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       Abstract 

This paper applies a nonparametric matching method to decompose the rural-urban 

malnutrition gap in Malawi. The results show that 90 per cent and 89 per cent of the 

stunting and underweight gaps respectively would be eliminated if there were no urban 

children with combinations of characteristics which positively influence child nutrition 

that remain entirely unmatched by rural children. Further to that, 4 per cent and 6 per 

cent of the stunting and underweight gaps respectively would disappear if there were no 

rural children with combinations of characteristics which negatively affect child 

nutrition that remain entirely unmatched by urban children. 

       Key words: Matching; malnutrition; Malawi. 

 

1.0. Introduction 

Child malnutrition remains widespread in many developing countries. There is ample evidence 

of the adverse economic and social consequences of child malnutrition. Malnutrition during 

infancy may substantially increase vulnerability to infection and disease, and the risk of 

premature death. Malnutrition in children may also lead to permanent effects and to their having 

diminished health capital later in life as adults. For instance, Alderman et al. (2006) find that 

improvements in nutrition in pre-schoolers are associated with increased height as a young adult, 

and the number of grades of schooling completed. Case and Paxson (2006) argue that the 

relationship between early-life nutritional deprivation and poor educational and socioeconomic 

outcomes as adults is both direct and indirect. The direct channel works through impairments of 

cognitive ability due to early-life malnutrition that harms school success and, subsequently, labor 

market outcomes. The indirect channel is through early life malnutrition which translates into 

poor child health which in turn reduces both school attendance and attainment. This in turn 
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worsens adult socioeconomic outcomes. Besides, early childhood malnutrition may lead to 

delayed school enrolment (Glewwe and Jacoby, 1995; Alderman et al., 2001; Glewwe et al., 

2001). These negative consequences of child malnutrition entail that the reduction of child 

malnutrition is vital for the social-economic development of countries. 

 

Urban children generally have better nutritional status than rural children (Garret and Ruel, 1999; 

Smith et al., 2005). Malawi is no exception with regard to the rural-urban malnutrition gap. The 

prevalence of stunting and underweight is higher in rural Malawi. As we show in more detail in 

Section 2, data from the 2006 Multiple Indicator Cluster Survey (MICS) indicates that about 66 

per cent of urban children are mildly stunted compared to 74 per cent in rural areas. Severe 

stunting is higher in rural areas with about 19 per cent severely stunted, compared to 13 per cent 

in urban areas. Almost one in five children under five in rural Malawi are moderately 

underweight (19 percent) and 3 percent are severely underweight. The corresponding figures for 

urban children are lower with 15 per cent moderately underweight, and 2 per cent severely 

underweight. This nutritional advantage that urban children enjoy entails that the aforesaid 

negative consequences of child malnutrition may be more pronounced in rural areas than urban 

areas.  

 

Ruel et al. (1999) argue that the nutritional difference between urban and rural areas is due 

primarily to a number of phenomena that are unique to or are exacerbated by urban living. Urban 

areas in relation to rural areas have a unique set of characteristics which are detrimental to child 

nutrition such as; the greater dependence on cash income, the greater exposure to environmental 

contamination; the greater involvement of women in income-generating activities outside the 

home; the smaller family size and weaker social and family networks which may affect the 

availability of childcare. The beneficial characteristics include; greater availability of food, 

housing arrangements, health services and greater availability of employment opportunities. In 

addition, services such as electricity, water, and sanitation are on average more readily available 

than in rural areas. This difference in attributes may however only explain a part of the gap as 

some of it may be unexplained due to differences in the returns to those attributes. An 

equalization of the characteristics between rural and urban areas does not necessarily mean that 

the malnutrition gap would disappear.  



With this background in mind, this paper employs the Nopo (2008) decomposition method to 

explore how much of the rural-urban nutrition gap in Malawi is explained and how much is 

unexplained by differences in characteristics. To the best of our knowledge this represents the 

first time the Nopo decomposition has been applied to a health issue1. The decomposition 

ensures that rural children are matched with comparable urban children. It is an extension of the 

standard Blinder-Oaxaca decomposition, independently proposed by Oaxaca (1973) and Blinder 

(1973). It addresses two limitations of the Blinder-Oaxaca decomposition. The first limitation is 

that it is fully parametric since one is required to estimate a linear regression model for 

malnutrition. This imposes a restriction on the functional relationship between malnutrition and 

its determinants. The second and perhaps more important limitation is that it ignores the common 

support problem by estimating malnutrition equations for all rural children and all urban children 

without restricting the comparison only to those children with comparable characteristics. The 

decomposition is thus based on an out-of-support assumption. Individual child characteristics in 

rural and urban areas may not necessarily overlap. There may be a mismatch in child 

characteristics between rural and urban areas. For certain combinations of child characteristics it 

may be possible to find urban children, but not rural children (for example mothers with tertiary 

education in urban areas) while there are also combinations of characteristics for which it is 

possible to find rural children, but not urban children (for example drinking water from wells in 

rural areas). 

