On the winning virtuous strategies for ultra high frequency electronic trading in foreign currencies exchange markets

Ledenyov, Dimitri O. and Ledenyov, Viktor O.

James Cook University, Townsville, Australia

3 July 2014
On the winning virtuous strategies for ultra high frequency electronic trading in foreign currencies exchange markets
Dimitri O. Ledenyov and Viktor O. Ledenyov

Abstract – In the Schumpeterian creative disruption age, the authors firmly believe that an increasing application of electronic technologies in the finances opens a big number of new unlimited opportunities toward a new era of the ultra high frequency electronic trading in the foreign currencies exchange markets in the conditions of the discrete information absorption processes in the diffusion-type financial systems with the induced nonlinearities. Going from the academic literature, we discuss the probability theory and the statistics theory applications to accurately characterize the trends in the foreign currencies exchange rates dynamics in the short and long time periods. We consider the financial analysis methods, including the macroeconomic analysis, market microstructure analysis and order flow analysis, to forecast the volatility in the foreign currencies exchange rates dynamics in the short and long time frames. We discuss the application of the Stratanovich-Kalman-Bucy filtering algorithm in the Stratanovich – Kalman – Bucy filter and the particle filter to accurately estimate the financial time series and predict the trends in the foreign currencies exchange rates dynamics in the time domain. We research the influence by the discrete information absorption on the ultra high frequency electronic trading strategies creation and execution during the electronic trading in the foreign currencies exchange markets. We formulate the Ledenyov law on the limiting frequency (the cut-off frequency) for the ultra high frequency electronic trading in the foreign currencies exchange markets.

JEL: G1, G10, G12, G14, G15, G20, C40, C42, C82, D0, D82, E42, F3, F4, F31.
PACS numbers: 89.65.Gh, 89.65.-s, 89.75.Fb.

Keywords: absorption of information, diffusion of information, transmission of information, information theory, asymmetric information, ultra high frequency electronic trading, processing frequency, algorithmic trading, informed trading, noise trading, currencies exchange rate, vehicle currency, interest rate, retail aggregator, liquidity aggregator, interdealer trade orders flow direction, stop-loss order, bid - ask spreads, price discovery process, capital inflow, capital outflow, carry trade strategy, financial liquidity, foreign currencies exchange market microstructure, foreign currencies exchange rate dynamics, Wiener filtering theory, Stratanovich-Kalman-Bucy filtering algorithm, Stratanovich – Kalman – Bucy filter, particle filter, nonlinearities, Ledenyov law on limiting frequency for ultra high frequency electronic trading in foreign currencies exchange markets, econophysics, econometrics, global foreign exchange market, global capital market.
Introduction

Since the time, when the first financial transactions were completed in the financial markets in Joseph Penso de la Vega (1668, 1996), the investors have been thinking about the optimal solutions finding for the complex investments decision making problems, the foreign currencies exchange rates estimation problems, and the financial risks assessment problems in the finances in Bernoulli (1738, 1954), Bagehot (1873, 1897). The application of the financial mathematics in the theory of value and prices by Fisher (1892) led to more accurate assessment of various financial variables in the process of evolution of the money market in Bagehot (1873, 1897). The intensive development of the probability theory in the mathematics in De Laplace (1812), Bunyakovsky (1846), Chebyshev (1846, 1867, 1891), Markov (1890, 1899, 1900, 1906, 1907, 1908, 1910, 1911, 1912, 1913), encouraged the adaptation of more sophisticated mathematical techniques to evaluate the financial risks, forecast the foreign currencies exchange rates and predict the returns-on-investments in the finances, namely Bachelier (1900) proposed his original idea to estimate the valuable financial papers prices evolution with the help of the probability theory in the mathematics. The ingenious research ideas on the application of probability theory in finances have been further developed in Slutsky (1922a, b, 1925a, b, 1927a, 1937a, b). In addition, in the course of development of the theory of financial speculations in Bachelier (1900), it was understood that a possible characterization of the complex financial systems within the financial markets can be done much more accurately, considering the existing theoretical models in the physics, for example: the model on the Brownian motion of molecules at the heat transfer process in the solids in Bunyakovsky (1825) as well as the Brownian movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat in Einstein (1905, 1956), Einstein, Smolukhovsky (1936). Sometime later, the role of the Brownian motion in the random processes has been summarized in Brush (1968, 1977). Moreover, Shiryaev, Grossinho, Oliveira, Esquível (editors) (2006) write: “A.N. Kolmogorov, in his own landmark work Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. Annalen 104 (1931), pp.415-458, credits Bachelier with the first systematic study of stochastic processes in continuous time.” The research propositions in Bachelier (1900) have been further developed in the mathematical theory of the Wiener processes in Wiener (1923, 1930, 1949). At later date, aiming to surpass the critical limitations of classical theoretical models like the fractional Brownian motion, the multi-fractals have been introduced in the finances from the physics in Mandelbrot (1960, 1963a, b, 1965, 1965, 1967a, b, 1969, 1971, 1972, 1975a, b, 1977, 1982, 1997), Mandelbrot, Taylor (1967), Mandelbrot, van Ness (1968),


Researching the international financial markets in Grabbe (1991), we are particularly interested in the research results on the modern applications of the optimal filtering and prediction algorithms in the frames the theory of optimal non-linear filtering of random functions in Stratonovich (1959a, b, 1960a, b), aiming to forecast the foreign exchange rates at the ultra high frequency electronic trading in the foreign currencies exchange markets at an influence by the discrete information absorption processes in the diffusion – type financial systems with the induced nonlinearities. The Stratanovich – Kalman – Busy filtering algorithm would be a main subject of our research interest, when attempting to solve the foreign currencies
Pursuing these research goals, we will apply the differential equations theory in Gikhman, Skorohod (1968), Sharkovsky, Maistrenko, Romanenko (1986), Protter (2005) with the purpose to accurately characterize the time-dependent random processes with the independent increments in Skorohod (1967), Ledenyov V O, Ledenyov O P, Ledenyov D O (2002) during the ultra high frequency electronic trading in the foreign currencies exchange markets at an influence by the discrete information absorption processes in the diffusion – type financial systems with the induced nonlinearities.

Let us begin the innovative advanced research by making a short introductory review on the subject of our research interest, following by both the thoughtful consideration on the modern technological trends in the ultra high frequency electronic trading in the foreign exchange markets, and the discussion on the possible impacts by the various information absorption processes on the ultra high frequency electronic trading strategy creation and execution in the foreign exchange markets at an influence in the diffusion – type financial systems with the induced nonlinearities. We would like to note that some additional attention would also be paid to the innovative research proposals, regarding the possible improvement of the existing electronic trading systems in the foreign exchange economics in DeGrauwe (editor) (2005). Thus, we would like to move forward by providing a few concise definitions on the electronic trading in the foreign exchange markets by various authors, aiming to clarify the term’s meaning from the scientific point of view.

Gençay, Gradojevic (2009) write: “The FX market can generally be described as decentralized and worldwide, but the actual trading is processed in the bookkeeping of particular markets, with the major ones being London, New York and Tokyo. Thus, the total trading activity of informed and uninformed traders is comprised of the geographic contributions of individual market centers. The hours of operation of the market centers are different, but they jointly contribute to the aggregate market trading activity. For instance, the London Stock Exchange (LSE) and the New York Stock Exchange (NYSE) are both open from 09:30 to 11:30 EST. In contrast, the lowest market presence outside weekends can be found during the lunch break at the Tokyo Stock Exchange (TSE), when it is night in North America and Europe.”
Gallardo, Heath (2009) continue to explain: “The development of electronic broking and trading systems represents one of the most significant catalysts of structural change in foreign exchange markets over the past decade or so.”

Heath, Whitelaw (June 2011) state: “The introduction of electronic broking to the foreign exchange market in the early 1990s signaled the start of a process of innovation that has driven significant change.” Heath, Whitelaw (June 2011) continue to write: “Electronic trading has been a significant factor behind a number of changes in the structure of the foreign exchange market and the way the market operates. These developments include improvements in the price discovery process, a concentration of activity among a relatively small number of large global banks, a blurring of the traditional activities of different market participants, a marked increase in the activity of non-bank participants and the emergence of new market segments.”

The research article will cover the following research topics:

1. Introduction.

2. The discussion on the probability theory and the statistics theory to accurately characterize the trends in the foreign currencies exchange rates dynamics at the electronic trading in the foreign currencies exchange markets over a selected time period.

3. The discussion on the financial analysis methods, including the macroeconomic analysis, market microstructure analysis and order flow analysis, to forecast the foreign currencies exchange rates dynamics during the electronic trading process in the foreign currencies exchange markets.

4. The discussion on the application of the Stratanovich-Kalman-Bucy filtering algorithm in the Stratanovich – Kalman – Bucy filter and the particle filter to accurately estimate the time series and predict the trends in the foreign currencies exchange rates dynamics during the electronic trading in the foreign currencies exchange markets.

5. The discussion on the influence by discrete information absorption on the ultra high frequency electronic trading strategies creation and execution during the electronic trading in the foreign currencies exchange markets in the diffusion - type financial system with the induced nonlinearities.

6. The discussion on the Ledenyov law on the limiting frequency (cut off frequency) for the ultra high frequency electronic trading in the foreign currencies exchange markets in conditions of the discrete information absorption processes in the diffusion - type financial systems with the induced nonlinearities.

7. Concluding remarks.
Probability theory and statistics theory application to accurately characterize trends in foreign currencies exchange rates dynamics in foreign currencies exchange markets in short and long time periods

Let us begin our research on the various aspects of the electronic trading in the foreign currencies exchange markets at an influence by the nonlinear information absorption, diffusion and transmission processes by making a comprehensive historical overview on the subject of our research interest with a particular accent on the original contributions to the field of research.

In a more safer and stable global financial system, which is regulated by the Basel III agreement, in Ingves, Danielsson, Goodhart (2014), the authors believe that the electronic trading in the foreign currencies exchange market creates the new opportunities and challenges, which must be accurately defined and comprehensively researched in the finances.

Yamaguchi (2001) states: “An ET system is a facility that provides some or all of the following services:

1) electronic order routing (the delivery of orders from users to the execution system),
2) automated trade execution (the transformation of orders into trades), and
3) electronic dissemination of pre-trade (bid/offer quotes and depth) and post-trade information (transaction price and volume data).”

Yamaguchi (2001) explains: “Electronic systems are currently used to varying degrees for trading in the markets for foreign exchange and fixed income. Penetration differs between markets, between market segments, between instruments, between types of trading and between the various stages of the trading process. Moreover, the situation is changing rapidly; a dominant system can give way to another in as quickly as a few months. The main impact of ET so far relates to the inter-dealer (voice) broker, who is increasingly being replaced by electronic systems. This does not necessarily imply that brokerage firms are going out of business as they may reinvent themselves by offering an electronic service. Furthermore, electronic trading makes the direct dealing relationships redundant, i.e. the interaction in the inter-dealer market is becoming increasingly multilateral.”

Fig. 1 shows the interaction between the market participants prior to the electronic trading, and Fig. 2 depicts the interaction between the market participants after the introduction of electronic trading in Yamaguchi (2001).

Fig. 3 displays the evolution of FX market structure in King, Osler, Rime (2011).
**Fig. 1.** Interaction between market participants prior to electronic trading (after Yamaguchi (2001)).

**Fig. 2.** Interaction between market participants after introduction of electronic trading (after Yamaguchi (2001)).
Fig. 3. Evolution of FX market structure: D=dealer, C=client, VB=voice broker, EB=electronic broker, PB=prime broker, MBT = multibank trading system, SBT=single-bank trading system, RA=retail aggregator. Solid lines represent voice execution methods. Dashed lines represent electronic execution methods (after King, Osler, Rime (2011)).
Stoll (2006) explains: “The idea of electronic trading is not new. In 1971, Fischer Black suggested steps toward a fully automated exchange that would eliminate the need for specialists and market-makers. He noted that “a stock exchange can be embodied in a network of computers, and the costs of trading can be sharply reduced, without introducing any additional instability in stock prices, and without being unfair either to small investors or large investors” Black (1971, part II). He had in mind a world in which investors would interact with one another with little or no human intervention. That world is near, but Fischer Black (were he still alive) would be surprised at how long it has taken. The automation at ECNs has achieved what Fischer Black had in mind...”. Stoll (2006) lists the following ECN advantages: “ECNs have a number of advantages.

1) They are automatic. Once an order is submitted, trade execution proceeds without human intervention according to price/time priority, unlike traditional markets, where orders might be held by dealers.

2) They are anonymous. The identity of traders is not revealed, which can be of importance to certain traders.

3) They are low cost. ECNs earn income by charging a fee to market orders of about 3 cents per share, while they pay for orders that supply liquidity.

4) They are fast. Execution and confirmation are electronic and occur in less than a second.

5) They can be programmed to offer complex orders. For example, ECNs can offer contingent trades where the price is adjusted for changes in index prices or in the prices of other stocks.”

Gallardo, Heath (2009) write: “One of the most significant developments in the foreign exchange market over recent decades has been the introduction and growth of new electronic trading technologies. In addition to increasing the efficiency of foreign exchange markets, the diffusion of this technology has allowed new market segments to develop.” Gallardo, Heath (2009) continue to explain: “In 1989 Reuters began offering participants in the interbank market a so-called electronic broking service, whereby trading is carried out through a network of computer terminals linked among participating users, and new orders are matched with outstanding orders already in the system. In the early 1990s a consortium of banks launched EBS to provide a similar service. Electronic broking systems allow banks to make a “one-way” price quote and, in addition to the best bid and offer prices, display information about the closest bids and offers in the system. The resulting transparency of prices obviates the need to spend resources on price discovery activities, as interbank price quotes are now available at all times to
participating interbank dealers. Another important feature of these systems is that a large order can be matched with several small ones, which allows banks to make a one-way price quote for smaller amounts. Access to these systems therefore enabled smaller institutions to deal at more favourable spreads that had previously been available only to large institutions. *Reuters Matching* and *EBS* continue to dominate in the interdealer market, although they cover somewhat different currencies: while *Reuters Matching* specializes in major *Commonwealth currencies*, *EBS* has much more trading in the *US dollar, Euro, Yen* and *Swiss Franc*.

*Gallardo, Heath (2009)* mention: “The downward trend in *bid-ask spreads* had leveled off by the *mid-2000s* but increased significantly following the failure of *Lehman Brothers* in *September 2008*. As volatility in foreign exchange markets spiked to nearly three times normal levels (*Reserve Bank of Australia (2009)*), *bid-ask spreads* for many major *currency pairs* more than doubled between *September* and *December* (Graph 1, left-hand panel),” as vividly demonstrated in Fig. 3. *Gallardo, Heath (2009)* note: “The high fixed costs of making the investment required to put in place and maintain the systems that can handle high volumes of transactions have been one of the factors behind the increased concentration of liquidity provision and market making in the interbank market (*ECB (2003)*; see also Graph 1, right-hand panel),” as presented in Fig. 3.

Characterizing the *interbank spot foreign exchange market* activity, *Gallardo, Heath (2009)* comment: “Turnover on *EBS* and *Reuters*, which grew rapidly over most of the past decade, also reversed course in late 2008 (Graph 2). Though activity in interbank markets in many currency pairs leveled off in *mid-2007*, growth resumed in some major currency pairs, such as the *euro/US dollar*, in 2008. But in late 2008, activity levels dropped sharply across the board: turnover for the three most traded currency pairs in *EBS* roughly halved between the end of *September* and the end of the year,” as shown in Fig. 4.

