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Abstract

Sprumont (1990) shows that the Shapley value (Shapley 1957) is population-
monotonic (Thomson 1983) on the class of convex games (Shapley 1971). In this paper
we study the population-monotonicity of the nucleolus (Schmeidler 1969). We show that
the nucleolus is not population-monotonic on the class of convex games. Our main result
is that the nucleolus is population-monotonic on a class of public good problems which
is formalized in Littlechild and Owen (1973) under the name of airport games. We also
provide a recursive formula for the nucleolus of the airport game.

1 Introduction

In axiomatic game theory, most of the earlier studies pertained to situations where the pop-
ulation is fixed. In recent literature, however much attention has been given to situations
where the population is variable. Population-monotonicity, introduced by Thomson (1983)
in the context of bargaining theory is a property defined on classes of problems of variable
size (See Thomson 1992 for a survey). It requires everybody initially present to lose upon
the arrival of new agents, if opportunities do not expand.

This paper studies the population-monotonicity of certain solutions to a class of trans-
ferable utility games. We consider situations where the arrival of new agents is accompanied
by an ezpansion of opportunities and we require everybody initially present to gain. We
concentrate on the solution known as the nucleolus (Schmeidler 1969). One of the basic
properties of the nucleolus is that it is in the core whenever the core is non-empty. There
has been an increasing interest in this solution since Sobolev’s (1975) axiomatization. One
of the most interesting recent results concerning it is the discovery that the 2000 year old
Talmud prescribes solutions to bankruptcy problems that coincide with the nucleoli of games
associated with such problems in a natural way. (Aumann and Maschler 1985).

The class of convez games (Shapley 1971)is a rich class of games which exhibit ”increasing
returns to cooperation”. Sprumont (1990) shows that the Shapley value (Shapley 1957) is
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population-monotonic on the class of convex games. We first ask whether this is also true for
the nucleolus. The answer is unfortunately negative.

We then consider the class of public good problems illustrated by the following example.
A group of airlines N share the cost of a runway. To serve the planes of a particular airline
1, the length of the runway (proportional to its cost) must be at least ¢;. If a coalition of
airlines S want to use the runway together, the length of the runway should be maz;csc;.
Any solution for this problem is interpreted as a specification of fees to be paid by the airlines
to cover the cost of the runway when it is used by the grand coalition N. Our main result is
that the nucleolus is population-monotonic on this class of public good problems.

We then study the population-monotonicity of two other solutions, on this class of public
good games. The solutions are the 7 — value (Tijs 1981) and the separable cost remaining
benefit (SCRB) solution (Federal Inter Agency River Basin Committee 1950). We obtain

negative results for both.

2 Solutions

There is an infinite number of potential agents, indexed by the positive integers Z. Let P be
the class of all finite subsets of Z, with generic elements N, N’ etc. We denote the cardinality

of N by |N|.

A TU game is a vector v € R?" ' ~!. Given a coalition § C N, v(S) € R represents
what S can achieve on its own, its worth. Let T'"Y be the class of all games involving the
group N. Let I' = {Jyep I'N. A solution on T is a correspondence that associates with
every N € P and every v € I'V a nonempty set of vectors ¢ € R such that Yoies i < v(NV).
To introduce the solutions that we will study, we need some preliminary definitions.

The imputation set is given by
I(0) = {= € BV Syey 2(i) = o(N), (i) > o() Vi € N}
Definition: Given v € R2™'~1 the core of v is given by
C(o) = {2 € I(0)] Sies o1 > () V5 € N}

Consider the game v and the payoff vector z. The excess of a coalition S with respect
to z, and the excess of v with respect to z are given by

Let O(e?(z)) be the vector whose coordinates are the excesses arranged in decreasing
order. We write z <y, y if there is an integer m, 1 < m < 2™ — 1 such that, Or(e¥(z)) =
Or(e’(y)) for all k < m and O, (e?(z)) < O (e”(y))-

Definition: Given v € Rlel”l, the nucleolus of v is given by



Nu(v) = {z € I(v)| By € I(v),0(e"(y)) <z O(e"(2))}

Nucleolus allocations lexicographically minimize coalitional dissatisfaction starting with
the most dissatisfied coalition. The nucleolus is a single-valued, continuous solution and it is
in the core whenever the core is non-empty.

