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Abstract

Sprumont (1990) shows that the Shapley value (Shapley 1957) is population-

monotonic (Thomson 1983) on the class of convex games (Shapley 1971). In this paper

we study the population-monotonicity of the nucieolus (Schmeidler 1969). We show that
the nucleolus is not population-monotonic on the class of convex games. Our main result

is that the nucleolus is population-monotonic on a class of public good problems rvhich

is formalized in Litilechild and Owen (1973) under the name of airport games. We also

provide a recursive formula for the nucleolus of the airport game.

Introduction

In axiomatic game theory, most of the earlier stufies pertained to situations where the pop-

ulation is fixed. In recent literature, however much attention has been given to situations

where the population is variable. Population-rnonotonicilg, introduced by Thomson (1983)

in the context of bargaining theory is a property defined on classes of problems of variable

size (See Thomson 7992 for a survey). It requires everybody initially present to lose upon

the arrival of new agents, if opportunities do not expand.

This paper studies the population-monotonicity of certain solutions to a class of trans-

ferable utility games. We consider situations where the arrival of new agents is accompanied

by an erpansion of opportunities and we require everybody initially present to gain. \4re

concentrate on the solution known as the nucleolus (Schmeidler 1969). One of the basic

properties of the nucleolus is that it is in tlte core whenever the core is non-empty. There

has been an increasing interest in this solution since Sobolev's (1975) axiomatization. One

of the most interesting recent results concerning it is the discovery that the 2000 year old

Talmud prescribes solutions to bankruptcy problems that coincide with the nucleoli of garnes

associated with such problems in a natu.ral way. (Aumann and N{aschler 1985).

The class of conaer games (Shapley 1971)is a rich class of games which exhibit "increasing

returns to cooperation". Sprurnont (1990) shows that the Shapley ualue (Shapley 1957) is
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population-monotonic on the class of convex games. We first ask whether this is also true for

the nucleolus. The answet is unfortunately negative.

We then consider the class of public good problerns illustrated by the following example.

A group of airlines ly' share the cost of a mnway. To serve the planes of a particular airline

f , the length of the ruxway (proportional to its cost) must be at least c;. If a coalition of
airlines 5 want to use the runway together, the length of the runway should be rnariEsci.
Any solution for this problem is interpreted as a specification of fees to be paid by the airlines

to cover the cost of the runway when it is used by the grand coafition 1/. Our main resu-lt is

that the nucleolus is population-monotonic on this class of public good problems.

We then study the population-monotonicity of two other solutions, on this class of public

good games. The solutions are the r - ualue (Tijs 1981) and the separable cost remaining

benefit (SCRB) solution (Federal Inter Agency River Basin Committee 1950). We obtain

negative results for both.

Solutions

There is an infinite number of potential agents, indexed by the positive integers Z. Let P be

the class of allfinite subsets of Z,with generic elements N,N'etc. We denote the cardinality

of nr by lnrl.

A TU gane is a vector , € Rzt*t-t. Given a coalition ,9 C y'/, u(.9) e /? represents

what 5 can achieve on its own, its worth. Let lN be the class of all games invoiving the

group N. Let f : Ury.pfN. A solution on I is a correspondence that associates with
everyly' €Pandevery?€fNanonemptysetof vectorsr €-RlNl suchthatf;u5r;<u(N).
To introduce the solutions that we will study, we need some preliminary definitions.

The irnputation set is given by

I("): {r e alNll D;e,nr r(t) : r(lr), *(i) > u(i)Vi e N}

Definition: Given u 6 pzlNl-t, the core of o is given by

C(r) : {r e 1(r')l Dte s r; 2 "(S) 
VS c lri

Consider the game o and the payoffvector r. The excess of a coalition 5 with respect
to r, and the excess of o with respect to z are given by

e"(S,x): o(,9) - D;e s r;
e"(r) : (""(5, r))scw

Let O(e"(r)) be the vector whose coordinates are the excesses arranged in decreasing

order. We write r 1r A if there is an integer rn, | 1. rn I 2n - 1such that, O6(e"(c)) :
Or(""(y)) for all k < m and O-(e"(r)) < @*(""(y))

Definition: Given , € ft2ltl-t, the nucleolus of u is given by



Nu(a): {z € I(o)l Fy € I(u),O(""(y)) <7, O(e"(r))}

Nucleolus allocations lexicographically minimize coalitional dissatisfaction starting with
the most dissatisfied coalition. The nucleolus is a single-valued, continuous solution and it is
in the core whenever the core is non-empty.