Fig. 4 presents the *bid-ask spreads and the foreign exchange market concentration*, and Fig. 5 shows the *interbank spot foreign exchange market activity* in *Gallardo, Heath (2009)*.
Fig. 4. Bid-ask spreads and foreign exchange market concentration (after Gallardo, Heath (2009)).

Fig. 5. Interbank spot foreign exchange market activity (after Gallardo, Heath (2009)).
Let us demonstrate that the rapid expansion of the electronic trading in the foreign exchange markets takes place in the finances in various countries, using the data analytics in Gallardo, Heath (2009): “In total, around one third of all foreign exchange transactions are executed electronically. Disaggregating the triennial survey by transaction type shows that electronic execution methods are most prevalent in the spot market, accounting for over half of turnover on a global basis (Table 1). Electronic broking systems, such as Reuters Matching or EBS, account for around 32% of all spot market transactions, while single- and multibank electronic trading platforms represent 17% and 8%, respectively. Among non-electronic methods, the most important way of executing spot transactions is directly between banks and their customers (“customer direct”).” The foreign exchange market turnover by the execution method is shown in Tab. 1 in Gallardo, Heath (2009).

Gallardo, Heath (2009) state: “Electronic execution methods are extensively used across all counterparties. Around 35% of interbank transactions are executed electronically, with almost two thirds of this accounted for by electronic broking systems (Table 2). Almost half of all interbank transactions occur directly between dealers (the category “inter-dealer direct”), and voice brokers execute the remainder.” The foreign exchange market turnover by counterparty is shown in Tab. 2 in Gallardo, Heath (2009).

Gallardo, Heath (2009) write: “Given the relatively rapid growth in turnover between banks and other financial institutions as well as non-financial customers (BIS (2007)), and the importance of multibank and single-bank trading systems for these counterparty categories, these data suggest that turnover through these trading systems has increased significantly faster than that executed on electronic broking systems. Data from the Foreign Exchange Committee on foreign exchange turnover in the United States, which show that turnover through electronic trading systems (both multibank and single-bank) has grown at an exceptionally rapid pace, support this conjecture (Graph 3).” The FX turnover in the United States by execution method is presented in Fig. 6 in Gallardo, Heath (2009).

Gallardo, Heath (2009) explain: “The importance of electronic execution in foreign exchange markets across different economies varies widely (Table 3). In a number of cases, the share of electronic methods is consistently high (or low) across all instruments and counterparties. For example, it is consistently high across all market segments for Switzerland and Germany, but consistently low for Denmark, Latin America and smaller financial centres in Asia.” The global foreign exchange market turnover by execution method is shown in Tab. 3 in Gallardo, Heath (2009).
Tab. 1. Foreign exchange market turnover by execution method (after Gallardo, Heath (2009)).

Tab. 2. Foreign exchange market turnover by counterparty (after Gallardo, Heath (2009)).

Fig. 6. FX turnover in the United States by execution method after Gallardo, Heath (2009)).
**Tab. 3. Global foreign exchange market turnover by execution method**

(after Gallardo, Heath (2009)).

Gençay, Gradojevic (2009) conclude with a comment: “EBS operates as an electronic limit order book and is used for global interdealer spot trading. It is dominant for the EUR-USD and USD-JPY currency trading, while the GBP-USD currency pair is traded primarily on Reuters Chaboud et al (2008). The average daily EUR-USD trading volume (in USD) on EBS in 2003 was between 50-70 billion dollars, which is well above that of the NYSE (40 billion dollars).”

Heath, Whitelaw (June 2011) make the following statements: “Electronic trading in the foreign exchange market effectively began in the interdealer market with the introduction of electronic broking systems provided by Reuters (in 1992) and EBS (in 1993). Demand for these services came from institutions participating in the interdealer market looking for efficiency gains they were already realizing from electronic trading in other markets, in particular the equity market. The electronic broking systems offered by Reuters and EBS largely replicated the role played by the existing brokers (now differentiated by the term ‘voice brokers’) but provided an enhanced service. The platforms displayed, in real time, the best bid and offer as well as the
depth of the market, based on the orders posted by participating banks. As each bank entered counterparty credit limits into the systems prior to trading, the post-trade credit problem encountered when using the voice brokers was eliminated. The two broking systems greatly improved transparency of the price discovery process thereby facilitating more efficient offsetting of net foreign currency positions in the interdealer market.”

Heath, Whitelaw (June 2011) describe the advantages of electronic trading in Figs. 7 - 10: “The increased penetration of electronic trading in the foreign exchange market has led, directly or indirectly, to several important changes in the way the market is structured and operates:

1. The increased efficiency and transparency of price discovery delivered initially by the electronic broking systems and then by the single-bank and multi-bank trading platforms have driven a marked decline in transaction costs, as measured by the difference between the price at which participants can buy and sell a currency at a point in time, known as the bid-ask spread (Fig. 7).

2. Price discovery now takes place across multiple venues, a development sometimes described as ‘liquidity fragmentation’. In a margin trading model, the retail investor places a deposit with the broker in a margin account. The broker lends additional funds to the investor against the security of the funds in the margin account. The investor can then establish positions in the foreign exchange market up to the sum of their own funds and the funds provided by the broker. If the investor’s position sustains revaluation losses, these will be set off against the funds in the margin account and the investor will be required to deposit additional funds. The broker protects its exposure to the investor by ensuring the position is unwound prior to the loss exceeding the margin account balance. Fragmentation could make price discovery less efficient. However, market participants can now aggregate real-time price streams from multiple venues and execute on any one of them, effectively treating multiple markets as one. Some have also argued that the ability to post prices for a single trade across multiple venues creates the perception of greater market liquidity than is actually available. The implications of this ‘liquidity mirage’ are not entirely clear.

3. There has been a marked increase in the concentration of foreign exchange activity across the books of a relatively small number of large global banks in Fig. 8 in Gallardo and Heath (2009). This reflects, to a large extent, the impact of the single-bank platforms on the distribution of foreign exchange business. It is notable that the most recent surveys of market concentration indicate a modest decline in concentration as other global banks look to emulate the success of the early movers using this model Euromoney (2011).
4. Increasingly, banks are sourcing foreign currency liquidity for their customers from the large global banks. In some cases, this can involve an arrangement known as white labeling, where a bank provides streaming prices to its customer through a proprietary electronic interface. The streaming prices appear to be from the customer’s bank but are, in fact, being provided directly but anonymously by another bank. In other cases, banks have become customers of the global banks for some foreign currency liquidity, particularly in the major currency pairs, but they continue to provide liquidity directly to their customers and to other banks, including the global banks, in their domestic currencies.

5. There has been some breakdown in the distinction between the traditional interdealer and customer markets. With direct electronic access and, where required, prime broker sponsorship, some non-banks can now directly access pricing and liquidity that was traditionally only available to banks. In addition, there has been some blurring between the roles of banks and their customers. As noted, many banks now participate in the foreign exchange market as customers of the largest banks while some non-banks now post bids and offers on electronic platforms, effectively competing with banks as market makers.

6. There has been a significant increase in the volume of foreign exchange business undertaken by dealers with their customers, which include other financial institutions, such as hedge funds, and non-financial institutions (Fig. 9, left panel). Greater access to both single-bank and multi-bank platforms, broader support from prime brokers and reduced transaction costs are among the factors behind this trend. The increase in the volume of customer business is also reflected in a rise in the share of total foreign exchange activity globally that is executed by dealers with their customers (Fig. 10, right panel). However, this increase also reflects the increasing internalization of customer business by the large dealers; a given volume of customer business will now lead to less activity between dealers than it would have 10 years ago.

7. Electronic trading has also enabled new customer market segments to develop. As noted earlier, retail investors have become an increasingly important part of the market. This is particularly true in Japan where retail margin trading has generated large enough foreign exchange flows to help explain developments in specific exchange rate pairs Terada, Higashio and Iwasaki (2008); D’Arcy and Zurawski (2009). More recently, attention has increasingly focused on the role of high-frequency traders, for whom the ability to trade electronically is a precondition. Although the development of high-frequency trading was noted as an important new market segment before 2007 Galati and Heath (2007), there appears to have been particularly strong growth in this market segment between 2007 and 2010 Nightingale et al (2010); King and Rime (2010).
Heath, Whitelaw (June 2011) summarize their most important research findings on the electronic trading by saying that: “Developments in electronic trading technologies over the past two decades have been an important driver of change in the global foreign exchange market. For banks, three key developments have been

1) a marked increase in the concentration of foreign exchange activity,
2) a change in the relationship between banks in the interdealer market, and
3) a significant increase in the volume and share of business conducted with non-bank customers.”

King, Osler, Rime (2012) describe the electronic trading evolution: “When introduced on FX trading floors in the late 1980s, Thomson Reuters Dealing replaced the telephone with an electronic system for dealers to exchange messages, allowing for speedier and more efficient interdealer trading. The more important change occurred in the early 1990s when Reuters
introduced the first electronic limit-order market for FX, now known as Thomson Reuters Matching, while a consortium of dealers launched a competing platform, Electronic Broking Service (EBS). These systems revolutionized the interdealer segment, but remained inaccessible to end-customers. The landscape changed dramatically in the late-1990s, however, when a number of multibank trading platforms were launched that targeted end-customers directly. These systems enhanced transparency, improved operating efficiency, and reduced trading costs at the expense of greater concentration among the top dealers who streamed quotes to these platforms. Over the next decade, massive investments in the IT infrastructure by dealers and market participants opened the door to algorithmic trading, with hedge funds and high-frequency traders gaining direct access to interdealer markets from 2005 onwards King and Rime (2010). Starting in the early 2000s, the top banks launched proprietary single-bank trading platforms for their customers, allowing them to create pools of liquidity that are not visible to the market.”

King, Osler, Rime (2012) write: “Electronic trading has enabled individuals of modest wealth, previously shut out of the market, to trade speculatively for their own account. This trading generally takes place over a new type of electronic trading platform known as the retail aggregator. By bundling many small retail trades into trades that meet the minimum $1 million size for interdealer trades, retail aggregators can provide narrow spreads on even tiny trades. Retail trading has grown rapidly and was estimated to have reached $125–150 billion per day by 2010, or 8 to 10 percent of the market King and Rime (2010). Since retail customer order flow is generally uninformed Heimer and Simon (2011), these customers are a profitable group to serve. Currently there is fierce competition for such business among the large banks, since they can effectively use these traders to provide liquidity for more informed customers. Evidence on retail trading remains quite limited, and represents a potentially fruitful area for future research.”

Discussing the short-run exchange-rate dynamics, King, Osler, Rime (2012) explain: “It is now recognized that currency traders hold heterogeneous beliefs and have access to different information, some of which is private. While financial customers appear to be the best informed, their trades have only a transitory impact. Corporations are typically less informed, provide liquidity in overnight markets, and may contribute to the persistent impact of order flow on exchange rates. This interaction between informed and uninformed agents is key to modeling short-run exchange-rate dynamics.”

Fig. 11 shows the average daily interdealer trading activity by the hour across the different currencies in King, Osler, Rime (2012).
Maurer, Schäfer (2010) take a one step further and provide a definition of the algorithmic trading: “Algorithmic trading covers all trading activities where a computer algorithm autonomously decides on certain characteristics of an order. These characteristics
include but are not limited to the *instrument(s) to be traded*, *order limit*, *order volume*, *timing of order insertion*, and *choice of execution venue*. However, an *algorithm* does not need to decide on all of these characteristics in order to represent *algorithmic trading*. **Key to algorithmic trading, however, is the usage of strategies implemented on computer systems and the fact that the computer represents a driving element in order placement.**

The above definition encompasses – but is not limited to – the following practices:

1) Automated identification of investment opportunities (e.g. through statistical arbitrage);
2) Activities targeting optimal placement of orders created outside of the algorithm, e.g. placed with the trading desk by an external customer, with respect to time and order volume (e.g. volume weighted average-strategies);
3) Deciding optimal order placement with respect to execution venue taking into account potential execution price including implicit and explicit transaction costs (smart order routing).”

King, Osler, Rime (2011) suggest the following definition: “Algorithmic trading is a form of *electronic trading* where a computer algorithm (or program) determines an order-submission strategy and executes trades without human intervention Chaboud, Chiquoine, Hjalmarsson and Vega (2009). Human involvement is limited to designing the *algorithm* (or *algo*), monitoring it, and occasionally adjusting the trading parameters. Some *algos* simply automate existing strategies – for example, they break up large trades to minimize transaction costs – while others take advantage of superior execution speeds such as high-frequency trading.” The share of the algorithmic trading increases exponentially in Fig. 12 in King, Osler, Rime (2011).

![Fig. 12. Share of algorithmic trading on EBS and Thomson Reuters Dealing. Moving-average of share of trades involving at least one machine using gross volumes. Panel a: Fifty-day moving average of machine share on EBS for EUR/USD, USD/JPY and EUR/JPY. Source: Chaboud et al. (2009). Panel b: 7-week moving average of machine-share on Reuters D3000 for EUR/NOK. The shaded area marks where the two graphs have overlapping observations. (after King, Osler, Rime (2011)).](image)
Let us point out to the fact that *Hong Kong* has a well developed stable financial market in *Lo* (2000). *Yiu, Ho, Ma, Tsang* (2010) wrote an article, explaining that the *exchange rates and the economic fundamentals are interconnected nonlinearly*. *Yiu, Ho, Ma, Tsang* (2010) write: “The modified [target zone] model allows non-trivial portfolio choices between risk-free monetary assets and risky equities. In the model, the *Hong Kong-dollar exchange rate* movements depend on both the changes in the expected equity-return differential between Hong Kong and the *US* (i.e. the equity fundamental) and in the monetary fundamental. The typical *S-shaped relationship* between the *exchange rate* and the *economic fundamentals* in a *target zone model* becomes steeper taking into consideration the equity fundamental. In other words, the exchange-rate dynamics are more sensitive to the underlying movements of the fundamentals than implied by the conventional target zone models.”

The interest rates differential can be written as in *Yiu, Ho, Ma, Tsang* (2010)

\[
\frac{1 + i_{t,m}^{\text{HKD}}}{1 + i_{t,m}^{\text{USD}}} = \frac{E[S_{t}^{t+m}]}{S_{t}},
\]

where \(i_{t,m}\) is the stands for *LIBOR* or *HIBOR* with a maturity of \(m\) months, \(E\) is the expectation of the \(m\)-month forward exchange rate; \(S\) is the spot exchange rate.

Fig. 13 shows the *Hong Kong-dollar exchange rate* in *Yiu, Ho, Ma, Tsang* (2010).

*Fig. 13. Hong Kong-dollar exchange rate (after Yiu, Ho, Ma, Tsang (2010)).*
Fig. 14 shows the *S-shaped* relationship between the *Hong Kong-dollar* exchange rate and the monetary fundamental; Fig. 15 depicts the tilted *S-shaped* relationship at the different correlations between the monetary and the equity fundamentals in *Yiu, Ho, Ma, Tsang (2010)*.