The marginal contribution of agent ¢ to the grand coalition N b;(v) and the gap
vector gv of the game v are given by

bi(v)=v(N)—v(N —1) forallie N
g 8= Ejes bi(v) — v(S) foral SC N

Definition: Given v € Rz'N_l, the separable cost remaining benefit solution B(v)

is given by
B;(v) = bj(v) — g*(N)/|N| foralli e N

According to the separable cost remaining benefit method, every agent ¢ receives his
marginal contribution to the grand coalition b;(v), and shares the difference between the
worth of the grand coalition and the sum of the marginal contributions to the grand coalition

equally.

The concession vector A\? € R of the game v is given by

AY = mingics g¥(S) forall i€ N

7
Let T'B be the class of games with a non-empty core. We will define the next solution
only for this class of games for which it takes a particular form.

Definition: Given v € I'P, the 7 — value of v is given by

7(v) = b(v) — —zﬁ

We now can state the main property we study. Given N, N’ € P such that N C N’, and
a game v € T'V' let vy be the restriction of v to the group N. Formally, vy = (v(S))scw

Population-monotonicity requires everybody initially present to gain upon the arrival of

new agents.

Definition: A solution @ € I' is population-monotonic if for all N, N’ € P with
N C N/, forallve A Yi(v) > ¢i(vn) for alli € N.

3 Convex Games

The class of the convex games is a class of games in which the incentives for joining a
coalition increases as the coalition grows in an analogous way to the increasing returns to
scale associated with convex production functions in economics.



It is shown by Sprumont (1990) that the Shapley value is population-monotonic on the
class of convex games. Thus, it is natural to ask whether other solutions have that property.

Definition: A game v is convex if
v(SU%) —v(S) <v(TUi) —v(T) foralli e N,t ¢ T such that S CT C N.

For a convex game v

m(v) = bi(v) — ¢°(N) 5~y (1)

Proposition 1: Neither the nucleolus, nor the 7—wvalue, nor the separable cost remaining
benefit method is population-monotonic on the class of convex games.

Proof: Let N' = {1,2,3,4} be the set of players with v(Z) = 0,v(3j) = 1,v(234) =
5, v(ijk) = 2 otherwise and v(N') = 6. Note that v is convex.

It can be found that,

Nu(v) = (1/2,11/6,11/6,11/6)
B(v) = (—3/4,9/4,9/4,9/4)
r(v) = (6/13,24/13,24/13,24/13)

Now consider the restriction of v to the group N = {1,2, 3}. In this case,

Nu(vy) = B(vy) = m(vw) = (2/3,2/3,2/3)
showing that agent 1 gains whereas agents 2 and 3 suffer from agent 4 leaving the game. O

4 A Public Good Problem: The Airport Game

4.1 Nucleolus of the Airport Game

We will consider the following particular public good problem. Let N be the set of the
agents and S C N be any coalition. Each coalition S is characterized by a number ¢(S), which
is interpreted as the cost of producing the public good at the right level for the coalition 3.
For simplicity we assume that no two one-agent coalitions have the same cost. However, this
assumption does not affect our results since the nucleolus is a continuous solution. Agents
are ordered so that ¢(1) < ¢(2) < ... < ¢(n). Let i(S) denote the agent in coalition S who
has the highest cost. Formally,

i(S) = {ili € S,c(3) > c(j) Vi € S}



We consider the following class of games ¢ for which ¢(S) = ¢(i(S)). Thus, the cost of the
public good for any coalition depends on the most costly agent in that coahtlon. This class
of games is introduced in Littlechild and Owen (1973) under the name of airport games.
Note that —c is a convex game. From now on, when we refer to the nucleolus of the airport
game, we actually mean the negative nucleolus of the negative airport game. In Littlechild
(1974) the nucleolus of the airport game y = Nu(c) is shown to be

y; =71 forip1 <t<ipaendk=12,....k (2)

where 7 and i, are defined inductively by

{Ci—Cik_l FTr—1 } Cn—Cip 4 +Tk—1 ]
4 t—ig_g1+1 ’ n—ig_3

TR = MIN[Min;,_ 41, n—

and i denotes the largest value of ¢ for which the above expression attains its minimum.
(Beginning with 7o = 45 = ¢o = 0 and continuing for k = 1,2, ..., k' where ity = n).