 

The Nopo decomposition offers a more precise picture of where policies and programmes should 

target to reduce the malnutrition gap. First, it indicates part of gap that would vanish if 

unmatched urban children had the same nutritional levels, on average, as their matched urban 

counterparts. Second, it shows how much of the rural-urban nutritional difference would be 

eliminated if unmatched rural children had the same nutritional levels, on average, as their 

matched rural counterparts. Third, it gives part of gap attributable to differences in covariates (but 

over the common support). Finally, it also gives the part of the gap which is unexplained by the 

differences in characteristics. 

 

The remainder of the paper is organized as follows. Section 2 describes the data and the 

malnutrition situation in rural and urban Malawi. In Section 3 the matching decomposition 



method is presented and the variables used are discussed. This is followed by the empirical 

results in Section 4. Section 5 concludes. 

 

2.0. Data and the Malnutrition Situation in Rural and Urban Malawi 

2.1. Data 

This paper uses data from the 2006 Multiple Indicator Cluster Survey (MICS) which was 

conducted by Malawi’s National Statistical Office. The main objective of the MICS was to 

obtain estimates at district level on the key indicators related to the well being of children and 

women. The survey covers 26 districts with 2 districts, Likoma and Neno merged with other 

districts. From each district a total of 1200 households were sampled. Two-stage sampling was 

used to select the 1200 households. In the first stage in each district, 40 census enumeration areas 

(clusters) were selected. In the second stage a household listing was performed within the cluster 

and a systematic sample of 30 households was drawn to obtain 1,200 households per district. A 

total of 31200 households were selected in 1,040 clusters. This makes the MICS one of the 

largest nationally representative household surveys in Malawi. The survey collected information 

on; children under five, all women aged 15-49 years, and men aged 15-49 in every third 

household selected. Information on among other things child anthropometrics was collected, and 

this is of interest to this paper as it focuses on child malnutrition. We have a total of 53879 under 

five children in the sample. This total sample is subdivided into 48454 under five children from 

rural areas, representing 90 per cent of the sample, and 5425 from urban areas, constituting 10 

per cent of the sample. 

2.2. The Malnutrition Situation in Rural and Urban Malawi 

To assess child nutritional status we use three anthropometric indicators, the height for Age z-

scores (HAZ), the weight for Age z-scores (WAZ), and the weight for height z-scores (WHZ). 

Following a common empirical regularity, we use the U.S National Center for Health Statistics 

(NCHS) as recommended by the World Health Organization (WHO) as a reference population. 

The three indicators measure different dimensions of child nutrition status. The HAZ measures 

stunting, WAZ assesses underweight, and finally the WHZ determines wasting. The most 

commonly used cut-off to define abnormal anthropometry is a value of -2, that is, two standard 

deviations below the reference median, irrespective of the indicator used. Specifically; HAZ, 



WAZ, and WHZ values less than or equal to -2 indicate stunting, underweight, and wasting 

respectively. The WHO also has a more general malnutrition classification that distinguishes 

between mild (z-score �-1), moderate (z-score �-2), and severe malnutrition (z-score �-3) 

(O’Donnell et al., 2008).  

 
Table 1 reports the percentages of mildly, moderately, and severely malnourished children in 

rural and urban Malawi. Means of the three nutrition indicators are also displayed. The results 

show noticeable rural-urban differences in the proportion of children who are malnourished. 

About 66 per cent of urban children are mildly stunted compared to 74 per cent in rural areas. 

Severe stunting is higher in rural areas with about 19 per cent severely stunted, compared to 13 

per cent in urban areas. Almost one in five children under five in rural Malawi are moderately 

underweight (19 percent) and 3 percent are severely underweight. The corresponding figures for 

urban children are lower with 15 per cent moderately underweight, and 2 per cent severely 

underweight. Looking at wasting the rural-urban difference is mixed as it depends on the extent 

of wasting. Moderate wasting stands at 4 percent for urban children, and 3.8 per cent for rural 

children. Severe wasting is slightly higher in urban areas than in rural areas, while the reverse 

holds for mild wasting. The means of the indicators (last row in Table 1) tell a similar story to 

the malnutrition prevalence rates; which is that stunting and underweight are worse in rural areas 

than in urban areas, and with the means all positive, wasting is not a problem. The results also 

indicate that mean differences are statistically significant for stunting and underweight only. The 

WHZ, and to some extent the WAZ are more prone to acute episodes of stress occurring at or 

around the time of measurement (Sahn and Stifel, 2002). They are thus short term indicators of 

malnutrition. The results seem to suggest that under five children in rural  areas compared to 

their urban counterparts fare poorly in terms of long term indicators of malnutrition but the 

differential is small and mixed when looked at in terms of short term indicators.  