The rnarginal contribution of agent f to the grand coalition N b;(u) and the gap

vector g" of the game u are given by

b;(o): r(rr) - u(N - i) for all i e N

s"6) = Ir.r b1@) - u(S) for all S c -\r

Definition: Given a € R2t* -7, the separable cost rernaining benefit solution B(o)
is given by

B;(o): b;(r) * s"W)llNl for all i e N

According to the separable cost remaining benefit method, every agent f receives his

marginal contribution to the grand coalition D;(u), and shares the difference between the

worth of the grand coalition and the sum of the marginal contributions to the grand coalition

equally.

The concession vector tr" 6 4llrl of the game o is given by

\i : rnins1€s g"(S) for all i e N

Let fB be the class of games with a non-empty core. \Me will define the next solution

only for this class of games for which it takes a particular form.

Definition: Given ?-r € fB, the r - aalue of o is given by

'(r):b(r)-F+1J j€N "l

We now can state the mainproperty we study. Given N,N'€ P such that l/ C N/, and

a game ?, € fN/ let u1,, be the restriction of u to the group ly'. Formally, r,nr : (?(.9))sqN

Population-monotonicity requires everybody initially present to gain upon the arrival of
new agents.

Definition: A solutiorr IL € I is population-rnonotonic if for all N,N' € P with
N C ff', for all o € fN', ,p;@)> ,lr;@w) for all i € N.

Convex Garnes

The class of the convex garnes is a class of games in which the incentives for joining a

coalition increases as the coalition grows in an analogous way to the increasing returns to

scale associated with convex production functions in economics.



It is shown by Sprumont (1990) that
class of convex games. Thus, it is natural

Definition: A game u is convex if

"(,sU;) - o(^s) < o(r Ui) - a(r)

For a convex garne ?

r;(u) : b;(") - n" @)T#Irj

the Shapley value is Ttopulation-monotonfc on the

to ask whether other solutions have that property.

for all i € N,i /T s;uch that 
^9 

gT e N.

(1)

Proposition L: Neither the nucleolus, nor the r -aalue, nor the separable cost remaining
benefit method is population-nzonotonic on the class of convex games.

Proof: Let lf' = {1,2,3,4} be the set of players with u(i) : O,a(ij) : 1,a(234) :
5, u(ijk) = 2 otherwise and o(N'):6. Note that u is convex.

It can be found that,

N u(a) : (L f 2,11 I 6,11 I 6,Lt I 6)

B(u) : (_314,g l4,s l4,g l4)

r(u) : (6 I L3, 24 I t3,24 I 13,24 I 13)

Now consider the restriction of o to the group 1/: {1,2,3}.In this case,

N u(uy) : B(ax) : r(uw) : (2 I 3,213,2 I 3)

showing that agent 1 gains whereas agents 2 and 3 suffer from agent 4 leaving the game. !

4 A Public Good Problem: The Airport Game

4.-1, Nucleolus of the Airport Game

We will consider the following particular public good problern. Let /f be the set of the
agents and ^9 

C i[ be any coalition. Each coalition,S is characterized by a number c(.9), which
is interpreted as the cost of producing the public good at the right level for the coalition 

^9.

For simplicity *" assume that no two one-agent coaiitions have the same cost. However, this
assurnption does not affect our results since the nucleolus is a continuous solution. Agents

are ordered so that 
"(1) 

< 
"(2) 

< ...< ,(n). Let f(.9) denote the agent in coalition ,9 who

has the highest cost. Formally,

i(^9) : {ili e 5,.(i) > c(3) Vz e 5}



We consider the following class of games c for which c(.9) = c(i(S)). Thus, the cost of the

public good for any coalition depends on the most costly agent in that coalition. This class

of games is introduced in Littlechild and Owen (1973) under the name of airport games.

Note that -c is a convex game. Fromnow on, when we refer to the nucleolus of the airport
game, we actually mean the negative nucleolus of the negative airport game. In Littlechild
(L974) the nucleolus of the airport game y : ffu(c) is shown to be

y; : T k for ip-1 I i I in and k : L,2, ".,k'

where rp ar'd i6 are defined inductively by

r r" : rninlrni n ; o -, a t,...,n- r { - -:H## }, =j##t t

and i7" denotes the largest value of i for which the above expression attains its rninimum.