![Fig. 14. S-shaped relationship between the Hong Kong-dollar exchange rate and monetary fundamental (after Yiu, Ho, Ma, Tsang (2010)).](image1)

![Fig. 15. Tilted S-shaped relationship under different correlations between monetary and equity fundamentals (after Yiu, Ho, Ma, Tsang (2010)).](image2)

Let us write the mathematical formulas and provide some graphical illustrations to review the modern theoretical conceptions on the electronic trading in the foreign exchange markets. To achieve this goal, we prefer to rely on the consistent scientific explanations with mathematical formulas by Prof. Albert N. Shiryaev, Steklov Mathematical Institute and Moscow State University in Shiryaev (1998a, 1999). Before starting the review, let us note that the DEM currency is no longer in the use in Germany. In a general case, the “ask price” $S^a_t$ of the Currency$^1$ in relation to the Currency$^2$ can be written as in the proposed formula, and the dynamics of the foreign currencies exchange rate can change approximately as in Fig. 16 in Shiryaev (1998a)

$$S^a_t = \left(\frac{\text{Currency}^1}{\text{Currency}^2}\right)_{t \geq t_0}$$

The foreign currencies exchanges rates dynamics is usually characterized by the high frequency changes, which are called the ticks, as explained in Goodhart (1988, 1989, 1992), Goodhart, Demos (1990, 1991a, b), Goodhart, Curcio (1991), Goodhart, Figliuoli (1991), Goodhart, Hall, Henry, Pesaran (1993), Goodhart, Hesse (1993), Goodhart, Ito, Payne (1995, 1996), Goodhart, O’Hara (1995), Goodhart, O’Hara (1997), Goodhart, Love, Payne, Rime (2002). The statistics of ticks is analyzed with the purpose to understand the nature of the foreign currencies exchanges rates dynamics. The graph with the average number of ticks over the certain time period is shown in Fig. 17 in Ghysels, Jasiak (1995), Shiryaev (1998a), aiming to
illustrate the exchange rate activity at the FX market from Monday to Friday with 5min time interval.

In addition, the change dynamics of an average number of ticks of the selected foreign currencies exchange rate over 24 hours from 05.10.92 to 26.09.93 is demonstrated in Fig. 18 in Schnidrig, Würtz (1995), Shiryaev (1998a).

Speaking about the discrete statistical data, let us assume that $S' = S_0 e^{Ht}$ is the ask price, $S^b = S_0 e^{Ht}$ is the bid price, $S^a - S^b$ is the difference or the spread, then we can write in Shiryaev (1998a)

$$S_t = \sqrt{S^a_t \cdot S^b_t}$$

The modification of the discrete-change process $(S_t)$ on the continuous-change process $(\tilde{S}_t)$ in the foreign currencies exchange rate dynamics over the time is presented in Fig. 19 in Shiryaev (1998a), where the discrete-change process in the foreign currencies exchange rate dynamics over the time is given as in Shiryaev (1998a)

$$S_t = S_0 + \sum_{k=1}^{\xi} \tau_k I(\tau_k \leq t),$$

the continuous-change process in the foreign currencies exchange rate dynamics over the time can be written as in Shiryaev (1998a)

$$\tilde{S}_t = S_{t^*} \frac{\tau_{k+1} - t}{\tau_{k+1} - \tau_k} + S_{t^*} \frac{t - \tau_k}{\tau_{k+1} - \tau_k}, \quad \tau_k < t \leq \tau_{k+1}.$$

During the statistical analysis of financial data, the various types of statistical distributions can be applied, and the possible deviations of registered parameters can be measured with the quantile analysis method as shown in Figs. 20 and 21. In Fig. 20, we can see the quantile analysis of the DEM/USD currencies exchange rate with the interval $\Delta = 20$ min, using the data by the Reuters agency from 05.10.92 to 26.09.93, where the quantiles $\hat{Q}_p$ of empirical distribution of the values $\tilde{h}_k = \tilde{h}_k^{(\Delta)}$, $t_k = k\Delta$, $k = 1, 2, ..., \Delta$ are shown along the vertical axis; the quantiles $Q_p$ of normal distribution are depicted along the horizontal axis in Schnidrig, Würtz (1995), Shiryaev (1998a). In Fig. 21, the typical graphs of the empirical density $\tilde{h}_k = \tilde{h}_k^{(\Delta)}$, $k = 1, 2, ..., \Delta$ and the corresponding theoretical (normal) density are presented in Shiryaev (1998a).

Discussing the one dimensional distributions of the relative changes of prices, it is necessary to note the two things, namely that the "long tails" effect can be approximated with the
application of a number of different statistical distributions; and the *scaling behaviour* can be observed in the *foreign currencies exchange rates changes dynamics*, the schematic graph of behaviour of \( \log_{10} P_0^{(c)}(x) \) at the two various values of \( \Delta \) is drawn in Fig. 22 in Mantegna, Stanley (1995), Shiryaev (1998a).

Speaking about the volatility, the Figs. 23 and 24 illustrate the daily inhomogeneity and periodicity of volatility in the selected week \( \nu_{((k-1)\Delta,k\Delta)}(H;\Delta) = \hat{h}_k \) on the time intervals \(( (k-1)\Delta,k\Delta], k = 1,2,... \) during the week. Fig. 23 shows the daily volatility of the DEM/USD exchange rate \( \Delta = 1 \text{ hour} \), going from the data by the Reuters agency from 05.10.92 to 26.09.93 in Schnidrig, Würtz (1995), Shiryaev (1998a). Fig. 24 depicts the weekly volatility of the DEM/USD exchange course \( \Delta = 1 \text{ hour} \) during the week in Schnidrig, Würtz (1995), Shiryaev (1998a). The intervals \((0,1], ... , (167, 168] \) correspond to the time intervals \((0:00, 1:00], ... , (23:00, 24:00] \) in the *Greenwich mean time*. The data belong to the Reuters agency (05.10.1992 - 26.09.1993).

Discussing the *statistics of volatility*, Fig. 25 illustrates the fractal structure of \( \nu_{\hat{v}_T}(\Delta) \) in Shiryaev (1998a). The \( \hat{v}_T(\Delta) \) values are placed along the vertical axis as a function of \( \ln \Delta \) (the horizontal axis). It can be seen that the volatility \( \ln \hat{v}_T(\Delta) \) as a function of \( \ln \Delta \) has the fractal structure with the *Hurst constant* equal to \( H \cong 0.585 \) in Guillaume, Dacorogna, Dave, Müller, Olsen, Pictet (1997), Müller, Dacorogna, Olsen, Pictet, Schwarz, Morgenegg (1990), Peters (1994), Schnidrig, Würtz (1995), Shiryaev (1998a). The *multi-fractals* is a subject of growing research interest in the *finances* in Mandelbrot (1960, 1963a, b, 1965, 1967a, b, 1969, 1971, 1972, 1975a, b, 1977, 1982, 1997), Mandelbrot, Taylor (1967), Mandelbrot, van Ness (1968), Mandelbrot, Wallis (1969), Ausloos (2000), Kantelhardt, Zschiegner, Koscielny-Bunde, Havlin, Bunde, Stanley (2002), Norouzzadeh, Rahmani (2006), Kim, Yoon (2004), Jiang, Ma, Cai (2007), Jiang, Zhou (2009), Liu, Qian, Lu (2010), Wang, Yu, Suo (2012), Trenca, Plesoianu, Căpusan (2012).

Considering the *correlation properties of stationary time series*, it is necessary to note that the *empirical autocorrelation function* \( \hat{\rho}(k) \) of increments sequence \( \hat{h}_n \) in the DEM/USD exchange rate with \( \Delta = 1 \text{ min} \) is pictured in Fig. 26 in Guillaume, Dacorogna, Dave, Müller, Olsen, Pictet (1997), Shiryaev (1998a)

\[
\rho(k) = \frac{\hat{h}_n \cdot \hat{h}_{n+k}}{\sqrt{D_{\hat{h}_n} \cdot D_{\hat{h}_{n+k}}}},
\]

where \( \hat{h} = (\hat{h}_n, \hat{h}_{n+1},...) \) is the stationary time series.
The empirical autocorrelation function $\hat{R}(k)$ of increments sequence $[\tilde{h}_n]$ in the DEM/USD exchange rate, where $k=504$ corresponds to 1 week, $k=2016$ relates to 4 weeks, with the Reuters agency data (05.10.1992 - 26.09.1993) is shown in Fig. 27 in Dacorogna, Müller, Nagrel, Olsen, Pictet (1993), Guillaume, Dacorogna, Dave, Müller, Olsen, Pictet (1997), Shiryaev (1998a), aiming to demonstrate the cyclical nature of the autocorrelation function $R(k)$

$$R(k) = \frac{\sum_{\theta \geq 0} \sum_{n=1}^{N} (\tilde{h}_{n}, \tilde{h}_{n+k}) - \mu \tilde{h}_{n} \mu \tilde{h}_{n+k}}{\sqrt{D(\tilde{h}_{n}) D(\tilde{h}_{n+k})}},$$

where $[\tilde{h}] = ([\tilde{h}_1], [\tilde{h}_2], \ldots)$ is the stationary time series.

The empirical autocorrelation function $\hat{R}^*(0), \theta \geq 0$ of the increments sequence $[\tilde{h}_{n}^*] = ([\tilde{h}_{n}^*])_{\theta \geq 1}$ of the de-volatized values in the operational “$\theta$–time” with the interval $\Delta \theta = 20\text{min}$ in the DEM/USD exchange rate is presented in Fig. 28 in Dacorogna, Müller, Nagrel, Olsen, Pictet (1993), Shiryaev (1998a).

Fig. 29 illustrates the process of conversion of the operational time into the real physical time $t = \tau^*(0)$ in Dacorogna, Müller, Nagrel, Olsen, Pictet (1993), Shiryaev (1998a). The dependence $t = \tau^*(0)$ is linear during 5 business days, but it is nonlinear at the end of the week.

In Fig. 30, the solid line represents a periodic part in activity of the CHF/USD exchange rate, 168 hours = 1 week, in Dacorogna, Müller, Nagrel, Olsen, Pictet (1993), Shiryaev (1998a).

Fig. 31 presents the description of the clustering effect in $\tilde{h}_k = \tilde{h}_k^{(s)}$ values in the DEM/USD exchange rate, $\Delta = 20\text{min}$, $k=504$ corresponds to 1 week, $k=2016$ corresponds to 4 weeks. Clots with “small” and “big” values of $|\tilde{h}_k|$ are clearly visible in Schmidrig, Würtz (1995), Shiryaev (1998a).

Fig. 16. Behaviour of currencies exchange rate $S^x_t$ (after Shiryaev (1998a)).

Fig. 17. DEM/USD exchange rate activity from Monday to Friday with 5min interval, average number of ticks vs time (after Shiryaev (1998)).

Fig. 18. Average number of ticks per day in DEM/USD exchange rate from 05.10.92 to 26.09.93 (after Shiryaev (1998a)).

Fig. 19. Modification of discrete-change process $(S^x_t)$ on continuous-change process $(\tilde{S}^x_t)$ of foreign currencies exchange rate dynamics (after Shiryaev (1998a)).

Fig. 20. $\tilde{Q}$ quantile analysis of DEM/USD currencies exchange rate with interval $\Delta=20$ min (after Shiryaev (1998a)).

Fig. 21. Typical graph of empirical density $\tilde{h}_k = \tilde{h}_0^{(n)}$, $k = 1, 2, ...$ and corresponding theoretical (normal) density (after Shiryaev (1998a)).
Fig. 22. Schematic graph of behaviour of \( \log_{10} p_0^{(\Delta)}(x) \) at two various values of \( \Delta \) (after Shiryaev (1998a)).

Fig. 23. Daily volatility of DEM/USD exchange rate \( \Delta = 1 \text{ hour} \) (after Shiryaev (1998a)).

Fig. 24. Weekly volatility of DEM/USD exchange course \( \Delta = 1 \text{ hour} \) (after Shiryaev (1998a)).

Fig. 25. Illustration of fractal structure of \( \Delta \) volatility \( \hat{V}_T(\Delta) \) (after Shiryaev (1998a)).

Fig. 26. Empirical autocorrelation function \( \hat{\rho}(k) \) of increments sequence \( \hat{h}_n \) in DEM/USD exchange rate, \( \Delta = 1 \text{ min} \) (after Shiryaev (1998a)).

Fig. 27. Empirical autocorrelation function \( \hat{R}(k) \) of increments sequence \( \hat{h}_n \) in DEM/USD exchange rate, \( k=504 \) corresponds to 1 week, \( k=2016 \) corresponds to 4 weeks (after Shiryaev (1998a)).
**Fig. 28.** Empirical autocorrelation function $\hat{R}_\theta(\tau)$ of increments sequence $\left[\tilde{h}_n\right]$ of de-volatized values in operational “θ–time” with interval $\Delta\theta=20\text{min}$ in DEM/USD exchange rate (after Shiryaev (1998a)).

**Fig. 29.** Conversion of operational time into real physical time $t = \tau(\theta)$ (after Shiryaev (1998a)).

**Fig. 30.** Solid line represents periodic part in activity of CHF/USD exchange rate, 168 hours = 1 week (after Shiryaev (1998a)).

**Fig. 31.** Clustering effect in $\tilde{h}_k = \tilde{h}_k^{(k)}$ values in DEM/USD exchange rate, $\Delta=20\text{min}$, $k=504$ corresponds to 1 week, $k=2016$ corresponds to 4 weeks. Clots with “small” and “big” values of $\left|\tilde{h}_k\right|$ are clearly visible (after Shiryaev (1998a)).


Osler, Vandrovych (2009), Osler, Yusim (2009), Osler, Mende, Menkhoff (2011), Osler, Savaser
Haas, Henderson, Symanski, Tryon (1996), Dukas, Fatemi, Tavakkol (1996), Dwyer, Locke, Yu
Flemming, Ostdiek, Whaley (1996), Gagnon (1996), Ghoshghai, Breymann, Peinke, Talkner,
(1997), Campbell, Beale, MacKinlay (1997), Campbell, Viceira (2002), Chamberlain, Howe,
Popper (1997), Clarida, Taylor (1997), Clarida, Sarno, Taylor, Valente (2003), Copejans,
2011), Evans, Lyons (1999, 2001a, b, c, 2002a, b, c, d, 2003, 2004a, b, 2005a, b, c, d, 2006,
2007, 2008, 2009), Cao, Evans, Lyons (2003), Evans, Hnatkovska (2005), Fleming, Remolona
Ostry, Gulde, Wolf (1997), Harris, Schultz (1997), Hartmann (1997, 1998a, b, 1999), Hung
Madhavan (1993), Keim, Madhavan (1996), Madhavan, Cheng (1997), Madhavan, Richardson,
Roomans (1997), Madhavan, Soñanos (1997), Madhavan (2000a, b, c), Martens (1997), Montiel
(1998, 2001, 2005), Bjöönes, Rime, Solheim (2005), Bjöönes, Osler, Rime (2011), Blennerhassett,
Choi, Hiraki, Takezawa (1998), Chow, Chen (1998), Clark, MacDonald (1998), Covrig, Melvin
Financial analysis methods application, including macroeconomic analysis, market microstructure analysis and order flow analysis, to forecast foreign currencies exchange rates dynamics during electronic trading process in foreign currencies exchange markets.

Let us begin the research discussion on the financial analysis methods. The foreign currencies exchange markets greatly contribute to the sustainable development of strongly interconnected economy of the global knowledge society in Hayek (1945), evolving toward the global cloud society, which can be characterized by such distinctive factors as:

1. The increasing information streams generation,
2. The reconfigurable-topologies communication networks appearance, and
3. The decreasing integration of economic agents with the particular territories.