 

Here we have only used three conventional cut-off points; this however raises a valid question as 

to whether the rural-urban differences would hold for all possible cut-off points. Put differently, 

is the better ranking of urban children robust to choice of cut-off point. To answer this question, 

in Figure 1 we plot cumulative density functions (CDFs) for each malnutrition indicator in rural 

and urban areas. The CDFs basically show whether or not the distribution of a malnutrition 



variable in one area first order stochastically dominates that of another area. A CDF for area A 

which is everywhere below that of area B means that area B has a higher proportion of 

malnourished children than area A irrespective of cut-off point chosen. That is, area A first order 

stochastically dominates area B.  Looking at the CDFs for HAZ and WAZ, we see that urban 

areas first order stochastically dominate rural areas. This means that the proportion of children 

who are stunted and underweight is higher in rural areas regardless of cut-off point used. Turning 

WHZ we see that the CDFs for the rural and urban areas are visually indistinguishable and as 

such it is not possible to say which one is dominates the other. This indicates that whatever cut-

off point one elects to use, the proportion of wasted children in urban areas is no different from 

that of rural areas. 

 

As a complementary exercise, and in order to get a better sense of the distribution of the rural-

urban difference in malnutrition, we present in Figure 2 kernel density plots for each 

malnutrition indicator. The kernel density plots estimate the empirical distribution of each 

indicator. Interestingly, the plots for HAZ and WAZ show that the distribution of the two 

indicators in both urban and rural areas is skewed to the right. In contrast, the kernel plot for 

WHZ shows that this indicator is more normally distributed in the two areas. This suggests that 

in urban and rural areas, stunting and underweight are more serious problems as compared to 

wasting. Taking a closer look at the kernel plots for HAZ and WAZ reveals that for urban areas 

the plots are below the rural plots for high levels of malnutrition (z-scores� -2), while the 

opposite holds for low levels of malnutrition (z-scores� -2). This implies that there is a higher 

chance of finding stunted and underweight children respectively in rural areas than in urban 

areas. A Kolmogorov-Smirnov test of the null hypothesis that the distributions of HAZ and 

WAZ for the rural and urban areas are statistically the same gives a p-value of 0.00 for both the 

HAZ and the WAZ. This implies that the distributional differences as depicted by the kernel 

plots are statistically significant. Turning to wasting, the rural and urban kernel plots seem to 

coincide over some ranges, and no consistent pattern of dominance by one area emerges. The 

Kolmogorov-Smirnov test gives a p-value of 0.322, leading to the acceptance of the null 

hypothesis that the distributions of WHZ in rural and urban areas are statistically the same. This 

suggests that the likelihood of observing a wasted child is about the same in rural and urban 

areas.  



The finding that in Malawi there is little if at all any difference between rural and urban areas in 

terms of wasting is consistent with other studies which find very small rural-urban differences 

and even in a few cases, slightly higher wasting in urban areas (for example Garret and Ruel 

(1999)). This lack of difference seems to persist overtime, as Smith et al. (2005) using 1992 data 

find no statistically significant difference in the means of WHZ between rural and urban children 

in Malawi. Consequently, this paper focuses on the examination of the difference between rural 

and urban children with respect to stunting and underweight only. 

3.0. Econometric Framework 

This section begins with a discussion of the matching approach which we use in the empirical 

analysis to explore the rural-urban gap in stunting and underweight. This is followed by a 

presentation of the explanatory variables used. 

3.1. Description of the Matching Approach  
 
Owing to the shortcomings of the standard Blinder-Oaxaca decomposition highlighted earlier, 

the paper adopts a decomposition approach proposed by Nopo (2008). It is a fully nonparametric 

method as it does not require the estimation of a linear malnutrition regression model. Critically, 

it does not make the out-of-support assumption as the counterfactual mean malnutrition level is 

simulated only for the common support. In order to construct the counterfactual mean 

malnutrition, Nopo (2008) uses an exact covariate matching procedure which selects two sub-

samples of rural and urban children with comparable characteristics. We now discuss the 

matching procedure. 

