bank of Romania (N.B.R. 2012) shows 

that the Romanian financial system is dominated by the banking system, which accounts for 

almost 68% of the net assets of the Romania financial systems (N.B.R. 2012). The domestic 

banking system features a high connectivity with the European banking system as majority E.U.-

based foreign capital banks hold more than 80% of total net assets. The report notes that, in 

spite of the adverse macroeconomic conditions of the last years, local banks register sound 

capital adequacy levels and comfortable solvency ratio as a result of central bank prudential 

actions and support from parent banks materialized in substantial new capital contributions.  

Two major financial stability vulnerabilities of the Romanian banking system are identified by 

the report:  

 credit risk, which remains the dominant risk as non-performing loans have maintained 

upward trends in a weak macroeconomic environment, and have generated substantial 

losses in bank’s balance sheets;  
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 risk related to external financing of foreign capital banks. A gradual reduction of 

external funding has been registered in the recent years, but generally the central bank 

considers that current prudential indicators levels strongly mitigate this risk, and that 

the system can successfully face even massive funding withdrawal. 

While there is an impressive amount of research on the development and implementation of 

macro stress testing around the globe (Foglia, 2009) and in spite of the documented 

importance of stress testing research in assessing the health  of financial systems and 

addressing crisis effects, applications of macro stress testing for the Romanian financial system 

is very limited.  

Given the predominance of the banking system in the domestic financial system, and the 

persistent inherent risks, local macro stress testing exercises have focused on the banking 

system, in both authorities’ efforts and independent studies.  

The International Monetary Fund and the Romanian central bank use comprehensive stress test 

frameworks that incorporate estimation of shocks impact on various risk exposures (credit risk, 

interest rate risk effect on future income, liquidity risk) and combine macro-level with micro, 

bank-level analysis (N.B.R. 2012, I.M.F. 2010). They generally found that banks have 

comfortable position in terms of capital and liquidity, but a severe adverse macroeconomic 

scenario (recession and sharp domestic currency depreciation) could lead to 

undercapitalization for some banks due mainly to credit risk materialization. The 

methodological details and the results of the stress tests are not however fully disclosed. 
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Given also data availability constraints, independent studies have focused on estimating the 

potential impact of adverse macroeconomic shocks on credit risk at banking system level. 

Specifically, Chiriacescu (2010) and Trenca and Benyovszky (2008) employ similar reduced-form 

methodology to capture the link between main macroeconomic variables and default rates in 

the loan portfolios of the banking system and then simulate the effect of stress scenarios on the 

loan portfolios losses. Chiriacescu (2010) and Trenca and Benyovszky (2008) incorporate 

industry-specific corporate default rates, and additionally, the former study models separately 

the household loan portfolio at county disaggregated level using panel regression technique. 

While results differ in details, all these studies confirm the negative impact of macroeconomic 

shocks on credit risk. 

1.3. Research objectives and contribution 

 

This study will contribute to this scarce independent body of research by both capturing a more 

complete period of adverse macroeconomic conditions (a limitation of the two studies above 

being the overweighed reliance on pre-crisis data, Chiriacescu 2010) and by adopting a broader 

modelling and testing approach.  

The main objectives of the proposed macro stress testing in Romanian banking system are: 

(i) Reviewing current research on macro stress testing methodology and practices at 

international and local level; 
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(ii) Identifying the main macroeconomic variables that explain the evolution of credit 

risk variables (default rates) in the local households and corporate sector portfolios, 

and  fully estimating the quantitative explanatory model; 

(iii) Identifying the most relevant macroeconomic stress scenarios given the current 

vulnerabilities of the domestic banking system and taking into consideration the 

relevant current international practices; 

(iv) Based on simulation techniques, the estimated model is to be used to assess the 

evolution of default rates in the credit portfolios under the assumed adverse stress 

scenarios. 

The methodological approach adopted here comprises an econometric multifactor macro 

model for determining default rates distributions at the banking system level (corporate and 

household loan portfolio) and a model for forecasting the evolution of individual 

macroeconomic time series, based on top-down, reduced-form models. A stress test simulation 

is carried in the next stage, using the estimated parameters and error terms of these models.   

This methodological framework is derived from the well-established non-linear model initially 

proposed by Wilson (1988) for modelling industry specific probability of default and further 

used and extended in numerous studies on macro stress testing, applied in various contexts 

(e.g. Virolainen, 2004; Boss, 2002). A similar methodology is used by the independent studies 

on the Romanian banking system, Chiriacescu (2010) and Trenca and Benyovszky (2008) for 

modelling stress testing industry specific probabilities of default.   

Taking into consideration the specific features of the credit risk in the local banking system and 

following a coherent variables selection framework as proposed by recent research in the field, 
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an extended list of macroeconomic variables are tested in order to identify the relevant 

macroeconomic – credit risk links.  The results are consistent with previous research on macro 

stress testing and credit risk modelling, but the wider approach used here allows for 

incorporation of new and specifically relevant macroeconomic variables. The corporate sector 

analysis includes an alternative forward looking model that incorporates leading indicators such 

as the domestic stock exchange index and the consumer confidence indicator. Additionally, 

specific macroeconomic variables are tested and included in the model in order to capture the 

particular vulnerabilities of the local credit portfolio (e.g construction activity level for 

corporate loans and indebtedness degree proxy for households).   

Informed by current international practices on macro stress testing and building on the broader 

modelling approach, an extended scenarios design approach is undertaken in order to construct 

the most appropriate stress test scenarios.  

While the official stress testing exercises adopt a comprehensive framework, including 

extended scenarios design approach (full details are not publicly disclosed however), the 

independent studies use only simple ad-hoc scenario and thus this study further contributes to 

current research by proposing and testing a wider series of relevant scenarios, carefully 

designed in accordance with best practices in the field. 

The proposed macro-perspective model and its findings can be incorporated by private banks in 

their micro-level portfolio risk management tools. Additionally, as Drehmann (2008) argues, 

supplementing the authorities’ stress tests with independent approaches can enhance 

credibility of such financial stability assessment. 
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The next chapter includes an extended literature review, with focus on methodology 

approaches, presenting also the current challenges and advancements in the field. Chapter 3 

details the specific methodology employed in this study, explains its selection and related 

background and further discusses several particular modelling choices. The estimation of the 

credit risk model and the results of the stress testing procedures are reported in Chapter 4. 

Finally, chapter 5 presents the conclusions of the research. 

2. Literature Review 

 

In spite of the wide-spread use of macro stress-testing, and generally of stress-testing in 

financial systems, accompanied by impressive amount of research and substantial progress on 

addressing inherent challenges, except for only a rough consensus on the model structure 

(Drehmann, 2008, Sorge and Virolainen, 2006), the proposed methodology is diverse and 

heterogeneous and the process involves high degree of complexity, still unsolved difficulties 

and sometimes conflicting objectives (I.M.F. 2012a; and Drehmann, 2008). Sorge and Virolanein 

(2006) and more recently Foglia (2009)
1
, Drehmann (2009) and I.M.F. (2012a)

2
 include 

comprehensive reviews of current methodologies, while Čihák (2007) presents a useful 

introduction to application of stress testing. I.M.F. (2012a), Borio et al (2009), Drehmann (2008) 

extensively discuss challenges faced by most recent methodologies, the typical failings and 

                                                      
1
 Focus on central bank frameworks. 

2
 Focus on International Monetary F.S.A.P. framework. 
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limitations of stress testing, and propose best practices and principles to guideline efforts in 

constructing effective macro stress testing. 

The next section will outline the main structure of macro stress testing with focus on 

methodology approaches rather than actual results of stress testing, since the latter are usually 

specific to the context and the subject of the application
3
.  

2.1. Main structure of macro stress testing 

 

The basic structure of macro stress test includes (Borio et al, 2012; a schematic overview is 

presented below
4
): 

1. A set of risk exposures subject to stress testing; 

2. The macroeconomic scenarios that define and calibrate the exogenous stress shocks; 

3. The model that maps the impact of shocks on a measure of outcome, capturing the 

shocks transmission through the systems; 

4. A measure of outcome which quantifies the impact of the simulated shocks on the 

financial sector balance sheet; 

                                                      
3
 General conclusion and useful comparisons could be drawn from the various stress tests results (as discussed for 

example in the “Estimation and results” section for the Romanian banking system), but the main purpose of stress 

testing is to actually quantify the estimated impact of shocks in the specific context of application rather than 

confirming general macroeconomic and financial relations. 
4
 Alternative but similar presentation/approaches to the main structure of stress-testing can be found in Sorge and 

Virolainen (2006) and Foglia (2009). 
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Figure 1 The structure of macro stress tests: schematic overview 

  

Source: Borio et al. (2012), Graph 1, p. 28 



10 | P a g e  

 

The risk exposures decision comprises both selection of the set of institutions (banking system, 

pension funds, insurance companies  etc) and the selection of risks and their measurement 

indicators that should be considered as subject to stress testing (Borio et al, 2012).  

Preferably the subject should be the entire financial system, but in practice, the stress test 

focus usually on sub-sets, especially banking sector, given its weight and central place in the 

financial systems, but also its potential role in spilling over financial shocks back to real 

economy (Borio et al, 2012; Drehmann, 2008; Sorge and Virolainen, 2006).   

In terms of types of risk considered
5
, generally, macro stress testing has focused on credit risk 

(borrowers’ default, especially at domestic level, the most important risk for banks in terms of 

size), but recent practices have incorporated risk to future incomes, market risk (the potential 

adjustment of the market value of banks’ assets and liabilities due mainly to interest rate risk, 

but also foreign exchange rate and equity markets risks), cross-border exposure reduction, 

liquidity risk and sovereign risk (Borio et al, 2012, I.M.F., 2012a).  In spite of the substantial 

progress in terms of assessing and integrating the effect of other risks (including the correlated 

effects), Borio et al. (2012) note that the core of the analysis remains credit risk and that, given 

the complexity involved and data availability constraints, fully integrated approaches are still 

scarce.  

Generally, the decision about risk exposure comprises a wide range of options and choices 

(types of risks analyzed, sets of institutions, assets classes, decision on how to approach 

                                                      
5
 Sorge and Virolainen (2006) consider the option about which risks to include in the stress testing as part of the 

scenario design stage of the process. 



11 | P a g e  

 

financial conglomerates, use of book or market data etc) and depends on both the scope of 

stress testing and data availability (Sorge and Virolainen, 2006). 

As explained in the introduction, given the specific context of the Romanian financial system 

and the data constraints, this study will analyse credit risk (default rates) at the overall banking 

system (corporate and household sectors). 

Regarding the design and calibration of “severe but plausible” scenarios, Borio et al. (2012) 

document that design scenario is usually based on considering adverse macroeconomic 

conditions (prolonged and accentuated recessions, drops in property prices, exchange rates 

etc). The next section will discuss in detail the typical approaches of scenarios design in macro 

stress testing. 

The stress-testing model comprises actually a range of steps and building blocks (Borio et al, 

2012; I.M.F. 2012a). The process could follow (i) a bottom-up approach, where a central 

authority provides a common scenario to individual banks, which use their own models to 

forecast the impact and then the central authority aggregates the results; this could entail 

models inconsistency issues; (ii) a top-down approach, where the central authority/researcher 

uses exclusively its own models and when available, incorporating detailed individual banks’ 

positions or certain level of disaggregation (industry specific; household – corporate); or (iii) as 

typically used in practice by central banks, a combined approach (Borio et al., 2012). 

Generally, the starting point is a macroeconomic model that estimates the effect of the 

exogenous factor on the economy.  Such macro-models however don’t usually include financial 

variables and thus the output of the macro-model is used as input on an auxiliary / satellite 
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model that links macroeconomic variable to variables relevant for financial risk assessment 

(Borio et al, 2012; Foglia, 2009).  Typical satellite models include credit risk models and 

frameworks that incorporate a wider set of asset classes and risks (e.g. market risk and future 

income risk). Basic models usually limits stress-testing to this “first round effect” analysis (from 

macroeconomic to financial variables, for example recent E.U.-wide adopt such a methodology, 

E.B.A., 2011), but more advanced stress-testing attempt also to evaluate the impact of potential 

feedbacks (“second round effect”) generated by endogenous behavioural response of the 

financial systems participants: portfolio optimization attempts, including counterparty credit 

risk in interbank markets,  policy makers response, liquidity risk and financial sector to real 

economic macro feedback (I.M.F., 2012a; Drehmann, 2008). 

Section 2.3. of this chapter presents the main models currently used in practice.  

The typical outcome metrics are portfolio losses, capital adequacy (solvency stress testing), 

assets quality, earnings or indicators of market liquidity (Sorge and Virolainen, 2006). 

Selection of the specific outcome (credit risk variable / indicator) is an essential decision within 

stress testing procedure, but in many cases it’s heavily restricted by data availability for the 

chosen degree of aggregation (Ferrari et al. 2011; Foglia et al. 2009). 

Generally, credit risk stress testing focuses on estimating the Expected Loss (EL) and 

Unexpected Loss (UL) of a credit portfolio (Boss, 2002). Reflecting the Basel II terminology, at 

credit portfolio level, the EL can be computed as EL = PD * LGD * EAD, where PD denotes 

probability of default, LGD – Loss Given Default and EAD – Exposure At Default, respectively 

(Ferrari et al, 2011; B.I.S. 2006). Exposure at default is routinely reported by banks. 
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The Expected Loss should reflect the maximum loss based on the best estimation of the 

worsening of credit portfolio quality (generating an increase in PD and/or LGD). This is the loss 

that banks should reasonably expect (e.g. at 50% probability level) and they are required to 

cover the EL on ongoing basis through provisioning and write-offs (B.I.S. 2005; Boss, 2002). 

Typically, while PD values are a dynamic component of the stress test procedure (as per above 

models), the stressed values of LGD and EAD are considered fixed over the horizon of the stress 

test, although there is evidence of influence from macroeconomic factors on all these credit 

losses components (Ferrari et al, 2011; Virolainen, 2004). 

The Unexpected Loss, on the other hand, relates to potential large losses that occur rarely. It 

measures the maximum loss that may be incurred taking into consideration very low probability 

levels, thus raising the confidence level to high values (with a confidence level of 99% or 99.9%, 

by historical statistics estimation, the unexpected losses should not exceed the estimated 

level). From a credit risk management perspective, the bank’s capital should cover any 

unexpected loss for a reference period of time that would be required in order to liquidate the 

portfolio (B.I.S., 2005; Boss et al, 2002). The concept is similar with Value-at-Risk approach in 

market risk management.  

Default probability (credit loss) distribution estimation is thus necessary for estimation of 

expected and unexpected losses under stressed condition for the typical probability levels 

(Foglia, 2009). 

In practice however, since PD are not usually publicly available, several other credit risk 

indicators are used to reflect PD and/or LGD (such as NPL ratio, loan loss provision ratio, 
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corporate bankruptcy rates – the subsequent literature review will present several studies 

exemplifying  this issue). Ferrari et al. (2011) and Foglia (2009) discuss at length the 

comparative advantages and disadvantages of each indicator, while the research presented 

below comments on the specific chosen credit risk indicators.  

2.2. Scenario design 

 

The design of extreme but plausible scenarios is a crucial component of applying a stress test 

procedure (Boss, 2002).  

Jobst et al. (2013) and E.C.B. (2006) document the main technical approaches of constructing 

such scenarios: the process starts with establishing a baseline (benchmark) scenario given by 

the high probability forecast of the macroeconomic evolution (e.g. F.S.A.P. framework uses the 

I.M.F.’s World Economic Outlook projections); the second step involves constructing the 

alternative adverse scenario, which can be done following the below typical approaches: 

(i) historical simulation, e.g. replicating past severe episodes such as “worst in a 

decade” or the 2008-2009 crisis shock;  

(ii) probabilistic approaches, i.e. using shocks scenarios as implied by the tail of the 

historical distribution of risk factors (“x-standard deviation” or extreme quantiles in 

the distribution); 

(iii) hypothetical scenarios or ad-hoc expert judgment scenarios, with no historical 

background but having particular relevance for specific vulnerabilities of the systems  
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Aside being easy to implement, historical based scenarios have the advantage of having a 

straightforward interpretation (E.C.B., 2006). Nevertheless, especially in the case of applying 

the stress test in benign times, the historical approach can involve a certain degree of 

complacency. Historical scenarios obviously miss events that never occurred and they also 

depend on the chosen historical horizon (I.M.F., 2012a).  

Probabilistic approaches, focused on unlikely tail risks, can extend the historical approach but 

they remain dependent on the selected time period (volatility can be low in the chosen 

sample). 

The qualitative and flexible approach of hypothetical scenarios addresses these disadvantages 

and thus could prove useful in complementing the usual historical-based scenarios (Oura et al, 

2012). Nevertheless, as Borio et al. (2012) point out, the plausibility of hypothetical scenarios or 

that of extremely unlikely probabilistic scenarios is typically evaluated against historical 

evolutions. 

Similar with other element of stress testing exercise, while several rules of thumbs and 

guidelines are typically applied in practice, designing the specific scenarios however still 

involves substantial expert judgment irrespective of the chosen approaches. Furthermore, 

while a consistent and comparable approach across countries could prove useful, scenario 

design should remain flexible in order to address the specific vulnerabilities of the analysed 

financial systems (Jobst et al, 2013). 

Additionally, central supervisory authorities are also faced with an important trade-off decision 

between severity and plausibility, especially in crisis or near-crisis periods. In such circustances, 
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the baseline scenario is already adverse and thus supervisory authorities may be reluctant to 

use excessively extreme scenarios (I.M.F., 2012a). Since the results of central bank stress 

testing exercises are typically published, adopting extreme scenarios can trigger “self-fulfilling 

prophecy” crises.  Moreover, conducting stress tests at country, regional or international level 

in relation to re-capitalization needs of banking systems involves a complicated political and 

economic context. On the other hand, compromising on severity can greatly affect the 

credibility of the procedure and this could contribute to prolonging the crisis. Near-crisis stress 

test should thus not compromise on severity, and instead the central authorities should 

mitigate potential adverse effect of the stress test findings by making available credible support 

measures (I.M.F., 2012a) 

 

Current studies (Jobst et al, 2013; I.M.F. 2012a) document several main specific scenarios 

construction techniques: 

1. Constructing GDP shock scenarios (and sometimes other types of shocks scenarios)  

based on standard deviations from long-term historical averages (20-30 years): 

a. a mild adverse scenario based on one standard deviation (assuming normal 

distribution, this implies a 15.87% probability of occurrence); 

b.  a severe adverse scenario – two standard deviations from historical averages 

(implying a much lower probability of occurence, i.e. 2.28% under normal 

distribution assumption). 
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This approach is a standard practice in I.M.F.’s F.S.A.P. framework and has the advantage of 

being comparable across countries. 

2. Given the magnitude of the 2008-2009 shock, a well-established practice is to design a 

historical scenarios that replicate this shock; 

Typically, as recommended above the scenarios are complemented by hypothetical scenarios 

designed to incorporate the specific vulnerabilities of the financial system on which the stress 

test is applied. 

The scenario time horizon is also an important decision within scenarios design. Longer time 

horizons are desirable since macro-financial adverse shock trigger typically a lasting effect, 

distributed on several years (especially for credit risk) and regulatory reform implementation is 

usually slow (I.M.F. 2012a). For example, F.S.A.P. programs usually have a time horizon of 5 

years. 

On the other hand, longer time period involve increase uncertainty and although stress testing 

is not a forecasting exercise (it should be able to capture medium-term effects of shocks), the 

decision should be adapted to dynamic of the specific environment (I.M.F., 2012a). Specifically, 

shorter time horizons are usually selected for financial system undergoing rapid changes. For 

example, most F.S.A.P. application involve a time horizon of 1-3 for emerging market with less 

mature banking systems (I.M.F., 2012a). Confirming the above argument, recent E.U. stress-

testing performed in the volatile context of Euro zone countries debt crisis takes into 

consideration a two-year time horizon (E.B.A., 2011; C.E.B.S. 2010; C.E.B.S., 2009).   
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The time horizon decision has also implication on endogenous behaviour and feedback 

modelling. Models that do not incorporate second round effects should use a short term 

forecast horizon (Elsinger et al, 2006).  

2.3. Main modelling approaches 

 

Generally the models used in macro stress testing are based either on a reduced-form / 

parsimonious framework, or on a structural model (i.e. model founded on a macroeconomic 

theory) (Foglia, 2009
6
). Sorge and Virolainen (2006) argue that structural approaches can 

contribute to an improved understanding of the transmission of initial shocks into the systems 

and allow the evaluation of policy trade-offs and potential conflicts.  

Drehmann (2008) note however that parsimonious models (e.g., based on vector 

autoregressive specifications) can outperform the “true” model in terms of forecasting 

accuracy, and that the model type choice should take into consideration the objective of the 

stress test. Specifically, the technical, reduced-form models are not suitable for policy 

evaluation and communication (which requires transparent models, accommodating “story 

telling” on results and methodology), but could be very useful for decision making where 

accuracy is a primary objective
7
.  

Aside the technical classification above, Sorge and Virolainen (2006) identify two main macro 

stress-testing econometric modelling approaches: 

                                                      
6
 The study documents also a third option: pure statistical approach used by the Austrian central bank (System Risk 

Monitor model), modeling macroeconomic and financial variable through a multivariate t-copula. Such an 

approach is focused on accuracy and it’s not suitable for communication.  
7
 Sorge and Virolainen (2006) present the counter-argument of the vulnerability of reduced-form models to 

endogenous parameter instability (please see section Current challenges and recent advancement). 
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- The “piecewise approach” includes models forecasting the impact of macroeconomic 

stress shocks on several measure of outcomes/risk (loan losses, non-performing loans 

etc), taken individually; the overall assessment of financial stability is then derived from 

adding-up the estimated impact on each indicator; 

- The “integrated approach” incorporates the assessment of multiple factors of risk into 

an overall estimate of the probability distribution of aggregate losses.  

Both approaches can use reduced-form or structural models. 

The ”piecewise approach”8
 econometric models typically estimate a direct and linear relation 

between macroeconomic variable and the risk measure. Generally, while this approach involves 

intuitive and easy to implement models, its main limitations relate to the assumption of linear 

relationship and the reduced applicability as it does not capture the entire loss distribution 

(necessary for estimating unexpected losses), but only the expected losses (Sorge and 

Virolainen, 2006).  

“Integrated approaches” models estimate a conditional probability distribution of losses for 

each simulated macroeconomic scenario. Typically, Value-at-Risk measure (unexpected losses) 

is used as a summary statistic of the estimated distribution in order to quantify in a single 

metric the sensitivity of the portfolio to risk sources (Foglia, 2009). This approach 

accommodates integration of other risks (e.g. market risk) and allows a more advanced 

modelling of the relationship between indicators of financial stability and macro variable (e.g. 

non-linearity, state / time-dependent parameters) (Sorge and Virolainen, 2006). 

                                                      
8
 Sorge and Virolainen (2006) review the main studies implementing this approach. Given the proposed 

methodology in this report, this section will focus on integrated approach and reduced-from approach designed to 

address macro feedback effects. 
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A main strand of literature within this approach is that of modelling default probabilities related 

to credit risk as a non-linear function of macro-economic variables based on the methodology 

proposed by Wilson (1998; 1997a and 1997b) for assessing credit quality of banks’ portfolio. 

Generally, the framework comprises a multifactor macro model for determining industry 

specific default rates distributions and a model for forecasting the evolution of individual 

macroeconomic time series (typically reduced form models). The next step is to construct stress 

test simulation using the estimated parameters and error terms of the models.  This is the 

methodology used by the independent studies on the Romanian banking system, Chiriacescu 

(2010) and Trenca and Benyovszky (2008) and a version of the model is used also in this 

research. Section 2.5. further details this reduced form modelling framework.    

An alternative to Wilson (1998) credit portfolio risk modelling is the firm-level structural 

framework derived from Merton (1974). Sorge and Virolainen (2006) and Drehman (2005) note 

that such models start from modelling, in a non-linear fashion, the response of equity prices to 

macroeconomic variable and then map asset price movement into default probabilities, 

conditional on the macroeconomic scenario (the theoretical structural assumption being that 

default case occurs when asset market value falls below liabilities value, as proposed by 

Merton, 1974). Such a framework is used by Drehman (2005) for UK corporate sector, Pesaran 

et al. (2006) in a global perspective study and Duellmann and Erdelmeier (2009) on automobile 

sector German corporate loans. 