In the research on the foreign currencies exchange markets, the financial forecasting problem is considered as one of the central research problems to understand in Dornbusch (1976). The forecast of the trends in the foreign currencies exchange rates dynamics is a complicated research task in the frames of the financial forecasting problem in Frankel, Froot (1990c). The actual forecast of the trends in the foreign currencies exchange rates dynamics can be done, going from the macroeconomics principles and the microeconomics principles.

Discussing the macroeconomic forecast models, Frankel, Galli, Giovannini (editors) (1996) note: “The basic macro model of the exchange rate implies that all information pertaining to the current and future "fundamental" determinants of exchange rates, that is, all information that implies a current and/or future change in the return on assets denominated in different currencies, has an immediate and unambiguous effect on exchange rates.” There is a number of econometric models to forecast the trends in the foreign currencies exchange rates dynamics in the macroeconomics in Lam, Fung, Yu (2008):

1. The Purchasing Power Parity model,
2. The Uncovered Interest Rate Parity model,
3. The Sticky Price Monetary model,
4. The Bayesian Averaging Technique model, and
5. The Combined Forecast model, including all the above models with benchmarks given by the random-walk model and the historical average return.

Let us continue our research discussion on the present research progress in the foreign currencies exchange market microstructure analysis method. Uncovering the microeconomic forecast models, Frankel, Galli, Giovannini (editors) (1996) answer an important question:
“Why study foreign exchange market microstructure? The interest in the working of the foreign exchange markets stems, at least in part, from some of the problems that the asset market macro models have displayed. The first is a prima facie contradiction between the models and reality. As noted, such models imply the absence of trading in assets. By contrast, one of the most important empirical facts about the foreign exchange market is the high volume of transactions that occur daily. This inconsistency raises the question of whether the failure of the standard models to account for the volume of foreign exchange transactions is a symptom of more serious problems, which might cause the lack of success at explaining other empirical phenomena on which researchers have concentrated.

These empirical phenomena include the behavior of excess returns in the foreign exchange market, the near total inability to predict exchange rates at short horizons, the inability to explain exchange rate movements even ex post, and the volatility of exchange rates. Standard models have been unable to explain these phenomena satisfactorily. In particular, asset pricing formulas implicit in the standard macro models seem, to date, to have fared poorly. For example, even though the existence of ex ante (i.e., forecastable) returns in the foreign exchange markets can in theory be explained as risk premia, the estimated returns in practice do not match what is predicted by asset pricing models based on the covariances among asset returns.

Furthermore, models seem to have a difficult time predicting future movements in exchange rates, suggesting that the information contained in the macro variables that are usually included in these models is of limited value. Finally, the volatility of these macro variables is generally smaller than the observed volatility of exchange rates, suggesting that—unless certain variables have especially strong effects on the spot exchange rate, as, for example, in the case of large overshooting in reaction to monetary disturbances—the information affecting exchange rate movements may be in part extraneous to the variables belonging to standard macroeconomic models. Theories of rational speculative bubbles and speculative attacks can in one sense account for the existence of excess volatility. But they are inherently unsatisfying in that they have nothing to say about how or when such bubbles and attacks get started or how they end.

It is only natural to ask whether these empirical problems of the standard exchange rate models—problems that stem from the assumptions on asset market equilibrium—might be solved if the structure of foreign exchange markets was to be specified in a more realistic fashion. This suggests a sort of micro-foundations approach to the foreign exchange markets, according to which a more satisfactory description of the foreign exchange market microstructure might help sort out some of the problems displayed by existing macro models.”
Frankel, Galli, Giovannini (editors) (1996) continue: “A second reason to study market microstructure is only loosely related to the first. Like any market, the foreign exchange market is an interesting subject for research that attempts to identify the economic effects of its organization. This is, as opposed to the macroeconomic approach to foreign exchange microstructure, the microeconomic approach. The questions that are addressed with this approach include, for example, transparency, decentralization, the use of brokers (vs. market-makers, vs. auctioneers), the location of trading, the efficiency of clearing of foreign exchange transactions, the relation between spot and derivative markets, and the importance of systemic risk in the market.”

Discussing the most important research results, obtained during the market microstructure analysis, Frankel, Galli, Giovannini (editors) (1996) highlight the following facts: “The study of market microstructure has already produced at least one empirical regularity: the high intraday correlation of trading volume and volatility. As noted above, standard macroeconomic exchange rate models have little hope of explaining trading volume. Typically, they assume homogeneity of market participants. If all traders are the same, why should they trade? Of course, the standard models do not attempt to explain volume, considering it of little relevance except to those who make their living trading. But the observed correlation between volume and volatility suggests something of more general interest. Frankel and Froot (1990b), for example, find a high contemporaneous correlation between volume and volatility. They also find some evidence that dispersion of traders’ forecasts, as reflected in survey data, Granger-causes both volume and volatility.

Given that trading volume seems to be relevant, there are two possible broad interpretations. One is that the market is processing information in an efficient way. Here, efficient is not to be understood as in the narrowest definition of the efficient markets hypothesis, where all traders are homogeneous, all information is instantly and fully reflected in the market price, and there are no profits to be made by trading. Rather, the microstructure perspective presupposes heterogeneity, is often based (more specifically) on asymmetric information, and allows that relatively more skillful or informed traders may succeed at the expense of those who are less skillful or less informed or of customers who must transact because they need to eliminate exposure (“liquidity traders”). The first interpretation is simply that the market works to aggregate the individual bits of information available to each trader in a relatively rapid and smooth way. The chapters here shed light on a number of leading models of asymmetric information and the need for liquidity.”

Let us focus on the research discussion toward a present state of progress in the *foreign currencies exchange market customer transactions order flow analysis methods*. Frankel, Galli, Giovannini (editors) (1996) write: “Lyons sheds some light on how bits of such information are processed, in the form of a *statistically significant effect of orders received by traders on the prices at which they transact.*”

Evans, Lyon (2005, 2006) showed that:

1. “both the *aggregate and disaggregated customer flows* received by Citibank are positively auto-correlated;
2. contemporaneous correlations across flow segments are low at the daily frequency, but high at the monthly frequency;
3. some customer segments do produce negative coefficients in contemporaneous return regressions;
4. the proportion of excess return variation that *segment flows* can account for rises with the horizon; and
5. about one-third of *order flows* power to forecast *exchange rates* one month ahead comes from *flows ability to forecast future flow*.”

Evans, Lyons (2007) researched the *transaction flows, exchange rates, and future fundamentals*, making the following predictions: “The predictions are borne out in four empirical findings that define this paper's main contribution:

1. *Transaction flows forecast future macro variables such as output growth, money growth, and inflation,*
2. Transaction flows forecast these macro variables significantly better than the exchange rate does,
3. Transaction flows (proprietary) forecast future exchange rates, and
4. The forecasted part of fundamentals is better at explaining exchange rates than standard measured fundamentals.”

Tab. 5 shows the summary statistics for the weekly data in Evans, Lyons (2007): “The statistics in Panel A show that weekly changes in the log spot rate, $\Delta s_t = s_t - s_{t-1}$; have a mean very close to zero and display no significant serial correlation. In Panel B: First, the order flows are large and volatile. Second, they display no significant serial correlation. Summary statistics for the weekly changes in the real-time estimates are reported in Panel C.”

<table>
<thead>
<tr>
<th>Table 1: Summary Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>A: Exchange Rate (x100)</td>
</tr>
<tr>
<td>B: Order Flows</td>
</tr>
<tr>
<td>(ii) Corporate US</td>
</tr>
<tr>
<td>(iii) Corporate Non-US</td>
</tr>
<tr>
<td>(iv) Traders US</td>
</tr>
<tr>
<td>(v) Traders Non-US</td>
</tr>
<tr>
<td>(vi) Investors US</td>
</tr>
<tr>
<td>(vii) Investors Non-US</td>
</tr>
<tr>
<td>C: Real-Time Data</td>
</tr>
<tr>
<td>(viii) US Output</td>
</tr>
<tr>
<td>(ix) US Prices</td>
</tr>
<tr>
<td>(x) US Money</td>
</tr>
<tr>
<td>(xi) German Output</td>
</tr>
</tbody>
</table>

Notes: The table reports summary statistics for the following variables sampled at the weekly frequency between January 1993 and June 1999: (i) the weekly change in the log spot rate $x100$, (ii)-(xii) order flows from end-user segments cumulated over a week, and (viii)-(xiii) weekly changes in real-time estimates measured in annual percent. The last four columns on the right report autocorrelations $\rho_i$ at lag $i$ and p-values for the null that $\rho_i = 0$ in parentheses.

Tab. 5. Summary statistics for weekly data (after Evans, Lyons (2007)).
Evans, Lyons (2007) draw the attention to an interesting fact: “Evans and Lyons (2002a,b) show that order flows account for between 40 and 80 percent of the daily variation in the spot exchange rates of major currency pairs.”

Evans, Lyons (2007) make the following conclusion: “We also showed that proprietary transaction flows have significant forecasting power for future exchange returns and that this forecasting power reflects their ability to predict how the market will react to the flow of information concerning macro fundamentals. In sum, we found strong support for the idea that exchange rates vary as the market assimilates dispersed information regarding macro fundamentals from transaction flows.”

Finally, Evans, Lyons (2007) highlight a fact: “Most readers of this micro literature have adopted the same view: Transaction flow effects on exchange rates are about pricing errors, not about fundamentals. Our findings, by contrast, suggest that transaction flows are central to the process by which expectations of future macro variables are impounded into exchange rates.”


Most importantly, it is necessary to highlight the fact that some research problems on the information aggregation by the foreign currencies traders have been intuitively identified in Evans, Lyons (2007): “The customer flows forecast returns, because they are correlated with the future market-wide information flow that dealers use to revise their FX prices,” however this interconnection between the information absorption by the foreign currencies traders from the foreign currencies exchange market / the fundamental economic indicators and its influence on the trading strategy by the foreign currencies traders was not considered in details on that time.

In addition to the above listed econometric models, the prediction of the trends in the foreign currencies exchange rates dynamics in the frames of the financial forecasting problem can also be done, using the time series estimation techniques based on the filtering theories in the econophysics. After the formulation of the Wiener filtering theory in Wiener (1923, 1930, 1949), the various important research problems in the Wiener filtering theory have been researched in Ito (1944, 1951a, b, 2000). The Pugachev filtering theory has been outlined by Vladimir S. Pugachev in Pugachev (1944, 1956a, b, 1960, 1961, 1962, 1971, 1973, 1974, 1975, 1974, 1978, 1979a, b, 1980a, b, 1981, 1982a, b, 1984, 1985, 1986), Pugachev, Sinitsyn (1986, 1989, 1990, 1999, 2004), Pugachev, Sinitsyn, Shin (1986a, b, 1987a, b, c). The intensive research led to the creation of the optimal non-linear filtering theory in Stratonovich (1959a, b, 1960a, b, 1961, 1964, 1966), and the subsequent development of the Stratonovich – Kalman – Bucy filtering algorithm in Stratonovich (1959a, b, 1960a, b), Kalman, Koepcke (1958, 1959), Kalman, Bertram (1958, 1959), Kalman (1960a, b, 1963), Kalman, Bucy (1961). Let us cite a few sentences on the description of the Stratonovich-Kalman-Bucy filtering algorithm in Ledenyov D O, Ledenyov V O (2013g): “Analyzing the time series, Ruslan L. Stratonovich created the optimal non-linear filtering theory in 1959 in Stratonovich (1959a, b, 1960a, b). During next few years, the optimal non-linear filtering theory has been extensively complemented by the various research findings; and its foundational principles have been used to develop the Stratonovich – Kalman – Bucy filtering algorithm in 1959-1963 in Stratonovich (1959a, b, 1960a, b), Kalman, Koepcke (1958, 1959), Kalman, Bertram (1958, 1959), Kalman (1960a, b, 1963), Kalman, Bucy (1961).” In the process of the financial forecasting problem solution finding, the Stratonovich-Kalman-Bucy filtering algorithm can be applied to predict the trends in the foreign currencies exchange rates dynamics with a greatly improved accuracy during the electronic trading process in the foreign currencies exchange markets. The authors have already researched the Stratonovich-Kalman-Bucy filtering algorithm, Stratonovich – Kalman – Bucy filters and particle filters in Ledenyov D O, Ledenyov V O (2013g, h). Therefore, let us cite the definitions of the Stratonovich – Kalman – Bucy filters in Ledenyov D O, Ledenyov V O (2013h):
1. **The Stratanovich – Kalman – Bucy filters** have been well described in Ledenyov D O, Ledenyov V O (2013g): “The Kalman filter, also known as Linear Quadratic Estimation (LQE), is an algorithm that uses a series of measurements observed over time, containing noise (random variations) and other inaccuracies, and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone. More formally, the Kalman filter operates recursively on streams of noisy input data to produce a statistically optimal estimate of the underlying system state.”

2. **The particle filters** have been accurately characterized in Roncalli, Weisang (2008): “Particle filtering methods are techniques to implement recursive Bayesian filters using Monte-Carlo simulations. The key idea is to represent the posterior density function by a set of random samples with associated weights and to compute estimates based on these samples and weights [7, 20, 25, 26, 27, 28].”

Wolff (1987) published his research article titled: “The forward foreign exchange rates, expected spot rates, and premia: A signal-extraction approach,” proposing to apply a state-space model with the Stratanovich-Kalman-Bucy filtering algorithm to predict the risk premiums in the foreign currencies exchange market. Recently, Yu, Fung, Hongyi (2005) have discussed the possible mathematical techniques to evaluate the exchange rate risk premiums in Hong Kong dollar, using the signal-extraction approach for the research data analysis. Let us write a set of equations to describe the signal-extraction approach in Yu, Fung, Hongyi (2005):

\[ E_t(S_{t+1}) = f_t, \quad (1) \]

where \( E(\ldots) \) is the conditional expectation, based on information available at time \( t \); \( S \) and \( f \) are the natural logarithm of the spot and forward exchange rates respectively.

\[ S_{t+1} = f_t + \varepsilon_{t+1}, \quad (2) \]

where \( \varepsilon_{t+1} \) is the rational expectation forecast error: a white-noise process with zero-mean.

\[ \Delta S_{t+1} = \alpha + \beta(f_t - S_t) + \varepsilon_{t+1}, \quad (3) \]

where \( \Delta \) is the differencing operator, and \( \Delta S_{t+1} \) is defined as \( S_{t+1} - S_t \).

\[ f_t = E_t(S_{t+1}) + r p_t, \quad (4) \]

\[ f_t - S_{t+1} = r p_t + \eta_{t+1}, \quad (5) \]

where \( \eta_{t+1} \) is the expectation error, it is assumed to be serially uncorrelated with zero-mean.

\[ f_t^{t+m} - S_{t+m} = r p_{t+m} + \eta_{t+m}, \quad (6) \]
where $f_{t}^{t+m}$ is the natural logarithm of the forward exchange rate at time $t$ for contracts delivered at $m$ periods later, $St+m$ is the corresponding natural logarithm of spot exchange rate at time $t+m$, $rp_{t,m}$ is equal to $f_{t}^{t+m} - E_t(S_{t+m})$, which is the time-varying risk premium on forward contracts for delivery at $m$ periods later.

$$**\eta_{t+m} = e_{t+m} + \theta_{1}e_{t+m-1} + \theta_{2}e_{t+m-2} + \ldots + \theta_{m}e_{t+1}**$$

where $e_{t+j} \sim N(0,V)$, $j = 1, \ldots, m$, i.e. $e_{t+j}$ is assumed to distribute normally with mean zero and variance $V$.

$$**rp_{t,m} = \sum_{i=1}^{m} \delta_{i}rp_{t-i,m} + \mu_{t,m}**$$

where $\eta_{t+m}$ and $\mu_{t,m}$ are assumed to be independent for all $t$. Yu, Fung, Hongyi (2005) note that the equations (6) to (9) in the state-space form are estimated by the maximum likelihood method through the application of the Kalman filter in Tabs. 6, 7, 8, 9 and Figs. 32, 33.