 

Let H denote the child nutritional status indicator (HAZ, WAZ), and X  the vector of individual 

characteristics which determine child nutrition. Furthermore, let  ),()( uxXHExg u ==  denote 

the mean of the child nutritional status indicator for urban areas, with characteristics x , )(xF u   

the cumulative distribution function of individual characteristics x  for urban areas, and uS the 

support of the distribution of characteristics for urban areas. For rural areas, (.)rg  , (.)rF    and 

rS  are defined in a similar manner. The average rural-urban malnutrition gap is then expressed 

as 



)|()|( rHEuHE −=∆                                                           (1) 

To allow for the possibility that the support of the distribution of characteristics for urban 

children, uS , is different than the support of the distribution of characteristics for rural 

children, rS , the mean malnutrition level for each group is further subdivided over its respective 

domain into two parts: one on the intersection of the supports, rSuSS ∩=  and one out of the 

common support, S . The mean malnutrition level for urban children then becomes 

)|(
|
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Where; )()|(| xudFsuSXuS �=∈=θθ  is the probability measure of the set S  under the 

distribution (.)udF .  Noting that uSuSXuS |
1)|(

|
θθθ −=∈=  , equation (2) can be rewritten as: 
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The corresponding mean malnutrition level for rural children is similarly derived to get 
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SrS

+−=θ                                   (4) 

Substituting the mean malnutrition level for urban children (equation (2)) and the mean 

malnutrition level for rural children (equation (4)) into the average child malnutrition gap 

(equation (1)) we get 
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Part I of this expression measures the rural-urban difference in average child malnutrition over 

the common support only, while parts II  and III capture the  average child malnutrition 

difference between urban and rural children respectively in and out-of-the support. 

 

 Part I can further be decomposed by adding and subtracting the counterfactual mean 

malnutrition   )()( xsdFxg ru
S� , with )(xdF r

s   the density of characteristics in the subpopulation 



of rural children in the common support. As indicated earlier, the counterfactual mean 

malnutrition for rural children (urban children) represents the average malnutrition level for rural 

children (urban children) if they were urban children (rural children). Part I then becomes; 
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Similar to the standard Blinder-Oaxaca decomposition, the first and the second parts of equation 

(6) capture the characteristic and the coefficient effects of the rural-urban malnutrition gap, but 

now on the common support only. Putting everything together, the overall malnutrition gap, ∆  is 

broken into four additive components as follows 
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The component u∆  represents part of the gap which can be explained by differences between 

those urban children whose characteristics can be matched to rural children’s characteristics and 

those who remain unmatched. Thus, this is part of the rural-urban nutritional difference that 

would be eliminated if there were no urban children with combinations of characteristics X  that 

remain entirely unmatched by rural children, or alternatively if these unmatched urban children 

had the same nutritional levels, on average, as their matched urban counterparts. For instance 

urban children may have easy access to clean drinking water and medical care which rural 

children may not. This component may therefore explain the rural-urban differences in nutrition 



which arise from the fact that some characteristics which influence positively child nutrition may 

be available to urban children only. 

 

The component r∆   is interpreted in a similar way between matched and unmatched rural 

children. For this component, there are no urban children who have the same characteristics as 

rural children. It is part of the gap which would disappear if all rural children had at least one 

possible combination of the set of characteristics X  that the population of urban children have, 

or alternatively, if these unmatched rural children had the same nutritional levels, on average, as 

their matched rural counterparts. For instance, rural children may drink poor quality water from 

wells which may not be the case for most urban children. This component sheds light on the 

rural-urban gap in malnutrition attributable to the fact that some characteristics which negatively 

affect child nutrition may be available to rural children only. 

 

The components x∆  and o∆  are similar to the standard Blinder-Oaxaca decomposition’s 

characteristic effect and coefficient effect except that this is over the common support. The 

component x∆  captures part of rural-urban malnutrition gap attributable to differences in 

covariates (but over the common support). For example, rural and urban mothers may have 

secondary or tertiary education, but urban mothers are more represented in this category than 

rural mothers. Thus, x∆  measures the decrease in the malnutrition gap if the distributions of 

characteristics of rural children and urban children are equalized over the common support. The 

component o∆  is the residual part of the malnutrition gap. It is part of the gap which is 

unexplained by the differences in characteristics. It the nutritional gap which remains even if 

urban and rural children had the same characteristics over the common support. In the standard 

linear Blinder-Oaxaca decomposition the characteristic effect is ru x ∆+∆+∆  and the 

coefficient effect is o∆ . 