Sorge and Virolainen (2006) note that approaches based on Wilson (1998) are intuitive and 

easy to implement. Merton (1997) approach, while involving increased computation efforts, 

has the advantage of taking a forward-looking perspective based on equity prices and credit 
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ratings. Still, the proposed firm-level theory and the related stress testing procedure imply 

several important assumption that are not always valid (e.g. , i.e. complete and efficient 

markets, relevance of equity prices for the entire industry and as proxies for assets fluctuations, 

see Drehmann, 2005; Pesaran et al 2006; Duellmann and Erdelmeier, 2009). For example, in 

practice, Merton (1974) based credit risk models
9
 are used by banks especially for risk 

assessment in large corporate credit portfolio and to a lesser extent for SME portfolio 

(McKinsey, 2009). 

2.4. Current challenges and recent advancement  

 

This section discusses the major current challenges faced by macro stress testing 

methodologies and related proposed solutions as documented in I.MF. (2012a), Drehmann 

(2008) and Sorge and Virolainen (2006). 

  

                                                      
9
 Such as Moody’s KMV and JP Morgan’s Credit Metrics (Crouhy et al, 2000) 
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2.4.1.  Data availability  

 

Generally severe stress events data are scarce. Rapid innovation in financial markets also 

complicates the issue of data availability. Still, the framework of stress testing accommodates 

hypothetical scenarios (e.g. to be used on innovative financial products, see Bunn et al, 2004 for 

an example). 

In order to deal with the more difficult case of data constraints that affect model robustness 

and impose use of several assumption, Čihák (2007) recommends testing the model on 

different sets of assumptions, while Drehmann (2008) proposes adopting different econometric 

approaches (including more sophisticated approaches: Bayesian and non-parametric entropy 

models, as in Segoviano and Padilla, 2006). Alternatively, Ong et al (2010) propose a simple 

reverse test (finding the system “breaking point”) technique to deal with poor data 

environment.  

2.4.2. Incorporating different risks 

 

Elsinger et al. (2006) propose a model that integrates the main risk sources discussed above 

(credit risk, market risk, including interest rate risk and counterparty risk in interbank markets) 

based on combining modern risk management tools with a network model of interbank loans. 

The model innovatively uses credit register data (currently, a practice in many countries, Foglia, 

2009). The framework accommodates stress testing but only for short term horizon as it 

doesn’t incorporate second round effects (aside counterparty risk). Boss et al. (2008) have 



23 | P a g e  

 

extended the model by further incorporating future income risk and risk from cross-border 

exposure and accommodating a three-year forecast horizon.  

Arguing that stress testing models often ignore the balance between asset and liabilities, 

Drehmann et al. (2010) propose a new framework that integrates credit and interest rate risk 

by concurrently modelling the assets, liabilities and off-balance positions of banks so as to 

ensure the basic accounting equality between them.  

2.4.3. The endogeneity of risk 

 

The endogeneity of risk arises mainly due the potential endogenous behavioural reactions of 

market participants (banks, policy makers) facing stress conditions (feedback or “second round” 

effects, Drehmann, 2008). The difficulties encountered in attempting to model such behaviours 

generate the current unsolved challenges of macro stress testing.   

Severe shocks may cause structural breaks in models estimated on historical data, leading to 

parameter instability, with reduced form models being particularly vulnerable to this shortfall 

(Sorge and Virolainen, 2006). While sometimes they incorporate such “spirals” evolution (when 

historical data includes such endogenous reactions), without a specific structural modelling of 

the feedback mechanism, the implicit assumption is that the feedback will simply follow 

historical patterns. This assumption is not necessarily valid and can restrict the objective of the 

stress testing (for example, in case a central bank would like to assess different policy options, 

Drehmann, 2008). 
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The same studies argue that following severe shocks, market participants will attempt to 

optimize and hedge their portfolio, but since such reactions are difficult to predict, usually 

stress testing models assume exogenous portfolio evolution (only impacted by losses generated 

by the shock not by behavioural response). Drehmann et al. (2007) use simple rule of thumbs as 

a starting point to partially incorporate this exogenous effect. Alternatively, De Bandt and Oung 

(2004) propose a parsimonious model that relates demand and supply for credit with the 

macroeconomic state, and thus account for balance sheet adjustment in a reduced-form 

fashion. 

Drehmann (2008) document that endogeneity of risk can further generate liquidity risk, macro 

feedbacks from financial systems to real sector, and non-linearity.  

2.4.4. Liquidity risk 

 

In time of crisis, liquidity problems arise before solvency issues and thus current stress-testing 

practice include liquidity risk (I.M.F., 2012a). The Bank of England uses a comprehensive 

framework, Risk Assessment Model for Systemic Institutions (RAMSI) (Aikman et al, 2009), that 

incorporates the main type of risks (building also on Drehmann, 2010), including liquidity risk 

and main second round effects in the financial systems. Alternatively, another approach, used 

successfully by several central banks (I.M.F., 2012a), is proposed by the Dutch central bank in 

Van den End (2008). The model focuses on market and funding liquidity risks of banks and 

incorporates modelling of endogenous behaviour. 
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2.4.5. Macro feedbacks 

 

There is a wide theoretical and empirical support for such feedbacks from financial sector to 

real economy, through several specific channels (Sorge and Virolainen, 2006). Drehmann (2008) 

and Foglia (2009) document however that only a few reduced form models have explicitly 

incorporated this effect, since large scale macro structural models that include financial variable 

are still in emerging stages. For example, in a recent study on Italian banking system, Marcucci 

and Quagliariello (2008) use a vector autoregression that incorporates credit supply and banks’ 

capital adequacy variables to test for transmission channels.  

These reduced-form models however were not developed in the specific context of macro 

stress testing and modelling of macro feedback remains an important concern for future 

methodology research and practice (I.M.F., 2012a). 

2.4.6. Non-linearity 

 

While there seems to be a consensus that Wilson (1998) and Merton (1974) based credit risk 

models can capture the non-linearity of the relationships between financial system and 

macroeconomic shocks (Foglia, 2009), Drehmann (2008) argue that such specification could still 

miss some non-linearity features across the system. I.M.F. (2012a) report increased attempts to 

incorporate non-linear dependencies into macro-stress testing models. 
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2.5. General model and related research 

 

The credit risk macro stress test methodology for corporate sector used in this study is similar 

to that used in Boss (2002) and Boss et al. (2009) for the Austrian financial system (bankruptcy 

rates at aggregate corporate/households levels and at industry level, respectively), and 

Virolainen (2004) and Sorge and Virolainen (2006) for Finnish corporate sector (bankruptcy 

rates at industry level).  

The model is based on the framework proposed by Wilson (1998, 1997a and 1997b), as part of 

CreditPortfolioView® model, initially developed by McKinsey & Co. Within this framework, 

credit risk is modelled in relation with main macroeconomic variables, following the empirical 

result that average probabilities of default (PD) tend to be related to business cycle fluctuation 

(PD increases in recession periods). Additionally, the model incorporates the empirical finding 

that specific average PD / default rate sensitivity to macroeconomic fluctuation is different 

across industries /sectors of the economy (Boss, 2002, e.g. construction sector tends to be 

relatively more sensitive to macro-economic shocks). 

The PD of an industry is modelled as a logistic function of an industry-specific macroeconomic 

index: 

                                                                                                                                           (1) 

here      is the average PD of industry j at time t, while yj,t denotes the industry-specific macro 

index. The logistic transformation is broadly used in modelling defaults rates as it ensures that 

estimates falls in [0,1] range. Additionally, as van den End et al. (2006) note, nonlinear 
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transformation of default rate could improve the ability of the model to capture potential 

nonlinear relationship between macro variables and default rates, likely in stress test adverse 

shock situation.  

Solving for the macroeconomic index yj,t  in the above equation, the yj,t  is given by the inverse 

logit transformation: 

 

                                                                                                                                                (2) 

 

After computation of      as per equation (2) using the available date on PD, this index is then 

modelled as follows: 

 

                                                                                                       (3)         

                                                                                                                                  

where                               is a set of exogenous macroeconomic variables / factors for 

industry j at time t and                            denotes the set of parameters to be 

estimated (e.g. regression coefficients) reflecting the direction and degree of impact of 

macroeconomic variables on the index      (and thus on PD). The exogenous variables can be 

common for all industries (e.g. GDP, exchange rate) or specific to certain industries (e.g. 

indebtedness). Section 3.6. “Macroeconomic variable selection” discusses the variables usually 

used in this step.  
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Random error      is assumed to be independent and identically normally distributed: 

 

      (      ) or                                                                                                           (4) 

 

where   denotes the vector of the index innovations in all industries, while   their covariance 

matrix. 

The system of equations (1)-(4) can be regarded as a multi-factor model for modelling industry-

specific default rates, with a systematic risk (non-diversifiable default risk) component captured 

by macroeconomic variables      and industry-specific shocks captured by the error term     .  

The above formulation follows Boss (2002) with a higher value of yj,t  reflecting an worsening 

state of the  economy
10

; the macroeconomic index value increases when the probability of 

default increases (equation (2)) and we would expect a positive relation with adverse 

macroeconomic conditions (as reflected by negative GDP growth for example), reflected in a 

specific corresponding sign in regression (3) (negative sign for GDP growth). 

The next step is to estimate the evolution of each macroeconomic variable. The initial Wilson 

(1997a) framework models each variable time series as a univariate autoregressive process of 

order 2, AR(2) (thus adding also a dynamic component to the model, Boss (2002)). This is the 

approach followed by Boss (2002), Virolainen (2004) and Sorge and Virolanein (2006): 

 

                                                      
10

 Virolanein (2004) use the alternative inverse form                , as originally formulated by Wilson. This 

maintains the same positive / negative relation as in a direct PD over macroeconomic factors regression. 
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                                                                                                                  (5) 

 

where       denotes the k-th macroeconomic variables in industry j at time t,   (              ) are the parameters to be estimated and        the error term, which is 

assumed to be an independent random variable,  normally distributed: 

        (      ) or                                                                                                           (6) 

The system of equations (1)-(6) models the joint evolution of the industry specific default rates 

and relevant macroeconomic variables, with a (J+K) x 1 vector of error terms / innovations 

and a (J+K) x (J+K) variance-covariance matrix of errors ∑ as per below equation, where J 

denotes the total number of industries taken into consideration (K is the total number of 

macroeconomic variables as per equation (3)). 

   (  )             [              ]                                                                                       (7)                                        

 

In the final stage, the estimated equations and the error terms are used to simulate future 

evolution of joint PDs / default rates for all industries, over a certain time horizon.  

Monte Carlo simulation methods can be applied in order to estimate credit loss distribution for 

credit portfolios, under the assumption that, conditional on the state of the economy (as 

reflected by the selected macroeconomic variable), industry-specific default rates are 

independent. Given equation (7), the simulations take into account the correlation between 
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macroeconomic factors and any interdependence with industry specific shocks (Virolanein, 

2004). 

This can be seen as a baseline scenario, based on historical patterns, and expected and 

unexpected losses can be computed, where the unexpected loss reflects the scenario of 

extreme, low probability, scenarios (Chiriacescu, 2010; Virolainen 2004; see section 3.5 “Credit 

risk variable selection” below for a discussion).  

Additionally, using the estimated model and distributions, other hypothetical or expert 

judgement adverse stress scenarios are usually tested as well (the autoregressive process of the 

stressed macroeconomic variable is altered to accommodate the scenario).  

Sorge and Virolanein (2006) apply this model, but present also the possibility of extending 

equation (5) to an autoregressive specification of unknown order (AR(n)). 

Typically, as proposed by Virolainen (2004) the set of equations is estimated using Seemingly 

Unrelated Regression
11

 (SUR), applied for the set of industry-specific equations (3), rather than 

simply Ordinary Least Square (OLS) separate regressions for each sector. Relative to the latter, 

the SUR econometric solution improves the efficiency of the estimation in systems of equations 

that include correlated dependent variables (industry-specific default rates in this case) by 

adjusting the coefficients of all equations using an estimate of errors variance-covariance 

                                                      
11

 The SUR method, originally developed by Zellner (1962) and sometimes called Joint Generalized Least Square, 

consist in generalization of the OLS regression for system of equations and improves efficiency in the case 

equations have different regressors.  It gives the same results as single-equation OLS regressions only in the 

limiting cases of using the same regressors for all equations or when actually the equations errors are not 

simultaneously correlated. 
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matrix, since usually correlated dependent variables induce simultaneous error correlations
12

 

(Fiori et al, 2007).  

2.5.1.  Applications in the Romanian banking system 

 

Closely similar methodology is used by the independent macroeconomic stress testing studies 

mentioned above for the Romanian banking system. 

Spefically, Trenca and Benyovszky (2008) use this model configuration to analyse the 

bankruptcies rates in Romania’s main industries for the following main sectors: industry, 

services, construction and services (2002-2007 period). The authors then proceed with 

simulation of credit loss distribution (expected and unexpected losses) for hypothetically 

constructed corporate credit portfolios. Equation (5) modelling macroeconomic factors 

evolution is extended to an AR(n) process in their study. 

Chiriacescu (2010) cover the same main economic sectors, but includes a separate assessment 

of household credit risk (credit default rates) using data at county level and applying specific 

panel regression technique. The study uses SUR method to estimate sectoral equations (3) and 

extends macroeconomic variables equation (5) to an Auto-Regressive Moving Average (ARMA) 

process as proposed by Fiori et al. (2007).  Box-Jenkins methodology and information criteria 

are used to select the most appropriate ARMA specifications. The macro stress tests are based 

                                                      
12

 Specifically, Fiori et al. (2007) explain that if the model fully captures the systematic risk, the specific industry 

component should be uncorrelated, i.e. error terms in equations (3)-(4) should be uncorrelated.  Otherwise, a 

significant correlation between these errors would indicate that the correlation between industry-specific default 

rates is not exclusively generated by the macro evolution of the multi-factor model, but also by a direct 

interconnection between companies of different industries, thus violating the assumption behind the distribution 

simulations.  
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both on Monte Carlo simulation and ad-hoc expert judgment scenarios, with computation of 

expected and unexpected losses on hypothetically constructed credit portfolio. 

The household portfolio country level assessment is presented also in Chiriacescu (2012), 

without the stress test component (as a credit risk determinants analysis). 

2.5.2.  Extensions of the model and other applications 

 

A similar methodology as presented above has been also widely applied for system level macro 

stress test or NPL ratio / credit losses determinants, including regional panel data studies 

(Schechtman and Gaglianone, 2010; Foglia, 2009). Generally, depending of the specific context 

and purpose of the study, the model has many versions and extensions in the literature, with 

regards to both general specifications and specific chosen econometric solutions. 

For example, Schechtman and Gaglianone (2010) present the following general specification for 

system level models (the previous industry specific notation j is thus dropped, but this extended 

model can be applied also at disaggregated industry level): 

                                                                                                               (8) 

                                                                                    (9) 

                                                                                                    (10) 

                   [              ]                                                                          (11)      
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where: 

yt is the macroeconomic index, i.e. the logit transformation of an observable selected 

credit risk indicator CRIt with values in range [0,1], 

xt is a vector of macroeconomic variabile at time t, 

   is a normal error  term, homoscedastic and independent with regard to past 

information and   is independent and identically normally distributed error term. 

This specification extend the original model presented above, by adding lags of the dependent 

in equation (2) in order to capture time persistence of default rate following a macroeconomic 

shock, adding lags of the exogenous macroeconomic variables in the same equation and 

extending equation (10) to allow for multivariate lag modelling of macroeconomic factors
13

. 

Kucukozmen and Yuksel (2006) use such an extended version of the model to assess industry-

specific NPL rates and inter-sector correlations of several main sectors of Turkey economy, with 

monthly data. More specifically, equation (9) includes first lag of the dependent variables (the 

dependent index yt is used in first difference form in order to achieve stationarity). Their 

econometric results show that autoregressive patterns are found in the evolution of default 

rates for all of the analysed sectors. 

The study models equation (10) as univariate Autoregressive Moving Average process of 

unknown order (ARMA(p,q)) rather than as a AR process.  

                                                      
13

 Schechtman and Gaglianone (2010) explain that the system of equation (9) belongs to the class of 

Autoregressive Distributed Lag (ADL) econometric models, and it’s not strictly a Vector-Autoregression (VAR) 

model due to the presence of     . 
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A similar model is employed in Fiori et al. (2007)
14

 for estimating industry-specific credit default 

rates and inter-sector correlations of six main sectors of Italian economy, with quarterly data. 

More specifically, equation (9) includes up to 2 quarterly lags of the dependent variables while 

equation (10) is also specified as an ARMA(p,q) process. 

Misina et al. (2006) specify equation (10) jointly as a full vector-autoregression specification 

(VAR) in a research of sectoral probability of defaults (proxied by observed bankruptcies rates)  

in the Canadian banking system, in order to better capture the indirect impact of 

macroeconomic factors trough their influence on other macroeconomic variables. The sectoral 

equations are estimated using the usual logistic regression, with 4 quarter lags of the 

macroeconomic factors (no lags for the dependent variables). 

Simons and Rowels (2009) analyse industry-specific bankruptcy rates for Dutch corporate sector 

using the first part of the model, with one quarter lag of the dependent in equation (9) (the lag 

dependent is indented to capture also lagged effect of exogenous variable shocks). There is no 

dynamic component in their model (equation (10) is not estimated) as the stress scenario is 

based on hypothetical expert judgment (two quarters of zero GDP growth).  

Vazquez et al. (2010) test credit risk (NPL ratio) in Brazilian banking sector for several granular 

credit portfolio categories, comprising household and corporate loans, in a bottom-up 

approach starting from bank-level data. Their general specification of the model includes one 

quarter lag for the dependent variable and several lags of the exogenous variables in equation 

(8) and a VAR specification for equations (10). The study uses a wide range of more advanced 

econometric techniques to estimate the equations system. 

                                                      
14

 Fiori et al. (2007) study is preliminary and doesn’t include a macro stress test component. 
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Variants of the above model are also used as part of more extensive macro stress testing 

approaches. For example, van den End et al. (2006) utilise a similar configuration in their more 

comprehensive framework applied for the Dutch banking sector. The research analyses credit 

risk (modelling default probabilities and their mapping in loan losses) and interest rate risk for a 

set of large banks in Netherlands. There are no lags in Equation (9), while equations (10) for 

macroeconomic variables are tested both as univariate process and as a full VAR model. 

In a study of Brazilian household sector (based on NPL rates), Schechtman and Gaglianone 

(2010) use this model as basis for a comparison with an alternative, more flexible model based 

on quantile regression
15

. 

Additionally, since the first part of the equations system deals actually with analysing the 

macroeconomic factors generating credit risk, several studies attempting to identify the 

determinants of nonperforming loans in the Romania banking system use this methodology 

(e.g. equations (1)-(4), or (8)-(9) in the extended form, without the stress testing component). 

Moinescu (2012) recent paper partially applies the methodology to identify the determinants 

on non-performing loans ratios in a regional context for countries in Central and East Europe 

using multivariate panel regression techniques. The study analyses non-performing loans rates 

exclusively at aggregated country level, not on industry level and it doesn’t model the evolution 

of macroeconomic variables (as it would be necessary for the dynamic stress testing 

component).   It uses dynamic panel regression with fixed effects as main econometric 

                                                      
15

 The alternative framework maintains the macroeconomic index logit transformation but specifically models the 

quantiles of default rates conditional distribution (the tails), using different specifications for all remaining set of 

equations ( (9)-(10)).  Their model allows variation of relative importance of macroeconomic factors along the 

credit risk distribution thus further incorporating uncertainties in default rate correlations. Substantial different 

configuration notwithstanding, the final stress test results were not so different qualitatively. 
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technique. Annual statistics are used and there is no lagged dependent included in equation (9) 

but the exogenous variables are tested for lagged influence.   

Moinescu and Codirlasu (2012) apply the above methodology to model the industry-specific 

default rates for Romania’s main activity sectors. Using quarterly data, the paper estimates the 

model using both SUR and VAR methods, and an alternative linear specification. 

3. Methodology 

 

Similar with the recent applications on the Romanian banking system cited above and given the 

specific vulnerabilities of local banking system presented in the introduction, this study analyses  

domestic credit risk using a methodology (top down, reduced-form model) derived from Wilson 

(1998) methodology presented above. 

Using Merton (1974) based approaches seems inappropriate for the Romanian financial system, 

since the stock exchange market is small relative to economy size and features reduced liquidity 

(Vogiazas and Nikolaidou, 2011), which is generally contradictory to the assumption behinds 

these models (efficient markets and relevance of equity markets).  

Additionally, as mentioned in the introduction, Merton (1974) based model are preferred in 

practice especially for large corporate credit portfolio, while the Romanian banking system 

credit risk comprises a significant SME component (please see Chapter 4 “Estimation and 

results” below). 
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3.1. Specific model 

 

In a study of assessment aggregated default rates at system level in non-stationarity context 

(please see chapter 4. “Estimation and results” below), Boss (2002) proposes a slightly altered 

model of the general framework presented in Section 2.5. above.  

The non-stationary of the time series is addressed by using the change of the macroeconomic 

index as dependent variable in regressions of equation (3), instead of the index itself and by 

transforming the macroeconomic variables (first difference or log-difference) to achieve 

stationarity. Consequently, Boss (2002) proposes the following model (the notations used in 

equations system (1) to (7) are maintained, but the industry notation j is dropped): 

                                   (        )                                                                 (12) 

                                                                                                     (13)         

                                                                                                                (14)  

    (    )             [              ]                                                                                (15)   

                                                                                                                            

where                       is a set of exogenous macroeconomic variables or their 

stationary transformed form and     is a (K+1) x 1 vector of error terms / innovations and ∑ 

their (K+1) x (1+K) covariance matrix. This matrix captures the interdependence of shocks in 

the macroeconomic factors and their influence on the macroeconomic index. It is further used 

to perform stress tests based on Monte Carlo simulations. 
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Using annual data, Boss (2002) actually includes in his model also 1 year lag of the exogenous 

macro variables as documented also in other studies, but finds the lagged factors generally not 

statistically significant.  

Given the data availability restriction (please see section 3.5 “Credit risk variable selection” 

below) and non-stationarity of the time series this study will use the configuration above for 

corporate sector, testing also for significant lags of the macroeconomic variables, and using 

ARMA(p,q) specification for equation (10) as proposed by Kucukozmen and Yuksel (2006), Fiori 

et al. (2007) and Chiriacescu (2010): 

 

                                                                                  (16)      

where                     and                  are a set of regression coefficients to be 

estimated using Box-Jenkins methodology and information criteria. 

 

Households loans portfolio modelling required different specification because default series 

register low values at the beginning of the series (below 0.5% up to end of 2008) and non-

stationarity (Annex B Unit root tests results and discussion). The logit transformation proposed 

above, followed by first order difference to achieve stationarity create artificial variability of the 

series when absolute values are low (logit difference transformation generates similar values 

for an increase of default rate from 0.1% to 0.2%, i.e. 0.1% p.p., as for and increase from 1% to 

2%, i.e. 1% p.p.) and the empirical testing was not able to explain this variability based on 

macroeconomic factor evolutions. 
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Consequently, as applied for example by Kalirai and Scheicher (2002) and Pesola (2001) 

(application on Nordic countries credit risk) for system wide credit risk modelling, a linear direct 

specification is proposed and tested instead. Moinescu and Codirlasu (2012) employ also linear 

specification in the Romania credit risk context (on industry-specific default rates) and find the 

model satisfactory. 

3.2. Model Simulation 

 

After selection of variables and estimation of the above model, simulation of the dynamic of 

the model over some time horizon T is usually carried out using Monte Carlo method, with a 

view to determine the distribution of the credit risk indicator (CRI). In case the CRI is a 

probability of default, its distribution can be further used to estimate the loss distribution 

(Expected and Unexpected Loss) for a given credit portfolio, when necessary additional data on 

credit exposure and loss given default are available or can be estimated (please see Section for 

details ); the credit portfolio can be either an arbitrarily constructed portfolio representative for 

the analyzed financial system, or an actual credit portfolio (assuming necessary date are 

available). 

The simulation procedure typically comprises the following steps (Kucokozmen and Yuksel, 

2006; Virolainen, 2004; Boss, 2002): 

1. The variance-covariance matrix of equation (7) is decomposed into the product of a 

lower triangular matrix and its conjugate transpose using Cholesky decomposition, i.e.       ;  
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2. A         vector of standard normal pseudo random independent variables              is drawn, where           denotes each step (period) of the chosen 

time horizon;  

3. Using the lower triangular matrix of Cholesky decomposition above, the uncorrelated 

random variables are transformed into correlated normal variables, as follows:             .  