(Beginning with re - io : co : 0 and continuing for k : 7,2,...,&' where ip' - v).

In order to study its population-monotonicitg we provide in the following lemrna an alter-

native formula. (See appendix A)

Lernrna L: The nucleolus of the airport game is given by the following recursive formula:

9o:0
y; - m,ini=i,...,n-r {#} for i: L,2,. ' -,n - r

un: cn - DT=lyo

Population-monotonicity requires the fees imposed on the agents initially present not to
increase upon the arrival of a new agent. Now we are ready to present our main result.

Proposition 2: The nucleolus is population-monotonic on the class of airport games.

Proof: Initially, i/ = {1,2,...,n}. Consider formula (2). By the derivation of the

formula (using the Kopelowits algoritm) it is trivial to see that 16 is nondecreasing in &,

which says that players with higher costs do not pay less.

We now add a new agent with cost c. Let ctbe the resulting garne, y' : Nu(c') and

L(e): {il"; < c}. We will study the effect of the new agents for two groups separately.

Casel: i€L{e).

Consider the payoffs in c and c' of the (io + 1)th agent (who is agent 1) given by (t)

(2)

(3)

At:ft

yl : ,'t

: rnin{T,

: rnin{T,

cj ca-l giLI
"7 j+\ 1"'1 n ) nJ

cj e cj+t cn- 1 cn l
' ', ji t n2t j!3 t' ' '' .+1 ,;;1 J

We have yl < yt. If strict inequality holds, yi: r't --11 I y; for ali i such that i € Z(e).

If equaiity holds, we consider the payoffs of the (ir *1)th agent and the same argument holds.

We proceed similarly till we reach the new agent. Thus we have showed that for all agents i
who are less costly tiran the new agent, rve have yl < y;.



Case2: i/L(e).

Now find the nucleolus for the agents in c and c' with formula (3). tet ci { e { ci1t.
We introduce agent 0 with cost 0 which will not change anything other than simplifying the

algebra. Without the new player,

yo = rnin{9,?,.. ,ffi} : O

h:rnin{ry,...,#}

SJ-l SJ-l sj-I. . c;- Lt=oUk cj+t- 2Jk=0yk cn-r- L*.=ogE yU5:rnzn1-, r 3 )...r---ffi--j

:

sn-2co-l- )-k=o 9*
Un-i:------=-

ln : cn _ DI=l vx

With the new player,

yL: min{9,?,. ,#,...,7i,} = o

-t -t , 
c__t_y|.tyl = rnin{ry,. ..,7#,';#,. . .,--;+1* r

:

-. \-j- I -.r ^ a.-j-t _.r - \-j-1 . Iyl:min{w,'#, .,?#}

:

-n-2 
,

",t - 
cn-t-Lx.o9'*-a'

9n-L--z

u'n: cn - t;l yL * 0'

Comparing g and y' we have, y', > 0 therefore, yl + yL > yo

This in turn impLies,

yi + yl + yL: rntnlz:tfzL,...,dt*bil,tiffil, ,z=lJJa}rii4))
> min{lp,. . .,-!t'fu ,+#,. . .,'n-t*k'*l)so } : yo I y,

Similarly y'u"* uL + ul + y'o > Ez.* n I /6 and so on.

At some step j we have g' *D|"=oyL> 2)!*=0y4, implyinEyi*, 1!j+t.
Similarly at step j + l, i' + L|!'oyL > D!r:try1,, implyinE y'i*, 1 A j+2.
Proceeding in this way, we obtain y'; <y; for all i such that c(z) > c.

n



4.2 Separable Cost Remaining Benefit Payoffs of the Airport Game

'We 
now show that SCRB of the airport game is not popula,tion-monotonic.

Proposition 3: The separable cost remainining benefit method is not population-

monotonic on the class of airport games.

Proof: Let -ltr/ - {I,2,3} be the set of players with c(1) :4,c(2): $,c(3): 10.