In order to study its population-monotonicity we provide in the following lemma an alter-
native formula. (See appendix A)

Lemma 1: The nucleolus of the airport game is given by the following recursive formula:

yo =10
; cj— Z Yk ;
W = TN ,nl{ 2 &=h=021 for i=1,2,...,n—1 (3)

7—1+2
Yn = Cn — Zk Oyk

Population-monotonicity requires the fees imposed on the agents initially present not to
increase upon the arrival of a new agent. Now we are ready to present our main result.

Proposition 2: The nucleolus is population-monotonic on the class of airport games.

Proof: Initiallyy, N = {1,2,...,n}. Consider formula (2). By the derivation of the
formula (using the Kopelowits algoritm) it is trivial to see that 7 is nondecreasing in k,
which says that players with higher costs do not pay less.

We now add a new agent with cost é. Let ¢’ be the resulting game, y' = Nu(c') and
L(¢) = {i]c; < ¢}. We will study the effect of the new agents for two groups separately.

Case 1: 7 € L(¢).
Consider the payoffs in ¢ and ¢’ of the (¢ + 1)th agent (who is agent 1) given by (1).

o S ' [ < Cn—1 ¢
yl'—rlfmzn{_glr tagg10 nn J_-;L

/Y S . cy c; ¢ Cj+1 Cn—1 _cC
i, = 7 = ] '"_Lj+17j+2’L“j+3""7_n+l’——ﬂ”n+1

We have y; < y;. If strict inequality holds, y; = ] <7 <y; forall¢ such that i € L(¢).
If equality holds, we consider the payoffs of the (¢; 4+ 1)th agent and the same argument holds.
We proceed similarly till we reach the new agent. Thus we have showed that for all agents ¢
who are less costly than the new agent, we have y, < y,.



Case 2: ¢ ¢ L(¢).

Now find the nucleolus for the agents in ¢ and ¢’ with formula (3). Let ¢; < ¢é < ¢jy1.
We introduce agent 0 with cost 0 which will not change anything other than simplifying the
algebra. Without the new player,

_ : 0 ¢ Cn—-11 _
yo = min{3, %,..., 5
N - et ) Cn—1=Y0
g =min{a8, . = }
. -1 j—1
PR {CJ_Zk=0 Ye G177 k= Yk Ek Oyk}
y; = min . ) 3 ey n—]+1

Zk o Yk

Zk gyk

Yn—1 =

With the new player,

I . 0 ¢ é Cn—1717 __
yo_mm{z,3,...,j+3,...,n+2}_0
' ot ! !
[ . 1Y% S Yy Y Cn—1—Yp
y1 = min{=5=, . ST T T o)
’ =1
7 S k oyk Zk oYk k Oyk
y; = min{ 2 e nJ+2 }
s j ; . J /
~ min{chzk:o Yi CJ+1-Zk:0 Yk C”*I_Zk:O y;c}
Yy = 2 3 3 yc n—j+1
n—2 ;
J __ Ca-1— k=0 Y~y
y'n 1 — 2
g’
Zk oyk

Comparing y and y’ we have, y; > 0 therefore, y] + y§ > %o
This in turn implies,

c2+y; Ty (- 1)(y'+y') ey i) cn—1+(n—=1)(y;+})
vy + yh + yp = min{ 20T D S - VT —oely
et c 1+ Yo ¢ +Jyo cn_1+(n—1)y
>m2n{]2y07"'71 ) 7Jj+1 1 t (n )0}:y0+y1

Similarly y5'+ y5 + y1 + yo > y2 + ¥1 + Yo and so on.
At some step j we have §' + 31 _,yp > ch 0 Yk, implying ¥, < yji1.

Similarly at step 7 + 1, ¢’ + fot yk > Zk o Yk, implying y5, » < yjia.

Proceeding in this way, we obtain y; < y; for all 7 such that ¢(7) > ¢.



4.2 Separable Cost Remaining Benefit Payoffs of the Airport Game

We now show that SCRB of the airport game is not population-monotonic.

Proposition 3: The separable cost remainining benefit method is not population-
monotonic on the class of airport games.

Proof: Let N’ = {1,2,3} be the set of players with ¢(1) = 4, ¢(2) = 9,¢(3) = 10.
It can be found that,

B(c) = (3,3,4)

Now consider the restriction of ¢ to the group N = {1,3}. In this case,

B(c) = (2,8)
showing that the agent 1 gains whereas agent 3 lose from agent 2 leaving the game. a
4.3 1 —value of the Airport Game

The 7 — value of the airport game is given in Driessen(1985) by

o c(n=1)c(?) o _
file) = ST o) 1=1,2,...n-1 (4)
Tn(c) — Tn——l(c) 4 (Cn - Cnél)

Proposition 4: The 7 —value is not population-monotonic on the class of airport games.