4. Starting with some initial values for the macroeconomic factors     , simulated forecasts 

for all periods     are computed for each factor based on equation (5) and adding the 

correlated residuals      . Boss (2002) and Kucokozmen and Yuksel (2006) propose to 

use the current historical values as start values (which is equivalent with computing 

ARIMA conditional expectation) and then adding the simulated residuals. Depending on 

the ARMA configuration, for each s step-ahead simulated value, the previous (s-1)-step-

ahead simulated value is used in the equation (5) when historical values become 

unavailable (similar to dynamic forecasting approach, Brooks, 2008); 

5. In the final step, the simulated values generated for the macroeconomic factors in the 

earlier step are used to simulate the values of the macroeconomic index     according 

to equation (13) and adding the corresponding residuals from       vector. Equation 

(12) is then used to compute the simulated values of the credit risk indicator     ; 

6. The above steps are repeated for a desired number of times (typically 20,000 -50,000) 

and the results are recorded in order to determine the simulated distributions over the 

chosen simulation horizon. 
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3.3. Stress Testing 

 

As Boss (2002), Virolainen (2004) and Kucokozmen and Yuksel (2006) document, the model can 

be used to assess the impact of adverse stress test scenarios by employing Monte Carlo 

simulations, but applying them on an altered configuration of the model that incorporates the 

proposed scenario shock. Specifically, the value proposed by the stress test scenario for a 

certain macroeconomic variable is decomposed into a “normal” part resulting from the ARMA 

process and an “unexpected” part,  

            (      |   )                                                                                                    (17) 

where: 

        denotes the stress test scenario values for a certain macroeconomic factor ( ); 

 (      |   ) is the conditional expectation (the forecast) of        given all information 

available up to (and including) time   (  ); 

          describes the artificial shock implied by the scenario; 

           denotes each period (step-ahead) of the scenario time horizon (   . 

The conditional expectations of the ARMA(p,q) equations (16) are computed using the forecast 

function as described by Brooks (2008): 

 (      |   )                                                                    (18) 

where                for        (for past values) and            if        

(for future values). 
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The Monte Carlo simulation process is then adjusted to incorporate the shock by replacing the 

corresponding elements       in the vector      of independent random numbers described at 

step 2 above, with the artificial shock          – the result of standardization of          (division by 

its standard deviation): 

                                                                                                                                        (19) 

The above procedure ensures that the next steps of the Monte Carlo simulation incorporate the 

impact of the stress test scenario on the other macroeconomic variables through the variance-

covariance matrix (Boss, 2002). 

3.4. Credit risk variable selection 

 

Table 1 below presents and comments the main credit risk variables used in the research on the 

Romanian banking system (at different levels of aggregation), including studies on credit risk 

determinants. The table is structured similar to Ferrari et al. (2010) presentation and comments 

on advantages /disadvantages are based generally on Ferrari et al. 2011, Schechtman and 

Gaglianone (2010) for NPL ratio and stock variable disadvantages and Misina et al. (2006) for 

bankruptcy rates.  

While a lagged indicator versus PD, NPL ratio seem to hold an important role in assessment of 

credit risk research, as its definition and treatment of its secondary components is similar 

across countries (Jakubik and Reininger, 2013). Given its direct impact on banks’ profitability, 

NPL ratio is part of the macro-prudential financial soundness indicators of I.M.F. and a focus of 

Romanian central bank’s stability reports (N.B.R. 2013a).  
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Table 1 Credit risk variables available for Romanian banking system 

Credit risk variable and 

type 

Definition Content Advantages Disadvantages Studies  

I. BANK ACCOUNTING DATA VARIABLES 

Non-performing loan 

(NPL) ratio  

Type: stock variable 

Ratio of NPLs to total loans. As per 

legal definition (N.B.R. 2013a), NPLs 

are loans overdue for more than 90 

days and/or for which legal 

proceedings have been initiated 

(forced sale procedure or 

bankruptcy/insolvency procedure). 

PD Broadly used in credit 

risk and stress testing 

studies. Definition 

harmonized on bank 

level by the regulator in 

Romania (N.B.R. 2013a).  

Publicly available. 

Being a stock measure, it captures 

performance of loans granted in different 

periods of time and thus is affected by 

changes in credit portfolio not necessarily 

related to credit risk (total granted volumes, 

maturities, collateral treatment). 

Affected by write-offs. 

Moinescu (2012) – system 

level NPL determinants 

study 

Loan loss provision ratio 

(LLP) ratio. Known also as 

credit risk ratio. 

Type: stock variable
 16

 

LLPs to total loans ratio. Banks can 

register new provision following an 

increase in expected loss, potentially 

before actual defaults. 

PD, LGD Harmonized definition 

by regulations. Usually 

publicly available at 

aggregated level. 

Although the definition is harmonized, banks 

have some discretion regarding provisioning 

and thus LLP ratios across banks could lack 

comparability. 

Similar disadvantages to NPL – stock variable; 

also affected by write-offs. 

Vogiazas and Nikolaidou 

(2011) and Nikolaidou and 

Vogiazas (2012) – system 

level LLP determinants. 

II. DEFAULT DATA 

Default rate  

Type: flow variable (ratio 

of numbers) or stock 

variable (volume ratio of 

defaulted loans in total 

loans) 

Ratio of number of default borrowers 

to total number of borrowers. 

Sometimes expressed as volumes ratio. 

Following Basel II framework a debtor 

is considered to be in default in case of 

more than 90 days overdue on any 

material credit obligation or when the 

bank considers that the borrower is 

unlikely to repay the credit in full. 

PD 

(LGD when 

measured 

in volumes) 

Harmonized definition. 

Sometimes loans and no 

of borrowers with 

overdue amounts of 

over 90 days are 

available in central 

banks’ credit register.  

Usually not publicly available. 

Usual disadvantages as described above when 

used as stock variable 

Chiriacescu (2010) and 

Chiriacesu et al (2012) – 

flow variable per sector of 

activity (separately for 

households).  

Moinescu and Codirlasu 

(2012a) – sectoral stock 

volume ratio for 

companies as proxy for 

sectoral NPL. 

Bankruptcy rate 

Type: flow variable 

Ratio of numbers of companies filing 

for bankruptcy (entering insolvency 

proceedings). 

PD Harmonized legal 

definition. Usually 

publicly available at 

sectoral disaggregated 

levels. 

Broadly used in stress 

testing studies. 

Usually available only for companies. 

Complicated net effect on actual PD in 

banking system. Banks’ credit portfolios may 
not reflect entire sector distribution (credit 

selection criteria lead to rejection of likely to 

go bankrupt companies), but, on the other 

hand,  credit default is not always followed or 

preceded by bankruptcy.  

Trenca and Benyovszky 

(2008) 

 

                                                      
16

 As Ferrari et al (2011) note LLP ratio can be available as flow variable (new provisioning to a measure of stock of total  loans), but  this is not the case for 

Romanian banking system. 
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The studies mentioned above had access to data which are not currently publicly available (e.g. 

Moinescu and Codirlasu, 2012a; Chiriacescu, 2010) or the series have been discontinued (industry-

specific bankruptcy rates used by Trenca and Benyovszky, 2008).  

Still, due to data restriction, Moinescu and Codirlasu (2012a) and Chiriacescu (2010) actually use a 

proxy of the formal default rate as their data series are based on data of loans and number of 

borrowers, respectively, that register overdue amounts of more than 90 days as reported by 

National Bank of Romania’s credit register and not on actual defaulted borrowers / loans formally 

declared by banks. Their series however exclude only borrowers / loans for which the bank consider 

that repayment is unlikely (potentially in advance of any 90 days arrears), which should constituted 

only exception cases. 

While Moinescu and Codirlasu (2012a) and Chiriacescu (2010) used sectoral disaggregated data, 

Romanian central banks’ credit register has publicly available data only for volumes of overdue 

credit obligations (overdue principal, without interest and other penalties) disaggregated for 

household and companies
17

. Data on number of borrowers with overdue amounts of more than 90 

days are not available (only on number of total borrowers and number of borrowers registering 

delays of any number of days). 

Table 2 below presents the credit risk variables data available for the Romanian banking system, 

their sample period and level of disaggregation: 

  

                                                      
17

 The companies sector includes also municipalities. 
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Table 2 Credit risk variable data availability for Romanian banking system 

Credit risk variable Level of disaggregation Available sample 

period (continuous 

series) 

Data frequency Source 

NPL ratio System level March 2008 – present Quarterly N.B.R. data base and 

financial stability 

reports 

Disaggregated NPL 

ratio 

Companies and 

household level 

February 2009 – 

August 2013 for 

companies 

Monthly N.B.R. financial 

stability reports 

September 2008 – 

June 2013 for 

households 

Quarterly N.B.R. financial 

stability reports 

LLP ratio (credit risk 

ratio) 

Exclusively available at 

system level 

December 2007 – 

present 

Quarterly N.B.R. data base 

Default rates  Companies and 

household level (proxied 

by overdue of more than 

90 day) 

February 2005 – 

present 

Monthly N.B.R. data base 

(credit register) 

Bankruptcy rate Main object of activity 

(usually they are 

aggregated for main 

economic sectors of  

activities) 

March 2010 – present Monthly National Trade 

Register Office 

database 

 

Given the data availability restriction noted above, this study will focus on default rates (in terms of 

volumes) separately for corporate and household loans. The National Bank of Romania uses the 

same main disaggregation level for its stress testing procedure (N.B.R. 2013a; Melecki and 

Podpiera, 2010), of course, complemented by more detailed granular disaggregation based on data 

that are not publicly available. 

Unexpected loss cannot be directly computed based on volume-based default rates simulations (as 

usually done in such cases as discussed in the literature review); nevertheless, useful macro stress 

testing can be performed on default rate values directly.  

This study will use the full sample available, with quarterly frequency, i.e. 2005 Q1 to 2013 Q3 

period (35 observations). 
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The available samples have the advantage of capturing different business and credit cycle, in a 

balanced manner: the 2005-2008 upward period (high GDP and credit growth rates, following 

Romania’s accession to N.A.T.O. and E.U.), the late-2008 – 2009 shock generating important GDP 

downturns and NPL build up, as well as the recent slight macroeconomic improvement (N.B.R. 

2013a).  

This study complements thus the independent macro stress testing research for credit risk in 

Romanian banking system since Trenca and Benyovszky (2008) use only pre-crisis data (2002-2007), 

and although Chiriacescu (2010) and Chiriacescu et al (2012) include also the 2008-2009 

macroeconomic shock effects (both studies use 2006-2010 data series), as Chiriacescu (2010) 

explain, the model could still be biased towards pre-2009 macroeconomic conditions. 

3.5. Macroeconomic variables selection 

 

While the selection of exogenous macroeconomic variables can take into consideration many 

potential candidates, the above mentioned research focuses on several main categories, such as 

GDP and its main components (industrial production, private consumption, gross capital formation, 

GDP gap) and monetary conditions or price stability variables (interest rates, spreads, exchange 

rate, inflation rate, monetary aggregates). Other studies extend the analysis to credit growth, 

corporate indebtedness, household sector variables (unemployment, disposable income, 

indebtedness) as well as oil prices and other financial indicators (stock market indexes) and exports 

(e.g. Boss, 2002).  
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Being a reduced form approach, the theoretical considerations are typically general and the final 

selection is performed taken into consideration econometric results. Several variables are included 

on the basis of their information content rather than direct influence (e.g. stock exchange indexes 

for their forward looking features). Allen and Saunders (2002) report includes a comprehensive 

review of these theoretical background. Kalirai and Scheicher (2002) present theoretical 

justifications for a wide range of potential variables, while Jakubik and Reininger (2013) discuss the 

most relevant macroeconomic factors affecting credit risk in Central, East and South-eastern 

Europe. 

This study will follow the selection guidelines proposed by Boss (2002): the process starts from a list 

of candidate variables classified as per Kalirai and Scheicher (2002) structure; a series of uni-variate 

regressions of the macroeconomic index
18

 (logit transformation of the default rate) on each 

variable is then performed, and only one statistically significant factor from each category is 

retained for building up the multi-variate model. Additionally, the direction of the statistically 

significant relation should correspond to the theoretical assumption (the regression coefficient 

should have the expected sign). A similar procedure is followed by Moinescu (2012) in the 

Romanian credit risk context. 

Of course any non-structural selection approach maintains a certain degree of subjectivity and 

ambiguity as the macroeconomic series are strongly inter-correlated on different lags, any 

macroeconomic variables grouping is somewhat arbitrary, and some of the macroeconomic factors 

exert mixed effect on borrowers’ repayment effort (e.g. inflation and exchange rate) and the 

                                                      
18

 Alternatively, Fiori et al. (2007) perform  a factor analysis to identify the most significant factors. 
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influence can change on different time horizons (Jakubik and Reininger, 2013; Kalirai and Scheicher, 

2002). 

 The “Estimation and results” chapter below will discuss in more detail this theoretical background, 

in comparison with other studies applied for credit risk assessment for the local market. 

Annex A presents the variables used in this study, their source and sample range.  

The range of variables has been extended compared with Boss (2002) proposals, in order to include 

variables found relevant in other studies cited above, but on the other hand, some variables have 

been excluded due to lack of data, generally or at the desired frequency (e.g. disposable income, 

slope of the yield curve, foreign direct investments). Nevertheless, similar with other studies, 

proxies are used were possible, and the range is generally wider than the one used in the research 

done for the Romanian banking system
19

.  

Due to the method of computation of default rates (total amounts of defaulted loans to total loan 

amounts), several series were excluded from the models due high correlation implied by the 

mathematical computation method. For example, monetary aggregates, used in some studies of PD 

(numbers ratio), were excluded from the models due to high correlation with the denominator (67-

70%). 

Additionally, although sometimes classified in different categories, several variables can be 

correlated, sometimes to a high degree (e.g. household consumption is an important part of GDP, 

i.e. 84%, unemployment is expected to be correlated with GDP as well; interest rates can be 

                                                      
19

 Excluding some variables taking into consideration by Vogiazas and Nikolaidou (2011) and Nikolaidou and Vogiazas 

(2012) as their research purpose is different. They attempt to identify and quantify cross-border banking systems 

influence, specifically, correlation between Greek crisis and NPL ratio in Romania.  
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correlated with exchange rates). The final multi-variate setting will take these correlations into 

account in order to avoid multi-collinearity.  

4. Estimation and results  

 

Aside being informed by previous research on credit risk modelling in the Romanian banking 

system, the models estimated here take also into consideration several specific features of credit 

risk (mainly expressed in terms of NPL rate) in the Romanian banking system. A qualitative 

assessment is thus presented as well and the findings are used to adequately design the proposed 

models. 

4.1. Main recent evolutions in credit risk in the Romanian banking sector 

 

 As documented at length mostly in the central bank financial stability report (N.B.R. 2013a, 2012, 

data as of August 2013 unless otherwise specified), the credit risk in the domestic banking sector is 

characterized by the below recent evolutions: 

- Following the adverse macroeconomic evolution of the last years and in the context of the 

negative evolution of private lending, the banking system registers high NPL ratio, still on an 

upward trend, with important negative impact on profitability; this constitutes a major 

weakness of the system (along with cross-border deleveraging). The NPL ratio is expected to 

further increase, but at a slower pace. Nevertheless, the levels of solvency, provisioning and 
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liquidity continue to be adequate (89.5% of NPL are covered with provisions), ensuring that 

banks can cope with moderate unfavourable evolutions without major difficulties; 

- The NPL high level is also generated by the fact that banks maintain in their portfolio a 

substantial share of borrowers with reduced likelihood of debt servicing and extended 

arrears (arrears over a year for example for around 70% of the household NPL).  Loan 

restructuring / rescheduling and foreclosure were the main NPL management tools applied 

by the banks, while disposal of claims and debt cancellation were less used; 

- More than 60% of household and corporate loans are granted in foreign currency and this 

entails additional credit risk since the majority of borrowers are unhedged. Loans in foreign 

currency have been generally riskier for both corporate and households’ portfolios; the 

central bank has continuously implemented regulatory measures to balance the portfolios 

with moderate, but positive results in the last years (N.B.R. 2013a, 2012); 

- A significant part of the overall companies and household portfolio is mortgage-backed 

(67%) generating exposure on adverse real estate market evolutions; 

- The NPL ratio is substantially higher in the corporate portfolio than in households portfolio 

(23.4% for companies versus 8.2%; companies hold a slightly higher share of total private 

credit than households);  

- The corporate sector features a high degree of heterogeneity in its performance on 

numerous sectoral breakdown criteria:  

o Size: SME, and especially micro-enterprises, proved the most vulnerable to adverse 

macroeconomic evolution (NPL ratio at 23.2% as of December 2012 versus 4.3% for 
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large corporations).  Large corporations have a lower indebtedness degree and a 

better interest coverage ratio; 

o Main sector of activity: trade, real estate and construction companies register a 

higher NPL ratio (39.7% for construction companies as of August 2013) and they 

typically have a riskier financial profile (continuous losses at aggregate sector level) 

with higher indebtedness degrees. These sectors account for almost 50% of 

corporate loans. On the other hand, companies activating in the agriculture sector 

show positive overall evolution with debt-servicing above average (NPL at 14.9%); 

o Tradables
20

 and non-tradables  goods sectors: tradables sector has a relatively lower 

NPL ratio than non-tradable sector (20.1% versus 25.2%) due to better financial 

situation at  aggregate level; 

o Other criteria: companies belonging to the medium-high and high tech sub-sectors 

register a better than average bank debt servicing. Similarly, the NPL ratio for net 

exporting companies was 13.3% as of August 2013, much lower than system-wide 

average (23.4%) 

- Aside the foreign currency unhedged exposure mentioned above, the household loans 

portfolio main vulnerability is related to high household indebtedness. A slight 

improvement has been registered in the last two years following the decrease of total 

financial debt and related debt service, on one hand (decrease of the numerator of 

indebtedness measure) and the increase of net wealth, GDP and disposable income (the 

                                                      
20

 While not well defined in the available statistics, tradables sectors include agriculture, hunting and forestry, energy 

and industry and partially international transport, communication, external trade service etc; non-tradables sectors 

cover construction, domestic trade, warehousing, communication. 
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denominator), on the other hand. However indebtedness remains high, with a large share of 

overindebted households and generally higher (debt service / income) ratio than other E.U. 

countries. Macroeconomic factors such as unemployment, wages, interest rates and 

exchange rate dynamics are the main drivers of overindebtedness (N.B.R. 2013a).  

(N.B.R. 2013a) further explains that indebtedness is specifically generated by high interest 

rate spreads charged on Romanian households’ loans. The overall portfolio includes a 

substantial share of consumer loans (54%, much higher than E.U. average of 27%), with 

higher interest rates than mortgage loans. Indebtedness measures that don’t include 

interest expenses, such as (principal debt / gross income) ratio, register lower values than 

other E.U. countries. 

Additionally, borrowers with incomes below minimum wage account for an important part 

of banks’ portfolio (60% of borrowers, 35% of total loans) and they are especially vulnerable 

to shocks in interest and exchange rates (disposable income is much lower in absolute 

values). 

The research on Romanian banking system mentioned earlier in the text generally confirms the 

credit risk features described above, at both system-wide and sector levels. Measures of gross value 

added (GDP, industrial production, construction activity level, sectoral value added etc), interest 

rates or spreads, the exchange rate, unemployment and measures of indebtedness (including 

sector-specific) are typically the most significant macroeconomic factors in modelling credit risk. 
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4.2. Model Estimation 

 

Annex B presents the unit root test results and related discussion. Aside GDP growth and output 

gap, unit root testing suggest that most of the series are non-stationary and thus transformations 

are applied in order to achieve stationarity; the approach is similar with most of the research cited 

here (Boss, 2002; Fiori et al, 2007). 

All econometric estimations were performed using Eviews econometric package.  

Annex C presents the preliminary uni-variate regression results. Similarly with Boss (2002), since 

macroeconomic factor are expected to be autocorrelated (as modelled in their specific equation), 

the Newey-West heteroskedasticity and autocorrelation consistent covariance matrix estimator is 

used in uni-variate regression stage, in order to accommodate any expected residuals 

heteroskedasticity and/or autocorrelation of unknown order. 

Also in line with Boss (2002) approach and with most of the similar studies cited above (including 

the ones for the Romanian banking system) the testing includes lags of the independent variables; 

specifically, the testing includes 8 quarter lags (Boss, 2002 using annual data includes current 

annual value and 1-year lag).  

 

As expected, the testing confirms the hypothesis of the relation between macroeconomic factors 

and credit risk, either contemporaneous or lagged
 21

.  

                                                      
21

 As explained above, a positive sign in the regressions means a direct positive relation between the macroeconomic 

factor and the default rate (e.g. interest rates hikes will cause default rate to increase, i.e. positive sign, but positive 

GDP growth should decrease default rate, i.e. negative sign). 
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In terms of empirical findings regarding lagged relation, an important note should be added Almost 

all of the uni-variate regressions showed that several closed lags are statistically significant and 

have high explanatory power rather than only one specific lag of a proposed macroeconomic factor 

(this is also in line with the auto-regressive assumption for modelling the macroeconomic variables, 

i.e. shocks are persistent). Since the model is based on quarterly data, the multi-variate model 

includes one specific quarter lag (the most significant / highest explanatory power) or the 

contemporaneous value of the series, but this reflects only a general lagged or simultaneous effect 

and not only a specific quarter influence (i.e. quarter 7 reflects a delayed effect of approx. 1-1.5 

year for example).  

4.3. Corporate model  

4.3.1.  Uni-variate results 

 

Real and nominal GDP growth rates are the most important cyclical explanatory factors, with 

immediate effect on default rates,  as typical found in similar research on the Romanian credit risk 

(Moinescu, 2012; Jakubik and Reininger, 2013; Moinescu and Codirlasu, 2012 who use gross value 

added for each sector, the main components of GDP; Trenca and Benyovszki, 2008). Industrial 

production, which in some cases leads economic growth (Boss, 2002) is significant, indeed on 

lagged values, but has a low explanatory power.  

GDP gap seems to act as an early warning indicator with lagged values (5 lags for real output gap) 

having a direct positive relation with default rate (e.g. economy overheating periods are followed in 
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the next year by increase of default rate). This is contradictory with the result reported by 

Chiriacescu (2010) how founds an immediate positive relation between output gap and default rate 

in its industry-specific study on 2006-2010 sample (default rates are nevertheless computed 

differently based on number of borrowers ratio
22

).  

Assessing system-wide NPL dynamics, Moinescu (2012) founds an immediate positive relation 

between changes in output gap and NPL in several Central and East European countries, including 

Romania, but univariate regression on level of output gap provided mixed result (changing sign on 

lag 0 versus lag 1) and low explanatory power. 

The forward looking economic sentiment indicator is not significant.  

Regarding the price stability indicators, from a theoretical perspective, inflation rate is expected to 

exert mixed effects on default rates. Generally the research on developed economies cited above 

(e.g. Fiori et al, 2007; Boss, 2002; Kalirai and Scheicher, 2002) mention an expected negative 

relation between inflation rate and default rates, as higher inflation decreases both the real value 

of the debt to be repaid in the future and the real cost of funding (real interest rates). However, for 

Romanian economy, in order to address persistent relatively higher inflation rates (e.g. around 

4.95% at the end of 2012) the central bank has been maintain maintaining contractionary monetary 

policy stance, even in adverse macroeconomic environment, with high money market RON interest 

rates (N.B.R. 2013b), entailing an increase direct cost of borrowing.  For example, Moinescu (2012) 

analysis of system-wide NPL ratio report a significant positive relation with inflation rate in uni-

variate settings, but the variable is not used in the final multi-variate model. 

                                                      
22

 Additionally, as the author explains, the model used in this study has the limitation of using non-stationary series in a 

static model (alternative dynamic specification provided poor results, while short sample didn’t allow for cointegration 
modelling). 
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Uni-variate regression yield mixed results regarding inflation rate influence in this analysis, with 

different signs on levels series versus first difference series testing, distant lags and relatively low 

explanatory power. This finding is line with the exclusion of this variable from the model in all the 

sectoral corporate studies mentioned here. 

Household indicators are all significant, showing the expected sign. Real household consumption 

evolution has the highest explanatory power (even higher than real GDP growth cyclical indicator, 

with which it is highly correlated), as it probably captures both the real macroeconomic cyclical 

evolution and the sectoral weaknesses discussed above (trade sector vulnerability).   The forward 

looking consumer confidence index is significant as well. 

In the corporate sector indicators, both gross capital formation and construction activity show 

significant and immediate relation with default rate and high explanatory power.  

Construction activity level is not usually included in the models cited for the Romanian corporate 

sector, but the strong relation identified here confirms the sectoral pattern presented above 

(construction sector companies register the highest level of NPL ratio). Additionally, this variable 

could also capture information on real estate market development, in the context of predominant 

mortgage-based exposure, as detailed above. This factor is found statistically significant in Vogiazas 

and Nikolaidou (2011) system-wide credit risk study. 

Most of the studies mentioned here found an important positive relation of indebtedness degree at 

industry-specific level. Unfortunately, due to the computation method for corporate aggregate 

indebtedness, i.e. (total bank debt / total gross value added) and for default rates i.e. (defaulted 

loan total amount/ total bank debt), the implied partial mathematical negative relation seems to 
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prevail and/or industry-specific different indebtedness compensate at aggregate level and overall 

indebtedness loses significance.   