### Table 1. Autocorrelations (AC) and Partial Autocorrelations (PAC) of Excess Forward Return Series

<table>
<thead>
<tr>
<th>Lag</th>
<th>m - 1-month</th>
<th>3-month</th>
<th>6-month</th>
<th>12-month</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.319</td>
<td>0.698</td>
<td>0.813</td>
<td>0.854</td>
</tr>
<tr>
<td>2</td>
<td>0.303</td>
<td>0.571</td>
<td>0.718</td>
<td>0.774</td>
</tr>
<tr>
<td>3</td>
<td>0.224</td>
<td>0.424</td>
<td>0.603</td>
<td>0.671</td>
</tr>
<tr>
<td>4</td>
<td>0.111</td>
<td>0.297</td>
<td>0.476</td>
<td>0.569</td>
</tr>
<tr>
<td>5</td>
<td>0.166</td>
<td>0.329</td>
<td>0.490</td>
<td>0.581</td>
</tr>
<tr>
<td>6</td>
<td>0.071</td>
<td>0.294</td>
<td>0.439</td>
<td>0.534</td>
</tr>
<tr>
<td>PAC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.319</td>
<td>0.698</td>
<td>0.813</td>
<td>0.854</td>
</tr>
<tr>
<td>2</td>
<td>0.224</td>
<td>0.162</td>
<td>0.165</td>
<td>0.165</td>
</tr>
<tr>
<td>3</td>
<td>0.091</td>
<td>-0.046</td>
<td>-0.056</td>
<td>-0.084</td>
</tr>
<tr>
<td>4</td>
<td>-0.035</td>
<td>-0.059</td>
<td>-0.122</td>
<td>-0.079</td>
</tr>
<tr>
<td>5</td>
<td>0.089</td>
<td>0.234</td>
<td>0.332</td>
<td>0.370</td>
</tr>
<tr>
<td>6</td>
<td>-0.023</td>
<td>0.018</td>
<td>-0.035</td>
<td>-0.069</td>
</tr>
<tr>
<td>Sample period from Jan 96 to</td>
<td>Aug 05</td>
<td>Jun 05</td>
<td>Mar 05</td>
<td>Sep 04</td>
</tr>
</tbody>
</table>

Notes: All series start from January 1996. Forward exchange rates and spot exchange rate are in natural logarithm.

**Tab. 6. Autocorrelations (AC) and partial autocorrelations (PAC) of excess forward return series (after Yu, Fung, Hongyi (2005)).**
Table 2. Estimation Results of State-Space Model

\[ f_{t+1} = S_{t+1} = rP_{t+1} + \eta_{t+1}, \]
\[ \eta_{t+1} = \epsilon_{t+1} + \theta_1 \epsilon_{t+1-1} + \theta_2 \epsilon_{t+1-2} + \ldots + \theta_m \epsilon_{t+1-m} + \epsilon_{t+1} \sim N(0, \Gamma), \ j = 1, \ldots, m \]
\[ rP_{t,m} = \sum_{j=1}^m \delta_j rP_{t-1,m} + \mu_{t,m}, \ \mu_{t,m} \sim N(0, \Sigma) \]

<table>
<thead>
<tr>
<th>m</th>
<th>1-month</th>
<th>3-month</th>
<th>6-month</th>
<th>12-month</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \delta_1 )</td>
<td>0.85* (0.00)</td>
<td>0.88* (0.00)</td>
<td>0.93* (0.00)</td>
<td>0.96* (0.00)</td>
</tr>
<tr>
<td>( \nu (x 10^5) )</td>
<td>1.80* (0.00)</td>
<td>5.02* (0.03)</td>
<td>3.71 (0.81)</td>
<td>0.29 (0.95)</td>
</tr>
<tr>
<td>( U (x 10^5) )</td>
<td>0.52 (0.20)</td>
<td>2.61 (0.29)</td>
<td>4.87 (0.55)</td>
<td>12.50 (0.63)</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>584.19</td>
<td>503.54</td>
<td>446.15</td>
<td>372.06</td>
</tr>
<tr>
<td>Mean of ( rp ) (in percent)</td>
<td>0.02</td>
<td>0.07</td>
<td>0.21</td>
<td>0.66</td>
</tr>
<tr>
<td>Variance of ( rp ) (in percent)</td>
<td>0.01</td>
<td>0.09</td>
<td>0.24</td>
<td>0.99</td>
</tr>
<tr>
<td>Q(10)</td>
<td>7.07</td>
<td>15.53</td>
<td>10.49</td>
<td>2.43</td>
</tr>
<tr>
<td>Sample period from Jan 96 to</td>
<td>Aug 05</td>
<td>Jun 05</td>
<td>Mar 05</td>
<td>Sep 04</td>
</tr>
<tr>
<td>Observations</td>
<td>116</td>
<td>114</td>
<td>111</td>
<td>105</td>
</tr>
</tbody>
</table>

Notes: * indicates significant at the 5% confidence level. Figures in parentheses are p-values. All series start from January 1996. The estimated moving average parameters of the error terms are not reported. Forward exchange rates and spot exchange rate are in natural logarithm. Q(10) is the Ljung-Box Q-statistics based on the first ten serial correlation coefficients of the levels of standardised residuals. Q(10) is asymptotically distributed as \( \chi^2 \) with 10 degrees of freedom. The critical value of \( \chi^2 \) (10) at the 5% confidence level is 18.31.

**Tab. 7.** Estimation results od state-space model (after Yu, Fung, Hongyi (2005)).

Chart 1. Estimated Risk Premiums of Hong Kong Dollar Forwards Contracts delivered at Different Horizons (1996-2005)

**Fig. 32.** Estimated risk premiums of Hong Kong dollar forwards contracts delivered at different horizons (after Yu, Fung, Hongyi (2005)).
**Fig. 33. Ex post excess forward returns and estimated risk premiums**  
*(after Yu, Fung, Hongyi (2005)).*

**Table 3. Out-of-Sample Forecast Errors**

<table>
<thead>
<tr>
<th>One-month Ahead Forecast</th>
<th>1-month</th>
<th>3-month</th>
<th>6-month</th>
<th>12-month</th>
</tr>
</thead>
<tbody>
<tr>
<td>errors based on MSE (in pips)</td>
<td>1.85</td>
<td>5.60</td>
<td>7.30</td>
<td>20.63</td>
</tr>
<tr>
<td>State-space estimates of risk premiums</td>
<td>1.23</td>
<td>4.10</td>
<td>3.90</td>
<td>4.60</td>
</tr>
<tr>
<td>Random Walk</td>
<td>101.48</td>
<td>182.76</td>
<td>205.11</td>
<td>399.14</td>
</tr>
<tr>
<td>MAE (in pips)</td>
<td>75.46</td>
<td>190.25</td>
<td>151.67</td>
<td>188.58</td>
</tr>
<tr>
<td>State-space estimates of risk premiums</td>
<td>Random Walk</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Numbers reported in the tables are mean squared errors (MSE) and mean absolute errors (MAE) of one-month ahead *ex ante* forecasts. The forecasting period is from October 2004 to September 2005.

**Tab. 8. Out-of-Sample forecast errors (after Yu, Fung, Hongyi (2005)).**
Table 4. Determinants of Risk Premiums

\[
\Delta r_{m} = C + \alpha \Delta ggbal_{t} + \beta \Delta NDF_{t,m} + \epsilon_{t,m-1} + \phi_{1} \epsilon_{t,m-1} + \phi_{2} \epsilon_{t,m-2} + \ldots + \phi_{m-1} \epsilon_{t,1}
\]

<table>
<thead>
<tr>
<th>Estimated risk premiums with delivery horizon m of</th>
<th>1-month</th>
<th>3-month</th>
<th>6-month</th>
<th>12-month</th>
</tr>
</thead>
<tbody>
<tr>
<td>( C \times 10^{-3} )</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.08</td>
</tr>
<tr>
<td></td>
<td>(0.81)</td>
<td>(0.95)</td>
<td>(0.85)</td>
<td>(0.67)</td>
</tr>
<tr>
<td>( \Delta ggbal_{t} \times 10^{-3} )</td>
<td>-0.16*</td>
<td>-0.23*</td>
<td>-0.13*</td>
<td>-0.53*</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.03)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>( \Delta NDF_{t,3} )</td>
<td>-0.00</td>
<td>-0.00</td>
<td>-0.00</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>(0.78)</td>
<td>(0.78)</td>
<td>(0.78)</td>
<td>(0.78)</td>
</tr>
<tr>
<td>( \Delta NDF_{t,6} )</td>
<td>-0.03*</td>
<td>-0.03*</td>
<td>-0.03*</td>
<td>-0.03*</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>( \Delta NDF_{t,12} )</td>
<td>-0.01*</td>
<td>-0.01*</td>
<td>-0.01*</td>
<td>-0.01*</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.21</td>
<td>0.47</td>
<td>0.62</td>
<td>0.53</td>
</tr>
<tr>
<td>Q(12)</td>
<td>10.64</td>
<td>5.79</td>
<td>13.84</td>
<td>5.47</td>
</tr>
<tr>
<td>Sample period From Jan 99</td>
<td>Aug 05</td>
<td>Jun 05</td>
<td>Mar 05</td>
<td>Sep 04</td>
</tr>
<tr>
<td>Observations</td>
<td>80</td>
<td>78</td>
<td>75</td>
<td>68</td>
</tr>
</tbody>
</table>

Notes: * indicates significant at the 5% confidence level. Figures in parentheses are p-values.
All estimations start from January 1999. The estimated moving average parameters of the error terms are not reported. Q(12) is the Ljung-Box Q-statistics which is asymptotically distributed as a \( \chi^2 \) with 12 degrees of freedom. The critical value of \( \chi^2 \) (12) at the 5% confidence level is 21.03.

Tab. 9. Determinants of risk premium (after Yu, Fung, Hongyi (2005)).

As it can be seen in Yu, Fung, Hongyi (2005), the forward exchange rate can be viewed as the sum of two components: an expected future spot rate and a time-varying risk premium, hence it is possible to use the signal-extraction approach to identify and measure the unobserved risk premiums from the Hong Kong dollar forward exchange rates.

Ultra high frequency electronic trading strategies creation and execution under influence by discrete information absorption during ultra high frequencies electronic trading in foreign currencies exchange markets in diffusion - type global financial system with induced nonlinearities

Lafley, Martin (2013), aiming both to get an increased return premium and to make a positive social impact in the local community and society in Foerster (2004), Hull (2005-2006).

Let us consider the factors, which can have an influence on the information absorption capacity, assuming that the information is a valuable capital in the hands of experienced financiers in 21st century in Shapiro, Varian (1999), and it can be thoroughly used in the fundamental and technical models of the foreign currencies exchange rates determination in Rosenberg (1996). First of all, let us explain that, in the process of the information-based electronic trading in the foreign currencies exchange market, there are the information diffusion, absorption and dispersion processes, which can precisely describe the individual traders, trading firms, trading banks on one side as well as to accurately characterize the electronic trading systems, financial systems, foreign currencies exchange markets on other side. The information diffusion, absorption and dispersion processes during the ultra high frequency electronic trading in the foreign currencies exchange markets in the diffusion - type financial systems with the induced nonlinearities have been researched by scientists. Franke, Hess (1997, 2000) investigated the problem of the information diffusion in the electronic and floor trading. Bacchetta, van Wincoop (2003) researched the information dispersion to explain the exchange rate disconnect puzzle. Evans, Lyons (2005b) researched one of the aspects of the information absorption: “Do currency markets absorb the news quickly?” De Zwart, Markwat, Swinkels, van Dijk (2009) considered the economic value of the fundamental and technical information in the emerging currency markets. Bjønnes, Osler, Rime (2011) researched the possible sources of the information advantage in the foreign exchange currencies market. Rime (2000) researched the private and public information in the foreign currencies exchange markets. Chinn, Moore (2008) researched a role of the private information in the monetary model of exchange rates. Moore, Payne (2011) identified the main sources of private information in the foreign currencies exchange markets. We assume that these information diffusion, absorption and dispersion processes are present during the ultra high frequency electronic trading in the foreign currencies exchange markets in the diffusion - type financial systems with the induced nonlinearities.

Continuing our research discussion on the absorption phenomena in the econophysics, which is researched in the frames of the evolving learning process at the various practical settings and theoretical considerations in the econophysics in the finances, we would like to say that a new perspective on the learning and innovation with the particular research focus on the absorptive capacity has been presented in Cohen, Levinthal (1990), Farina (2008), Hussinger (2010, 2012). There are a number of innovative studies, which have been focused on the
knowledge and information absorptive capacity by the firm in Farina (2008): “According to Cohen and Levinthal’s (1990) “absorptive capacity” concept, firms’ ability to get knowledge and information from their external environment is a function of the firms’ specialization choices and experiences. In particular, firms operating in many market segments are likely to possess more internal capabilities than firms operating in few market segments since, as the volume and complexity of information in the environment increase, the organization needs to have correspondingly high levels of information processing capacity (Miller and Chen (1994); Hambrick, (1982); Khandwalla (1973)).” Farina (2008) continues to explain: “In fact firms’ ability to use network ties for accessing information about opportunities and choices otherwise not available is depending on internal resource endowments and in particular on “absorptive capacity”.

Let us explain that, in a general case, we found that the process of information absorption by the foreign currencies traders (the buyers and sellers) is strongly affected by the constant presence of the asymmetric information streams in the signaling information channels between the foreign currencies exchange markets agents in the foreign currencies exchange markets, resulting in a fluctuating nature of the foreign currencies exchange market behaviour. It is necessary to point out that the asymmetric information phenomena in an application to the automobile market and some other markets has been researched for the first time in Akerlof (1970, 2014). The problem of diverse information accumulation by various markets agents has been raised in Grossman (1976). The problem of impossibility of informationally efficient markets has been considered in Grossman, Stiglitz (1980). The problem of aggregation of information in the complete markets has been studied in Hellwig (1980). The information aggregation problem in a noisy rational expectations economy has been considered in Diamond, Verrecchia (1981). The information effects influence on the bid-ask spread in the foreign currencies exchange market have been investigated in Copeland, Galai (1983). The arrival of information and the reaction of traders have been analyzed in French, Roll (1986). The information intermediation from the foreign exchange market microstructure theory point of view has been discussed to some degree in Lyons (1993a). The price transmission and information asymmetry problems have been highlighted in Shyy, Lee (1995). The information content problem of the trading process has been researched in Easley, Kiefer, O’Hara (1997a). The asymmetric information and price discovery in the FX market have been analyzed in Covrig, Melvin (1998). The private information in the FX market has been selected as a research topic in Ito, Lyons, Melvin (1998). The asymmetric corporate exposures to the foreign exchange rate changes have been uncovered in Miller, Reuer (1998). The asymmetric information and the bid-
ask spread in the FX market have been studied in Wang (1999). The asymmetric information and inventory effects in the US treasury market have been investigated in Brandt, Edelen, Kavajecz (2001). The asymmetric exchange rate exposure problem has been considered in Koutmos, Martin (2003). The asymmetries in the bid and ask responses to the innovations in the trading process have been found to exist in Escribano, Pascual (2006). The problem of asymmetric information in the interbank foreign exchange market has been discussed in Bjønnes, Osler, Rime (2007). The limit-order submission strategies under the asymmetric information have been described in Menkhoff, Osler, Schmeling (2010). The sources of information advantage in the foreign exchange market have been identified in Bjønnes, Osler, Rime (2011).