Proof: Let N’ = {1,2,3,4} be the set of players with ¢(1) = 1,¢(2) = 2,¢(3) = 11,¢(4) =
15.
It can be found that,
r(c) = (11/25,22/25,121/25,221/25)
Now consider the restriction of ¢ to the group N = {1,2,4}. In this case,

T(en) = (2/5,4/5,69/5)

showing that agents 1 and 2 gain whereas agent 4 lose from agent 3 leaving the game. O



5 Appendix

5.1 Appendix A

Proof of Lemma 1:

Claim 1: Cy — T = Z;:l(ij — ij_l)Tj I=1,.. K
Proof of Claim 1: Since ¢;, — 71 = (i3 — %9)71 the claim is correct for [ = 1.
Suppose the claim is correct for [ = k. Then,

ey — T = Lea (85— d5-1)rs (5)
Further,
G —Cip +Tk ‘
Th+1 = Ifk-:l‘i:+1 (6)

Thus, (5) and (6) together imply, (tg4+1 — %)Tk41 + Cip — Tk = Cipyy — Tkt1
Replacing (5) once more we have,

. . k . . o
(Tkt1 — Gk)Tht1 + 2521 (55 — 45-1)75 = Cipyy — Tt

or equivalently, Zf;’ll(z] = gy Wy = &gy ~ TRyt
showing that the claim is correct for [ =k + 1 O

Combining Claim 1 with the inequality ¢, > ¢,_1, the payoff formula simplifies to,

y; =7 forig_3<i<ig and k=1,....k -1
k—1,. .
R Ci”Zj:o(li*””)rj
Tk = MiNiziy_ 41,n-1 \—— i)

K —1/- :
Yn = Cn — Zjill(zj - Zj—l)rj

where rg = 79 = 1_1.

Define I; = {4;_1 + 1,...,4}. With this procedure minimization is done by only the first

agent for each Iy. Here we have y;,_ 41 = ... = y;, = r, where,
ted e
— Cil_z (i1
1= e -
—1,. .
Cm — (=117 .
r < Zm]_—lll(_1+11 1) forall m > 11+ 1 (8)

In the last set of inequalities we have strict inequality for m > 1.

Consider any agent 7 who is not a first agent in any [;. Thus, ¢ € I;,¢ # ¢, + 1. We
know that y; = y;,_,+1. The next claim shows that we can have a minimization problem also
for agent 7,-similar to that of agent ¢;_; + 1 without changing anything.

Claim 2: Consider agent ¢;_1 + 2
1—1,.

Doy i —di—1)ri=ri

ci—
Yi, 142 = mzni:il,l—i-Z,...,n—l{ i—(_1+1)+1 } =T

Proof of Claim 2:
Choose 7 = 7;. Let Zé;ll(zj —1;_1)r; = R. Note that (7) implies



g, —R—r— (4 —41)m =0
Thus,

eq, — R —wi — (G — G ) + (e — Bty — i) = (e5; — R)(lr— 511)
Therefore,

(i, —R—r)(&r — -1+ 1) = (e5, — R)(& — 41-1)
of Bguivalently.

ciy-R—r, _ cy-R

I _
L = — =7
-1 y—1_1+1 l

which means that r; is attainable.

Next we show that r; < T—(T,'%r_lr')Lﬁ forall 7 > 4;_1 + 2
cm—R—r
Suppose not. Thus, for some m > 4;_; + 2, -m—”——:L <7
From (8) we know that r; < ;n—ff% forall m > 4,1 +1

Therefore there exists an m > 4;_; + 2 such that

cm—R—r cm —R
m—i;_ g’ m—1_3+1

This may be replaced by
(em — R —r1)(m—4-1) < (em — R)(m — 71_1)
or equivalently
—(m—-tu_1)r+em—R-—7 <0
Thus there exists m > 7;_; + 2 such that —m~——— < 7y contradicting (6), proving Claim 2.0

An analogous result is valid for the next player, and so on. But this means that all players
but the last one solve their own minimization problems in the following way

Yo =0

P ;
Vs = TGt i1 - — } i=1,2,...,n-1

Whereas for the last player

Ek oyk o

5.2 Appendix B

Derivations for Proposition 1:



N'={1,2,3,4} with v() = 0,v(ij) = 1,v(234) = 5, v(ijk) = 2 otherwise and v(N') = 6.
Nuy(v) = Nug(v) = Nuy(v) by the anonimity of nucleolus. Let z = (a, 8,8, 8). The excess
of v with respect to z are given by

e’(l,z)=
e’(t,z) = —ﬂ i€{2,3,4}
e’(li,z)=1—-(a+B) 1€{2,3,4}

ev(Z] ) == 2ﬁ i # .7 {2a374}
e’(lij,z) =2 - (a+2B8) i#j€{23,4}
e”(234 g)= 5 — 38

(¥

) =

v

At ¢ = Nu(v) we have a < 3 by the weak coalitional monotonicity and anonimity of the
nucleolus which implies

—a>-f>1-20and —a>1—-(a+p)>2—(a+20).

Therefore we need to minimize maz{—a, —f,5 — 30} such that a + 38 = 6 at ¢ = Nu(z).
This leads to a = 1/2,8 =11/6 and Nu(v) = (1/2,11/6,11/6,11/6).

The marginal contributions to the grand coalition are

bi(v) = v(N') — v(234) = 1, by(v) = bg(v) = bs(v) = v(N') — v(123) =
Furthermore

(V') = Yienwr bi(v) — o(N) = 13- 6 = 7
gu(1) = b1(0) ~ (1) = 1, u(2) = gu(3) = 9u(4) = ba(v) — v(4) = 4

Therefore

Bi(v) = bi(v) — g*(N)/IN') = 1 - 7/4 = —3/4, By(v) = Ba(v) = Ba(v) = ba(v) —
g"(N")/IN'|=4~7/4=9/4. Thus B(v) = (—3/4,9/4,9/4,9/4).

1

Finally 71(v) = b1(v) — %ﬂ% =1-7x1/13=6/13,
teN'

2(v) = 73(v) = 14 (v) = ba(v) — &L ggw(“.) 4-7x4/13 = 24/13.
ient 972
Thus 7(v) = (6/13,24/13,24/13,24/13).

Let N = {2,3,4}, Nu(vn) = B(vn) = 7(vn) = (2/3,2/3,2/3) immediately by the anonimity
of the nucleolus, SC R B solution and 7-value.

Derivations for Proposition 3:

N =1{1,2,3} 1) =14,¢(2)=9,¢(8) = 10.

Marginal contributions to the grand coalition are

bi(v) = ¢(N') —¢(23)=10—-10=0,b2(v) = c(N') —¢(13) =10-10=0
bs(v) = ¢(N') —¢(12)=10-9=1.

Furthermore g5(N') = > ;cnrbi(c) —¢(N') =1 -10 = —9.

Therefore Bi(c) = Ba(c) = ba(c) — g5(N')/|IN| =0+ 9/3=3

10



Bs(c) = bz(c) — g5(N')/IN’'| =1+ 9/3 = 4. Thus B(c) = (3,3,4).

Let N = {1, 3}, then b1(en) = ¢(N) — ¢(3) = 0,b3(cn) = ¢(N) —¢(1) =

Furthermore g°¥(N) = Y ;cnbi(en) —¢(N)=6—-10 = —

Therefore By(cny) = bi(en) — gN¥(N)/IN| = 2, Bs(en) = bs(en) — g°¥(N)/|N| = 8. Thus
Blen) =12, B).

Derivations for Proposition 4:

N'={1,2,3,4} ¢(1) =1,¢(2) = 2,¢(3) = 11,¢(4) = 15. By the formula (4)
— (B)el) _11x1/(1+2+11+11)=11/25
)= Sy © X V(21411 =11/

)= $ri(c) =2 x 11/25 = 22/25

71(c
72(c
73(c) = L8m () = 11 x 11/25 = 121/25
4(c) = 73(c) + [e(4) — ¢(3)] = 121/25 + 4 = 221/25
Thus r(c) = (11/25,22/25,121/25,221/25).

\_/

Let N = {1,2,4}. Then

m1(en) = (—)EQ(EgH—(—)~2><1/(2+2+1)_2/5

ma(ew) = Bri(en) =2 x 2/5 = 4/5

ra(en) = ro(en) + [e(4) — e(2)] = 4/5+ 13 = 69/5
Thus 7(ey) = (2/5,4/5,69/5).

11
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