Somewhat unexpectedly given the low level of development of domestic stock exchange (Jakubik 

and Reinninger, 2013; Vogiazas and Nikolaidou, 2011), and their typical exclusion from similar 

research on the Romanian corporate sector, forward looking stock market variable have good 

explanatory power on lagged values. This is contradictory with Vogiazas and Nikolaidou (2011) 

finding that stock market index have no explanatory power for corporate defaults. 

Nevertheless, Jakubik and Reinninger (2013) multi-variate model incorporates the domestic stock 

index (fifth lag) for several countries in Central, Eastern and Southeastern Europe, including 

Romania; they stress the role of this variable as leading indicator for overall economic and financial 

evolution rather than an potential direct influence on default rate (e.g. through direct wealth 

effect). Additionally, as Kalirai and Scheicher (2002) suggest, the stock exchange index could 

capture information typically incorporated in Merton (1974) based structural credit risk assessment 

frameworks.  

Domestic currency money market interest rate (as typically reflected by ROBOR 3M, Moinescu, 

2012; N.B.R. 2013a) shows relatively lower explanatory power in its category, while the EURIBOR 

evolution has a circumstantial negative relation with default rates. Since EUR total interest rate are 

generally related to EURIBOR in the Romanian credit market (Jakubik and Reininger, 2013) the same 

unexpected negative relation maintains also for total EUR interest rates. The EUR interest rate 

spread (which excludes the effect of the counter-cyclical evolution of EURIBOR) has a strong 

explanatory power and the expected sign. 
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RON average interest rate on loans however has a strong relation with corporate default rates as it 

captures overall monetary and financial conditions and concurrently has a direct substantial impact 

on borrowing costs. The lag for this variable is distant (more than a year) suggesting that increased 

cost doesn’t immediately affect debt servicing but as it accumulates it generates an adverse effect.  

Aside the result on EUR money market and total interest rates, the results on interest rate 

indicators are similar with previous research.   

In the external variable, the exchange rate shows a high explanatory power and a significant 

relation given the unhedged foreign currency credit risk issue discussed above. Similarly with 

increased interest cost, the lag is distant. Export related variable don’t have a strong explanatory 

power. 

Generally, as Boss (2002) and Karilai and Scheicher (2002) explain a depreciation of foreign currency 

could also improve default rates as it encourages export activity.  

While indeed in recent years the export sector performance was strong, positively contributing to 

GDP growth and net export sector companies have registered relatively better financial standing 

and debt servicing (N.B.R. 2013a), at the level of average overall corporate level default rate, the 

uni-variate results suggest that the adverse effect on credit risk outweigh the positive effect 

generated through export improvement.   

Moinescu and Codirlasu (2012) as well as Chiriacescu (2010) similarly include only exchange rate as 

external variables in their modelling of corporate sector defaults rates. Additionally, Moinescu and 

Codirlasu (2012) incorporate fuel prices in their model, but they found a statistically significant 

relation only for agriculture sector.  
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Oil prices are not significant in the uni-variate testing presented here, but since agriculture sector 

account only for around 8% of GDP, the result is not inconsistent with Moinescu and Codirlasu 

(2012) finding.    

4.3.2. Multi-factor corporate model 

 

Preliminary multi-variate results showed that household consumption is highly correlated with GDP 

growth. The latter variable was preferred as it’s widely documented in similar research as the main 

cyclical indicator and provided slightly better fit than specification where household consumption 

took the role of cyclical indicator. Consequently to this decision, the other significant indicators 

reflecting household sector were tested in the multi-variate setting. 

Based on the uni-variate results and taken into consideration the credit risk features discussed 

earlier, two alternative preferred multi-variate models are proposed (Table 3): a model including 

also leading indicators with a slightly higher accuracy (but not suitable for communication as 

discussed above, Model 1 ) and one based strictly on main macroeconomic factors (Model 2).  

Table 3 Corporate multi-variate model 

Variable Model 1 Model 2 

 Lag Coefficient Lag Coefficient 

Constant  0.1037***  0.1086*** 

Real GDP growth 0 -1.8264*** 0 -2.8949*** 

Consumer confidence indicator 1 0.0067**          

Construction activity (nominal) 0 -0.8762*** 0 -0.7337*** 

Domestic stock market index (BET) 7 -0.1305***   

Interest rate for RON loans 5 3.3769*** 5 4.0000*** 

Exchange rate   7 0.5160* 

R-squared  0.913  0.871 

R-squared adjusted  0.896  0.852 

Durbin-Watson test  1.987  2.020 

Note: ***, ** and * denote significance level of 1%, 5% and 10%, respectively. 
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The inclusion of leading indicators in Model 1 is generally a novel approach in the research on 

Romanian corporate sector, but a similar result was found in the system-wide study of Jakubik and 

Reininger (2013) for the domestic stock market index as discussed above.  

Since household consumption was excluded, the consumer confidence index proved significant in 

this multi-variate model. The alternative household indicators were not significant in the multi-

variate models (unemployment and indebtedness proxy).  

The inclusion of the nominal construction activity as corporate sector indicator follows the result of 

the univariate testing (and related discussion). 

Among interest rate indicators, RON loan interest rate and EUR interest rate spread have similar 

explanatory power, but the former yielded better result in the multi-variate testing and was thus 

preferred. 

Model 1 excludes the exchange rate; while this variable was actually marginally significant in the 

model (at 10% significance level), it generated residuals correlation.  

The exclusion seems contradictory with the related discussion above, but nevertheless Moinescu 

and Codirlasu (2012) report multi-factor models without exchange rate as well for several corporate 

sectors. Aside the considerations outlined earlier on the exchange rate mixed effect, Jakubik and 

Reininger (2013) further explain that borrowers in foreign currency loans have benefited from the 

decrease of EUR interest rates (typically indexed to EURIBOR), while domestic currency rates were 

maintained at high level due to inflationary pressures. Indeed N.B.R. (2013a) notes that, higher risk 
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notwithstanding, at aggregate level NPL ratio for foreign currency loans has only recently exceeded 

that for domestic currency loans. 

Model 2 incorporates only direct macroeconomic factors, including the exchange rate but with a 

more distant lag (7
th

 lag instead of the 4
th

 lag found the most significant in uni-variate testing
23

; the 

former lag is significant as well in the uni-variate setting, albeit with a lower explanatory power). 

The multi-variate models include both contemporaneous and lagged influence of the 

macroeconomic factors. 

As found also in other studies (Chiriacescu, 2010 for Romanian banking system; Jakubik and 

Reininger
24

, 2013 in panel study, including Romania), GDP influences contemporaneously the NPL in 

the corporate sector (same quarter), although we could expect some resilience (similarly, the effect 

of construction activity level, a GDP component, is also simultaneous). As general economic 

consideration, the GDP evolution reflects the business cycle stage but concurrently, being a value 

added variable, it constitutes a good proxy of corporate sector profitability (Virolainen, 2004), i.e. 

the main source of loan and interest repayment. Additionally, specific to the Romanian credit risk, 

the permissive insolvency legislation for debtor companies could be also an explanation for this 

immediate effect (Chiriacescu, 2010).  

On the other hand, the interest rate for RON loans is included in the models with more distant lags 

(5
th

 lag) but, as explained above, actually lags from the second/third quarter to eight  are 

statistically significant for both sectors at 91% or at most 95% confidence levels. The selected lags 

                                                      
23

 As already discussed, this doesn’t imply a theoretical specific effect of lag 7, since several distant lags are significant in 
the uni-variate model (3

rd
 –7

th
)  but rather a general delayed effect because the effect of an increase of borrowing cost 

takes time to accumulate and generate 90 days arrears 
24

Jakubik and Reininger (2013) model includes previous quarter GDP. 
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are the ones found the most significant / having the highest explanatory power. While GDP and 

GDP components capture directly and immediately an income decrease and adverse economic 

conditions, interest rates, on one hand, reflect financial conditions which usually have a lagged 

impact on private sector, and on the other hand, affect loan cost, but it is reasonable to expect a 

gradual accumulation rather than an immediate effect. This could be because interest rates are 

usually fluctuant (and thus debtors are used with some degree of fluctuations; banks usually update 

interest rates on a monthly basis in the corporate sector, N.B.R. 2013a) and affect only a part of the 

debt service, while NPL captures 90 days arrears and thus it takes time for an interest rate shock to 

accumulate
25

. 

The domestic stock market indicator is also included on a distant lag in corporate Model 1, but as 

discussed, stock indexes are leading / forward looking indicators and thus this finding seems in line 

with theoretical background and other study findings (Jakubik and Reininger, 2013 – 5
th

 lag) 

Both models show good statistical fit with R-squared adjusted values of 85-90%; Durbin Watson 

test values indicate no first order autocorrelation of errors. Annex D.1 and D.2 present the 

diagnostic tests of the models following the guidelines of Brooks (2008), chapter 3. Since the multi-

variate specification was based on relatively extensive uni-variate testing (this could affect the usual 

computation of confidence levels, Brooks, 2008), an out-of-ample forecast evaluation is presented 

as well, with a holdout sample consisting of the last 4 quarters. The models are estimated for the 

period excluding the holdout sample and results are then used to construct forecast for the holdout 

                                                      
25

 Specifically, ceteris paribus, a company’s default take places quicker when the company is facing decreased 
profitability in an adverse macroeconomic environment, than in the situation when the company is facing only an 

interest rate increase and/or financial market turbulences.  
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period, using actual values for the independent variables. Both models proved satisfactory forecast 

power, but model 2 yielded relatively better results.  

Additionally, since the multi-variate models include macroeconomic series intrinsically related, 

multi-collinearity could be an issue. 

As general observation, Gujarati (2004) and O’Brien (2007) explain that the usual sign of multi-

collinearity is a high R-squared combined with non-significant coefficients (although jointly, 

coefficients seem significant). However, this is not the case in proposed models as all variables are 

individually statistically significant (the statistical significance of each variable included in the multi-

variate models was a criterion in building the model). 

Nevertheless, following the guideline provided by Gujarati (2004), the diagnostic tests annexes 

include a Variance-Inflating Factor analysis for all models which confirms that multi-collinearity 

level is not problematic for the models.  
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4.4. Households model  

4.4.1.  Uni-variate results 

 

Annex E includes the results of uni-variate regression for the households sector, again using Newey-

West covariance matrix estimator.  

Among cyclical indicators, GDP growth maintains the highest explanatory power also in the 

household model, but with a significant lag (3-4 quarters). This finding is similar with the results 

reported by Chiriacescu (2010), who suggest that the lack of a household bankruptcy law that 

would offer protection to distressed households, can be an explanation for the delayed effect 

(compared with corporate sector, where the bankruptcy procedure is heavily used by debtors 

facing financial difficulties, N.B.R. 2013a). Alternatively, it could show simply that households 

maintain better repayment even when facing income decreases. An explanation could be the higher 

level of savings in the households sector: at system level as of September 2013, households’ savings 

amount to around RON 126.5 billion versus RON 64.7 billion in the corporate sector, while loans to 

corporate sector reach RON 170.9 billion versus RON 87.8 billion loans to households. 

Again, inflation rate yielded mixed results in the uni-variate regressions. 

Similarly with the corporate model, but on 3-4 quarters lagged values, real household consumption 

has a good explanatory power (higher than GDP growth rates). It probably captures, at aggregate 

level, the business cycle evolutions concurrently with other household sector dynamics affecting 

debt servicing (unemployment, disposable income etc). Given the features of the households credit 
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risk detailed above, net nominal wage, unemployment rate and interest payment service show 

significant relation as well, albeit with lower explanatory power. 

The leading indicators regarding economic sentiment and consumer confidence are not statistically 

significant, but stock market indexes maintain a significant relation with default rate, but on more 

distant lags (8 quarters). 

Money market, interest rate and external variables testing yielded similar result with the corporate 

model. 

4.4.2.  Households multi-factor model 

 

As expected household consumption has an important explanatory power; it is consequently 

assigned the role of main cyclical indicator and it’s preferred over GDP growth in the multi-factor 

model (Table 4 below) since it reflects directly the household sector macroeconomic evolution and 

yielded better fit.  

The alternative household specific indicator incorporated in the model is the disposable income 

proxy (aggregate interest service payment). Total interest rate for RON loans is also included in 

model.  

The important relations of these two factors (disposable income and interest rate) with default rate 

is in line with the households credit risk feature outlined above, i.e. over-indebtedness generated 

also by high interest rates.  

The disposable income proxy is computed as (interest payments / nominal wage in RON) ratio at 

aggregate level, specifically taking into account different interest rates per currency, i.e. EUR 
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interest rates and EUR loan balances (in RON equivalent, thus capturing exchange rate dynamics). 

The correlation between this proxy variable and the RON interest rate is limited (0.28 correlation 

coefficient) as an effect of the large share of foreign currency denominated loans in the portfolio 

and the additional information captured by the proxy regarding wages (the denominator of the 

proxy). 

Table 4 Household multi-variate model 

Variable Lag Coefficient 

Constant  0.3555*** 

Household consumption 4 -3.6359*** 

Interest rate payment service 6 1.1208***     

Interest rate for RON loans 8 9.9010*** 

R-squared  0.761 

R-squared adjusted  0.731 

Durbin-Watson test  1.72 

Note: ***, ** and * denote significance level of 1%, 5% and 10%, respectively.  

The DW test shows a lower value but still higher than the 95% confidence  level critical value (1.650) and  thus the 

hypothesis of no first order auto-correlation cannot be rejected. Nevertheless, the coefficient covariance matrix is 

estimated based on Newey-West heteroskedasticity and autocorrelation consistent  (HAC)  

 covariance estimator.  

 

The model doesn’t include directly the exchange rate as its inclusion yielded poor results, but its 

effect on household loan debt servicing capacity is captured by the disposable income proxy and 

household consumption (the latter is expected to capture unemployment as well) and probably 

total interest rate (since they reflect also money market and financial risk conditions). 

The interest rate and the disposable income proxy are included with distant lags, reflecting the 

above explained resilience of the household sector and the gradual accumulation of borrowing cost 

(interest rate and exchange rate effects). The interest rate lag is even more distant than in the 

corporate models because banks typically update interest rate on quarterly basis for households 

loans (versus monthly basis for corporate loans; N.B.R. 2013a, Chiriacescu, 2010). 
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Stock exchange market index maintain statistical significance in the multi-variate model but induce 

an increase in residual auto-correlation.  

The final multi-factor model shows a good fit (R-squared adjusted of 73%). Annex F reports the 

diagnostic test, with generally satisfactory results, but relatively less conclusive than the corporate 

model (residuals normality assumption and functional form). The out-of-sample forecast evaluation 

however yielded good results. 

The only available research specifically assessing household credit risk portfolio is found in 

Chiriacescu (2010) and Chiriacesu et al (2012). The model proposed by these studies includes 

industrial production as the main cyclical indicator due to chosen frequency of the data (monthly, 

while GDP related data are available only quarterly). Unemployment, indebtedness, exchange rate 

and interest rate spreads are found statistically significant in the multi—variate setting.  

4.5. Estimation of macroeconomic variables equations (ARMA) 

 

This section presents the methodology employed to estimate the ARMA (p,q) specifications 

(equation (16), Section 3.1 Specific Model) of the explanatory macroeconomic variables and the 

results of this estimation.   

The ARMA equations are estimated using Box-Jenkins approach, with information criteria at the 

identification stage, following the guidelines proposed by Brooks (2008) and Gujarati (2004). In the 

context of the broader modelling methodology used in this study, similar approaches to ARMA 

estimation can be found in Kucukozmen and Yuksel (2006), Fiori et al (2007) and Chiriacescu (2010). 
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Generally, the Box-Jenkins ARMA estimation approach is an iterative process comprising three steps 

(Brooks, 2008): 

1. Identification – this step involves finding the appropriate order for the ARMA (determining 

the value for p, i.e. the number of auto-regressive terms and q, i.e. the number of moving 

average terms). This can be done by inspecting the graphical correlogram (the 

autocorrelation function) and partial correlogram (partial autocorrelation function) of the 

series in order to identify patterns similar to those implied by theoretical ARMA 

configuration. Since real data series don’t usually display the simple theoretical patterns, 

current practice however involves using information criteria in this stage; this concurrently 

implies that the identification decision is less subjective than simply interpreting the 

correlograms  (Brooks, 2008). 

2. Estimation of parameters – having identified the adequate values for p and q, the ARMA 

parameters can be estimated using usual least squares technique or other non-linear 

techniques (e.g. maximum likelihood).  

3. Model checking – determining whether the identified specification and related estimation fit 

the date reasonably well. This is typically done through residual diagnostic, i.e. checking if 

the residuals display linear dependence (auto-correlations, partial autocorrelation and 

Ljung-Box test), which would imply that the chosen model doesn’t fully capture the feature 

of the series
26

. In such a case the model is rejected and the process starts over from step 1. 

Alternatively, in case the residuals exhibit withe noise properties, the model is considered 

appropriate and the process stops.  

                                                      
26

 As Brooks (2008) notes usually the residuals diagnostic testing in the Box-Jenkins approach comprise only 

autocorrelation tests (not the full standard package of residual diagnostics). 
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Additionally, especially for relatively small samples, the goals is usually to identify and 

estimate a parsimonious model that captures the features of data using as few estimated 

parameters  as possible, (Brooks, 2008). This preserves degrees of freedom and avoids 

building large model that fit the date only in in-sample estimation, while performing poorly 

in out-of-sample estimation. 

Annex G presents the results of the ARMA estimation
27

 and testing for the selected macroeconomic 

variables using the approach described above; table 5 below summarizes the results. Several series 

showed no auto-regressive or moving average patterns (no significant auto-correlation / partial 

auto-correlation) and thus they will be treated as non-zero white noise processes (Brooks, 2008).  

As recommended by Brooks (2008), since the sample is relatively small, the Ljung-Box Q-Statistics 

portmanteau test has been taking into consideration within the model checking step, for 3-8 

quarterly lags  (along with the usual auto-correlation and partial auto-correlation function 

significance levels). 

 

Table 5 ARMA estimation results 

Models Macroeconomic variable Selected specification  

Corporate models Real GDP Growth  AR(1) 

Consumer Confidence Indicator Non-zero white noise 

Construction activity (nominal) ARMA (4,2) 

Domestic stock market index (BET) Non-zero white noise 

Interest rate for RON loans (corporate sector) ARMA (2,1) 

Exchange rate Non-zero white noise 

Household model Household consumption (real) ARMA (1,2) 

Interest rate payment service Non-zero white noise 

Interest rate for RON loans (household sector) ARMA (1,3) 

                                                      
27

 Similar to the studies quoted above (e.g. Kucukozmen and Yuksel, 2006 who use 12 monthly lags; Chiriacescu, 2010 – 

3 quarterly AR terms and 2 MA terms in the final specification) a maximum number of autoregressive and moving 

average terms of 4  were taken into consideration in the ARMA estimation procedure (up to 4 quarters lags); 
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4.6. Specific scenarios  

 

The table below summarises the scenarios used in the few Romania recent stress testing 

applications: 

Table 6 Scenarios design in recent Romanian stress testing application  

Study / Report Context Scenarios Time Horizon 

N.B.R. (2013a)  Central bank 

supervisory stress 

testing 

Comprehensive adverse macroeconomic scenario 

involving a strong and persistent domestic currency 

depreciation (20%), negative economic growth 

(prolonged recession), substantial rise in funding cost 

and euro area recession. 

Probabilities of default considered in the scenario are 

comparable with their historical maximum registered 

in 2009 (higher actually in the case of mortgage loans). 

Full scenarios details are not disclosed. 

2 years 

(2013-2015) 

N.B.R. (2012) Central bank 

supervisory stress 

testing 

Comprehensive adverse macroeconomic scenario 

involving a double dip recession (-1.5% GDP decrease 

each year), strong and persistent domestic currency 

depreciation (14% in the first year) and worsening 

funding condition. 

Full scenarios details are not disclosed. 

2 years 

(2012-2014) 

Chiriacescu 

(2010) 

Independent 

research 

Baseline scenario given by model forecasting 

(autoregressive equations).  

Adverse alternative hypothetical scenario involving: 

 17% depreciation of local currency ; 

 Rise in unemployment (for household sector): 

consecutive quarter increases (1.5%, 1%, 0.5% and 

0.2%).  

Expected and unexpected losses are computed under 

both baseline and adverse scenarios. 

1 year (2010 

– 2011) 

Trenca and 

Benyovszky 

(2008) 

Independent 

research 

Baseline scenario given by model forecasting 

(autoregressive equations). 

Hypothetical adverse scenario comprising a 2% 

percentage points interest increase for four 

consecutive quarters. 

Expected and unexpected losses are computed under 

both baseline and adverse scenarios. 

1 year (2007-

2008) 

 

The table shows that generally both Romanian central bank and the few independent studies use 

hypothetical scenarios. However, N.B.R. doesn’t fully disclose the methodology details and thus the 
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assumed adverse scenarios could be based on certain historical evolution or probabilistic 

approaches. Generally, the N.B.R. stress test framework is comprehensive, covering all relevant 

risks of the financial system and consequently their scenarios design reflects this broader approach.  

Given the data availability constraints and the reduced form methodology employed (similar to the 

one used in this report), the two independent studies use simple ad-hoc hypothetical scenarios, 

without clear historical or probabilistic background. Trenca and Benyovszky (2008) calibrate the 

model on pre-crisis period (2002 to early 2007) when defaults rates were very low and test only a 

simple hypothetical scenario based on interest rate cost shocks, without addressing specific 

financial system vulnerabilities. The model proposed by Chiriacescu (2010) covers also post-crisis 

data and the adverse scenarios include shocks of relevant credit risk factors, specific to the 

Romanian banking system (local currency rate depreciation and unemployment).  

Both independent studies lack a GDP shock scenario (although Chiriacescu, 2010 includes a related 

unemployment shock for household segment), a standard practice in stress testing as explained 

above. Furthermore, the absence of the usual historical or probabilistic scenarios affects the 

comparability of their findings.  

Given the findings of the modelling sections and the discussion is Section 2.2. regarding current 

practices on scenarios design, this study includes the scenarios presented in Table below. The 

scenarios approach is much broader than the one used in the other independent studies. 

Since the analyzed sample is relatively reduced (around 8 years), historical approaches based on 

2008-2009 shocks are preferred over probabilistic approaches (the latter should be based on longer 

term averages and deviations). However, the historical scenarios values are compared with the 
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values implied by the usual probabilistic scenarios. A hypothetical scenario is proposed for 

household sector to address specific risks within the sector.  

Several variables (stock market index and exchange rate for corporate sector and interest rate for 

household in the households sector) were not specifically included in the stress test scenarios due 

to their distant lags in the model. 

Table 7 Scenarios proposed for corporate models 

Adverse scenarios Historical background Comparison with usual probabilistic approach 

GDP shock: decrease of -7.54% 

over a year (equally distributed 

over four quarters, -1.94% 

decrease/quarter) 

-7.6% decrease 

observed  in 2008Q3-

2009Q3 period 

The series seems to have a non-normal 

distribution. 

The scenario is similar with four consecutive 

shocks of 1.5 standard deviation from  GDP 

growth sample mean. 

The quarterly decrease is slightly lower than the 

5% quantile. 

Consumer confidence shock: 

decrease (worsening) of 

consumer confidence index from 

its current value (-34.6) to its 

minimum registered value (-63 in 

2010Q2) – gradual uniform 

quarterly evolution of +16.3% per 

quarter (+83% in year) 

the lowest historical 

value of the index is -63 

(registered in 2010Q2, 

after a decrease from its 

peak value of -12 

registered in 2008Q3) 

The differenced (% change) series seems to have 

a non-normal distribution and features high 

variance.  

One or two standard deviation/s would imply 

much larger decreases (but the generated final 

value would be substantially below historical 

minimum of the index). 

Construction activity shock: 

decrease of 16.63% over a year 

(equally distributed over four 

quarters, -4.16% 

decrease/quarter) 

-16.63% decrease 

observed  in 2009Q1-

2010Q1 period 

The log-differenced series seems to have a 

normal distribution and features high variance.  

The scenario is similar with four consecutive 

shocks of 1.5 standard deviation from sample 

mean. 

The quarterly decrease is slightly lower than the 

7% quantile. 

Interest rate shock: 6 p.p. 

increase. Gradual increase of 1.5 

p.p. per quarter. 

-6 p.p. increase 

observed  in 2009Q1-

2010Q1 period 

The differenced series seems to have a non-

normal distribution and features high variance.  

The scenario is similar with four consecutive 

shocks of 1.5 standard deviation from sample 

mean. 