The Nopo decomposition uses an exact matching algorithm to estimate the counterfactual mean 

malnutrition as well as the four components. Exact matching means that a rural child is matched 

whenever we find an identical urban child in terms of X . The treatment variable is area of 

residence, rural vs. urban. The algorithm involves four steps as summarized as below. 

•  Step 1: For each rural child in the sample, do steps 2 and 3. 



•  Step 2: Select all observations from the sub-sample of urban children who have the same 

characteristics as the rural children of step 1. Do not remove these selected observations 

such that they can be used again. Denote these urban children as matched. If no 

observations are selected in this step, denote the rural children chosen in step 1 as 

unmatched, otherwise as matched. 

•  Step 3: Compute the counterfactual mean malnutrition level of the rural children selected 

in step 1 as the weighted average malnutrition level of the urban children selected in step 

2. 

•  Step 4: Compute ru x ∆∆∆ ,,  and o∆ using the actual malnutrition variable, the new 

synthetic malnutrition variable and the “match” dummy variable (coded as 1 if a rural 

child (urban child) is matched to an urban child (rural child)). 

 
3.2. Variables Used 
 
As indicated earlier, we have two dependent variables namely; the HAZ and the WAZ. In terms 

of independent variables, we have three categories of variables; child level variables, household 

level variables, and regional level variables. Child level variables included are; a child’s age in 

months and its square to capture possible non linearities, sex of the child, and the status of being 

a twin, as twins frequently show lower birth weight (Hatkar and Bhide, 1999). We also control 

for the child’s birth order. At the household level we have the age difference between mother and 

father to capture the bargaining position of the mother. According to the bargaining literature on 

household decisions, bargaining status could influence those resources that the mother may 

receive for herself as well as for her child, possibly leading to adverse nutrition consequences 

(Smith et al., 2003). The economic status of a child’s household is known to be a strong 

determinant of her or his nutritional status. Poor households and individuals often have low 

access to food, a necessary condition for food security. They also may have inadequate resources 

for care, and may not be able to utilize (or contribute to the creation of) resources for health on a 

sustainable basis (Smith et al., 2005). We measure household economic status by using a wealth 

index, and the households are categorized into five groups; poor, middle, richer, and richest. The 

poorest group is the base category. Parental education is included as a three class dummy 

variable indicating whether the mother/father has primary schooling, or has secondary or more 

education, no education for mothers and fathers represent the control group. We include a 



dummy to capture whether the mother was a teenager at the birth of the child. Children of 

mothers who were teenagers when giving birth may have lower nutritional status (Linnemayr et 

al., 2008). We also include ethnicity of the household (chewa, lomwe, yao, ngoni, tumbuka. 

Other tribes represent the excluded category. The religion of the family is also included 

classified as follows; protestant, muslim, catholic, with other religions representing the excluded 

category. Finally, at the regional level we control for region effects, by including dummies north 

and centre, with south as the base. 

4.0. Estimation Results 

This section presents descriptives of explanatory variables used, means for a selection variables 

for unmatched and common support samples, and finally, we look at the Nopo and Blinder-

Oaxaca decomposition results. 

4.1. Descriptive Statistics of Explanatory Variables  

Table 2 presents descriptive statistics of explanatory variables used for rural and urban under five 

children. The statistics as expected show that there are differences in the attributes of rural and 

urban children. There are slightly more boys in urban areas than rural areas. In terms of 

household economic status, there are more rich households in urban areas than in rural areas. 

Close to 60 per cent of urban households fall in the richest category as compared to 11 per cent 

of households in rural areas. The mean age difference for rural mothers is higher than that of 

urban mothers suggesting that they have a weaker bargaining position relative to their urban 

counterparts. The proportion of teen age mothers is higher in rural areas than in urban areas. The 

results show that 97 per cent of mothers in rural areas had a child as teen agers as compared to 

about 13 per cent in urban areas. Regarding parental education, the results indicate that urban 29 

per cent of urban children have mothers with secondary education or more, while only 7 per cent 

of mothers have secondary education or more in rural areas. The education gap is even more 

pronounced for fathers, with 44 and 14 per cent having secondary education or more in urban 

and rural areas respectively. 