Let us state that, in our opinion, the process of information absorption by the foreign currencies traders can depend on:

1. The applied **information coding techniques** before the information transmission in the signaling information channels between the foreign currencies exchange markets agents in the foreign currencies exchange markets (the information de-coding techniques after the information transmission).

2. The applied **information modulation techniques** during the information transmission in the signaling information channels between the foreign currencies exchange markets agents in the foreign currencies exchange markets.

3. The applied **transmitted information error correction techniques** during the information extraction from the signaling information channels between the foreign currencies exchange markets agents in the foreign currencies exchange markets.

The above listed factors, including the asymmetric information, the information coding (de-coding) techniques, the information modulation techniques, the information error correction techniques, can make the multiple possible impacts on the following economic variables:

1. The **time**, which is necessary by the foreign currencies traders to absorb the information during the ultra high frequency electronic trading strategies creation and execution under an influence by the discrete information absorption process during the ultra high frequencies electronic trading in the foreign currencies exchange markets in the diffusion - type global financial system with the induced nonlinearities.

2. The **varying capacity by the foreign currencies traders to absorb the information** during the ultra high frequency electronic trading strategies creation and execution under an influence by the discrete information absorption process during the ultra high frequencies electronic trading in the foreign currencies exchange markets in the diffusion - type global financial system with the induced nonlinearities.
3. The **changing ability by the foreign currencies traders to analyze the information** during the *ultra high frequency electronic trading strategies creation and execution* under an influence by the *discrete information absorption* process during the *ultra high frequencies electronic trading* in the *foreign currencies exchange markets* in the *diffusion-type global financial system* with the induced nonlinearities.

4. The **total time for the decision making process by the foreign currencies traders** during the *ultra high frequency electronic trading strategies creation and execution* under an influence by the *discrete information absorption* process during the *ultra high frequencies electronic trading* in the *foreign currencies exchange markets* in the *diffusion-type global financial system* with the induced nonlinearities.

We make a theoretical proposition that the trader’s ability to select the winning virtuous strategies in the process of the information-based electronic trading in the foreign currencies exchange market strongly depends on the trader’s information absorption capacity. In our research approach, we assume that, in the process of *decision making process* on the winning virtuous strategy, the traders select the winning virtuous strategies by way of the information absorption and its subsequent analysis on an available set of choices in the frames of the creative imperative integrative intelligent conceptual co-lateral adaptive logarithmic thinking process with the application the inductive, deductive and abductive logics in Martin (1998-1999, 2005-2006) in the frames of the *strategic choice structuring process*, that is the winning through the distinctive choices process in Martin (1998-1999a, 2005-2006a, 2004, 2009), Moldoveanu, Martin (2001), Lafley, Martin (2013). In other words, the absorbed information creates a knowledge base, which is necessary for the successful completion of decision making process. Let us remind the meanings of the **deep knowledge** and the **broad knowledge** as described in Moldoveanu, Martin (2001): “The general knowledge – knowledge that can be easily taught and transferred by means of formalized dialects – and specific knowledge – knowledge that cannot be easily encoded and transferred. However, within each different kind of knowledge we can talk of a distinction between the depth of the knowledge and the breadth of the knowledge. Knowledge is deep when it is of the sort that can answer many concatenated ‘why?’ questions. The physicist’s and the mathematician’s knowledge are examples of deep knowledge. It has a hierarchical structure, with a few basic propositions at the top of the hierarchy, from which all other propositions follow by self-evident steps. Knowledge is broad when it can be used to answer many questions of the type: ‘what?’,” ‘where?’,” ‘who?’ and ‘how?’.” The economist’s and the biologist’s knowledge are examples of broad knowledge. There are few key fundamental; assumptions that can compress all of this knowledge, which
consists of a large set of empirical findings and basic causal mechanisms which only work when certain conditions come about.”

In the practical case of the ultra high frequency electronic trading strategy creation and execution processes in the foreign currencies exchange markets in the conditions of the continuous and discrete information absorption processes in the diffusion - type global financial system with the induced nonlinearities, the authors applied the developed software program, which performs the following routines:

1. The execution of the embedded optimized Stratanovich-Kalman-Bucy filtering algorithm in the Stratanovich – Kalman – Bucy filter and the particle filter to accurately estimate the time series and predicted the trends in the foreign currencies exchange rates dynamics during the electronic trading in the selected foreign currencies exchange market.

2. The execution of the embedded optimized macroeconomic analysis, market microstructure analysis and order flow analysis algorithms to precisely forecast the foreign currencies exchange rates optional dynamics during the electronic trading process in the selected foreign currencies exchange markets, using the original information gathering and aggregation engines from the computer servers.

3. The execution of the embedded optimized comparative analysis algorithm to compare the obtained data streams from the completed algorithms 1 and 2, to select and execute the winning virtuous trading strategy during the ultra high frequency electronic trading in the foreign currencies exchange markets in the diffusion - type financial system with the induced nonlinearities.

Thus, we developed the MicroFX complex software program with the embedded Stratonovich – Kalman - Bucy filtering algorithm and the particle filtering algorithm, aiming to accurately forecast the trends in the foreign currencies exchange rates dynamics during the electronic trading process in the foreign currencies exchange markets in the practical cases of the non-Gaussian non-linear chaotic distributions of the financial variables in the time domain in Ledenyov D O, Ledenyov V O (2014c). The MicroFX developed tested software program can operate with the commonly traded foreign currencies pairs in the foreign currencies exchange markets, making the quite accurate forecasts on the trends in the foreign currencies exchange rates dynamics during the electronic trading process in the selected foreign currencies exchange markets. The increased accuracy of computations by the MicroFX software program is reached by the application of a combination of the prediction models, including the econometric forecast models and the Stratanovich – Kalman – Bucy filtering algorithm estimation models from the space and nuclear physics.
The authors completed a comparative technical analysis of the main technical parameters of our MicroFX software program with some other known largest multibank trading systems: State Street’s FX Connect, FXall, 360 Trading Networks, Reuters Trading for FX, Thomson Reuters Matching, EBS, Currenex, Hotspot FX, Lava as well as the proprietary single bank foreign exchange currencies trading systems: Autobahn, FX Trader, BARX, Velocity, MorganDirect, REDI, SmartPrime, HSBCnet, FXHub, Prime, Trade FX, Passport in Tab. 11. As to our best knowledge, the above listed foreign exchange currencies trading software platforms by the major dealing banks have the early generation foreign exchange currencies trading software platforms architectures, which don’t use the sophisticated algorithms to estimate and forecast the foreign exchange currencies rates trends in the near real time conditions.

<table>
<thead>
<tr>
<th>Instruments that can be traded</th>
<th>Launched</th>
<th>Spot</th>
<th>Forwards</th>
<th>NDFs</th>
<th>Options</th>
<th>Swaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Request-for-quote service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State Street’s FX Connect</td>
<td>1996</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>FXall</td>
<td>2001</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>360 Trading Networks</td>
<td>2002</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>Reuters Trading for FX</td>
<td>2005</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Pre-trade anonymous limit order book</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomson Reuters Matching</td>
<td>1992</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>EBS</td>
<td>1993</td>
<td>y</td>
<td></td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Currenex</td>
<td>1999</td>
<td>y</td>
<td></td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hotspot FX</td>
<td>2000</td>
<td>y</td>
<td></td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lava</td>
<td>2001</td>
<td>y</td>
<td></td>
<td>y</td>
<td></td>
<td>y</td>
</tr>
</tbody>
</table>

**Tab. 10. Overview of largest multibank trading systems for customers**
(after King, Osler, Rime (2011)).

<table>
<thead>
<tr>
<th>Share (%)</th>
<th>#Top 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsche Bank (Autobahn)</td>
<td>36</td>
</tr>
<tr>
<td>UBS (FX Trader)</td>
<td>22</td>
</tr>
<tr>
<td>Barclays Capital (BARX)</td>
<td>12</td>
</tr>
<tr>
<td>Citi (Velocity)</td>
<td>6</td>
</tr>
<tr>
<td>JPMorgan (MorganDirect)</td>
<td>3</td>
</tr>
<tr>
<td>Goldman Sachs (REDI)</td>
<td>3</td>
</tr>
<tr>
<td>RBS (SmartPrime)</td>
<td>3</td>
</tr>
<tr>
<td>HSBC (HSBCnet FXHub)</td>
<td>2</td>
</tr>
<tr>
<td>Credit Suisse (PrimeTrade FX)</td>
<td>2</td>
</tr>
<tr>
<td>Morgan Stanley (Passport)</td>
<td>2</td>
</tr>
</tbody>
</table>

**Tab. 11. Average market share and years with top-10 ranking for single-bank platforms**
(after King, Osler, Rime (2011)).
Going to the next point, we also propose the **Ledenyov law**: The processing frequency of electronic trading systems in the foreign currencies exchange markets in the diffusion-type financial systems with the induced nonlinearities will double every two years, which has been formulated in an analogy with the **Moore’s law**, which describes the integrated circuits capacity doubling every 18 – 24 months in **Moore (1995, 2003)**.

Finally, we would like to make a few interesting concluding remarks that the **modern absorption theory** in the finances and economics as well as the physics and chemistry has been intensively developed by the **prominent distinguished researchers** at the **world class research institutions** and the **top league “red bricks” universities** in a number of countries over the recent centuries. In this connection, it makes sense to note a remarkable fact that the **nature of absorption processes** of the different chemical compounds in the various physical – chemical systems has been comprehensively researched by the **authors** together with their scientific collaborators in the fields of the **physics** and **chemistry** over the last 45 years. Let us list the selected theoretical and experimental research programs to study the **absorption phenomena** in the **material science**, which have been completed by the **authors** together with their scientific colleagues in recent decades:

1. **The absorption of the different radioactive chemical elements and their isotopes in the soft condensed matter** (the coal granules of different geometric shapes, the coal dust particles of micro- and nano- sizes) at the sound frequencies have been researched in the **nuclear physics** in **Ledenyov O P, Neklyudov (2013)**, **Neklyudov, Dovbnya, Dikiy, Ledenyov O P, Lyashko (2013)**, **Neklyudov, Ledenyov O P, Fedorova, Poltinin (2013a, b)**, **Neklyudov, Fedorova, Poltinin, Ledenyov O P (2013)**, **Ledenyov O P, Neklyudov, Poltinin, Fedorova (2012a, b)**, **Neklyudov, Ledenyov O P, Fedorova, Poltinin (2012)**, etc.

2. **The absorption of the electromagnetic signals in the condensed matter** (the high pure metals and superconductors) at the ultrasonic frequencies has been investigated in the **solid state physics** at the in **Ledenyov O P (2012a, b, c)**, **Ledenyov V O, Ledenyov D O, Ledenyov O P, Tikhonovsky (2012)**, **Ledenyov O P, Fursa V P (2012)**, **Shepelev, Ledenyov O P, Filimonov (2012a, b, c, d, e)**, etc.

3. **The absorption of the electromagnetic signals in the sub-surface layers in the condensed matter** (the high temperature superconducting ceramics and dielectrics) at the ultra high frequencies has been studied in the **solid state physics** in **Ledenyov D O, Mazierska, Allen, Jacob (2012)**, **Leong, Mazierska, Jacob, Ledenyov D O, Batt (2012)**, **Mazierska, Ledenyov D O, Jacob, Krupka (2012)**, **Jacob, Mazierska, Ledenyov D O, Krupka (2012)**, **Mazierska, Krupka, Jacob, Ledenyov D O (2012)**, **Jacob, Mazierska, Leong, Ledenyov D O, Krupka (2012)**, **Jacob,

Conclusion

In the Schumpeterian creative disruption age, the authors firmly believe that an increasing application of electronic technologies in the finances opens a big number of new unlimited opportunities toward the ultra high frequency electronic trading in the foreign currencies exchange markets in the conditions of the discrete information absorption processes in the diffusion-type financial systems with the induced nonlinearities.

This scientific paper applied the innovative thinking to research the ultra high frequency electronic trading strategies in the foreign currencies exchange markets in the conditions of the discrete information absorption processes in the diffusion-type financial systems with the induced nonlinearities, based on the academic literature.

Going from the academic literature, we discussed the probability theory and the statistics theory application to accurately characterize the trends in the foreign currencies exchange rates dynamics in the short and long time periods. We considered the financial analysis methods, including the macroeconomic analysis, market microstructure analysis and transactions order flow analysis, to forecast the volatility in the foreign currencies exchange rates dynamics in the short and long time periods. We proposed to apply the Stratanovich-Kalman-Bucy filtering algorithm in the Stratanovich – Kalman – Bucy filter and the particle filter to accurately estimate the time series and predict the trends in the foreign currencies exchange rates dynamics in the short and long time periods. We developed and tested the MicroFX software program with the embedded optimized macroeconomic analysis, market microstructure analysis, order flow analysis, Stratanovich – Kalman – Bucy filtering, particle filtering, and comparative analysis algorithms with the purpose to accurately forecast the trends in the foreign currencies exchange rates dynamics during the ultra high frequency electronic trading strategies in the foreign currencies exchange markets in the conditions of the discrete information absorption processes in the diffusion-type financial systems with the induced nonlinearities, which takes to the account the non-Gaussian non-linear chaotic distributions of the financial variables in the time domain. We researched the influence by the discrete information absorption on the ultra high frequency electronic trading strategies creation and execution during the electronic trading in the foreign currencies exchange markets. We formulated the Ledenyov law on the limiting
frequency (the cut-off frequency) for the ultra high frequency electronic trading in the foreign currencies exchange markets.

We believe that this paper extends our understanding of the complex research problems, connected with the ultra high frequency electronic trading strategies in the foreign currencies exchange markets in the conditions of the discrete information absorption processes in the diffusion-type financial systems with the induced nonlinearities.

We think that the application of the multidisciplinary research skills in the finances, economics, econometrics, econophysics, electronics and computer science will lead to the creation and execution of the winning virtuous ultra high frequency electronic trading strategies in the foreign currencies exchange markets in the conditions of the discrete information absorption processes in the diffusion-type financial systems with the induced nonlinearities.

Acknowledgement

This condensed research article is mainly aimed for the young scientists, professors, subject experts, financial analytics, experienced financiers, foreign exchange traders and business leaders, who would like to learn more on the ultra high frequency electronic trading in the foreign exchange markets at an influence by the discrete information absorption processes in the diffusion-type financial systems with the induced nonlinearities, and it is written, applying the theoretical econometrical and econophysical approaches in the academic literature. The research article is written on the basis of a series of invited lectures on the ultra high frequency electronic trading in the foreign exchange markets at an influence by the continuous and discrete information absorption processes in the diffusion-type financial systems with the induced nonlinearities, which has been presented by the authors at the leading universities around the World in recent years.