The quarterly increase is slightly lower than the 

95% quantile. 
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Table 8 Scenarios proposed for households’ model 
Adverse scenarios Historical background Comparison with usual probabilistic 

approach 

Private consumption shock: 

decrease of -13.3% over a year 

(equally distributed over four 

quarters, -3.33% 

decrease/quarter) 

-13.3% decrease observed  in 

2008Q3-2009Q3 period 

The log-differenced series seems to 

follow a normal distribution. 

The scenario is similar with four 

consecutive shocks of almost 2 standard 

deviations from sample mean. 

 

Sharp increase of interest 

payment service by 10.48 p.p. 

(from 37.5% to ~48%), for 

example due to RON 

depreciation and/or interest 

rate shocks, accompanied by a 

stagnation of private 

consumption (0% growth for 1 

year) 

Gradual increase of interest 

payment service: 2.62 

p.p./quarter 

Hypothetical scenario – 

corresponds for example 

with a depreciation of 20% 

of the RON and an increase 

of 5 p.p. in RON interest rate 

(ceteris paribus).  

 

Largest annual historical 

increase was of 5.51 p.p. 

(2008:Q2 – 2009:Q1) 

 

The differenced series seems to follow a 

normal distribution, with high standard 

deviation. 

The scenario is similar with four 

consecutive quarters shocks of 1 

standard deviation from sample mean. 

 

  

The adverse scenario involving a hypothetical shock of the interest payment service is designed to 

test the vulnerability of the household sector documented in the previous sections: high 

indebtedness due to increased interest rate cost and unhedged exposure to currency fluctuations. 

The scenario could be triggered for example by a 20% local currency depreciation (the 2008-2009 

depreciation was of 16.92%), cumulated with a sudden reversal of the downward trend of interest 

rate for RON loans (sharp increase of 5 p.p., which entails interest rates at the high level registered 

in 2009). 

The selected time horizon is 2 years for corporate sector and 3 years for household sector (given its 

lag structure), similar to the approach of central bank and longer than the horizon chosen in the 

independent research cited above. This scenarios horizon should assure a good balance between 
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the specific dynamic environment (emerging market, accelerated and volatile credit risk dynamics) 

and the gradual accumulation of the effects of an adverse shock. 

The shocks proposed in the scenario take place in the first year and the macroeconomic factors 

resume their auto-regressive pattern in the second year. Depending on the ARMA specification, this 

implies a prolongation of the negative trend in the second year for higher order / persistent ARMA’s 

(slow mean reverting processes), a quicker return to long term average for lower term / non-

persistent ARMA’s or an immediate return to long term average for non-zero mean white noise 

specification. 

4.7. Simulation results  

 

The above proposed methodology includes usually a baseline scenario given by the forecasted 

values of the macroeconomic factors based on their autoregressive specifications, i.e. equations 

(16) (Chiriacescu, 2012; Virolainen, 2004; Boss, 2002), and consequently this approach is used also 

in this study.  

The Monte Carlo simulation performed here is based on a large number of replications (50,000 

replications for corporate models and 20,000 replication for household model), which ensures high 

simulation accuracy (low simulation standard errors). As noted by Flegal et al (2008) Monte Carlo 

standard error (MSCE) is an important accuracy measure, but it’s not usually reported in studies 

using Monte Carlo techniques.  This study will report the MCSE computed as proposed by Owen 

(2013): 

       √          (20) 



75 | P a g e  

 

where is s is the standard error of the estimated variables (default rates in this case) and n is 

the number of replications. 

The below table details the simulated values of the macroeconomic factors included in the models 

proposed in this study: 

Table 9 Baseline scenario – current and simulated values (annual evolution) 

Models \ Factors Lag   Previous 

year 

value* 

Last 4 

quarters 

value* 

1
st

 year 

forecaste

d value 

2
nd

 year 

forecasted 

value 

Corporate Models       

Real GDP growth 0 % 

growth 

 +4.07% +3.73% +2.94% 

Consumer confidence 

indicator** 

1 % 

change 

 -7.98% +16.40% +16.48 

Construction activity  0 Ln-diff  -2.81% +2.73% +7.47% 

Domestic stock market index  7 Ln-diff +8.80% +24.60%   

Interest rate for RON loans 5 First diff  -1.39 p.p. -0.86 p.p.  

Exchange rate 7 Ln-diff +5.10% -0.85%   

Household Model       

Household consumption 4 Ln-diff  +1.22% +3.22%  

Interest rate payment service 6 First-diff -5.49 p.p. -4.19 p.p. -3.72 p.p.  

Interest rate for RON loans 8 First-diff -0.82 p.p. -0.69 p.p.   

* based on the last 4 quarters evolution (2012:Q4 – 2013Q3) and the previous 4 quarters for previous year value 

(2011:Q4 – 2012:Q3).  

Figures for previous year and for forecasted values are reported only if relevant for the simulation (depending on their 

lag in the model). 

** negative evolutions denotes improvement of consumer confidence  

 

The table below presents the results of the model simulation based on Monte Carlo method 

(normally distributed residuals; no artificial stress test scenario shock) under the baseline scenario 

over the 2 years simulation horizon. The expected and unexpected values of the defaults rate are 

reported for all models: 
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Table 10 Result of models simulation  

 Corporate sector Households sector 

Model 1 MCSE Model 2 MCSE Main 

model 

MSCE 

1
st

 

year 

Expected default rate  18.14% 0.01% 18.37% 0.01% 8.86% <0.01% 

Unexpected default rate 22.37%  23.47%  9.16%  

2
nd

 

year 

Expected default rate  23.11% 0.03% 22.63% 0.03% 10.04% <0.01% 

Unexpected default rate 34.20%  34.01%  10.61%  

3
rd

 

year 

Expected default rate  n/a n/a n/a n/a 10.96% <0.01% 

Unexpected default rate n/a n/a n/a n/a 11.78%  

 

The unexpected values take into consideration a 5% probability level of occurrence (95% quantile). 

Current value (2013 Q3) for corporate default rate is 14.09% (up from 10.47% in 2012 Q3, and from  

8.14% in 2011 Q3; Figure 2 below). The expected values indicated by the model simulation imply 

that the default rate increase will maintain its pace in spite of improved macroeconomic 

environment (as reflected by recent past values of macroeconomic variables and by the proposed 

baseline scenario described above, e.g. GDP growth, interest rates decrease). The Romanian central 

bank also expects an increase of NPL rates in the next period, but at a slower pace, citing improved 

macroeconomic conditions and decrease of probabilities of default (N.B.R., 2013a). 

There are several factors that could explain the findings reported here: 

 Due to data availability restriction, the dependent modeled here is a lagged indicator of 

probability of default (please see section 3.5. Credit Risk variable selection for a discussion); 

the current macroeconomic improvement has only recently taken place and it’s still mixed 

(N.B.R. 2013a) and although PD have improved, their decrease doesn’t seem to be reflected 

yet in default rates (and thus the model doesn’t capture this dynamic); 
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 Some factors are included with distant lags and their improvement is only partially reflected 

over the chosen time horizon; 

 The model assumes that banks will maintain the same current behavior of NPL build-up 

(downward trend of lending activity, i.e. decrease of total loan volumes, the denominator in 

default rates, and maintaining NPL on balance sheets for longer periods; please see section 

4.1. Main recent evolution in credit risk) 

At any rate, this study focuses on stress testing rather than on forecasting or expected values. The 

models are calibrated on a sample that includes also crisis and post-crisis period and since the 

stress testing framework involves the assumption of “extreme but plausible” adverse shocks (the 

alternative scenario) in the future, the potential failure of the model to fully capture the positive 

effect of recent macroeconomic improvement in the baseline scenario shouldn’t represent an issue. 

Specifically, in case the adverse shock will actually take place, the calibrated model should 

adequately estimate the default rate dynamics (since its initial calibration was done in a crisis 

affected environment and the assumption of NPL build-up should continue to hold). 
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Figure 2 Default rate historical evolution for corporate sector 

 

 

The charts below (Figure 3 and 4) plot the distribution of the simulated default rate for Model 1 

(Model 2 yields very similar plots); as expected, the non-linearity of the model is evident, the 

probability distribution being skewed to the right, with the median lower than the mean (similar 

with Chiriacescu, 2010 findings). A rough interpretation, in line with usual credit risk behavior, is 

that simulated default rates are below expected mean more often than above the mean, but the 

average magnitude of the positive deviations from mean (in case of unexpected shocks 

occurrences) is larger the average magnitude of negative deviation from the mean (small negative 

deviations are more likely, while above average default rates are less likely, but more extreme). 
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Figure 3 Default rate (corporate) probability distribution (first year simulation, Model 1) 

 

 

Figure 4 Default rate (corporate) probability distribution (second year simulation, Model 1) 

 

 

Current value (2013 Q3)  for household default rate is 7.62% (up from 6.07% in 2012 Q3, and from 

4.77% in 2011 Q3, Figure 5 below). For this segment, the model simulation indeed forecasts a 

slower pace of default rate increases compared with recent years’ evolution. 
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Figure 5 Default rate historical evolution for household sector 

  

 

Since the household model is based on a linear specification, the distribution follows a normal 

distribution pattern (Figure 6 & 7 below), implying a symmetric response of credit risk to 

macroeconomic shocks.  

Figure 6 Default rate (households) probability distribution (2
nd

 year simulation) 
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Figure 7 Default rate (households) probability distribution (3
rd

 year simulation) 

 

 

4.8. Stress testing results 

 

The table below report the expected value of default rates under the stress test scenarios 

mentioned above. 

As discussed earlier, selecting a certain degree of severity of the scenarios in the context of near 

post-crisis period is complicated. The scenarios chosen here usually replicate the recent 2008-2009 

shocks, which seems to be a very low probability event since the macroeconomic environment 

seems to be on a recovery path and the replicated shock has recently taken place (e.g. in terms of 

GDP shocks, the central bank’s scenarios are milder than the ones implied by replication of 2008-

2009 shocks), and thus one may considered them too severe and implausible.  On the other hand, 

replicating 2008-2009 shocks is a standard approach in current practice (e.g. in I.M.F.’s F.S.A.P., 

Jobst et al. 2013) and the historical background itself should ensure plausibility, while comprising on 

severity could underestimate the losses. 
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Table 11  Stress test results – corporate sector  

Scenarios Year  Model 1 MCSE Model 2 MCSE 

  Stressed 

value 

vs 

expected* 

 Stressed 

value 

vs 

expected* 

 

GDP shock 1
st

 year 23.65% 5.51 0.01% 24.99% 6.85 0.01% 

2
nd

 year 32.12% 9.01 0.03% 33.67% 10.56 0.03% 

Consumer confidence 

shock 

1
st

 year 18.98% 0.84 0.01% n/a n/a n/a 

2
nd

 year 24.47% 1.36 0.03% n/a n/a n/a 

Construction activity 

shock 

1
st

 year 21.02% 2.88 0.01% 19.82% 1.68 0.01% 

2
nd

 year 31.13% 8.02 0.03% 30.35% 7.24 0.03% 

Interest rate shock 1
st

 year n/a n/a n/a n/a n/a n/a 

2
nd

 year 27.22% 4.11 0.03% 28.42% 5.31 0.03% 

* stressed value difference versus expected value under the baseline scenario 

The results reveal a substantial increase of default rates (the current level of default rate in 

corporate sector is 14.09% as of 2013 Q3) in the case of severe GDP and construction activity 

shocks. The stressed default rates are substantially higher than the excepted values reported above 

under the baseline scenario.  

Consumer confidence shock, although severe as well, implies only a relatively small increase of 

default rates versus baseline scenarios expected value (1.36 p.p. over two years). 

Interest rate shock is related also with an important increase of default rates (due to its lag in the 

model, the effect of the shock is registered only in the second year), with increases versus baseline 

scenario of 4 p.p. in Model 1 and 5.31 p.p. in Model 2.  

Table 12 Stress test results - household sector 

Scenarios Year Expected value vs expected 

value 

MSCE 

Private consumption shock 2
nd

 year 10.74% 0.70 <0.01% 

3
rd

 year 11.86% 0.90 <0.01% 

Interest payment service 

shock 

2
nd

 year 10.24% 0.20 <0.01% 

3
rd

 year 11.37% 0.41 <0.01% 

 

As expected the households sector is considerably more resilient to adverse macroeconomic 

evolutions. The private consumption shock is related to an increase default rates of 0.9 p.p. versus 
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expected value under the baseline scenario. In spite of existing vulnerability in the sector, an 

interest payment service (a proxy for indebtedness) doesn’t generate an important increase of 

default rates versus their expected value (0.41 p.p. over two years horizon). 

Given the contribution of the corporate sector in total loans to private sector at banking level 

system (66%), the finding of the stress testing exercise show that the banks’ profitability and capital 

adequacy can be substantially affected in case of occurrence of the adverse shocks considered in 

the stress test scenarios. 

For example, the central bank (N.B.R., 2013a) documents that in 2012 the domestic banking sector 

has incurred losses of RON 2.3 billion mostly due to increased NPL volumes and collateral 

revaluation. These losses, amounting to around 8.1% of the RON 28.27 billion Tier 1 capital 

registered at system level as of March 2012,  have substantially affected the own funds of banks. 

The own fund decrease trend continued also in 2013 (-9.5% as of August 2013, chart below). 

Figure 8 Tier 1 Capital and Total own fund evolution 
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Nevertheless, the report shows that the banks maintain very good provisioning coverage of NPL 

volumes, and a comfortable solvency ratio of 14.7% as of June 2013 (substantially more than the 

minimum regulatory value of 8% and mostly assured by Tier 1 permanent capital, which account for 

93% of total own funds).  The N.B.R. maintains also substantial temporary prudential filters for 

computing own funds and regulatory prudential indicators (downward adjustment of Tier 2 funds) 

that imply a de facto higher solvency ratio (4 p.p. higher than reported levels). These filters are to 

be gradually released in 2014-2018 period in line with Basel III additional capital requirements.  

While, due to data availability restriction, this report doesn’t compute an estimation of overall 

losses, it’s worth mentioning that in 2012 the default rate for corporate sector has increased by 

2.98 p.p. (from 8.4% to 11.38%), while the household loan portfolio registered an increase 1.13 p.p. 

(from 5.4% to 6.53%). The most severe evolutions estimated under the adverse scenarios analyzed 

here imply an increase of 8-9 p.p. per year of corporate default rates (versus current level) and an 

increase of around 2 p.p. per year for households default rates, both dynamics being substantially 

more adverse than the evolution registered in 2012.  

Consequently, under these scenarios the banks’ overall losses can increase correspondently.  

 

The estimations of stressed default rates reported in this study offer an indication of the potential 

evolution of default rates (and thus NPL and credit risk losses) in the banking sector in case of 

adverse extreme but plausible macroeconomic events.  
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4.9. Limitations  

 

In spite of employing a consistent and documented framework for all components of the models, 

coupled with robust testing procedures, the study has several limitations: 

- The models don’t expressly incorporate second round effects from financial sector to real 

economy and related spiral effect, thus potentially missing relevant dynamics. While the 

reduced form models use here may partially incorporate such effects (since the sample 

includes the 2008-2009 shock and its effects on the real economy), the implicit assumption 

is that the feedback spiral simply follows historical pattern.  

As documented in the literature review section, research on incorporating macro feedback 

in stress testing procedure setting is still at incipient stage.  

- Given the data availability restriction, the study models default rates (measured in volumes), 

an indicator that includes the effect of probability of default (PD) but also the effect of loss 

given default (LGD). While default rates contain useful information (they are a usual proxy 

for NPL) and have direct impact on bank loan losses, they remain a lagged indicator versus 

PD.  
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5. Conclusions 

 

Macro stress testing is an important tool within the macro-prudential and crisis management 

framework of central banks and international institutions around the globe, including Romania.  

In spite of their relevance in assessing the health of financial systems and addressing financial crisis 

effects, applications of macro stress testing for the Romanian financial system are scarce, especially 

as independent applications research (stress tests not conducted by the central bank and/other 

international financial institutions within supervision frameworks).  

Credit risk remains the dominant risk challenging domestic financial stability, and thus this report 

assesses the potential impact of macroeconomic adverse shocks scenarios on credit risk variables.  

The literature review, focusing on methodology approaches, documents the rich practical and 

theoretical research on macro stress testing. Impressive amount of research and substantial 

progress notwithstanding, the review explains that except for a rough consensus on the model 

structure, the proposed methodology is diverse and heterogeneous and the process involves high 

degree of complexity, still unsolved difficulties and limitations and sometimes conflicting objectives. 

A main strand of macro stress testing research is based on Wilson (1997a, 1997b and 1998) 

proposed methodology involving modelling of default probabilities as a non-linear function of 

macro-economic variables. Typically, the framework comprises a reduced form multi-factor model 

for estimating industry-specific probability of default, a dynamic specification for forecasting the 

evolution macroeconomic factors, followed by Monte Carlo simulations in benchmark and stressed 
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scenarios. The methodology has been extended and applied to various contexts of credit risk 

analysis and macro stress testing. 

Using a specific model derived from this methodological framework, this study analyses default 

rates (an important credit risk variable and a proxy for non-performing loan ratio) for corporate and 

household sectors.  

The econometric models and their calibration are also informed by the findings of a qualitative 

assessment of credit risk in the domestic banking system.  Taking into consideration these 

qualitative findings, as well as the practices and results of previous similar research, an extended list 

of macroeconomic variables are tested in order to identify the relevant macroeconomic – credit risk 

links.  

The results of the quantitative estimations generally confirm the influence of macroeconomic 

variables on credit risk as documented in previous research including applications for Romania; the 

proposed multi-factor models specifications include the following explanatory macroeconomic 

variables: real GDP growth, interest rate for RON loans and exchange rate evolution for corporate 

sector and private consumption, indebtedness degree and interest rates for RON loans for 

household sector.  

The estimations however convey also specific and novel findings, such as inclusion of construction 

activity level for corporate credit risk models and the specification of an alternative model for 

corporate risk that includes two forward looking variables, i.e. consumer confidence and the 

domestic stock exchange index. 



88 | P a g e  

 

In accordance with international practices on stress scenarios design and underpinned by the 

broader modelling approach, an extended list of relevant scenarios are specified. Given the limited 

sample size, historical based scenarios are preferred over probabilistic specifications, but a 

comparison of the magnitude of the proposed shock with the usual probabilistic specification is also 

included in order to ensure comparability. Generally, the severe shock proposed within the stress 

scenarios replicate the 2008-2009 shocks in line with current practice in scenario design.  

A qualitative hypothetical adverse scenario is specified for assessing a specific vulnerability in 

household portfolio credit risk (high indebtedness); the qualitative specification avoids the inherent 

limitation of the historical approach in this case.  

As usually undertaken within the proposed methodology, Monte Carlo techniques are employed to 

perform both model simulation under a baseline scenario and to simulate the dynamic of stressed 

default rates under the specified adverse shock scenarios. 

The results of stress testing procedure show that under the adverse shock scenarios, corporate 

default rates can increase substantially more than the expected evolution under the baseline 

scenario in case of GDP shock, construction activity shock or interest rate shocks and to a lesser 

extent following a consumer confidence shock. Under the assumptions of the adverse scenarios, 

given also the large share of corporate loans in the banks’ balance sheet, the default rates evolution 

could have a substantial impact on banks’ loan losses. 

The households sector stress testing simulation show that this sector is more resilient to 

macroeconomic adverse evolutions, with stressed default rates higher than expected values under 

baseline scenario, but with substantially lower deviations. 
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The proposed macro-perspective model and its findings can be incorporated by private banks in 

their micro-level portfolio risk management tools. Additionally, supplementing the authorities’ 

stress tests with independent approaches could positively contribute to increasing the credibility of 

such financial stability assessment. 
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Macroeconomic variable Unit Sample Source Observations 

Cyclical Indicators     

GDP ( 2000 fixed prices) Mil RON Q4 2003–Q3 2013 National Institute of Statistic database Seasonally adjusted series 

Real GDP growth  Q1 2004–Q3 2013   Own computation  Percentage change of GDP fixed prices 

GDP current prices Mil RON Q4 2003–Q3 2013 National Institute of Statistic database Seasonally adjusted series 

Nominal GDP growth  Q1 2004–Q3 2013   Own computation  Percentage change of nominal GDP  

GDP gap Mil RON Q1 2004–Q3 2013   Own computation using HP filter* Applied to both GDP series 

     

Industrial production Mil RON Q4 2003–Q3 2013 National Institute of Statistic database Seasonally adjusted series, real & nominal terms 

Total loans granted households Mil RON Q1 2005–Q3 2013 N.B.R. credit register database  

Total loans granted companies Mil RON Q1 2005–Q3 2013 N.B.R. credit register database, own 

computation 

 

Economic Sentiment Indicator Points Q4 2003–Q3 2013 ECFIN  Seasonally adjusted 

Price stability indicators     

Inflation rate % Q4 2003–Q3 2013 National Institute of Statistic database Based on Consumer Price Index (CPI) 

Household indicators     

Household consumption Mil RON Q4 2003–Q3 2013 National Institute of Statistic database Seasonally adjusted series, real and nominal 

terms 

Net wage nominal RON Q4 2003–Q3 2013 National Institute of Statistic database, own 

computations 

Own seasonal adjustment on monthly data 

(Census X12) 

Net wage real terms RON Q4 2003–Q3 2013 National Institute of Statistic database, own 

computations 

Own computation (based on net wage nominal 

seasonally adjusted and consumer price index). 

Unemployment rate % Q1 2004–Q3 2013 National Institute of Statistic database Seasonally adjusted series 

Interest payment service % Q1 2005–Q3 2013 Own computations based on loan interest 

rates and total amounts, for RON and EUR 

separately. 

Percentage of nominal wage. 

Proxy for indebtedness and disposable income. 

Consumer confidence indicator Points Q4 2003–Q3 2013 ECFIN  Seasonally adjusted 

*GDP gap (deviation from the long term trend) has been estimated using Hodrick Prescott filter (Hodrick and Prescott, 1997); similar procedure is undertaken by 

Chiriacescu (2010). Moinescu (2012) uses data from Ameco database, but they are available only for annual frequency. 
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Macroeconomic variable Unit Sample Source Observations 

Corporate indicators     

Gross fixed capital formation 

(GFCF) 

Mil RON Q4 2003–Q3 2013 National Institute of Statistic database Seasonally adjusted series, real and 

nominal terms 

Indebtedness % Q1 2005–Q3 2013 Own computation Proxy computed as ratio of Total 

corporate loans to Total nominal gross 

value added (Virolainen, 2006). 

Construction activity level Mil RON Q4 2003–Q3 2013 National Institute of Statistic database Seasonally adjusted series, real and 

nominal terms 

Stock Market Indicators     

Bucharest Exchange Trading 

(BET) 

Index 

points 

Q4 2003–Q3 2013 Bucharest Stock Exchange database Closing price 

EURO STOXX 500 EUR price Q4 2003–Q3 2013 Stoxx Ltd (www.stoxx.com) Closing price 

Interest rate indicators     

ROBOR 3M % Q4 2003–Q3 2013 N.B.R. database Money market  indicator relevant for 

Romania domestic currency loans (used 

also in Moinescu, 2012 and Chiriacescu, 

2010) 

EURIBOR 3M % Q4 2003–Q3 2013 Deutsche Bundesbank time series 

(http://www.bundesbank.de)  

Money market indicator relevant for 

Romania foreign currency loans (used also 

in Moinescu, 2012 and Chiriacescu, 2010)  

Banks interest rates for RON 

loans  

% Q4 2003–Q3 2013 N.B.R. database and reports Distinct series for household and 

corporate loans. 

Banks interest rates for EUR 

loans 

% Q4 2003–Q3 2013 N.B.R. database and reports Distinct series for household and 

corporate loans. 

Real interest rates for RON 

loans  

% Q4 2003–Q3 2013 Own computation – ex-post interest rates 

computed as 

 [(1+interest rate)/(1+inflation rate)-1] 

 

Distinct series for household and 

corporate loans. GDP deflator used for 

corporate loans (Virolainen, 2004) and CPI 

for household loans.  

Interest rates spreads % Q4 2003–Q3 2013 Computed as difference between total interest 

charge and money market interest rates 

Distinct series for household and 

corporate loans. 

External variables     

RON/EUR Exchange rate RON/EUR Q4 2003–Q3 2013 N.B.R. database and reports  

Total exports Mil RON Q4 2003–Q3 2013 National Institute of Statistic database  

Net exports Mil RON Q4 2003–Q3 2013 National Institute of Statistic database  

Oil price EUR 

equivalent 

/ barrel 

Q4 2003–Q3 2013 National Institute of Statistic database Crude Oil (petroleum), simple average of 

three spot prices; Dated Brent, West 

Texas Intermediate, and the Dubai Fateh. 

http://www.stoxx.com/
http://www.bundesbank.de/
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Annex B Expected sign, unit root tests results and transformations       

Macroeconomic variable Exp. 

sign 

Transformat

ion 

ADF test (p-value 

for  the null) 

KPSS test result (@ 

confidence level) 

Final result Abbreviation  Model* 

(hh/c/ 

both) 

Default rates        

Corporate default rate  Logit 87% Null rejected @95% Unit root Def_c C 

  Logit diff  0% Null cannot be rejected Stationary  Ddef_c C 

Household default rate   99.7% Null rejected @95% Unit root Def_hh Hh 

  First diff 47% (65% without a 

constant) 

Null rejected @95% PP test cannot reject null. 