It can be found that,

B(c) = (3, 3,4)

Now consider the restriction of c to the group y'f : {1,3}. Irr this case,

B(c) : (2,8)

showing that the agent 1 gains whereas agent 3 lose from agent 2 leaving the game. D

4.3 r - ualue of the Airport Game

The r - aalue of the airport game is given in Driessen(1985) by

r;(c) :

r-(c) :

Now consider the restriction of c to the group l[: {1,2,4}. In this

?(c7y) - (215,415,6915)

showing that agents 1 and 2 gain whereas agent 4 lose from agent 3

c\fL 't )c\L) ; _

Il_-i.tolfc(n-r)
1,2,.. .n - |

,--t(") -l (cn * c--t)

Proposition 4: The z -ualue is not population-monotonic on the class of airport games.

Proof: Let -ly'' : {7,2,3,4} be the set of players with c(1) = 1,c(2) = 2,c(3): 11, c(4) :

It can be fould that,

r(c) : (1I I 25, 22 I 25,L21 I 25,221 I 25)

(4)

15.

case,

leaving the game.



5 Appendix

5.1 Appendix A

Proof of Lemrna L:

Clairn lz c;r-rt:L!j=r(i1 -i1-)rj I=I,...,k'
Proof of Clairn 1: Since ci, -rt: (it- fs)r1 the claimis correct for /:1.
Suppose the claim is correct for I : ,b. Then,

s/cc;r - rk : D]=r(i5 - ii-t)r5
Further,

-- ci*+t - c;**rx
't'k+l: -rl+-;:A+1

Thus, (5) and (6) together imply, (it+t - in)rn+t * cix - rk : cix+r - r'k+r

Replacing (5) once more we have,

tin+, - ir)rn+, + ff=, (ii * ii-r)ri = cir+, - T'k+t

or equivalently, ff]rl(ii - i5-t)rj = ,;o*, - rk+t

showing that the claim is correct for I : k + |

Combining Ciaim 1 with the inequality cn ) cn-7, the payoff formula simplifies to,

y;: I'k for ip-1 I i I i1" and k = L,...,k' - 1

sl-1.

rk: mini=21-1 r1 ,...,n-t +2.4+Pi;Dl
un: cn - tf:t Qi - ii-t)ri

where ro: io - i-1.

Define 11 : {i1-1+ 1,...,it}. With this procedure rninimization is done by only the first

agent for each f". Here we have y;,-r11 : .. .: Uir: rt, where,

-l-l 
,.

"r, - f r=, (ii - ii -t)r i
' L - it-it*r*l

t-l-l ,.

- "^-L',:'r(ii 
i;-1)r;

rr < ----=# forall rn ) i1_1 + |m-LI-1+ l
In the last set of inequalities we have strict inequality for m ) il.

Consider any agent i who is not a first agent in any /r. Thus, i € fi,i I il-t * 1. We

know that gi : !i1_r1t. The next claim shows that we can have a minirnization problem also

for agent f, similar to that of agent i>t * 1 without changing anything.

Clairn 2: Consider agent h-t * 2

ai,,,+z - rnin; i1 1*2,...,n-tf -4+t*+#P: \ :'t

Proof of Clairn 2:

Choose i - it. Let t!=1, (i1 - ii-)r j : R. Note that (7) implies

(5)

(6)

(7)

(8)

-



c;t - - rt - (i1- i1-1)r1 : Q

Thus,

"r, - 
R - rr - (i1 - i1-1)rr * (e;, - R)(i, * h_1) = (c;, - R)(il - il-t)

Therefore,

(";, - R - rt)(il - it-t + 1) : (c;, - R)(i1 - h-t)

or equivalently,

c;,-R-rt _ ="r!-R _r,
xt-Ir-t i1-i1-ra7 - 't

which means that rl is attainable.

Next we show that ry t #ifu forall i ) it-, + 2

Suppose not. Thus, for some rn ) i1-1+ Z, ffff! < r,

From (S) we know that ry < ##t1 forall rn ) it*t I I
Therefore there exists an rn ) h*t * 2 such that

c*-R-rt /m, 1 c-.-R

^-it-, 
\"-:m-i1-1!7

This may be replaced by

("^ - R * r1)(rn - il-t) I ("^ - R)(* - il-t)

or equivalently

-(m-il-t)q*c*-R-11 <0

Thus there exists m) i1-1*2 such that;ff,-' ( rs contraficting (6),proving Claim2.!

An analogous result is valid for the next player, and so on. But this means that all players

but the last one solve their own minirnization problems in the following way

Ao=0
si-1

y;: rnin5=i,...,n-7{W} i :1,2,.,.,n - L

Whereas fo1 the last player

9n : cn - DT_t yo

5.2 Appendix B

Derivations for Proposition 1:



l[' : {1,2,3,4} with u(i) : a,u(ij): l,u(234):5,u(ijlc): 2 otherwise and u(1[') = 6.