The first author’s knowledge on the origins of the nonlinearities in the complex systems in the electrical, electronic, computer and financial engineering has been obtained during the intensive innovative scientific collaboration with Prof. Janina E. Mazierska, Personal Chair, Electrical and Computer Engineering Department, James Cook University, Townsville, Australia and former Dean, Electrical and Computer Engineering Department, James Cook University, Townsville, Australia, and former IEEE Director Region 10 in Australia, and IEEE Fellow. The first author would like to acknowledge Prof. Janina E. Mazierska by expressing his sincere gratitude for the kind scientific advices on how to develop the logical mathematical analysis skills, the scientific problems analytic solving ability and the abstract scientific thinking.
to tackle the complex scientific problems on the nonlinearity in the microwave superconductivity as well as on the nonlinearity in the finances, applying the interdisciplinary scientific knowledge together with the advanced computer modeling techniques in the course of the cutting-edge highly innovative research projects at James Cook University in Townsville in Queensland in Australia in 2000 – 2014 after the graduation from V. N. Karazyn Kharkov National University in Kharkov in Ukraine in 1994 – 1999.

There would be appropriate to say that, in an information age, the first author’s special efforts have been primarily directed towards the scientific information gathering, systematization and detailed analysis in the frames of this research projects on the ultra high frequency electronic trading in the foreign exchange markets at an influence by the discrete information absorption processes in the diffusion – type financial systems with the induced nonlinearities; hence the first author would like to thank the professional stuff at the central library at James Cook University in Townsville, Queensland, Australia for providing the first author with all the necessary technical support in relation to the literature search on the subjects of his multidisciplinary research interest in the national and international electronic research databases at Australian universities, replying to the numerous chaotic research requests timely, and making everything possible to assist with the completion of the highly innovative advanced research on the ultra high frequency electronic trading in the foreign exchange markets at presence of the discrete information absorption processes in the diffusion – type financial systems with the induced nonlinearities at the James Cook University in Townsville, Queensland in Australia in 2000 – 2014.

The first author would like to comment that informative scientific discussions on the accurate characterization of the foreign currencies exchange rates dynamics during the ultra high frequency electronic trading in the foreign currencies exchange markets at an impact by the discrete information absorption processes in the diffusion – type financial systems with the induced nonlinearities, which have been conducted by the first author with the M.Sc. students, Ph.D. candidates, professors, visiting scientists and other faculty members during the numerous scientific seminars and research meetings at James Cook University in Townsville in Queensland in Australia, are generously appreciated, because these valuable scientific opinions exchanges encouraged the first author to generate the new original scientific ideas and make the creative imperative integrative intelligent conceptual co-lateral adaptive logarithmic thinking with the application of the inductive, deductive and abductive logics analysis as far as the ultra high frequency electronic trading in the foreign currencies exchange markets is concerned.
A certain part of this condensed research article has been written during the first author’s visit to the City of Kuala Lumpur and the Island of Langkawi (www.holidaylangkawi.com) in Malaysia in January, 2014. Therefore, it is a first author’s great pleasure to see that the 6th London School of Economics Asia Forum 2014 has been also conducted in the City of Kuala Lumpur, Malaysia this year. It makes sense to comment that the first author did learn enormously from the research articles, written by Prof. Charles A. E. Goodhart, London School of Economics and Political Science, London, UK, who presented an invited talk at the above mentioned conference in Malaysia in 2014. In addition, in the present research article, the first author decided to use the important research findings and the financial analysis data on the global foreign currencies exchange market, presented in the invited speech by Prof. Andrew Sheng, Graduate School of Economics and Management, Tsinghua University, Beijing, P. R. China; the University of Malaya, Kuala Lumpur, Malaysia former President of Fung Global Institute, a Chief Adviser to the China Banking Regulatory Commission, a Board Member of Khazanah Nasional Berhad, Malaysia, a member of the International Advisory Panel to the Australian Treasury's Financial System Inquiry, and an advisor to the United Nations Environment Program Inquiry into the Design of a Sustainable Financial System.

Summing up all the above comments, the first author acknowledges the “numerous meetings without the ties” with the great Australian philosophers, professors, scientists, businessmen, lawyers, governmental officials and political leaders in the relaxing trusted mutual-respect atmosphere, characterized by the pluralism of research opinions on the discussed topics, during the Yara valley and Mornington-Peninsula limo tours (www.yaravalleylimotours.com.au), which fascinated the first author’s mind, stimulated the abstract thinking on the theoretical ideas or assumptions, and inspired to work consistently to complete the writing of this highly innovative condensed research article on the ultra high frequency electronic trading in the foreign currencies exchange markets in the case, when the discrete information absorption processes are present in the diffusion – type financial systems with the various types of induced nonlinearities, at James Cook University in Townsville, Brisbane, and Gold Coast in Queensland in Australia in 2014.

The second author would like to kindly acknowledge the numerous private communications with the participants of the V. Ya. Bunyakovsky international conference with the special focus on the V. Ya. Bunyakovsky’s research contributions to the mathematical theory of probability and its modern applications in the econophysics and econometrics, which had place during a tour to the Town of Bar, Vinnytsya Region, State of Ukraine in the time of the conference, organized by the Institute of Mathematics of National Academy of Sciences of
Ukraine (NASU), Kyiv, Ukraine on August 20 – 21, 2004. Absorbing the brilliant research ideas during a fruitful exchange by the scientific opinions among the conference attendees, the second author came up with a remarkable conclusion that the foundations of the mathematical theory of probability by V. Ya. Bunyakovsky enable us to perform a more accurate scientific analysis and characterization of the complex research problems on the ultra high frequency electronic trading in the foreign currencies exchange markets in the circumstances, when the discrete information absorption processes are present in the diffusion – type financial systems with the various types of induced nonlinearities. It makes sense to make a short note that this version of research article has been reviewed during the second author’s visit to the Town of Bar, Vinnytsya Region, State of Ukraine in August, 2014.

It is a real pleasure to comment that some fundamental issues on the electronic trading in the foreign currencies exchange markets have been researched by the second author during his intensive research work on a number of the complex research problems at the Electronic Trade Laboratory, Rotman School of Management, University of Toronto, Canada in 2005 - 2006. Having said that, the second author would like to state that the Electronic Trade Laboratory at the Rotman School of Management, University of Toronto, Canada has became a global hub of innovative scientific thinking in the finances mainly due to the high level organizational efforts by Prof. Roger L. Martin, former Dean, Rotman School of Management, University of Toronto, Canada on that time. It is important to underline the fact that the Electronic Trade Laboratory, Rotman School of Management, University of Toronto, Canada can be characterized as a global financial center of gravity, where the highly innovative research work has been conducted by the second author from the early morning hours until the deep night, being occasionally interrupted by the thoughtful scientific discussions on a variety of problems in the finances with Profs. John C. Hull and Roger L. Martin, Rotman School of Management, University of Toronto, Canada in 2005 - 2006.

We are glad to mention a remarkable fact that the authors spent a great deal of time, analyzing the numerous mathematical formulas and research data by many distinguished scientists, and aiming to understand the nature of the foreign currencies exchange rate dynamics; hence we are very grateful to a big number of distinguished professors for their kind permissions to apply the derived mathematical formulas and selected theoretical models from their published research articles. Especially, the authors would like to acknowledge the extensive use of some important research results on the macroeconomics analysis, market microstructure analysis and transactions order flow analysis methods in connection with the foreign currencies exchange rates prediction problems by Richard K. Lyons, Bank of America Dean and Professor of
Business and Kruttschnitt Family Chair in Financial Institution at Walter A. Haas School of Business at University of California-Berkeley in Berkeley, California in the USA. In our opinion, the unconventional research thinking and brilliant scientific ideas on the foreign currencies exchange rates dynamics by Prof. Richard K. Lyons definitely deserve more focused research attention from the side of the financiers, traders and professors in the leading financial institutions and “red bricks” universities.

As always, we are very grateful to Prof. Michael E. Porter, Bishop William Lawrence University Professor and former Dean of Harvard Business School, Harvard University, who is considered by the authors as a father of the modern business strategy, for his valuable personal efforts and time to write a number of interesting informative research articles and books as well as to create the lecture notes, providing us with his professional expertise, exceptional quality professional advices and wise opinions in the field of competitive strategy in the 21st century.

Playing the tennis at the tennis courts or the golf at the golf play grounds with our research collaborators, business partners, friends in various developing and developed countries around the World regularly, we have already conducted many hundreds of thoughtful discussions on various research topics, hence we would like to thank all our global Friends for their brilliant ideas, interesting opinions, wise suggestions and shared experiences on the subject of our research interest in the finances.

*E-mail: dimitri.ledenyov@my.jcu.edu.au

References:

Finances Science, Economics Science, Foreign Currencies Exchange Markets Science:

3. Bagehot W 1873, 1897 Lombard Street: A description of the money market Charles Scribner's Sons New York USA.

7. Schumpeter J A 1933 The common sense of econometrics Econometrica.

8. Schumpeter J A 1911; 1939, 1961 Theorie der wirtschaftlichen entwicklung; The theory of economic development: An inquiry into profits, capital, credit, interest and the business cycle Redvers Opie (translator) OUP New York USA.


15. Slutsky E E 1915 Sulla teoria sel bilancio del consumatore Giornale degli economisti e rivista di statistica 51 no 1 pp 1 – 26 Italy.


22. Slutsky E E 1925b Ueber stochastische Asymptoten und Grenzwerte Metron Padova Italy vol 5 no 3 pp 3 – 89.


29. Slutsky E E 1937b The summation of random causes as the source of cyclical processes Econometrica 5 pp 105 – 146.


34. Ellis H, Metzler L (editors) 1949 Readings in the theory of international trade Blakiston Philadelphia USA.

35. Machlup F 1949 The theory of foreign exchanges in Readings in the theory of international trade Ellis H, Metzler L (editors) Blakiston Philadelphia USA.

36. Robinson J 1949 The foreign exchanges in Readings in the theory of international trade Ellis H, Metzler L (editors) Blakiston Philadelphia USA.

37. Friedman M 1953 The case for flexible exchange rates in Essay in positive economics University of Chicago Press Chicago USA.

38. Friedman M (editor) 1953 Essays in positive economics Chicago University Press Chicago USA.


46. Shiryaev A N 1967 Two problems of sequential analysis *Cybernetics* 3 pp 63 – 69.


51. Shiryaev A N 1988 Probability *Springer-Verlag* Berlin Heidelberg Germany.


74. Karatzas I, Shiryaev A N, Shkolnikov M 2011 The one-sided Tanaka equation with drift *Cornell University* NY USA


91. Arrow K 1970 Essays in the theory of risk bearing Markham Chicago USA.
98. Shapiro A C 1975 Exchange rate changes, inflation, and the value of the multinational corporation


106. Frankel J A (editor) 1983 Exchange rate and international macroeconomics University of Chicago Press Chicago USA.


127. Mussa M 1981 The role of official intervention Group of Thirty New York NY USA.


133. Clark, Logue, Sweeney (editors) 1977 The effects of exchange rate adjustment Department of the Treasury Washington DC USA.


154. Amihud Y, Ho T, Schwartz R (editors) 1985 Market making and the changing structure of the securities industry *Lexington* Massachusetts USA.


174. Loosignian A M 1981 Foreign exchange futures *Dow Jones - Irwin* Homewood IL USA.

175. Mussa M 1981 The role of official intervention *Group of Thirty* New York NY USA.


177. Stigum M 1990 The money market *Dow Jones - Irwin* Homewood IL USA.


183. Bigman D, Taya T (editors) 1983 Exchange rate and trade instability *Ballinger* Cambridge Massachusetts USA.


190. Meese R A, Rogoff K 1983b The out-of-sample failure of empirical exchange rate models *in* Exchange rate and international macroeconomics Frankel J (editor) *University of Chicago Press* Chicago USA.


211. Devereux M, Engel Ch M 1999 The optimal choice of exchange-rate regime: Price setting rules and internationalized production *NBER Working Paper* 6992 NBER USA.


214. Engel Ch M, West K (May) 2004a Accounting for exchange rate variability in present value models when the discount factor is near one *American Economic Review* 94 pp 118 – 125.


217. Engel Ch M, Mark N, West K D 2007 Exchange rate models are not as bad as you think *NBER Working Paper* NBER USA.


281. Lyons R K 1986 Tests of the foreign exchange risk premium using the expected second moments implied by option pricing *International Finance Discussion Papers* 290 Board of Governors of the Federal Reserve System USA.


301. Fan M, Lyons R (July) 2001 Customer-dealer trading in the foreign exchange market Typescript UC Berkeley USA.


349. Sager M, Taylor M P 2005 Order flow and exchange rate movements Typescript University of Warwick UK.


385. Humpage O 1989 On the effectiveness of exchange market intervention *Federal Reserve Bank of Cleveland* USA.


Campbell J, Lo A, MacKinlay A 1997 The econometrics of financial markets Princeton University Press USA.


Edwards S 1991 Real exchange rates, devaluation, and adjustment – Exchange rate policy in developing countries MIT Press USA.


Froot K A, Ramadorai T (August) 2002 Currency returns, institutional investor flows, and exchange rate fundamentals NBER Working Paper 9101 NBER USA.


463. Edison H J (September) 2003 Are foreign exchange reserves in Asia too high? in World economics outlook (September 2003) International Monetary Fund Washington DC USA.


Zhou B 1992a High frequency data and volatility in foreign exchange rates *Manuscript* Department of Finance Sloan School of Management MIT Cambridge MA USA.

Zhou B 1992b Forecasting foreign exchange rates subject to de-volatilization *Working Paper no 3510* Sloan School of Management Massachusetts Institute of Technology Cambridge MA USA.


588. Mark N 2009 Changing monetary policy rules, learning, and real exchange rate dynamics *Journal of Money, Credit and Banking*.


593. Carlson J A, Osler C L (March) 1999 Determinants of currency risk premiums *Federal Reserve Bank of New York Staff Reports Series* no 70.


602. Osler C L, Vandrovych V 2009 Hedge funds and the origins of private information in currency markets Typescript Brandeis University.

603. Osler C L, Yusim R 2009 Intraday dynamics of foreign-exchange spreads Typescript Brandeis University.


608. Peiers B (October) 1995 Informed traders, intervention, and price leadership: A deeper view of the microstructure of the foreign exchange market University California Los Angeles California USA.


611. Schwartz R (editor) 1995 Global equity markets: Technological, competitive, and regulatory challenges Irwin Homewood Illinois USA.


629. Ingersoll J E Jr 1996 Valuing foreign exchange rate derivatives with a bounded exchange
631. LeBaron B (March) 1996 Technical trading rule, profitability and foreign exchange
632. MacDonald R, Marsh I W 1996 Currency forecasters are heterogeneous: Confirmation
634. Pirrong C 1996 Market liquidity and depth on computerized and open outcry trading
systems: A comparison of DTB and LIFFE bund contracts Journal of Futures Markets 16
pp 519 – 543.
635. Rosenberg M 1996 Currency forecasting: A guide to fundamental and technical models
of exchange rate determination Irwin Professional Publishing Chicago USA.
636. Tsang Sh-K 1996 A study of the linked exchange rate system and policy options for
Hong Kong Hong Kong Policy Research Institute Hong Kong P R China.
637. Tsang Sh-K 1998 The case for adopting the convertible reserves system in Hong Kong
638. Tsang Sh-K, Sin Ch-Y, Cheng Y-Sh 1999 The robustness of Hong Kong’s linked
exchange rate system as a currency board arrangement The 54th European Meeting of the
Econometric Society Hong Kong P R China.
639. Tsang Sh-K 1999a A study of the linked exchange rate system and policy options for
Hong Kong Hong Kong Policy Research Institute Ltd Hong Kong P R China.
640. Tsang Sh-K 1999b Fixing the exchange rate through a currency board arrangement:
Efficiency risk, systemic risk and exit cost Asian Economic Journal 13 pp 239 – 266.
641. Tsang Sh-K, Yue Ma 2002 Currency substitution and speculative attacks on a currency
board system Journal of International Money and Finance 21 (1) pp 53 – 78.
642. Vermeiren D, Ková T Z 1996 Foreign exchange risk management and auditing Basic
Documentation Version 1.0a Prague CNB – Banking Supervision 1996.
pp 627 – 646.