Assumed stationary 

Ddef_h Hh 

        

Cyclical Indicators        

GDP ( 2000 fixed prices) -  30% Null rejected @95% Unit root Gdp Both 

Real GDP growth -  1% Null rejected @90% Inconclusive. PP rejects unit 

root null. 

Assumed stationary. 

Gdp_g Both  

GDP current prices -  49% Null rejected @99% Unit root Gdp2 Both 

Nominal GDP growth -  1% Null rejected @95% Inconclusive. PP rejects unit 

root null. Assumed stationary. 

Gdp_g2 Both 

GDP gap (real) -  13% (1% without 

constant) 

Null cannot be rejected Inconclusive. PP rejects unit 

root null @95%. Assumed 

stationary. 

Gdp_gap Both 

GDP gap (nominal) -  37% (6% without 

constant) 

Null cannot be rejected Inconclusive. PP rejects unit 

root null @95%. Assumed 

stationary. 

Gdp_gap2 Both 

Industrial production (real) -  35% Null rejected @95% Unit root ind Both 

  Ln-diff 0% Null cannot be rejected Stationary Dind Both 

Industrial production 

(nominal) 
-  98% Null rejected @95% Unit root Ind2 Both 

  Ln-diff 0% Null cannot be rejected Stationary Dind2 Both 

Economic Sentiment Indicator -  53% Null rejected @95% Unit root Esi Both 

  Ln-diff 0% Null cannot be rejected Stationary Desi  Both 
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Macroeconomic variable Exp. 

sign 

Transformat

ion 

ADF test (p-value 

for  the null) 

KPSS test result (@ 

confidence level) 

Final result Abbreviation  Model* 

(hh/c/ 

both) 

Price stability indicators        

Inflation rate   0% (5% without 

constant) 

Null rejected @95% Inconclusive. PP rejects null 

@99%. Tested in both forms. 

Inf Both 

  First diff  0% Null cannot be rejected  Stationary Dinf Both  

        

Household indicators        

Household consumption 

(nominal) 
-  24% Null rejected @95% Unit root Cons Both 

  Ln-diff 0% (2% without 

constant) 

Null rejected @95% Inconclusive. PP rejects null. 

Assumed stationary. 

Dcons  Both 

Household consumption 

(real) 
-  40% Null rejected @95% Unit root Cons2 Both 

  Ln-diff 0% (2% without 

constant) 

Null rejected @90% Inconclusive. PP rejects null. 

Assumed stationary. 

Dcons2 Both 

Net wage nominal -  45% Null rejected @99% Unit root Wage Hh 

  Ln-diff 0% (19% without 

constant) 

Null rejected @99% Inconclusive. PP rejects null. 

Assumed stationary. 

Dwage Hh 

Net wage real terms -  99% Null rejected @99% Unit root Wage_r Hh 

  Ln-diff 0% Null cannot be rejected Stationary Dwage_r Hh 

Unemployment rate +  25% (61% without 

constant) 

Null cannot be rejected Inconclusive. PP cannot reject 

null. Tested as difference. 

Unempl Both 

  first-diff 0% Null cannot be rejected Stationary dunempl Both 

Interest payment service 

(proxy for disposable income) 
+  53%  Null rejected @95% Unit root Ints  Both 

  first-diff 0% Null cannot be rejected  Stationary  Dints Both  

Consumer confidence index -  54% Null rejected @90% Unit root Cci Both 

  % change 0% Null cannot be rejected Stationary  Dcci Both 
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Corporate indicators        

Gross fixed capital formation 

(GFCF) real 
-  12% (67% without  

constant) 

Null cannot be rejected Inconclusive. PP cannot reject 

null. Tested as difference. 

Gfcf C 

  Ln-diff 9% (1% without 

constant) 

Null cannot be rejected Stationary Dgfcf C 

Gross fixed capital formation 

(GFCF) nominal 
-  31%  Null rejected @95%  Unit root Gfcf2 C 

  Ln-diff 2% (0% without 

constant) 

Null rejected @90% Stationary Dgfcf2 C 

Indebtedness +  12% Null rejected @99% Unit root Debt C 

  First-diff 0% Null cannot be rejected  Stationary  ddebt C 

Construction activity (real) -  21%  Null rejected @95% Unit root Build C 

 - Ln-diff 38% (9% without 

constant) 

Null cannot be rejected Inconclusive. PP rejects null 

@99%. Assumed stationary. 

Dbuild C 

Total loans granted to 

companies (outstanding 

amounts) 

-  9% (94% without 

constant) 

Null rejected @95% Unit root Loans_c C (PD) 

 - Ln-diff 31% (5% without 

constant) 

Null rejected @95% Inconclusive. PP rejects null 

@95%. Assumed stationary. 

Dloans_c C (PD) 

Construction activity 

(nominal) 
-  21%  Null rejected @95% Unit root Build2 C 

  Ln-diff 38% (9% without 

constant) 

Null rejected @90% Inconclusive. PP rejects null 

@95%. Assumed stationary. 

Dbuild2 C 

        

Stock Market Indicators        

Bucharest Exchange Trading 

(BET) 
-  26% (66% without 

constant) 

Null cannot be rejected Inconclusive. PP test cannot 

reject null. Tested as 

difference. 

Bet Both 

  Ln-diff 0% Null cannot be rejected Stationary Dbet Both  

EURO STOXX 500 -  59% (60% without 

constant) 

Null cannot be rejected Inconclusive. PP test cannot 

reject null. Tested as 

difference. 

Stoxx Both 

  Ln-diff 0%  Null cannot be rejected Stationary  Dstoxx Both  
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Macroeconomic variable Exp. 

sign 

Transformat

ion 

ADF test (p-value 

for  the null) 

KPSS test result (@ 

confidence level) 

Final result Abbreviation  Model* 

(hh/c/ 

both) 

Interest rate indicators  - 

money market 
       

ROBOR 3M +  15% Null rejected @95% Unit root Rbor Both 

  First diff 0% Null cannot be rejected Stationary Drbor Both 

EURIBOR 3M +  44% Null rejected @90% Unit root Ebor Both 

  First diff 3% Null cannot be rejected Stationary Debor Both 

        

Interest rate indicators - 

corporate 
       

Banks interest rates for RON 

loans  
+  10% (4% without 

constant) 

Null rejected @99% Inconclusive. PP rejects null. 

Tested as difference. 

Ron_irc C 

  First diff 1% Null cannot be rejected Stationary Dron_irc C 

Banks interest rates for EUR 

loans  
+  79% Null rejected @95% Unit root Eur_irc C 

  First diff 0% Null cannot be rejected Stationary Deur_irc C 

Real interest rates for RON 

loans  
+  5% (10% without 

constant) 

Null rejected @90% Inconclusive. PP cannot reject 

null. Tested as difference 

Ron_rirc C 

  First diff 0% Null rejected @95% Inconclusive. PP rejects null. 

Assumed stationary. 

Dronrirc C 

Interest rate spread RON +  7% (42% without 

constant) 

Null cannot be rejected. Inconclusive. PP test cannot 

reject null. Tested as 

difference. 

Spr_ronc C 

  First diff 0% Null cannot be rejected. Stationary  Dsprronc C 

Interest rate spread EUR +  23% (50% without  

constant) 

Null cannot be rejected Inconclusive. PP test cannot 

reject null. Tested as 

difference. 

Spr_eurc C 

  First diff 0% Null cannot be rejected Stationary  Dspreurc C 
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Macroeconomic variable Exp. 

sign 

Transformat

ion 

ADF test (p-value 

for  the null) 

KPSS test result (@ 

confidence level) 

Final result Abbreviation  Model* 

(hh/c/ 

both) 

Interest rate indicators - 

household 
       

Banks interest rates for RON 

loans  
+  0% (2% without 

constant) 

Null rejected @95% Inconclusive. PP rejects null. 

Tested in both forms 

Ron_irhh Hh 

  First diff 13% (4% without 

constant) 

Null cannot be rejected PP rejects null. Stationary. Dron_irhh Hh 

Banks interest rates for EUR 

loans 
+  99% Null rejected @99% Unit root Eur_irhh Hh 

  First diff 0% Null cannot be rejected  Stationary Deurirhh Hh 

Real interest rates for RON 

loans  
+  36% Null rejected @95% Unit root ron_rirhh Hh 

  First diff 0% Null cannot be rejected Stationary  Drorirhh Hh 

Interest rate spread RON +  24% (52% without 

constant) 

Null cannot be rejected Inconclusive. PP cannot reject 

null. Tested as difference. 

Spr_ronhh Hh 

  First diff 0% Null cannot be rejected Stationary Dsprohh Hh 

Interest rate spread EUR +  17% (35% without 

constant) 

Null cannot be rejected PP cannot reject null. 

Inconclusive. Tested as 

difference. 

Spr_eurhh Hh 

  First diff 1% Null cannot be rejected  Stationary  Dspeurhh Hh 

External variables        

Exchange rate + Ln-diff 84% Null rejected @95% Unit root  Both 

   0% Null cannot be rejected  Stationary   Both 

Total exports, real terms  -  93% Null rejected @99% Unit root Expo C 

  Ln-diff 0% Null cannot be rejected stationary Dexpo C 

Net exports, real terms -  17% (60% without 

constant) 

Null cannot be rejected Inconclusive. PP cannot reject 

null. Tested as difference. 

Nexp C 

  First-

difference 

4% (0% without 

constant) 

Null cannot be rejected Stationary Dnexp C 

Total exports, nominal terms -  99% Null rejected @99% Unit root Expo2 C 

  Ln-diff 0% Null cannot be rejected Stationary Dexpo2 C 
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Macroeconomic variable Exp. 

sign 

Transformat

ion 

ADF test (p-value 

for  the null) 

KPSS test result (@ 

confidence level) 

Final result Abbreviation  Model* 

(hh/c/ 

both) 

External variables 

(continued) 

       

Net exports, nominal terms -  79% (39% without 

constant) 

Null cannot be rejected. Inconclusive. Tested as 

difference. 

Nexp2 C 

  First-

difference 

0%  Null cannot be rejected Stationary Dnexp2 C 

Oil price +       

  Ln-diff 31% Null rejected @99% Unit root Oil Both 

   0% Null cannot be rejected Stationary Doil  Both 

*Hh – households model; C – corporate model; Both – both models 

Notes on unit root test results: 

- Given the small samples size unit roots test may discriminate poorly between hypotheses (Brooks, 2008). KPSS test use can be 

problematic in highly auto-correlated series (over-rejection for slowly mean reverting) (Muller, 2005); 

- All tests have been performed with a constant in the regression/test (less restrictive test than without a constant, Sjö (2008)); trend 

possibility (the least restrictive configuration) was excluded since trend-stationarity would require additional computation (de-trending) 

and for some series this results in negative values (default rates in the first part of the series when low absolute values are recorded); 

- In case of inconclusive results, tests have been rerun without a constant (results are mentioned in parenthesis). Phillips Perron (without 

constant) is performed as well for this cases and results reported.  For the other cases, test results are not sensitive to the option 

regarding the constant; 

- Unit root rejection for series in levels was performed on a cautionary manner to avoid spurious regression as the dependent variables 

are slowly mean reverting (Sjö, 2008);  

- When result are inconclusive for  the first order / log / percentage change diff, series are assumed to be I(1), as the explosive data series 

hypothesis seems unlikely (e.g. the case of default rate for households, which after a sharp increase has started to decrease in the last 

period). 
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Tests:  

ADF test – Augumented Dickey Fuller test (null hypothesis of a unit root) 

KPSS test –  Kviatkowski Phillips Schimdt Shin test (stationary series null hyphotesis, tested for confidence levels of 1%, 5% and 10%) 

PP  test – Phillips Perron test (null hypothesis of a unit root) 
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Annex C Uni-variate regressions results - corporate model  

Macroeconomic variable Expected 

sign 

Coefficient Lag p-value R-squared 

adjusted 

Observations 

Default rates       

Corporate default rate       

       

Cyclical indicators       

Real GDP growth - -5.0797 0 0% 49%  

Nominal GDP growth - -3.0047 0 0% 43%  

GDP gap (real) - +0.0001 7 0% 38% Wrong sign 

GDP gap (nominal) - +0.0001 5 0% 38% Wrong sign 

Industrial production (real) - -2.1640 3 4% 10%  

Industrial production (nom) - -2.4825 6 0% 13%  

Economic Sentiment Indicator - -0.7392 4 14% 9% Not significant 

       

Price stability indicators       

Inflation rate – series in levels  -0.0336 7 6% 8%  

Inflation rate – series in diff  +0.1960 6 5% 4%  

       

Household indicators       

Household consumption (real) - -4.2162 1 0% 58%  

Household consumption (nom) - -1.9439 1 0% 27%  

Unemployment rate + +0.1588 3 4% 16%  

Interest payment service 

(proxy for disposable income) 
+ +1.9282 5 1% 18%  

Consumer confidence index 

(negative values) 
+ +0.1487 1 0% 17%  

       

Corporate indicators       

Gross fixed capital formation 

(GFCF) real 
- -1.2509 0 0% 49%  

Gross fixed capital formation 

(GFCF) nominal 
- -1.7520 0 0% 53%  

Indebtedness + -0.8669 2 2% 10% Wrong sign 

Construction activity (real) - -2.2994 0 0% 56%  

Construction activity (nominal) - -1.7526 0 0% 61%  

       

Stock Market Indicators       

Bucharest Exchange Trading (BET)  - -0.3123 7 0% 25%  

EURO STOXX 500 - -0.5663 5 2% 21%  
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Macroeconomic variable Expected 

sign 

Coefficient Lag p-value R-squared 

adjusted 

Observations 

Interest rate indicators  - money 

market 
      

ROBOR 3M + +0.0261 6 2% 18%  

EURIBOR 3M + -0.1623 1 0% 40% Wrong sign 

       

Interest rate indicators - corporate       

Banks interest rates for RON loans  + +0.0605 5 0% 36%  

Banks interest rates for EUR loans  + -0.2619 0 0% 35% Wrong sign 

Real interest rates for RON loans  + +0.0677 1 5% 6%  

Interest rate spread RON + +0.0348 0 3% 12%  

Interest rate spread EUR + +0.2671 1 0 37%  

       

External variables       

Exchange rate + +1.9455 4 0% 30%  

Total exports, real terms  - -0.7599 7 8% 5%  

Net exports, real terms - +0.0001 0/3 0% 30-31% Wrong sign 

Total exports, nominal terms - -0.6167 0 24% 5% Not significant 

Net exports, nominal terms - -0.1236 7 5% 4%  

Oil price + -0.2020 1 1% 9% Wrong sign 

 

Note: Newey-West heteroskedasticity and autocorrelation consistent covariance matrix estimator for the parameters is 

used in order to accommodate any expected residuals heteroskedasticity and/or autocorrelation of unknown order. 
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Annex D.1 Corporate model multi-variate regression diagnostic tests. Model 1 

 

Table 1 – model specification and estimation 

 

 

 

Table 2 Residuals auto and partial correlations 

 

 
 

Dependent Variable: DDEF_C   

Method: Least Squares   

Date: 01/21/14   Time: 23:12   

Sample (adjusted): 2005Q4 2013Q3  

Included observations: 32 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.103671 0.008562 12.10844 0.0000 

GDP_G -1.826404 0.649547 -2.811812 0.0092 

DCCI(-1) 0.066711 0.028277 2.359206 0.0261 

DBUILD2 -0.876286 0.190611 -4.597252 0.0001 

DBET(-7) -0.130456 0.040163 -3.248144 0.0032 

DRON_IRC(-5) 0.033769 0.006316 5.346770 0.0000 
     
     R-squared 0.913047     Mean dependent var 0.051390 

Adjusted R-squared 0.896325     S.D. dependent var 0.124737 

S.E. of regression 0.040163     Akaike info criterion -3.424357 

Sum squared resid 0.041941     Schwarz criterion -3.149532 

Log likelihood 60.78971     Hannan-Quinn criter. -3.333260 

F-statistic 54.60233     Durbin-Watson stat 1.987063 

Prob(F-statistic) 0.000000    
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Table 3 Jarque-Bera normality test for residuals 

 

Test result: the null hypothesis of normal distribution cannot be rejected.  

 

Table 4 Breusch-Godfrey Serial Correlation LM Test 

Breusch-Godfrey Serial Correlation LM Test:  
     
     F-statistic 0.165347     Prob. F(2,24) 0.8486 

Obs*R-squared 0.434933     Prob. Chi-Square(2) 0.8046 
     
          

Test Equation:    
Dependent Variable: RESID   
Method: Least Squares   
Date: 01/21/14   Time: 23:41   
Sample: 2005Q4 2013Q3   
Included observations: 32   
Presample missing value lagged residuals set to zero. 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -0.000330 0.008893 -0.037075 0.9707 

GDP_G -0.084771 0.701881 -0.120776 0.9049 
DCCI(-1) 0.000305 0.029389 0.010373 0.9918 
DBUILD2 0.036324 0.209337 0.173519 0.8637 
DBET(-7) -0.003893 0.042110 -0.092456 0.9271 

DRON_IRC(-5) 0.000250 0.006914 0.036102 0.9715 
RESID(-1) -0.004487 0.230184 -0.019493 0.9846 
RESID(-2) 0.127558 0.222062 0.574428 0.5710 

     
     R-squared 0.013592     Mean dependent var 2.60E-18 

Adjusted R-squared -0.274111     S.D. dependent var 0.036782 
S.E. of regression 0.041518     Akaike info criterion -3.313042 
Sum squared resid 0.041371     Schwarz criterion -2.946608 
Log likelihood 61.00867     Hannan-Quinn criter. -3.191579 
F-statistic 0.047242     Durbin-Watson stat 1.987209 
Prob(F-statistic) 0.999812    

     
 

Test result: the null hypothesis of no residual auto-correlation cannot be rejected. Similar results are 

found when testing with 1 lag and 3 lags. 

0
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Series: Residuals
Sample 2005Q4 2013Q3
Observations 32

Mean       2.60e-18
Median  -0.003377
Maximum  0.067845
Minimum -0.085724
Std. Dev.   0.036782
Skewness   0.104512
Kurtosis   2.569017

Jarque-Bera  0.305917
Probability  0.858165
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Table 5 White heteroskedasticity test  (with cross-products) 

 

Heteroskedasticity Test: White  
     
     F-statistic 1.717387     Prob. F(20,11) 0.1789 

Obs*R-squared 24.23776     Prob. Chi-Square(20) 0.2322 

Scaled explained SS 12.55269     Prob. Chi-Square(20) 0.8957 
     
          

Test Equation:    

Dependent Variable: RESID^2   

Method: Least Squares   

Date: 01/21/14   Time: 23:48   

Sample: 2005Q4 2013Q3   

Included observations: 32   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.001546 0.000889 1.738205 0.1100 

GDP_G -0.044302 0.055751 -0.794648 0.4436 

GDP_G^2 -0.324722 2.477385 -0.131075 0.8981 

GDP_G*DCCI(-1) -0.295143 0.249737 -1.181813 0.2622 

GDP_G*DBUILD2 1.500561 1.285738 1.167082 0.2679 

GDP_G*DBET(-7) 0.411785 0.238543 1.726248 0.1122 

GDP_G*DRON_IRC(-5) -0.041242 0.063037 -0.654255 0.5264 

DCCI(-1) 0.001809 0.002757 0.656385 0.5251 

DCCI(-1)^2 -0.012011 0.009360 -1.283264 0.2258 

DCCI(-1)*DBUILD2 -0.011309 0.081433 -0.138877 0.8921 

DCCI(-1)*DBET(-7) 0.000799 0.016703 0.047858 0.9627 

DCCI(-1)*DRON_IRC(-5) 0.001705 0.003005 0.567192 0.5820 

DBUILD2 0.018676 0.020316 0.919251 0.3777 

DBUILD2^2 -0.283081 0.252411 -1.121509 0.2860 

DBUILD2*DBET(-7) -0.060511 0.060705 -0.996803 0.3403 

DBUILD2*DRON_IRC(-5) 0.013975 0.013956 1.001323 0.3382 

DBET(-7) 0.001574 0.002414 0.651917 0.5278 

DBET(-7)^2 0.004507 0.009607 0.469156 0.6481 

DBET(-7)*DRON_IRC(-5) 0.002114 0.002250 0.939558 0.3676 

DRON_IRC(-5) 0.000552 0.000415 1.329695 0.2105 

DRON_IRC(-5)^2 0.000182 0.000297 0.611985 0.5530 
     
     R-squared 0.757430     Mean dependent var 0.001311 

Adjusted R-squared 0.316394     S.D. dependent var 0.001668 

S.E. of regression 0.001379     Akaike info criterion -10.09011 

Sum squared resid 2.09E-05     Schwarz criterion -9.128218 

Log likelihood 182.4417     Hannan-Quinn criter. -9.771268 

F-statistic 1.717387     Durbin-Watson stat 2.224927 

Prob(F-statistic) 0.178865    
     
     

 

Test result: no indication of common variance of squared residual and squared exogenous or their cross-

products. The null hypothesis of no heteroskedasticity cannot be rejected. 
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Table 6 White heteroskedasticity test (no cross-products) 

 

Heteroskedasticity Test: White  
     
     F-statistic 2.532651     Prob. F(5,26) 0.0538 

Obs*R-squared 10.48086     Prob. Chi-Square(5) 0.0627 

Scaled explained SS 5.428017     Prob. Chi-Square(5) 0.3659 
     
          

Test Equation:    

Dependent Variable: RESID^2   

Method: Least Squares   

Date: 03/02/14   Time: 16:11   

Sample: 2005Q4 2013Q3   

Included observations: 32   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000478 0.000506 0.945761 0.3530 

GDP_G^2 2.792700 0.975985 2.861417 0.0082 

DCCI(-1)^2 -0.003378 0.001216 -2.778257 0.0100 

DBUILD2^2 -0.005059 0.072834 -0.069465 0.9452 

DRON_IRC(-5)^2 -7.33E-05 0.000104 -0.707228 0.4857 

DBET(-7)^2 0.009947 0.005670 1.754529 0.0911 
     
     R-squared 0.327527     Mean dependent var 0.001311 

Adjusted R-squared 0.198205     S.D. dependent var 0.001668 

S.E. of regression 0.001494     Akaike info criterion -10.00794 

Sum squared resid 5.80E-05     Schwarz criterion -9.733110 

Log likelihood 166.1270     Hannan-Quinn criter. -9.916838 

F-statistic 2.532651     Durbin-Watson stat 2.247717 

Prob(F-statistic) 0.053821    
     
     

Test result: the result indicate a potential common variance of squared residual and squared exogenous 

series GDP growth. The null hypothesis of no heteroskedasticity can be rejected @ 90% confidence level, 

but not on 90% confidence level.  

Given this finding, following Gujarati (2004) guidelines, a weighted least square regression (WLS) with weighting 

based on GDP growth series
1
 was run to address the potential relation between residual variance and squared GDP 

growth. However, the procedure resulted in worsening the heteroskedasticity problem, with the null being 

rejected at 95% confidence level (White test, no cross-products).  