4.2. Child Characteristics and Malnutrition Rates in and out of the Common Support  

Table 3 reports means of selected variables for unmatched rural, unmatched urban and common 

support (matched) children. This is useful as it gives us a sense of how the characteristics differ 



for the matched and unmatched children. Overall, of the 53879 children in the sample, 41847 

rural children representing 80 per cent are unmatched with urban children, 4536 of urban 

children, representing 8 per cent have no match in rural areas, and finally, 14 per cent of urban 

and rural children are matched.  Owing to the fact that we are matching on the same independent 

variables, the results for both the HAZ and the WAZ are basically identical, and they show that 

there are noticeable differences in the three samples with respect to child attributes. Generally, 

unmatched urban children have favourable characteristics compared to unmatched rural children, 

and matched children. In addition, unmatched rural children and matched children have fairly 

similar attributes. Looking at household economic status, the results indicate that the majority, 67 

per cent, of unmatched urban children belong to households in the richest category. In stark 

contrast, 11 per cent and 14 per cent of unmatched rural children, and matched children 

respectively belong to households in the richest category.  

Turning to parental education, the results show that 28 per cent and 47 of mothers and fathers 

respectively of unmatched urban children have secondary education or more. These are higher 

than corresponding percentages for unmatched rural children and matched children. Besides, 

relative to unmatched urban children, a larger percentage of unmatched rural children and those 

who are matched have parents who have no education. The similarity of characteristics between 

unmatched rural children and matched children offers some insight into the nature of matched 

sample, which is that rural and urban children are matched on a set of characteristics which are 

detrimental to their nutritional well being rather than beneficial ones. This therefore suggests low 

end matching. 

We next take a look at the differences in prevalence rates of stunting and underweight for 

children in the unmatched rural, unmatched urban and common support samples. We do this by 

using CDFs as explained earlier. Figure 3 shows the CDFs for the three samples and for the HAZ 

and WAZ. The CDFs for the two nutrition indicators are largely similar. Looking at the HAZ for 

instance, the CDFs for the unmatched rural children and matched children are observationally 

indistinguishable, with no discernible pattern of dominance by one sample over the other. This 

suggests that the prevalence of stunting in the two samples is similar. The same can be said of 

the proportion of underweight children in the two samples. This is lack of difference in 

prevalence rates between unmatched rural and matched samples supports our earlier finding that 



the matched samples are matched on a set of unfavorable characteristics which are harmful to 

their nutritional status.  Interestingly, for both the HAZ and the WAZ, the CDFs for unmatched 

urban children are below those for unmatched rural children and matched children. Thus, the 

sample of unmatched urban children first order stochastically dominates the other two samples. 

This means that regardless of malnutrition cut-off point used, the proportion of stunted and 

underweight children is the lowest for unmatched urban children. This may be a reflection of the 

fact seen earlier that unmatched urban children have favourable characteristics which positively 

affect their nutritional status. 

4.3. Matching Decomposition Results 

Table 4 contains Nopo decomposition results for the rural-urban malnutrition gap. As indicated 

earlier, the average malnutrition gap is the difference between averages of the nutrition indicators 

for urban and rural children. Thus, a positive gap means that rural children are on average worse 

off relative to urban children. The results for the HAZ and the WAZ are qualitatively similar. For 

the HAZ, the average malnutrition gap of 0.331 is decomposed as: 91 per cent is explained by 

differences in characteristics outside the common supports of urban children, 4 per cent is 

explained by differences in characteristics outside the common supports of rural children, -1 per 

cent is explained by differences in the distributions of individual characteristics within the 

common support, and the remaining 5 per cent is the part of the gap which is unexplained by 

differences in characteristics between the two areas.  

 

For the WAZ, the average malnutrition gap of 0.206 is decomposed as: 89 per cent is attributable 

to differences in characteristics outside the common supports of urban children, 6 per cent arises 

from differences in characteristics outside the common supports of rural children, -2 per cent is 

due to differences in the distributions of individual characteristics within the common support, 

and the remaining 7 per cent is the unexplained part of the gap. These results suggest that 

differences in characteristics (the characteristic effect) rather than differences in the returns to 

those characteristics (the coefficient effect) are the major driver of stunting and underweight 

gaps between the two areas. More precisely, 90 per cent and 89 per cent of the stunting and 

underweight gaps respectively would be eliminated if there were no urban children with 

combinations of characteristics which positively influence child nutrition that remain entirely 



unmatched by rural children. Further to that, 4 per cent and 6 per cent of the stunting and 

underweight gaps respectively would disappear if there were no rural children with combinations 

of characteristics which negatively affect child nutrition that remain entirely unmatched by urban 

children. 