657. Evans M D D (November) 1997 The microstructure of foreign exchange dynamics *Typescript* Georgetown University USA.


691. Kirilenko A 1997 Endogenous trading arrangements in emerging foreign exchange markets *Typescript* International Monetary Fund USA.
700. Madhavan A (March) 2000 Market microstructure: A survey *University of Southern California* USA.
702. Madhavan A (October) 2000 In search of liquidity in the internet era 9th Annual Financial Markets Conference of the Federal Reserve Bank of Atlanta USA.
704. Montiel P J 1997 Exchange rate policy and macroeconomic management in ASEAN countries in macroeconomic issues facing ASEAN countries *International Monetary Fund* Washington USA.
705. Pagano M, Roell A 1997 Front running: Market professionals as quasi-insiders
Typescript Tilburg University.

706. Peiers B 1997 Informed traders, intervention, and price leadership: A deeper view of the

707. Reiss P, Werner I (February) 1997 Interdealer trading: Evidence from London Stanford
Graduate School of Business Research Paper no 1430 University of Stanford California
USA.

708. Sweeney R J 1997 Do central banks lose on foreign exchange intervention? A review

Finance 24 pp 665 – 694.

710. Szakmary A, Mathur I 1997 Central bank intervention and trading rule profits in foreign

711. Vogler K 1997 Risk allocation and interdealer trading European Economic Review 41
pp 417 – 441.

712. Wei S, Kim J (November) 1997 The big players in the foreign exchange market: Do they
trade on information or noise? NBER Working Paper 6256 NBER USA.

713. Werner I (September) 1997 A double auction model of interdealer trading Research
Paper no 1454 Stanford University California USA.


715. Abhyankar A H 1998 Linear and nonlinear Granger causality: Evidence from the UK

716. Abrams R K, Beato P 1998 The prudential regulation and management of foreign
exchange risk International Monetary Fund Washington DC USA.

717. Anthony M, MacDonald R 1998 On the mean reverting properties of target zone
exchange rates: Some evidence from the ERM European Economic Review 42
pp 1493 – 1523.

718. Anthony M, MacDonald R 1999 The width of the band and exchange rate mean
reversion: Some further ERM-Based Results Journal of International Money and Finance 18
pp 411 – 428.

environments Typescript Norwegian School of Management University of Oslo Norway.
Bjønnes G H, Rime D (March) 2001 FX trading live! Dealer behavior and trading systems in foreign exchange markets Typescript Norwegian School of Management University of Oslo Norway www.uio.no/~dagfinri.


Eddelbuttel D, McCurdy T 1998 The impact of news on foreign exchange rates: Evidence from high frequency data Typescript University of Toronto Canada.


742. Hau H, Rey H (December) 2002 Exchange rates, equity prices, and capital flows *NBER Working Paper* 9398 NBER USA.


786. Bos Th, Fetherstone Th A (editors) 1999 Advances in pacific basin financial markets *JAI Press* Greenwich Connecticut USA.


811. Rigobon R (September) 1999 On the measurement of the international propagation of shocks NBER Working Paper 7354 NBER USA.

812. Saar G (July) 1999 Demand uncertainty and the information content of order flow Typescript Johnson School Cornell University NY USA.


814. Scalia A (August) 2004 Is foreign exchange intervention effective? Some micro-analytical evidence from Central Europe Typescript Bank of Italy Rome Italy.


825. Carlson J (August) 2002 One minute in the life of the DM/$: Public information in an electronic market Typescript Purdue University USA.
830. Fujiwara I (June) 2000 Liquidity and leverage risk in the Dollar/Yen market Typescript Nuffield College Oxford UK.


837. Lo Ch-K (editor) 2000 Financial markets in Hong Kong *Springer* Singapore.


844. McCallum B (April) 2000 Theoretical analysis regarding a zero lower bound on nominal interest rates *NBER Working Paper no 7677* NBER USA.


873. Duarte M, Stockman A (July) 2001 Rational speculation and exchange rates NBER Working Paper 8362 NBER USA.


885. Sinn H, Westermann F (July) 2001 Why has the euro been falling? An investigation into the determinants of the exchange rate *NBER Working Paper 8352* NBER USA.


889. Aguiar M (March) 2002 Informed speculation and the choice of exchange rate regime *Typescript* University of Chicago USA.


893. Chari A 2006 Heterogeneous market making in foreign exchange markets: Evidence from individual bank responses to central bank interventions *Journal of Money, Credit, and Banking*.


914. Kaul A, Mehrotra V (June) 2002 Ticker or trade? How prices adjust in international markets *Typescript* University of Alberta Edmonton Alberta Canada.


924. Carpenter A, Wang J (January) 2003 Sources of private information in FX trading *Typescript* University of New South Wales Sydney Australia.


937. Mathisen J 2003 Estimation of the equilibrium real exchange rate for Malawi *IMF Working papers 03/104* IMF USA.


943. Wright J H 2003 Bayesian model averaging and exchange rate forecasts *International Finance Discussion Papers no 779* Board of Governors of the Federal Reserve System USA.


1000. Charlebois M, Sapp St 2006 Temporal patterns in foreign exchange returns and options Richard Ivey School of Business University of Western Ontario Canada.


1040. Genberg H, He D, Leung F 2007 Recent performance of the Hong Kong dollar linked exchange rate system Research Note 02/2007 Hong Kong Monetary Authority Hong Kong P R China.

1041. Genberg H, He D, Leung F 2007 The ‘Three refinements’ of the Hong Kong dollar linked exchange rate system two years on Hong Kong Monetary Authority Quarterly Bulletin 51 pp 5 – 11.


1043. Hong Kong Monetary Authority (December) 2007 The foreign exchange and derivatives markets in Hong Kong Hong Kong Monetary Authority Quarterly Bulletin Hong Kong P R China.


1051. Van Wincoop E, Tille C 2007 International capital flows NBER Working Paper 33 NBER USA.


1068. Lien K 2008 Day trading and swing trading the currency market: Technical and fundamental strategies to profit from market moves. *John Wiley and Sons* New York USA.


1077. Adrian T, Etula E, Shin H S 2009 Risk appetite and exchange rates *Staff Report no 361* Reserve Bank of New York NY USA.


1089. Hattori M, Shin H S 2009 Yen carry trade and the subprime crisis *IMF Staff Papers* IMF USA.


1093. Meyers R A (editor) 2009 Encyclopedia of complexity and system science *Springer*.


1108. Diamond R (April 4) 2011 Banks’ profits could take hit in fight over forex fees Pensions and Investments.


1113. Plantin G, Shin H H 2011 Carry trades, monetary policy and speculative dynamics Princeton University USA.


1129. Ledenyov D O, Ledenyov V O 2013f Some thoughts on accurate characterization of stock market indexes trends in conditions of nonlinear capital flows during electronic trading
at stock exchanges in global capital markets *MPRA Paper no 49964* Munich University Munich Germany pp 1 – 52 http://mpra.ub.uni-muenchen.de/49964/.


1134. Ledenyov D O, Ledenyov V O 2014b Strategies on initial public offering of company equity at stock exchanges in imperfect highly volatile global capital markets with induced nonlinearities *MPRA Paper no 53780* Munich University Munich Germany pp 1 – 139 http://mpra.ub.uni-muenchen.de/53780/.


http://riskbooks.com/the-future-of-central-banking ,
http://www.fungglobalinstitute.org/en/future-central-banking ,


1143. Ingves St, Danielsson J, Goodhart Ch (July 7) 2014 Towards a safer and more stable financial system: Stefan Ingves *London School of Economics and Political Science* London UK

*Probability Theory, Statistics Theory, Brownian Movement Theory, Diffusion Theory and Chaos Theory in Econometrics and Econophysics:*


1145. Bernoulli J 1713 Ars conjectandi (The art of guessing).


1147. De Moivre 1730 Miscellanea analytica supplementum (The analytic method).


1151. Connor J J, Robertson E F (July) 2000 Viktor Yakovlevich Bunyakovsky (December 16, 1804 - December 12, 1889) School of Mathematics and Statistics University of St Andrews Scotland UK

http://www-history.mcs.st-andrews.ac.uk/Biographies/Bunyakovsky.html.


1153. Chebyshev P L 1846 An experience in the elementary analysis of the probability theory Crelle’s Journal fur die Reine und Angewandte Mathematik.


1160. Markov A A 1906 Extension of law of big numbers on variables, depending from each other Izvestiya Fiziko-Matematicheskogo Obschestva pri Kazanskom Universitete 2nd series vol 15 (94) pp 135 – 156 Russian Federation.


1174. Kolmogorov A N 1947 The contribution of Russian science to the development of probability theory Uchenye Zapiski Moskovskogo Universiteta no 91.


1187. Mandelbrot B B 1963a The stable Paretoian income distribution when the apparent exponent is near two International Economic Review no 4.


1200. Mandelbrot B B 1977 Fractals: Form, chance and dimension *W H Freeman* San Francisco USA.

1201. Mandelbrot B B 1982 The fractal geometry of nature *W H Freeman* San Francisco USA.

1202. Mandelbrot B B 1997 Fractals and scaling in finance *Springer* New York USA.

1203. Gnedenko B V, Khinchin A Ya 1961 An elementary introduction to the theory of probability *Freeman* San Francisco USA.


1208. Lamperti J 1966 Probability *Benjamin* New York USA.
1214. Breiman L 1968 Probability *Addison-Wesley* Reading MA USA.
1215. Feller W 1968 An introduction to probability theory and its applications vols 1, 2 3rd edition *John Wiley and Sons Inc* New York USA.


1233. Taylor S 1986 Modeling financial time series *John Wi1ley and Sons Inc* New York USA.

1234. Tong H 1986 Nonlinear time series *Oxford University Press* Oxford UK.


1242. Pesaran M H, Potter S M (editors) 1993 Nonlinear dynamics, chaos and econometrics *John Wi1ley and Sons Inc* New York USA.

1245. Peters E E 1994 Fractal market analysis: Applying chaos theory to investment and economics *John Wiley and Sons Inc* New York USA.
1251. Moore G E 2003 No exponential is forever – but we can delay forever *ISSCC*.
1257. Hasem P M, Pesaran B 1997 Working with Microfit 4.0: Interactive econometric analysis *Oxford University Press* Oxford UK.


1271. Koop G 2003 Bayesian econometrics John Wiley and Sons Inc New York USA.


Wiener Filtering Theory, Pugachev Filtering Theory, Stratanovich Optimal Nonlinear Filtering Theory, Stratanovich-Kalman-Bucy Filtering Algorithm, Stratanovich-Kalman-Bucy Filter, Particle Filter in Econometrics, Econophysics, Electrical and Computer Engineering:
1278. Wiener N 1949 The extrapolation, interpolation and smoothing of stationary time series *John Wiley & Sons Inc* New York NY USA.


1297. Pugachev V S 1980b Finite distributions of processes, defined by stochastic differential equations, and extrapolation of these processes *DAN USSR* vol 251 no 1 pp 40 – 43.


1344. Stratonovich R L 1959a Optimum nonlinear systems which bring about a separation of a signal with constant parameters from noise Radiofizika 2 (6) pp 892 – 901.


1368. Wright-Patterson Air Forces Base (AFB) 1970 – 2014 Full extended complemented digital collection of technical research reports and research seminars minutes *Wright-Patterson Air Forces Base (AFB)* Ohio USA.


1373. Maybeck P S 1974 Applied optimal estimation—Kalman filter design and implementation *Air Force Institute of Technology* Wright-Patterson Air Forces Base (AFB) Ohio USA.


1394. Harvey A C 1989 Forecasting, structural time series models and the Kalman filter *Cambridge University Press* Cambridge UK.

1395. Lewis F 1986 Optimal estimation *John Wiley & Sons Inc* USA.


1412. Tanizaki H 1993 Non-linear filters: Estimation and applications Lecture Notes in economics and mathematical systems Springer Verlag Germany.

1414. Bar-Shalom, Xiao-Rong Li 1993 Estimation and tracking: Principles, techniques and software Artech House Boston USA.
1423. Hayes M H 1996 Statistical digital signal processing and modeling John Wiley and Sons Inc USA.
1425. Haykin S (editor) 2001 Kalman filtering and neural networks Wiley Inter-Science USA.
1426. Fuller W A 1996 Introduction to statistical time series John Wiley & Sons Inc USA.
1430. Krelle W 1997 How to deal with unobservable variables in economics Discussion Paper no B 414 Bonn University Germany.


1441. Welch G, Bishop G 2001 An introduction to the Kalman filter Department of Computer Science University of North Carolina at Chapel Hill Chapel Hill USA.


1464. Pasricha G K 2006 Kalman filter and its economic applications *MPRA Paper no 22734 Munich University Munich Germany* pp 1 - 14 http://mpra.ub.uni-muenchen.de/22734/.


http://mpra.ub.unimuenchen.de/26980/.


1477. Theoret R, and Racicot F - E 2010 Forecasting stochastic volatility using the Kalman filter: an application to Canadian interest rates and price-earnings ratio MPRA Paper no 35911 Munich University Munich Germany http://mpra.ub.uni-muenchen.de/35911/.


1482. Hang Qian 2012 A flexible state space model and its applications MPRA Paper No 38455 Munich University Munich Germany pp 1 - 27 http://mpra.ub.uni-muenchen.de/38455/.


Absorption Theory and Experiment in Physics, Chemistry, Electrical, Electronics and Computer Engineering Sciences:


**Business Administration Science, Management Science, Strategy Science:**

1526. Porter M E 1982a Cases in competitive strategy *Free Press* New York USA.


1543. Porter M E 2001b The technological dimension of competitive strategy *in* Research on technological innovation, management and policy vol 7 Burgelman R A, Chesbrough H (editors) *JAI Press* Greenwich CT USA.


1547. Porter M E January 2008 The five competitive forces that shape strategy *Special Issue on HBS Centennial Harvard Business Review* 86 (1).


1552. McKiernan P 1997 Strategy past, strategy futures *Long range planning* vol 30 no 5 p 792.


1554. Moldoveanu M, Martin R L 2001 Agency theory and the design of efficient governance mechanisms *Joint Committee on Corporate Governance Meeting* Rotman School of Management University of Toronto Canada pp 1 – 57.

1555. Martin R L 2004 Strategic choice structuring: A set of good choices positions a firm for competitive advantage *Rotman School of Management* University of Toronto Canada pp 1 – 14 [www.rotman.utoronto.ca strategicChoiceStructuring.pdf](#).


1558. Martin R L 2008 The Opposable mind *Harvard Business Press* Cambridge Massachusetts USA.


1566. Chamberlain G P 2010 Understanding strategy Create Space Charleston SC USA.