Consequently, the initial model was preserved in the report based on the following arguments: 

- using HAC Newey-West autocorrelation and heteroskedasticity consistent White coefficient covariance 

matrix estimators doesn’t change substantially the results of this model (Table 7 below); the 

coefficientsmaintain the same significance levels;  

- additionally, comparison of the coefficient error variance (squared standard error) from the OLS standard 

regression with the ones of the WLS regression, shows that there are no important differences (the 

largest OLS error variance is around 1.5 times larger than the smallest variance, while the rule of thumb 

maximum ratio proposed by Gujarati (2004) is 10); 

- the report already includes an alternative model for corporate (Model 2) for which there is no indication 

of  heteroskedasticity;     

                                                           
1
 In Eviews options terminology, “weight series”  was given by the inverse of GDP growth series and “weight type” 

was set to “inverse standard deviation” (full result are available at request).  
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Table 7 Model 1 Newey West HAC standard errors & covariance and White heteroskedasticity consistent standard errors & 

covariance 

 

Dependent Variable: DDEF_C   

Method: Least Squares   

Date: 03/02/14   Time: 16:34   

Sample (adjusted): 2005Q4 2013Q3  

Included observations: 32 after adjustments  

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed 

        bandwidth = 4.0000)   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.103671 0.007969 13.00944 0.0000 

GDP_G -1.826404 0.499335 -3.657673 0.0011 

DCCI(-1) 0.066711 0.017467 3.819375 0.0007 

DBUILD2 -0.876286 0.186261 -4.704606 0.0001 

DRON_IRC(-5) 0.033769 0.004583 7.368041 0.0000 

DBET(-7) -0.130456 0.050062 -2.605870 0.0150 
     
     R-squared 0.913047     Mean dependent var 0.051390 

Adjusted R-squared 0.896325     S.D. dependent var 0.124737 

S.E. of regression 0.040163     Akaike info criterion -3.424357 

Sum squared resid 0.041941     Schwarz criterion -3.149532 

Log likelihood 60.78971     Hannan-Quinn criter. -3.333260 

F-statistic 54.60233     Durbin-Watson stat 1.987063 

Prob(F-statistic) 0.000000    
     
     

 

Dependent Variable: DDEF_C   

Method: Least Squares   

Date: 03/02/14   Time: 16:35   

Sample (adjusted): 2005Q4 2013Q3  

Included observations: 32 after adjustments  

White heteroskedasticity-consistent standard errors & covariance 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.103671 0.006830 15.17850 0.0000 

GDP_G -1.826404 0.547161 -3.337966 0.0026 

DCCI(-1) 0.066711 0.019101 3.492527 0.0017 

DBUILD2 -0.876286 0.164902 -5.313987 0.0000 

DRON_IRC(-5) 0.033769 0.006092 5.543604 0.0000 

DBET(-7) -0.130456 0.043353 -3.009160 0.0058 
     
     R-squared 0.913047     Mean dependent var 0.051390 

Adjusted R-squared 0.896325     S.D. dependent var 0.124737 

S.E. of regression 0.040163     Akaike info criterion -3.424357 

Sum squared resid 0.041941     Schwarz criterion -3.149532 

Log likelihood 60.78971     Hannan-Quinn criter. -3.333260 

F-statistic 54.60233     Durbin-Watson stat 1.987063 

Prob(F-statistic) 0.000000    
     
     

 

 Test result: coefficients maintain approximately the same level of statistical significance also when using 

Newey West HAC estimator and White heteroskedasticity consistent estimator for the coefficient 

covariance matrix.  
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Table 7 Parameters stability tests Chow forecast test for last 4 observations 

 

Chow Forecast Test   

Equation: DDEF_C_MAIN   

Specification: DDEF_C C  GDP_G DCCI(-1)    DBUILD2  DBET(-7) 

        DRON_IRC(-5)   

Test predictions for observations from 2012Q3 to 2013Q3 
     
      Value df Probability  

F-statistic  0.403942 (5, 21)  0.8406  

Likelihood ratio  2.938507  5  0.7095  
     
     F-test summary:   

 Sum of Sq. df 
Mean 

Squares  

Test SSR  0.003680  5  0.000736  

Restricted SSR  0.041941  26  0.001613  

Unrestricted SSR  0.038261  21  0.001822  

Unrestricted SSR  0.038261  21  0.001822  
     
     LR test summary:   

 Value df   

Restricted LogL  60.78971  26   

Unrestricted LogL  62.25897  21   
     
     Unrestricted log likelihood adjusts test equation results to account for 

        observations in forecast sample  

     

     

Unrestricted Test Equation:   

Dependent Variable: DDEF_C   

Method: Least Squares   

Date: 01/21/14   Time: 23:56   

Sample: 2005Q4 2012Q2   

Included observations: 27   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.107588 0.010239 10.50767 0.0000 

GDP_G -1.752603 0.772308 -2.269306 0.0339 

DCCI(-1) 0.066238 0.033075 2.002633 0.0583 

DBUILD2 -0.948279 0.224593 -4.222213 0.0004 

DBET(-7) -0.134227 0.044485 -3.017338 0.0066 

DRON_IRC(-5) 0.032519 0.006889 4.720355 0.0001 
     
     R-squared 0.919451     Mean dependent var 0.045106 

Adjusted R-squared 0.900273     S.D. dependent var 0.135164 

S.E. of regression 0.042684     Akaike info criterion -3.276842 

Sum squared resid 0.038261     Schwarz criterion -2.988878 

Log likelihood 50.23737     Hannan-Quinn criter. -3.191215 

F-statistic 47.94241     Durbin-Watson stat 2.006666 

Prob(F-statistic) 0.000000    
     
     

 

Test result: null hypothesis of stable coefficient in the sub-samples cannot be rejected; no predictive 

failure.  
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Table 8 Parameters stability test: recursive coefficients estimation 

 

 

Test results: coefficients stabilize quickly and maintain within confidence level intervals. The coefficient 

for stock market index (BET) displays larger fluctuations in 2009-2010 period. 
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Table 9 Parameters stability tests  

 

Quandt-Andrews unknown breakpoint test 

Null Hypothesis: No breakpoints within 20% trimmed data 

Varying regressors: All equation variables 

Equation Sample: 2005Q4 2013Q3 

Test Sample: 2007Q3 2012Q1 

Number of breaks compared: 19 
    
    Statistic Value    Prob.   
    
    Maximum LR F-statistic (2010Q4) 3.586053  0.0248 

Maximum Wald F-statistic (2010Q4) 21.51632  0.0248 

    

Exp LR F-statistic 0.872138  0.1690 

Exp Wald F-statistic 8.524224  0.0134 

    

Ave LR F-statistic 1.562294  0.0910 

Ave Wald F-statistic 9.373766  0.0910 
    
    

Note: probabilities calculated using Hansen's (1997) method 
 

Test result: there is indication that parameters stability is broken on 2010Q4. However the already small 

sample had to be trimmed considerably (20%) to avoid near singular matrix error, and thus the number 

of observation included in the test is low and may not ensure asymptotic properties.  

 

Table 10 Functional form test: Ramsey RESET 

 

Ramsey RESET Test   

Equation: DDEF_C_MAIN   

Specification: DDEF_C C  GDP_G DCCI(-1)    DBUILD2  DBET(-7) 

        DRON_IRC(-5)   

Omitted Variables: Squares of fitted values  
    m 
      Value df Probability  

t-statistic  0.818015  25  0.4211  

F-statistic  0.669149 (1, 25)  0.4211  

Likelihood ratio  0.845248  1  0.3579  
     
     F-test summary:   

 Sum of Sq. df 
Mean 

Squares  

Test SSR  0.001093  1  0.001093  

Restricted SSR  0.041941  26  0.001613  

Unrestricted SSR  0.040847  25  0.001634  

Unrestricted SSR  0.040847  25  0.001634  
     
     LR test summary:   

 Value df   

Restricted LogL  60.78971  26   

Unrestricted LogL  61.21234  25   
     
          



D.1-9 | P a g e  Annex D.1 Corporate model multi-variate regression diagnostic tests. Model 1 

 

Unrestricted Test Equation:   

Dependent Variable: DDEF_C   

Method: Least Squares   

Date: 01/22/14   Time: 00:20   

Sample: 2005Q4 2013Q3   

Included observations: 32   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.112783 0.014083 8.008389 0.0000 

GDP_G -2.008236 0.690478 -2.908472 0.0075 

DCCI(-1) 0.077137 0.031182 2.473746 0.0205 

DBUILD2 -0.895153 0.193217 -4.632894 0.0001 

DBET(-7) -0.133479 0.040590 -3.288485 0.0030 

DRON_IRC(-5) 0.036162 0.006997 5.168126 0.0000 

FITTED^2 -0.410264 0.501536 -0.818015 0.4211 
     
     R-squared 0.915314     Mean dependent var 0.051390 

Adjusted R-squared 0.894989     S.D. dependent var 0.124737 

S.E. of regression 0.040421     Akaike info criterion -3.388271 

Sum squared resid 0.040847     Schwarz criterion -3.067641 

Log likelihood 61.21234     Hannan-Quinn criter. -3.281991 

F-statistic 45.03445     Durbin-Watson stat 1.928133 

Prob(F-statistic) 0.000000    
 

Test results: the null of correct functional form cannot be rejected. 

 

Table 11 Out-of-sample forecast evaluation – re-estimation of the equation 

 

 

Dependent Variable: DDEF_C   

Method: Least Squares   

Date: 01/22/14   Time: 00:41   

Sample (adjusted): 2005Q4 2012Q3  

Included observations: 28 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.106184 0.009568 11.09773 0.0000 

GDP_G -1.685512 0.743743 -2.266257 0.0336 

DCCI(-1) 0.070257 0.031250 2.248193 0.0349 

DBUILD2 -0.943342 0.220209 -4.283857 0.0003 

DBET(-7) -0.133925 0.043664 -3.067142 0.0056 

DRON_IRC(-5) 0.032721 0.006748 4.848706 0.0001 
     
     R-squared 0.918990     Mean dependent var 0.046652 

Adjusted R-squared 0.900579     S.D. dependent var 0.132889 

S.E. of regression 0.041902     Akaike info criterion -3.319579 

Sum squared resid 0.038626     Schwarz criterion -3.034107 

Log likelihood 52.47411     Hannan-Quinn criter. -3.232307 

F-statistic 49.91441     Durbin-Watson stat 2.141607 

Prob(F-statistic) 0.000000    
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Table 12 Out-of-sample forecast evaluation – forecast evaluation 

  

 

Evaluation results: Mean absolute percent error shows reasonable values. Theil inequality coefficient is 

close to 0 indicating good fit. Some forecasted value mean bias is present but the number of observation 

is low. 

 

Table 13 Multi-collinearity evaluation  – Variance Inflation Factors Analysis 

 

Variance Inflation Factors  

Date: 03/02/14   Time: 16:54  

Sample: 2003Q4 2013Q3  

Included observations: 32  
    
     Coefficient Uncentered Centered 

Variable Variance VIF VIF 
    
    C  7.33E-05  1.454207  NA 

GDP_G  0.421912  2.912323  2.576614 

DCCI(-1)  0.000800  1.766847  1.729913 

DBUILD2  0.036333  2.872908  2.275338 

DRON_IRC(-5)  3.99E-05  1.413294  1.238264 

DBET(-7)  0.001613  1.248191  1.233245 
    
    

 

Analysis results: The highest VIF is 2.9 , indicating that there are no multi-collinearity issues (Gujarati, 

2004 proposes as rule of thumb a ratio of minimum 10 as indication of excessive multi-collinearity) 
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Annex D.2 Corporate model multi-variate regression diagnostic tests. Model 2 

 

Table 1 – model specification and estimation 

 

Dependent Variable: DDEF_C   

Method: Least Squares   

Date: 01/22/14   Time: 00:50   

Sample (adjusted): 2005Q4 2013Q3  

Included observations: 32 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.108627 0.009923 10.94717 0.0000 

GDP_G -2.894943 0.623082 -4.646168 0.0001 

DBUILD2 -0.733675 0.222176 -3.302219 0.0027 

DRON_IRC(-5) 0.040000 0.007380 5.420042 0.0000 

DFX(-7) 0.516016 0.266499 1.936276 0.0634 
     
     R-squared 0.870910     Mean dependent var 0.051390 

Adjusted R-squared 0.851786     S.D. dependent var 0.124737 

S.E. of regression 0.048022     Akaike info criterion -3.091720 

Sum squared resid 0.062265     Schwarz criterion -2.862699 

Log likelihood 54.46752     Hannan-Quinn criter. -3.015806 

F-statistic 45.53929     Durbin-Watson stat 2.020000 

Prob(F-statistic) 0.000000    
     
     

 

 

 

Table 2 Residuals auto and partial correlations 
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Table 3 Jarque-Bera normality test for residuals 

 

Test result: the null hypothesis of normal distribution cannot be rejected.  

 

Table 4 Breusch-Godfrey Serial Correlation LM Test 

 

Breusch-Godfrey Serial Correlation LM Test:  
     
     F-statistic 0.059366     Prob. F(2,25) 0.9425 

Obs*R-squared 0.151257     Prob. Chi-Square(2) 0.9272 
     
          

Test Equation:    

Dependent Variable: RESID   

Method: Least Squares   

Date: 01/22/14   Time: 00:52   

Sample: 2005Q4 2013Q3   

Included observations: 32   

Presample missing value lagged residuals set to zero. 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -0.000143 0.010297 -0.013932 0.9890 

GDP_G 0.003638 0.660705 0.005507 0.9956 

DBUILD2 -0.014875 0.234429 -0.063450 0.9499 

DRON_IRC(-5) -0.000822 0.008129 -0.101135 0.9202 

DFX(-7) 0.017325 0.284843 0.060822 0.9520 

RESID(-1) -0.036552 0.222197 -0.164504 0.8707 

RESID(-2) -0.067433 0.211026 -0.319547 0.7520 
     
     R-squared 0.004727     Mean dependent var 6.51E-18 

Adjusted R-squared -0.234139     S.D. dependent var 0.044817 

S.E. of regression 0.049788     Akaike info criterion -2.971458 

Sum squared resid 0.061970     Schwarz criterion -2.650828 

Log likelihood 54.54333     Hannan-Quinn criter. -2.865179 

F-statistic 0.019789     Durbin-Watson stat 1.987610 

Prob(F-statistic) 0.999959    
     
     

 

Test result: the null hypothesis of no residual auto-correlation cannot be rejected. Similar results are 

found when testing with 1 lag and 3 lags. 
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Table 5 White heteroskedasticity test 

 
 

Heteroskedasticity Test: White  
     
     F-statistic 0.877243     Prob. F(14,17) 0.5930 

Obs*R-squared 13.42165     Prob. Chi-Square(14) 0.4936 

Scaled explained SS 8.531682     Prob. Chi-Square(14) 0.8598 
     
          

Test Equation:    

Dependent Variable: RESID^2   

Method: Least Squares   

Date: 01/22/14   Time: 00:52   

Sample: 2005Q4 2013Q3   

Included observations: 32   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.001888 0.001086 1.738520 0.1002 

GDP_G -0.050769 0.076019 -0.667841 0.5132 

GDP_G^2 1.310454 2.362004 0.554806 0.5863 

GDP_G*DBUILD2 0.637421 1.934187 0.329555 0.7458 

GDP_G*DRON_IRC(-5) -0.048465 0.096500 -0.502233 0.6219 

GDP_G*DFX(-7) -3.509064 1.858807 -1.887805 0.0762 

DBUILD2 0.036755 0.027410 1.340924 0.1976 

DBUILD2^2 -0.404937 0.352153 -1.149887 0.2661 

DBUILD2*DRON_IRC(-5) 0.014048 0.017509 0.802376 0.4334 

DBUILD2*DFX(-7) 0.181772 0.632091 0.287573 0.7772 

DRON_IRC(-5) 0.000897 0.000637 1.408882 0.1769 

DRON_IRC(-5)^2 0.000163 0.000374 0.436897 0.6677 

DRON_IRC(-5)*DFX(-7) 0.006138 0.014477 0.423965 0.6769 

DFX(-7) 0.023993 0.030910 0.776235 0.4483 

DFX(-7)^2 0.277688 0.500772 0.554520 0.5864 
     
     R-squared 0.419427     Mean dependent var 0.001946 

Adjusted R-squared -0.058693     S.D. dependent var 0.002642 

S.E. of regression 0.002718     Akaike info criterion -8.672694 

Sum squared resid 0.000126     Schwarz criterion -7.985630 

Log likelihood 153.7631     Hannan-Quinn criter. -8.444952 

F-statistic 0.877243     Durbin-Watson stat 2.012596 

Prob(F-statistic) 0.592997    
     
     

 

 

Test result: no indication of common variance of squared residual and squared exogenous or their cross-

products. The null hypothesis of no heteroskedasticity cannot be rejected. The result maintains on 

running the test without cross-products. 
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Table 6 Parameters stability tests Chow forecast test for last 4 observations 

 

Chow Forecast Test   

Equation: DDEF_C_MAIN_ALT   

Specification: DDEF_C C  GDP_G   DBUILD2  DRON_IRC(-5) DFX(-7) 

Test predictions for observations from 2012Q4 to 2013Q3 
     
      Value df Probability  

F-statistic  0.208300 (4, 23)  0.9312  

Likelihood ratio  1.138732  4  0.8881  
     
     F-test summary:   

 Sum of Sq. df 
Mean 

Squares  

Test SSR  0.002177  4  0.000544  

Restricted SSR  0.062265  27  0.002306  

Unrestricted SSR  0.060088  23  0.002613  

Unrestricted SSR  0.060088  23  0.002613  
     
     LR test summary:   

 Value df   

Restricted LogL  54.46752  27   

Unrestricted LogL  55.03689  23   
     
     Unrestricted log likelihood adjusts test equation results to account for 

        observations in forecast sample  

     

     

Unrestricted Test Equation:   

Dependent Variable: DDEF_C   

Method: Least Squares   

Date: 01/22/14   Time: 00:53   

Sample: 2005Q4 2012Q3   

Included observations: 28   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.107755 0.011854 9.089968 0.0000 

GDP_G -2.978371 0.709076 -4.200356 0.0003 

DBUILD2 -0.712640 0.262496 -2.714860 0.0124 

DRON_IRC(-5) 0.039916 0.007993 4.993615 0.0000 

DFX(-7) 0.524689 0.297952 1.760985 0.0915 
     
     R-squared 0.873979     Mean dependent var 0.046652 

Adjusted R-squared 0.852063     S.D. dependent var 0.132889 

S.E. of regression 0.051113     Akaike info criterion -2.949131 

Sum squared resid 0.060088     Schwarz criterion -2.711238 

Log likelihood 46.28784     Hannan-Quinn criter. -2.876405 

F-statistic 39.87742     Durbin-Watson stat 1.999251 

Prob(F-statistic) 0.000000    
     
     

 
 

Test result: null hypothesis of stable coefficient in the sub-samples cannot be rejected; no predictive 

failure.  
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Table 7 Parameters stability test: recursive coefficients estimation 

 

 

Test results: coefficients stabilize quickly and maintain within confidence level intervals.  
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Table 8 Parameters stability tests  

 

Quandt-Andrews unknown breakpoint test 

Null Hypothesis: No breakpoints within 20% trimmed data 

Varying regressors: All equation variables 

Equation Sample: 2005Q4 2013Q3 

Test Sample: 2007Q3 2012Q1 

Number of breaks compared: 19 
    
    Statistic Value    Prob.   
    
    Maximum LR F-statistic (2009Q4) 1.953286  0.5059 

Maximum Wald F-statistic (2009Q4) 9.766428  0.5059 

    

Exp LR F-statistic 0.504630  0.6018 

Exp Wald F-statistic 2.891051  0.4903 

    

Ave LR F-statistic 0.984189  0.4379 

Ave Wald F-statistic 4.920947  0.4379 
    
    

Note: probabilities calculated using Hansen's (1997) method 
 
 

Test result: the null of no breakpoints within 20% trimmed data cannot be rejected.  

Note: the already small sample had to be trimmed considerably (20%) to avoid near singular matrix 

error, and thus the number of observation included in the test is low and may not ensure asymptotic 

properties.  
 

Table 9 Functional form test: Ramsey RESET 

 

Ramsey RESET Test   

Equation: DDEF_C_MAIN_ALT   

Specification: DDEF_C C  GDP_G   DBUILD2  DRON_IRC(-5) DFX(-7) 

Omitted Variables: Squares of fitted values  
     
      Value df Probability  

t-statistic  0.159424  26  0.8746  

F-statistic  0.025416 (1, 26)  0.8746  

Likelihood ratio  0.031266  1  0.8596  
     
     F-test summary:   

 Sum of Sq. df 
Mean 

Squares  

Test SSR  6.08E-05  1  6.08E-05  

Restricted SSR  0.062265  27  0.002306  

Unrestricted SSR  0.062204  26  0.002392  

Unrestricted SSR  0.062204  26  0.002392  
     
     LR test summary:   

 Value df   

Restricted LogL  54.46752  27   

Unrestricted LogL  54.48316  26   
     
          

Unrestricted Test Equation:   

Dependent Variable: DDEF_C   
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Method: Least Squares   

Date: 01/22/14   Time: 00:57   

Sample: 2005Q4 2013Q3   

Included observations: 32   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.110883 0.017385 6.377956 0.0000 

GDP_G -2.941460 0.698504 -4.211083 0.0003 

DBUILD2 -0.740095 0.229854 -3.219853 0.0034 

DRON_IRC(-5) 0.040652 0.008556 4.751106 0.0001 

DFX(-7) 0.506701 0.277660 1.824900 0.0795 

FITTED^2 -0.091990 0.577017 -0.159424 0.8746 
     
     R-squared 0.871037     Mean dependent var 0.051390 

Adjusted R-squared 0.846236     S.D. dependent var 0.124737 

S.E. of regression 0.048913     Akaike info criterion -3.030197 

Sum squared resid 0.062204     Schwarz criterion -2.755372 

Log likelihood 54.48316     Hannan-Quinn criter. -2.939100 

F-statistic 35.12150     Durbin-Watson stat 2.007332 

Prob(F-statistic) 0.000000    
     
     

 

 

Test results: the null of correct functional form cannot be rejected. 

 

Table 10 Out-of-sample forecast evaluation – re-estimation of the equation 

 

 

Dependent Variable: DDEF_C   

Method: Least Squares   

Date: 01/22/14   Time: 00:57   

Sample (adjusted): 2005Q4 2012Q3  

Included observations: 28 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.107755 0.011854 9.089968 0.0000 

GDP_G -2.978371 0.709076 -4.200356 0.0003 

DBUILD2 -0.712640 0.262496 -2.714860 0.0124 

DRON_IRC(-5) 0.039916 0.007993 4.993615 0.0000 

DFX(-7) 0.524689 0.297952 1.760985 0.0915 
     
     R-squared 0.873979     Mean dependent var 0.046652 

Adjusted R-squared 0.852063     S.D. dependent var 0.132889 

S.E. of regression 0.051113     Akaike info criterion -2.949131 

Sum squared resid 0.060088     Schwarz criterion -2.711238 

Log likelihood 46.28784     Hannan-Quinn criter. -2.876405 

F-statistic 39.87742     Durbin-Watson stat 1.999251 

Prob(F-statistic) 0.000000    
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Table 11 Out-of-sample forecast evaluation – forecast evaluation 

 

 

 

Evaluation results: Mean absolute percent error shows a good value (25). Theil inequality coefficient is 

close to 0 indicating good fit. The mean squared forecast error decomposition shows that the errors are 

mainly unsystematic with limited bias and variance proportion. 

 

Table 12 Multi-collinearity evaluation – Variance Inflation Factors Analysis 

 
 

Variance Inflation Factors  

Date: 03/02/14   Time: 17:08  

Sample: 2003Q4 2013Q3  

Included observations: 32  
    
     Coefficient Uncentered Centered 

Variable Variance VIF VIF 
    
    C  9.85E-05  1.366304  NA 

GDP_G  0.388231  1.874533  1.658451 

DBUILD2  0.049362  2.730275  2.162373 

DRON_IRC(-5)  5.45E-05  1.349859  1.182685 

DFX(-7)  0.071022  1.274049  1.270084 
    
    

 

 

Analysis results: The highest VIF  is 2.73, indicating that there are no multi-collinearity issues  (Gujarati, 

2004 proposes as rule of thumb a ratio of minimum 10 as indication of excessive multi-collinearity) 
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Annex E Uni-variate regressions results - Households model     

  

Macroeconomic variable Expected 

sign 

Coefficient Lag p-value R-squared Observations 

Default rates       

Household default rate       

       

Cyclical Indicators       

Real GDP growth - -6.6504 4 0% 36%  

Nominal GDP growth - -4.6519 3 0% 42%  

GDP gap (real) - -0.0001 0 2% 19%  

GDP gap (nominal) - +0.0001 8 1% 26% Wrong sign 

Industrial production (real) - -5.1358 7 0% 22%  

Industrial production 

(nominal) 
- -2.9622 6 0% 19%  

Economic Sentiment Indicator - +1.0459 0 9% 6% Wrong sign 

       

Price stability indicators       

Inflation rate – series in levels  -0.0722 3 3% 11%  

Inflation rate – series as diff  -0.0213 3 12% 2% Not significant 

       

Household indicators       

Household consumption (real) - -6.0364 4 0% 50%  

Household consumption 

(nominal) 
- -3.0355 3 0% 27%  

Net wage nominal - -4.1534 2 0% 28%  

Net wage real terms - -1.2203 2 1% 4%  

Unemployment rate + +0.2195 4 4% 12%  

Interest payment service 

(proxy for disposable income) 
+ +2.6815 6 1% 15%  

Consumer confidence index - +0.1517 4 1% 7% Wrong sign 

       

Stock Market Indicators       

Bucharest Exchange Trading 

(BET) 
- -0.5105 8 0% 27%  

EURO STOXX 500 - -1.0306 8 0% 29%  

       

Interest rate indicators  - 

money market 
      

ROBOR 3M + -0.0300 0 9% 6% Wrong sign 

EURIBOR 3M + -0.2030 4 0% 24% Wrong sign 
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Macroeconomic variable Expected 

sign 

Coefficient Lag p-value R-squared Observations 

Interest rate indicators – 

household 
      

Banks interest rates for RON 

loans – series in levels 
+ -0.0253 8 0% 39% Wrong sing 

Banks interest rates for RON 

loans – series as diff 
+ +0.1253 8 0% 35%  

Banks interest rates for EUR 

loans 
+ -0.02885 3 6% 8% Wrong sign 

Real interest rates for RON 

loans  
+ -0.0353 3 4% 10%  

Interest rate spread RON + -0.0361 0 3% 9%  

Interest rate spread EUR + +0.1698 6 0% 18%  

       

External variables       

Exchange rate + +2.5209 6 0% 20%  

Oil price + -0.1556 6 10% 2% Wrong sign 

       

 

Note: Newey-West heteroskedasticity and autocorrelation consistent covariance matrix estimator for the parameters is 

used in order to accommodate any expected residuals heteroskedasticity and/or autocorrelation of unknown order. 
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Annex F Households multi-variate regression diagnostic tests.  