Nu2(u): Nus{a) = Nu4(u) by the anonimity of nucleolus. Let r: (o, B,B,P).The excess

of a with respect to z are given by

e"(I,*): -a
e"(i,r):-p i€{2,3,4}
e"(Li,r):L-(a+ F) ie {2,3,4}
e"(ij,u)=r-2p i* j e {2,3,4}
e"(Lii,r):2-(a+28) i* i e{2,3,41
e"(234,n):5 - 3F

""(N'rc) 
: 0

At r = Nu(a) we have a < B by the weak coa"litional monotonicity and anonirnity of the

nucleolus which implies

-a > -B > 1 - 2B and'-a ) 1 - (o + B) > 2 * (" 120).

Therefore we need to minirnizemax{-a,-P,5 - 3B} such that a +3P:6 at n: Nu(r).
This leads to a : Il2,p: tll6 and i[tl(u) : (1f 2,IIf 6,Itl6,1Il6).

The marginal contributions to the grand coalition are

b1(o) : 
"(N') - u(na): L, bz(u): bs(o): bq(r): a(N') - a(tZZ): +

Furthermore

S"(N') : D;eff, b;(r) - "(l/') 
: 13 - 6 : 7

g"(1): bt(r) - o(r) : L, s"(2): s"(3) : s"(4): bq(u) - u(+):4
Therefore

Bt(") : 6r(u) - s"{J.i')llil'l : | - 7 14 = *314, Br(r) : Bs(r) : Bq(a) : b+(o) *
s"(N')llN'l: + - 714:9/4. Thus B(u) : (-314,914,914,914).

Finally r1(u): b,(,) - g##8 - 1- 7 xLl73:6113,

r2(u):4(a):ra(u):bn(o)- g*#e+ - 4-T x 4lrr:24113.

Thus r(o) : (6 173,24 113,24 I 13,24 I 13).

Let i/ - {2,3,4},Nu(a^r): B(ap): r(ory) : (213,213,213) imrnediatelyby the anonimity
of the nucleolus, SC RB solution and r-value.

Derivatioqs for Proposition 3:

iy'' = {1,2,3} c(1) : 4,c(2): 9,c(3) : 10.

Marginal contributions to the grand coalition are

b1(u):.(lr') - c(Z:) : 10 - 10 :0,b2(a): c(1[') - c(13) : 10 - 10: 0

bs(u) :.(1/') - c(tZ) = 10 - 9 : 1.

Furthermore g'(1/') : Iieff, b;(r) - c(ff'; : 1 - 10 - -9.
Therefore By(c)= B2(c)-br(r)- s"(N')llN'l = 0+ 913=3

10



Bs{"): bs(c) - s'{N')llM'l : 1+ 913:4' Thus B(c}: (3,3,4)-

Let 1[: {1,3}, then 61(c7y) = c(nf) *.(3):0,6s(cry): c(l[) - c(f) = 6.

Fnrthermore gcr(rV) : f;ery b;(rx) - "(nf) - 6 - 10 : -4.
Therefore Bt("r):6r(civ) - s'*(N)lllfl :2,Bs(cy) = 6s(cr,r) -s'*(N)lllfl :8. Thus

B("x): (2, 8).

Derivations for Proposition 4:

If, : {1,2,3,4} c(r) :
r1(c): t;,#ffi-
r2(c) : 

O'ii"t(") = 2 x tI 125 : 22 I 25

r3(c) : ffi"t(") : 11 x LLl25: l2Ll25
ra(c) : z3(c) * ["(+) - c(3)] : L21 125 * 4 : 22L 125

Thus z(c) : (71 I 25,22 I 25,72"1 I 25,22I I 25).

Let r'f - {1,2,4}. Then

rr(cn) :;p##tlk =2xtle+2+1) --2ls
rz(cp) = 4?"r("r):2 x 215: al5

r+{cy) : r2(cN)+ [c(+) - "(2)] 
: 415 * 73 : 6915

Thus z(c1,.) = (215,415,6915).

I,c(2) = 2,c(3): t1, c(4) : 15. By the formula (4)

: 1i x rlG + 2 +tt+ 11) : L]-l25

l1
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