 

These findings suggest that the characteristics which are disadvantageous to child nutrition in 

rural areas play a small role in the gap, and that most of the gap is largely due to the favourable 

characteristics that urban children have. This means that in order to reduce the malnutrition gap 

attention should focus more on ensuring that the favourable characteristics that urban children 

have such as better parental education, better household economic status among others are also 

available to rural children.  Besides, differences in the distribution of characteristics for matched 

rural and urban children have a negligible effect on the gap. Interestingly, the results indicate that 

if the distributions of characteristics of matched rural children and matched urban children were 

to be equalized this would worsen the gap. This is perhaps a reflection of the fact discussed 

earlier that the matched sample is matched on a low end of characteristics which exacerbate the 

gap instead of reducing it. 

4.4. Matching and Blinder-Oaxaca Compared 

The Nopo decomposition results we have just seen are based on the common support assumption 

which ensures that ‘like is compared with like’, and ignoring this may lead to misleading results 

since children are compared though they are not comparable. In Table 5 we present Oaxaca-

Blinder decomposition results. These results give us a sense of the effect of ignoring the common 

support assumption in decomposing the nutrition gap. The results for both the HAZ and the 

WAZ are generally similar to the Nopo decomposition results; to the extent that both methods 

suggest that the characteristic effect is what drives the rural-urban malnutrition gap2. A notable 

difference between the two results is that the Oaxaca-Blinder decomposition overestimates the 

unexplained part of the gap (the coefficient effect) and underestimates the explained part of the 

gap (the characteristic effect). For instance, for the HAZ 62 per cent of the gap is the 

characteristic effect, while 38 per cent is the coefficient effect. This difference between the two 

decompositions could not necessarily be due to the fact that the Blinder-Oaxaca decomposition 

ignores the common support assumption; it could well be that by assuming linearity we are 



committing a functional form misspecification error. To check if this is the case, we restricted 

the Blinder-Oaxaca decomposition to the matched sample only. If the linear specification of the 

nutrition regressions on the common support is correct, then we should have similar results to 

those obtained after matching. We find that restricting the Blinder-Oaxaca decomposition to 

matched samples gives a characteristic effect of 92 per cent and 86 per cent for the HAZ and the 

WAZ respectively. On the strength of these results, we can conclude that ignoring the common 

support assumption is behind the observed differences between the two decomposition methods. 

5.0. Concluding Remarks 

The paper has looked at the rural-urban differential in child malnutrition in Malawi. Using data 

from the 2006 multiple indicator cluster survey (MICS), we have used a matching method to 

decompose the rural-urban malnutrition gap. This nonparametric method takes into account the 

fact that the supports of the distributions of characteristics between the two areas can be 

different. Matching allows the decomposition to be done over the common support, and this is 

important because comparisons in malnutrition are relevant only when rural families are 

compared to “comparable” urban families. We use HAZ to measure stunting, and the WAZ to 

capture underweight. The results show that the average malnutrition gap of 0.331 for the HAZ is 

decomposed as: 91 per cent is explained by differences in characteristics outside the common 

supports of urban children, 4 per cent is explained by differences in characteristics outside the 

common supports of rural children, -1 per cent is explained by differences in the distributions of 

individual characteristics within the common support, and the remaining 5 per cent is the part of 

the gap which is unexplained by differences in characteristics between the two areas.  A similar 

picture emerges for the WAZ.  
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Table1: Percentage of under-five children who are mildly, moderately, or severely malnourished 

 Rural Urban 
 HAZ 

(stunting) 

WAZ 

(underweight) 

WHZ 

(wasting) 

HAZ 

(stunting) 

WAZ 

(underweight) 

WHZ 

(wasting) 

Mild  74.0 54.3 16.9 65.7 47.1 15.9 

Moderate  46.2 19.2 3.87 35.4 14.7 4.09 

Severe  19.2 3.31 0.81 12.8 2.17 1.01 

       

Mean -1.799 -1.050 0.091 -1.468*** -0.844*** 0.101 

Notes: own computations from MICS data. Malnutrition is classified as follows; mild (z-score �-1), moderate (z-

score �-2), and severe malnutrition (z-score �-3). We test the hypothesis that the mean of a malnutrition indicator in 

urban areas is greater than (that is less negative) that of rural areas. The significance asterisks are defined as:  * 

p<0.10, ** p<0.05, *** p<0.01. 

 

 



Figure 1: Rural and urban cumulative distributions of stunting, underweight, and wasting  
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Notes: own computations using MICS data. 



Figure 2: Kernel density plots of stunting, underweight, and wasting  
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Notes: own computations using MICS data. 