 

Table 1 – model specification and estimation 

 

Dependent Variable: DDEF_H   

Method: Least Squares   

Date: 01/22/14   Time: 03:35   

Sample (adjusted): 2006Q4 2013Q3  

Included observations: 28 after adjustments  

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed 

        bandwidth = 4.0000)   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.355519 0.025395 13.99974 0.0000 

DCONS(-4) -3.635916 1.074828 -3.382789 0.0025 

DINTS(-6) 1.120832 0.471816 2.375571 0.0259 

DRONIRHH(-8) 0.099010 0.021504 4.604219 0.0001 
     
     R-squared 0.760760     Mean dependent var 0.267500 

Adjusted R-squared 0.730855     S.D. dependent var 0.190275 

S.E. of regression 0.098713     Akaike info criterion -1.661634 

Sum squared resid 0.233863     Schwarz criterion -1.471319 

Log likelihood 27.26288     Hannan-Quinn criter. -1.603453 

F-statistic 25.43927     Durbin-Watson stat 1.720864 

Prob(F-statistic) 0.000000    
     
     

 

 

Table 2 Residuals auto and partial correlations 

 

 
  



F-2 | P a g e  Annex F Household model multi-variate regression diagnostic tests.  

 

 

Table 3 Jarque-Bera normality test for residuals 

 

Test result: null hypothesis of normal distribution is rejected @95% confidence level. Statistics should 

follow the assumed distribution asymptotically.  

 

Table 4 Breusch-Godfrey Serial Correlation LM Test 

Breusch-Godfrey Serial Correlation LM Test:  
     
     F-statistic 0.500491     Prob. F(2,22) 0.6130 

Obs*R-squared 1.218535     Prob. Chi-Square(2) 0.5437 
     
          

Test Equation:    
Dependent Variable: RESID   
Method: Least Squares   
Date: 01/23/14   Time: 07:22   
Sample: 2006Q4 2013Q3   
Included observations: 28   
Presample missing value lagged residuals set to zero. 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.003011 0.022181 0.135757 0.8932 

DCONS(-4) 0.039038 0.895793 0.043580 0.9656 
DINTS(-6) 0.315969 0.831562 0.379971 0.7076 

DRONIRHH(-8) -0.000489 0.023808 -0.020554 0.9838 
RESID(-1) 0.069772 0.221326 0.315245 0.7555 
RESID(-2) 0.218230 0.248179 0.879322 0.3887 

     
     R-squared 0.043519     Mean dependent var 2.08E-17 

Adjusted R-squared -0.173863     S.D. dependent var 0.093068 
S.E. of regression 0.100834     Akaike info criterion -1.563271 
Sum squared resid 0.223685     Schwarz criterion -1.277799 
Log likelihood 27.88580     Hannan-Quinn criter. -1.476000 
F-statistic 0.200196     Durbin-Watson stat 1.936543 
Prob(F-statistic) 0.958963    

     
      

Test result: the null hypothesis of no residual auto-correlation cannot be rejected. Similar results are 

found when testing with 1 lag and 3 lags. 
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Table 5 White heteroskedasticity test 

 
 

Heteroskedasticity Test: White  
     
     F-statistic 0.620114     Prob. F(9,18) 0.7652 

Obs*R-squared 6.626884     Prob. Chi-Square(9) 0.6759 

Scaled explained SS 7.585490     Prob. Chi-Square(9) 0.5764 
     
          

Test Equation:    

Dependent Variable: RESID^2   

Method: Least Squares   

Date: 01/23/14   Time: 07:24   

Sample: 2006Q4 2013Q3   

Included observations: 28   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.012204 0.005256 2.322116 0.0322 

DCONS(-4) -0.170216 0.177323 -0.959923 0.3498 

DCONS(-4)^2 -2.168595 4.011267 -0.540626 0.5954 

DCONS(-4)*DINTS(-6) -7.054012 8.788969 -0.802598 0.4327 

DCONS(-4)*DRONIRHH(-8) 0.213774 0.412510 0.518227 0.6106 

DINTS(-6) -0.267801 0.193704 -1.382526 0.1837 

DINTS(-6)^2 -2.801518 4.494265 -0.623354 0.5409 

DINTS(-6)*DRONIRHH(-8) -0.281591 0.205853 -1.367922 0.1882 

DRONIRHH(-8) -0.000770 0.007799 -0.098685 0.9225 

DRONIRHH(-8)^2 0.002959 0.005152 0.574355 0.5728 
     
     R-squared 0.236674     Mean dependent var 0.008352 

Adjusted R-squared -0.144988     S.D. dependent var 0.015014 

S.E. of regression 0.016066     Akaike info criterion -5.151807 

Sum squared resid 0.004646     Schwarz criterion -4.676020 

Log likelihood 82.12530     Hannan-Quinn criter. -5.006355 

F-statistic 0.620114     Durbin-Watson stat 2.760032 

Prob(F-statistic) 0.765180    
     
     

 

 

Test result: no indication of common variance of squared residual and squared exogenous or their cross-

products. The null hypothesis of no heteroskedasticity cannot be rejected. The result maintains on 

running the test without cross-products. 
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Table 6 Parameters stability tests Chow forecast test for last 4 observations 

 
 

Chow Forecast Test   

Equation: DDEF_H_MODEL_MAIN   

Specification: DDEF_H C DCONS(-4) DINTS(-6) DRONIRHH(-8) 

Test predictions for observations from 2012Q3 to 2013Q3 
     
      Value df Probability  

F-statistic  0.934939 (5, 19)  0.4807  

Likelihood ratio  6.159100  5  0.2910  
     
     F-test summary:   

 Sum of Sq. df 
Mean 

Squares  

Test SSR  0.046177  5  0.009235  

Restricted SSR  0.233863  24  0.009744  

Unrestricted SSR  0.187685  19  0.009878  

Unrestricted SSR  0.187685  19  0.009878  
     
     LR test summary:   

 Value df   

Restricted LogL  27.26288  24   

Unrestricted LogL  30.34243  19   
     
     Unrestricted log likelihood adjusts test equation results to account for 

        observations in forecast sample  

     

     

Unrestricted Test Equation:   

Dependent Variable: DDEF_H   

Method: Least Squares   

Date: 01/23/14   Time: 07:25   

Sample: 2006Q4 2012Q2   

Included observations: 23   

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed 

        bandwidth = 3.0000)   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.340455 0.026904 12.65437 0.0000 

DCONS(-4) -3.417163 0.889142 -3.843215 0.0011 

DINTS(-6) 1.174306 0.501687 2.340712 0.0303 

DRONIRHH(-8) 0.097824 0.025649 3.813989 0.0012 
     
     R-squared 0.785328     Mean dependent var 0.246957 

Adjusted R-squared 0.751432     S.D. dependent var 0.199350 

S.E. of regression 0.099389     Akaike info criterion -1.622780 

Sum squared resid 0.187685     Schwarz criterion -1.425302 

Log likelihood 22.66197     Hannan-Quinn criter. -1.573115 

F-statistic 23.16898     Durbin-Watson stat 1.691846 

Prob(F-statistic) 0.000001    
     
     

 

Test result: null hypothesis of stable coefficient in the sub-samples cannot be rejected; no predictive 

failure.  
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Table 7 Parameters stability test: recursive coefficients estimation 

 

 

Test results: coefficients stabilize quickly and maintain within confidence level intervals. The coefficient 

for interest service payment and RON interest rates (C4) display relatively larger fluctuations in 2010. 
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Table 8 Parameters stability tests  

Quandt-Andrews unknown breakpoint test 

Null Hypothesis: No breakpoints within 15% trimmed data 

    

Equation Sample: 2006Q4 2013Q3 

Test Sample: 2008Q1 2012Q3 

Number of breaks compared: 19 
    

    

Statistic Value    Prob.   
    

    

Maximum LR F-statistic (2010Q3) 3.003684  0.2112 

    

Exp LR F-statistic 0.971106  0.1510 

    

Ave LR F-statistic 1.773130  0.0670 
    
    

Note: probabilities calculated using Hansen's (1997) method 
 

 

Test result: two tests out of three cannot reject parameters stability null.  

 

Table 9 Functional form test: Ramsey RESET 

 
 

Ramsey RESET Test   

Equation: DDEF_H_MODEL_MAIN   

Specification: DDEF_H C DCONS(-4) DINTS(-6) DRONIRHH(-8) 

Omitted Variables: Squares of fitted values  
     
      Value df Probability  

t-statistic  1.617658  23  0.1194  

F-statistic  2.616816 (1, 23)  0.1194  

Likelihood ratio  3.017134  1  0.0824  
     
     F-test summary:   

 Sum of Sq. df 
Mean 

Squares  

Test SSR  0.023890  1  0.023890  

Restricted SSR  0.233863  24  0.009744  

Unrestricted SSR  0.209973  23  0.009129  

Unrestricted SSR  0.209973  23  0.009129  
     
     LR test summary:   

 Value df   

Restricted LogL  27.26288  24   

Unrestricted LogL  28.77144  23   
     
          

Unrestricted Test Equation:   
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Dependent Variable: DDEF_H   

Method: Least Squares   

Date: 01/23/14   Time: 07:29   

Sample: 2006Q4 2013Q3   

Included observations: 28   

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed 

        bandwidth = 4.0000)   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.533725 0.094637 5.639700 0.0000 

DCONS(-4) -6.692536 1.813224 -3.690959 0.0012 

DINTS(-6) 1.760214 0.632179 2.784358 0.0105 

DRONIRHH(-8) 0.144608 0.030612 4.723906 0.0001 

FITTED^2 -1.278676 0.643777 -1.986210 0.0591 
     
     R-squared 0.785199     Mean dependent var 0.267500 

Adjusted R-squared 0.747843     S.D. dependent var 0.190275 

S.E. of regression 0.095547     Akaike info criterion -1.697960 

Sum squared resid 0.209973     Schwarz criterion -1.460067 

Log likelihood 28.77144     Hannan-Quinn criter. -1.625234 

F-statistic 21.01899     Durbin-Watson stat 1.765608 

Prob(F-statistic) 0.000000    
     
     

 

 

Test results: generally, the null of correct functional form rejected cannot be rejected. Likelihood ratio 

however test rejects the null @90% confidence level (the alternative logistic regression setting was taken 

into consideration but yielded poor result due to dependent low absolute values in the first part of the 

series, combined with logit-difference transformation; see section 3.4 “Specific model” for a discussion) 

 

Table 10 Out-of-sample forecast evaluation – re-estimation of the equation 

 

Dependent Variable: DDEF_H   

Method: Least Squares   

Date: 01/23/14   Time: 07:34   

Sample (adjusted): 2006Q4 2012Q3  

Included observations: 24 after adjustments  

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed 

        bandwidth = 3.0000)   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.342025 0.025944 13.18311 0.0000 

DCONS(-4) -3.390972 0.894446 -3.791143 0.0011 

DINTS(-6) 1.098009 0.443844 2.473863 0.0225 

DRONIRHH(-8) 0.099247 0.024056 4.125614 0.0005 
     
     R-squared 0.783400     Mean dependent var 0.247500 

Adjusted R-squared 0.750910     S.D. dependent var 0.194986 

S.E. of regression 0.097315     Akaike info criterion -1.670708 

Sum squared resid 0.189406     Schwarz criterion -1.474365 

Log likelihood 24.04849     Hannan-Quinn criter. -1.618618 

F-statistic 24.11207     Durbin-Watson stat 1.786512 

Prob(F-statistic) 0.000001    
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Table 11 Out-of-sample forecast evaluation – forecast evaluation 

 

 

  

 

Evaluation results: Mean absolute percent error shows reasonable values. Theil inequality coefficient is 

relatively close to 0 indicating good fit. Forecasted value mean bias is present but the number of 

observation is low. 

Table 12 Multi-collinearity evaluation – Variance Inflation Factors Analysis 

 

Variance Inflation Factors  

Date: 03/02/14   Time: 17:06  

Sample: 2003Q4 2013Q3  

Included observations: 28  
    
     Coefficient Uncentered Centered 

Variable Variance VIF VIF 
    
    C  0.000645  1.741933  NA 

DCONS(-4)  1.155255  2.475789  1.455330 

DINTS(-6)  0.222610  1.607568  1.603086 

DRONIRHH(-8)  0.000462  2.758766  2.166041 
 
 
 

Analysis results: The highest VIF  is 2.76, indicating that there are no multi-collinearity issues  (Gujarati, 

2004 proposes as rule of thumb a ratio of minimum 10 as indication of excessive multi-collinearity) 
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Annex G Estimation of macroeconomic variables equations (ARMA) 

I. CORPORATE MODELS VARIABLES  

1. Real GDP Growth (gdp_g) 

 

           Table 2 Correlogram                                
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3 Potential specifications and residual diagnostics results 

ARMA(3,4) no significant residual auto-correlation  

AR(1) no significant residual auto-correlation – selected (parsimonious model and having minimum value for 

two IC ) 

MA(1) no significant residual auto-correlation  

 

Table 4 Final model specification and diagnostic – AR(1) 

 

Table 1 Information Criteria (IC) values 

ARMA order Akaike Schwarz Hannan-Quinn 

0,0 -5.233 -5.19 -5.218 

0,1    -5.446 ##-5.3607 ##-5.415 

0,2 -5.395 -5.267 -5.349 

0,3 -5.422 -5.251 -5.361 

0,4 -5.376 -5.163 -5.3 

1,0 ##-5.455 *-5.369 *-5.424 

1,1 -5.403 -5.274 -5.357 

1,2 n/a n/a n/a 

1,3 n/a n/a n/a 

1,4 n/a n/a n/a 

2,0 -5.374 -5.243 -5.328 

2,1 n/a n/a n/a 

2,2 -5.39 -5.172 -5.313 

2,3 n/a n/a n/a 

2,4 -5.367 -5.062 -5.259 

3,0 -5.338 -5.162 -5.276 

3,1 -5.308 -5.088 -5.231 

3,2 -5.396 -5.132 -5.304 

3,3 -5.388 -5.081 -5.281 

3,4 *-5.458 -5.107 -5.336 

4,0 -5.303 -5.08 -5.226 

4,1 -5.286 -5.019 -5.194 

4,2 n/a n/a n/a 

4,3 -5.424 -5.068 -5.301 

4,4 -5.376 -4.977 -5.238 

* indicates the lowest IC value 

## indicates the 2nd lowest IC value 

Note: n/a in the IC table indicates non-invertible roots / non-stationarity issues 
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2. Consumer confidence (first difference – dcci) 

Table 5 Correlogram                                                                        Table 6 Descriptive statistics 

 

Result: the series is a non-zero mean white noise process (the expected value is the sample mean). 

 

3. Construction activity, nominal (log-difference – dbuild2) 

Table 7 Information Criteria values                              Table 8 Correlogram 

ARMA order Akaike Schwarz Hannan-Quinn 

0,0 -2.987 -2.944 -2.972 

0,1 -3.195 -3.110 -3.165 

0,2 -3.894 -3.766 -3.848 

0,3 -3.926 -3.755 -3.865 

0,4 n/a n/a n/a 

1,0 -3.394 -3.307 -3.363 

1,1 -3.515 -3.386 -3.469 

1,2 -3.972 -3.800 -3.911 

1,3 -4.035 -3.819 -3.958 

1,4 n/a n/a n/a 

2,0 -3.576 -3.445 -3.530 

2,1 -3.533 -3.359 -3.471 

2,2 -4.006 -3.789 -3.930 

2,3 -3.662 -3.401 -3.570 

2,4 -4.133 ##-3.828 -4.025 

3,0 -3.538 -3.362 -3.477 

3,1 -3.812 -3.592 -3.735 

3,2 ##-4.136 *-3.872 *-4.044 

3,3 -3.995 -3.687 -3.887 

3,4 *-4.156 -3.804 ##-4.033 

4,0 -3.765 -3.542 -3.688 

4,1 -3.779 -3.512 -3.687 

4,2 -4.122 -3.811 -4.015 

4,3 -4.071 -3.715 -3.948 

4,4 -4.039 -3.639 -3.900 

* indicates the lowest IC value 

## indicates the 2nd lowest IC value 

Note: n/a in the IC table indicates non-invertible roots / non-stationarity issues 
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Table 9 Potential specification and residuals diagnostic results 

ARMA(3,2) significant residual auto-correlation  

ARMA (2,4) significant residual auto-correlation 

ARMA(3,4) significant residual auto-correlation  

ARMA (1,3) significant residual auto-correlation 

ARMA (4,2) no significant residual auto-correlation –selected (lowest IC values model with no residuals correlation; 

other more parsimonious models don’t eliminate auto-correlation) 

 

Table 10 Final model specification and diagnostic 

 

 

4. Domestic stock market (log-difference – dbet) 

Table 11 Correlogram                                                                      Table 12 Descriptive statistics 

 

 

 

 

 

 

 

 

Result: the series is a non-zero mean white noise process (the expected value is the sample mean). 
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5. Interest rate for RON loans, corporate sector (first difference – dron_irc) 

Table 13 Information criteria values                              Table 14 Correlogram 

ARMA order Akaike Schwarz Hannan-Quinn 

0,0 3.191 3.234 3.207 

0,1 2.952 3.037 2.983 

0,2 2.999 3.127 3.045 

0,3 2.933 3.103 2.994 

0,4 n/a n/a n/a 

1,0 2.940 3.027 2.971 

1,1 2.991 3.121 3.037 

1,2 3.042 3.215 3.104 

1,3 2.978 3.193 3.054 

1,4 3.015 3.273 3.107 

2,0 3.005 3.136 3.051 

2,1 ## 2.837 ## 3.011 ## 2.898 

2,2 3.021 3.239 3.098 

2,3 2.961 3.223 3.053 

2,4 2.996 3.301 3.104 

3,0 3.068 3.244 3.129 

3,1 3.082 3.302 3.158 

3,2 3.116 3.380 3.208 

3,3 2.960 3.268 3.067 

3,4 2.877 3.229 3.000 

4,0 3.077 3.299 3.153 

4,1 * 2.740 * 3.006 * 2.832 

4,2 3.152 3.463 3.260 

4,3 3.014 3.370 3.137 

4,4 3.070 3.470 3.208 

* indicates the lowest IC value 

## indicates the 2nd lowest IC value 

Note: n/a in the IC table indicates non-invertible roots / non-stationarity issues 

 

Table 15 Potential specification and residuals diagnostic results 

ARMA(4, 1) no significant residual auto-correlation  

ARMA (2,1) no significant residual auto-correlation –selected; IC values are slightly higher than ARMA (4,1) but the 

model is selected due to parsimony considerations (residual auto-correlation maintains approx the same 

values as in ARMA(4,1) specification). More parsimonious increase more substantially IC values. 
 

Table 16 Final model specification and diagnostic  
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6. Exchange rate RON/EUR (log-difference – dfx) 

Table 17 Correlogram                                                                      Table 18 Descriptive statistics 

 

 

 

 

 

 

 

 

Result: the series is a non-zero mean white noise process (the expected value is the sample mean). 

 

II. HOUSEHOLD MODEL VARIABLES 

1. Household consumption (log-difference – dcons) 

Table 19 Information criteria values                                                Table 20 Correlogram 

ARMA order Akaike Schwarz Hannan-Quinn 

0,0 -4.662 -4.619 -4.647 

0,1 -4.951 -4.866 -4.921 

0,2 -5.613 -5.485 -5.567 

0,3 -5.709 ##-5.538 -5.648 

0,4 -5.560 -5.347 -5.483 

1,0 -5.224 -5.138 -5.194 

1,1 -5.200 -5.070 -5.154 

1,2 *-5.806 *-5.633 *-5.744 

1,3 -5.716 -5.501 -5.640 

1,4 -5.624 -5.365 -5.532 

2,0 -5.224 -5.094 -5.178 

2,1 -5.228 -5.054 -5.167 

2,2 -5.748 -5.530 ##-5.671 

2,3 -5.739 -5.478 -5.647 

2,4 -5.363 -5.058 -5.255 

3,0 -5.275 -5.099 -5.214 

3,1 -5.220 -5.000 -5.143 

3,2 -5.688 -5.424 -5.595 

3,3 -5.669 -5.361 -5.561 

3,4 n/a n/a n/a 

4,0 -5.266 -5.044 -5.189 

4,1 -5.423 -5.156 -5.331 

4,2 -5.696 -5.385 -5.588 

4,3 -5.651 -5.295 -5.528 

4,4 ##-5.795 -5.395 -5.657 

 * indicates the lowest IC value 

## indicates the 2nd lowest IC value 

Note: n/a in the IC values table indicates non-invertible roots / non-stationarity issues 
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Table 21 Potential specification and residuals diagnostic results 

ARMA(1,2) no significant residual auto-correlation – selected (lowest IC values, more parsimonious models increase 

substantially the IC values) 
 

Table 22 Final model specification and diagnostic  

 

 

 

 

 

 

 

 

 

2. Interest payments service (first difference – dints) 

Table 23 Correlogram                                                                      Table 24 Descriptive statistics 

 

 

 

 

 

 

 

 

Result: the series is a non-zero mean white noise process (the expected value is the sample mean). 

  



G-7 | P a g e  Annex G  Estimation of macroeconomic variables equations  

 

3. Interest rate for RON loans, household sector (log-difference – dronirhh) 

Table 25 Information criteria values                                                Table 26 Correlogram 

ARMA order Akaike Schwarz Hannan-Quinn 

0,0 2.527 2.570 2.543 

0,1 1.800 1.885 1.830 

0,2 1.836 1.963 1.881 

0,3 1.629 1.800 1.690 

0,4 1.477 1.690 1.553 

1,0 1.628 1.715 1.659 

1,1 1.667 1.796 1.713 

1,2 1.713 1.886 1.775 

1,3 1.525 1.740 1.601 

1,4 1.564 1.822 1.656 

2,0 1.660 1.790 1.706 

2,1 1.622 1.796 1.683 

2,2 1.314 1.532 1.391 

2,3 1.434 1.696 1.527 

2,4 1.488 1.793 1.596 

3,0 1.693 1.869 1.754 

3,1 1.642 1.862 1.719 

3,2 1.349 1.613 1.441 

3,3 1.580 1.888 1.687 

3,4 1.322 1.674 1.445 

4,0 1.612 1.834 1.688 

4,1 1.060 1.327 1.152 

4,2 1.050 1.361 1.157 

4,3 ## 0.933 ## 1.289 ## 1.056 

4,4 * 0.884 * 1.284 * 1.022 

 * indicates the lowest IC value 

## indicates the 2nd lowest IC value 

Note: n/a in the IC values table indicates non-invertible roots / non-stationarity issues 

 

 

Table 27 Potential specification and residuals diagnostic results 

ARMA(4,4) significant residual auto-correlations 

ARMA(4,3) significant residual auto-correlations 

ARMA(4,2) significant residual auto-correlations 

ARMA(4,1) significant residual auto-correlations 

ARMA (2,2) significant residual auto-correlations 

ARMA (3,2) significant residual auto-correlations 

ARMA (3,4) significant residual auto-correlations 

ARMA (2,3) significant residual auto-correlations 

MA (4) no significant residual auto-correlations 

ARMA (2,4) residual auto-correlations near significance limit at some lags 

ARMA (1,3) no significant residual auto-correlations – selected; low IC value, slightly higher  than MA(4) but preferred 

for parsimony (less MA terms); lower IC values than  AR(1) specification for 2 out of the 3 criteria; 

AR (1) no significant residual auto-correlations 
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Table 28 Final model specification and diagnostic  
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