      Table 2: Descriptive statistics of variables 

Variable Rural Urban 
Mean Std Dev Mean Std Dev 

Child Characteristics     
 Boy 0.496 0.499 0.518 0.499 
 Twin 0.029 0.169 0.026 0.156 
 Age of child (in months) 27.019 19.210 28.052 18.929 
 Age of child squared 1099.083 1166.593 1145.205 114.887 
 Birth  order 4.531 2.518 3.755 2.305 
Household economic status     
 Poorest 0.248 0.432 0.049 0.216 
 Poor 0.228 0.420 0.068 0.252 
 Middle 0.221 0.415 0.1174 0.322 
 Richer 0.191 0.393 0.166 0.372 
 Richest 0.111 0.314 0.599 0.490 
Mother  Characteristics     
 Age difference 7.209 10.190 6.856 8.877 
 Teen age mother 0.970 0.295 0.126 0.332 
 No education 0.293 0.455 0.142 0.349 
 Primary education 0.685 0.465 0.684 0.465 
 Secondary education + 0.071 0.257 0.287 0.452 
Father  Characteristics     
 No education 0.192 0.394 0.091 0.288 
 Primary education 0.684 0.465 0.502 0.500 
 Secondary education + 0.139 0.347 0.443 0.497 
Religion     
 Protestant 0.637 0.481 0.656 0.475 
 Muslim 0.123 0.329 0.139 0.346 
 Catholic 0.197 0.397 0.208 0.406 
 Other 0.039 0.194 0.021 0.145 
Ethnicity     
 Chewa 0.335 0.472 0.216 0.411 
 Lomwe 0.159 0.366 0.159 0.365 
 Yao 0.118 0.323 0.137 0.343 
 Ngoni 0.117 0.322 0.127 0.333 
 Tumbuka 0.113 0.316 0.215 0.411 
 Other 0.187 0.390 0.206 0.405 
Region     
 North 0.199 0.399 0.295 0.456 
 Centre 0.382 0.486 0.300 0.458 
 South 0.418 0.493 0.405 0.490 
      

Observations 48454 5425 
Share (%) 90 10 



    Table 3: Means of selected variables for matched, unmatched, and common support samples 

 

  

Figure 3: Cumulative distributions for matched, unmatched, and common support samples 
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Variable 

HAZ WAZ 
Unmatched 

Rural 
Unmatched 

Urban 
Common 
Support 

Unmatched 
Rural 

Unmatched 
Urban 

Common 
Support 

Household economic status 
 Poorest 0.238 0.046 0.281 0.238 0.046 0.281 
 Poor 0.224 0.066 0.235 0.224 0.066 0.235 
 Middle 0.230 0.106 0.159 0.230 0.106 0.159 
 Richer 0.192 0.163 0.180 0.192 0.163 0.180 
 Richest 0.113 0.617 0.142 0.113 0.617 0.142 
Mother  Characteristics 
 Age difference 7.218 6.927 4.419 7.218 6.927 4.419 
 Teen age mother 0.086 0.109 0.171 0.086 0.109 0.171 
 No education 0.289 0.137 0.302 0.289 0.137 0.302 
 Primary education 0.682 0.676 0.703 0.682 0.676 0.703 
 Secondary education + 0.066 0.276 0.130 0.066 0.276 0.130 
Father  Characteristics 
 No education 0.172 0.082 0.295 0.172 0.082 0.295 
 Primary education 0.693 0.485 0.617 0.693 0.485 0.617 
 Secondary education + 0.149 0.470 0.102 0.149 0.470 0.102 
        

Observations 41847 4536 7496 41847 4536 7496 
Share (%) 77.67 8.42 13.91 77.67 8.42 13.91 



Table 4: Nopo decomposition of the rural-urban malnutrition gap 

 HAZ WAZ 

 Coefficient Percent of ∆  Coefficient Percent of ∆  

Raw  gap, ∆  0.331 100.00 0.206 100.0 

Of which:     

 
u∆

 
0.300 90.77 0.184 89.18 

 
r∆  

0.014 4.35 0.012 5.90 

 x∆
 

-0.004 -1.09 -0.004 -2.13 

 
o∆

 
0.018 5.44 0.014 7.01 

 

 

Table 5: Oaxaca-Blinder decomposition of the rural-urban malnutrition gap 

 HAZ  WAZ  

 Coefficient Percent of ∆  Coefficient Percent of ∆  

Raw gap, ∆  .379 100.00 .248 100.00 

Of which:     

 Explained  .234 61.7 .164 66.3 

 Unexplained .145 38.3 .083 33.7 

     

 

End Notes 

                                                           
1 Most applications of the Nopo decomposition have focused on labour issues specifically gender wage 

discrimination (see for example Djurdjevic and Radyakin (2007))   

2 The malnutrition gaps are slightly bigger than those for the Nopo decomposition. This is because some 

observations were automatically dropped during estimation. 


